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Plane curves, their invariants, perestroikas and classifications

_ . Vladimir Arnold
Steklov Mathematical Institute, Moscow*

A curve below means a smooth mapping of a circle to a plane whose derivative nowhere
vanishes (an immersion).

A generic immersion has only ordinary double peints of transversal selfintersections.
All nongeneric immersions form in the space of immersions a hypersurface which I shall
call the discriminant hypersurface or for short the discriminant. :

The goal of this article is the study of the geometry and of the topology of this hyper-
surface. This study leads immediately to nontrivial information on the | genenc immersions.
For msta.nce the results of thxs paper nnply the follomng facts

Consider a generic closed path in the space of immersions,

Theorem. The number of values of the pammeter for wh:ch the zmmersed’ curve has
- @ triple point is even.

_ Definition. A selftangency point of an immersed curve is called a pomt of direct
tangency if the velocity vectors are pointing to the same dxrectwn otherwise it is called a
pomt of snverse fangency.

A moment of selftangency of a curveon a gexieric path in the space of curves is positive
(negative) if the number of double points i increases (decreases) while the path goes through
this moment.

Theorem. The difference between the numbers of positive and negative direct self-
langency moments does not depend on a generic path connecting two generic immersiona,
but onl’y on the two immersions connected by the path.

* This paper has been written while visiting Isaac Newton Institute for Mathematical
Sciences, Cambridge (UK}, Université Paris-Dauphine and Mathematics Research Insti-
tute, ETH Zirich. The author thanks these institutions for their hospitality and Rahel
Boller for fa,sttypmg a difficult manusecript.



A similar result holds for the inverse selftangency moments.

Figure 1:
Two immersions connectable by a path in the space of immersions

The two immersions shown in Fig. 1 can be connected by a path in the space of
immersions.

- Theorem. Any generic one-parameter family of i zmmemwm, canneatmg the two im-
mersions shown in Fig. 1, has at least 6 pammter values corresponding to immersions with
triple points, at least 6 paramier values corresponding to immersions with direct selftan-
gencies, and at least 6 parameter values corresponding to_smmeruons with inverse selftan-
gencies.

Moreover, the difference between the numbers of moments of positive and negative
direct tangencies on a path from the right curve to the left one is equal to 6 For the
inverse tangencies the difference is equal to —86,

For the iriple points there also exists a (nontrivial) way to define the positive and
negative moments. The number of the moments of triple points, counted with these signs
{described below) on any generic path from the left curve to the right one, is equal to 6.

The invariants of immersions, responsible for these and many other results of this
paper, are dual to different strata of the discriminant hypersurface.

The description of all the invariants (that is, of all functions Ioc:aliy'constant on the
complement of the discriminant hypersurface) is equivalent to the classification of the
immersions up to diffeomorphisms of the plane and of the circle. Such a description seems
to be very complicated (more complicated than knot theory).

We shall see, however, that some simple and rather natural axioms are verified ouly
by & small number of simplest invariants which seem to be the most important ones. It is
strange that these invariants — in particular the most fundamental three of them whzch I
denote St,J*,J~ — have not been introduced earlier. : :

- The initial goal of my study of plane curves was an attempt to prove some symplectic
topology generalisations of the 4-vertex theoxem This generalisation leads to the follomng
conjecture, :



. Figure 2: :
A cooriented and oriented front with two cusps
Consider the plane coorxented curve with two semicubical cusp pumts shown in Fig. 2.

There exists a path in the space of cooriented curves with two cusps connectmg this curve
to the same curve with the opposite coorientation (Fig. 3)

Figure 3: :
A sequence of perestrmkas of a front, reversing its coorientation

| Conjecture Any such generic path contains at least one moment of selftangency
with comc:d;ng coorientations,

The number of such moments is even (this can be proved by the methods of the present
article). However, I have not (yet?) constructed an invariant of cooriented curves with
two cusps and no equally cooriented selftangencies, taking different values on the curve of
Fig. 2 and on the curve with opposite coorientation. It seems that such an invariant must
violate the “natural” axioms verified by our invariants.
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§1 The three basic invariants

These invariants are dual to the three parts of the discriminant bypersurface, formed
by the immersions having triple points, having direct selftangencies, and having inverse
selftangencies respectively.

Lemma. Fach of these three parts of the discriminant hypersurface is coorientable.

Comments. A coorienfation of a smooth hypersurface in a functional space is the
choice of one of the two parts, separated by this hypersurface in a neighbourhood of any
of its points. This part is called positive.

The coorientation of the smooth part of a singular hypersurface is called consistent if
the following consistency condition holds in a neighbourhood of any singular point of any
‘stratum of codimension 1 on the hypersurface (of codimension 2i in the ambient functional
space):

The intersection indez of any generic small oriented closed curve with the hypersurface
(defined as the difference between the numbers of positive and negative intersections)
should vanish.

A hypersurface (a subvariety of codimension one} is called cooriented if a consistent
coorientation of its smooth part is chosen, and eoorientable if it exasts

The proof of the Lemma is based on the explicit construction of a coorientation. This
coorientation is in fact unigue (up to the complete change of sign) in the class of local
coorientations, defined above, and does not depend neither on the orientation of the plane
nor of the curve.

Definition. A transversai crossing of a self tangency is pos:twc if the number of
double peints grows (by 2).

A transversal crossing of a iriple point is positive if the new-«born vanishing triangle
is posmve

A vanishing triangle is the triangle, formed by the three branches of a curve, corre-
sponding to a sub-critical or to a super-critical value of the parameter near a triple point
of a critical curve,

The sign of a vanishing triangle is defined by the following construction. The orienta-
tion of the immersed circle defines a cyclical ordering of the sides of ithe vanishing triangle
(it is the order of the visits of the triple point by the three branches). Hence the sides of
the triangle acquire orientations induced by the ordering. But each side has also its own
direction which might coincide, or not, with the orientation defined by the ordering.



For each vanishing triangle we define a quantity (which takes four values 0, 1, 2, 3)
g = number of sides eqyal!y ortented by .

the ordering and by @yézrgctzong(ﬂg .{ )

~ .ACaN-
/qm /cg,i—*zg\
Figure 4:

Positive and negative vanishing tna.ngles

Definition. The sign of a vanishing triangle is (—1)f.

Example. A triangle is positive if the directions of the sides are all opposite to the
orientation defined by the ordering.

Remark. The reversing of the orientation of the curve does not change the quantity
g, since it reverses both the cyclic order and the directions of the sides. Hence, the
. coorientation of the triple points component of the ds.scnm.mant chosen above, does not
depend on the orientation of the circle.

The orientation of the plane has not been used in the construction at all.

Theorem. The above coorientation of the smooth part of the discriminant is consis-
tent. S _ . _ _ _

The proof is a rather long routine check of what happens at the codimension one
strata of the discriminant. In the case of the selftangencies this proof is very easy, since
the number of double points is a well-defined invariant. In the case of triple points some
real computations are needed; we shall prcscnt them in §5 (where the unicity of the coori-
entation is also proved).

Definition. The inder of an immersion (of an oriented circle into an oriented plane)
is the number of turns of the tangent vector (the degree of the mapping, sending a point
of the circle to the d;xrectwn of the denvatwe of the i unmerswn at this point).

_ The m&ex is the cnly mva.na,nt of i 1mmersmns rema.xmng constant along all the paths
in the space of immersions. In other ‘words, the connected components of the space of
immersions are counted by the indices of the immersed curves (Whitney’s theorem, [1}).
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Consider one of these components, that is, the space of immersions of a fixed index.
In §2 we shall prove the following three theorems

Theorem 1. There ezists a unique (up to an addilive constant) invariant of generic
immersions of fized indez whose value remains unchanged while the immersed curve ezpe.
riences a aelﬂangency perestroika, but increases by I under the positive crossing of o triple
point.

This invariant will be denoted by St (from Stramgeness), when normalized by the
following conditions:

St{Kp) =0, StH{Kip:)=1 (t=0,1,...),

where Ky is the figure eight curve (oo) and Ky is the simplest curve with i double points
(Fig. 5).

OOO@@

Figure 5;
The standard curves of indices 0, il,:t:?, .

The reason for this normalization is discussed above in §5 The curves Ky and
Ky, K,,... with different orientations have indices O i:l i2

Theorem 2. There ezists a unique (up to an edditive constant) invariant of generic
immersions of fized index whose value remains unchanged while the immersed curve ez-
periences an inverse selfiangency perestroika or a triple point crossing, but increases by a
constant number ay under a positive (increasing the number of double points) crossing of
a dirsct tancency pemstms’ka :

Tins invariant will be denoted by J* when normalized by the choice ay = 2 and by
the following choices of the values on the curves K; of Fig. 5 (oriented arbitrarily):

CTHK) =0, JH(Kipy) =2 (i=0,1,2,...).
The reasons for these choices are explained below.

Theorem 3. There exists a unique (up o en additive constant) invariant of generic
smmersions of fized indez whose value remains unchanged while the immersed curve ezpe-
riences a direct tangency perestroika or a triple point crossing, butl increases by a consiant
number a.. under a posztwe (zncreasmg the number of double pomts) crossmg of the inverse
tangency perestroika.



This invariant will be denoted by J~ when normalized by the choices a.. = —2 and
J(Kp) = ~1, J™(Kipq) = =3 (i = 0,1,...) for the curves K; of Fig. 5, oriented
arbitrarily. The reasons for these choices are explained below.

Ao aGa@® o0 O @ @ G

st/ 1 o0 ¢o| 0 o0 1 2 3
1o 2 00 0 -2 -4 -6
I 0 0 -2 | -1 0 -3 -6 -9

Figuré 6:
The definitions of the basic invariants S, J%,J~

The normalizing constants are summarized in Fig. 6, where a(-) means the jump of
an invariant under the positive crossing of the discriminant at the stratum (-).

To caleulate the value of an invariant on a'generic immersion it suffices to join it by
a generic path with the standard immersion of the same index and to count the jumps at
the crossings of the discriminant.

Example: There exist exactly ﬁve classes of immersions mth two double pomts,
shown in Fig. 7 (two immersions are in the same class if one can be transformed into
the other by diffeomorphisms of the circle and of the plane, both dxffeomorphjsms mxght
reverse the orientations). : .

The values of the basic invariants for these five immersions are shown in Fig. 7.
* The values of the basic invariants on the curves L (o the left) and R (to the right)
in Fig. 1 are equal to

St(L)=4 , JHL)=-8 , J- (L):
S{(R)=10, J*(R)=-20, J~(R)=-24.

These values imply the theorems formulated in the introduction.

The values of the basic invariants on the curves with three and four double points are
presented at the end of this article. These tables imiply thousands of theorems sxm:.lar fo
that of the introduction, :



o0l B & | & | @
| ind] 1 3 1 3 3
St O o) 1 Z 3
It O O 2 — 4 -6
J~ -2 -2 4 | -6 -8

Figure 7:

The basic invariants of immersions with two double points

§2 Proof of the existence of the basic invariants -

'_ Tins proof is based on a method of S. Smale [2].

The group of the euclidean motions of the plane, Hz x S, acts naturally on the
space of circle immersions into the plane. This action has no fixed points in the space of
immersions.

The space of immersions is fibered into the orbits of this action. This action has a
section: the set of immersions sending a fixed point (*) on the circle to a fixed point {0)
of the plane and the orienting vector of the circle to a vector of a fixed direction, tangent
to the plane at 0. We shall call such immersions normed immersions.

The above action preserves all our discriminants, classes of immersions, and invariants.
Hence it suffices to study all these objects only for the normed immersions. From now on
all the immersions are supposed to be normed. The Smale theory implies the

- Theorem. The space of normed immersions of a fized indez has trivial homotlopy
grougs of dimension ¢ > 0,

Proof. This follows from the exaci sequence of the Serre fibration studied by Smale,
N—{R*\0) x R* |
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- sending & normed immersion of a segment [0, 1] (mth a fixed direction at the starting point
0) to the velocity vector at the end pomt 1.

The homeotopy groups of the space N are trivial. Indeed an immersion f of the
segment 0 < ¢ € 1 may be contracted to its small part by the homotopy f£,(f) = f(si)
with a parameter 5o < 8 < 1, g very small. The small resulting normed immersion may
be then interpolated with a standard small normed immersion linearly.

We shall use the fact that the space N; of normed immersions of a cn‘clc of index 1 is
: sxmply connected ‘This fact implies the foliomng

Theorem The intersection indez of a closed curve in the .space of normed immersions
with any of the three branches of the diseriminani, described in §1, is equal to zero.

Proof. Since the normed immersions space is simply connected, one can find a disc
bounded by the curve. This disc {and the curve itself) may be ma,de transversal to the
- stratification of the discriminant. As a chain, the dxsc; is the sum of small simplices, also
transversal to the discriminant.

If a transversal simplex is sufficiently small, it lies in a two—dimensional versal defor-
mation plane of a singular point of codimension zero or 1 on the discriminant. In this case,
the intersection index of its boundary with the discriminant vanishes, since the coorien-
tation of the smooth part of the discriminant is consistent (see §1). The theorem is thus
proved. It implies the existence of the invariants of theorems 1-3 of §1.

At the same time we have proved the uniqueness of the invariants (up to the choice
of the additive constants, depending only on the index), since the space of immersions of
fixed index is connected. :

§3 Pmpertiés of the invariant S5t

Definition. The connected sum of two immersions of a circle (the first into the left,
the second into the right halfplane) is the new immersion shown in Fig. 8.

Figure 8;
' The cannected sum of two immersions

Remark The connected summation is not an opera,tmn on the immersion classes.
Some pairs of i 1mmersxons can not be added (example: two standard circles with opposite
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orientations). When the summation is possible, the class of the sum depends in general
on the representatives of the classes of the summands. s o '

Thaorem._ Thc. invariant St 15 additive: -
Si(a+b) = St(a) + St(b) .
Proof. Choose a standard .reprgsentaﬁ#e of _e'a;_ch i:lé,ss_of _immersi.on's of index i,
orienting the curves of Fig. 5 (the figure eight curve with both orientations belongs to

the same class). It follows from Fig. 8 that St is additive for the standard immersions of
positive indices ¢ > 0, 5 > 0: = S . S '

SHK)=i~1, SHK;)=j-1, Ki+K;=EKiz.

One proves by a direct computation that St is additive for the standard summation with
the figure eight curve (this follows from the fact that the chain of perestroikas shown in
Fig. 9 decreases St by 1).

Figure 9:
Annihilation of counteroriented loops

-~ We can choose in any class of immersions of given index 1 a special imnmersion L;
whose exterior contour has intervals oriented in both directions. Two immersions of this
kind always admit summations. Using Fig. 8 and Fig. 9, we see directly that the invariant
St is additive for these special cases.

Now consider the sum X + Y of any two generic immersions of a circle. We connect
the left curve X with a standard curve L of the same index by a generic path in the space
of immersions. We can suppose that the immersions forming this path are all identical in
the neighbourhood of the point sent to the connection place on the left curve (the other
branches of the left curve may cross this point during the deformation of the immersion).
We also can suppose that the whole path consists of immersions into the left balfplane,

 Similarly we connect the right curve ¥ with a standard curve R in the right halfplane,
Combining both paths, we obtain a generic path connecting X + Y with L + R. '

10



The increasing of St along this path equals the sum of its increasings along the left
and the right paths. Indeed, neither the orientations of the vanishing triangles nor the
cyclic orderings of their sides do change under the summation. Hence, the signs of the

triple point crossings of the left and the right curves do not change. Besides these points,
-the new path crosses the triple points while the double points of the movmg left or right
curve cross the joining band. These crossings occur in pairs of opposite signs and do not
contribute to the increment of 51, since the correspondmg vanishing tnangles &ﬁer by the
direction of one of the sides. :

Thus, we find
SHX +Y) - SHL + R) = S§t{X) — S4(L) + St(¥) - S¢(R) .

Hence, the additivity for the summation of any. two curves follows from the additivity for
the summation of the spemal curves -

S(L + R) = St(L) + 5¢(R)
which is already proved by direct calculations.

Definition. The strange summation of two immersions of a circle (one into the left,
~the other into the right halfplane) is defined by an immersion of a segment joining them
“such that the immersions coorient the immersed segment differentily at the end points. To
obtain the new circle immersion, one doubles the segment and smoothens the angles as
shown in fig 10, :

m_a,-—,-nl-q__ o o w o

Figure 10:
'The strange summation of immersions

Theorem. The invariant St is additive under the strange summation of immersions.

Proof. The strange summation can be reduced to the ordinary one if we first push
appendices from each curve toward the other (Fig. 11).
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.Figure 11:
Pushing of an appendice from the left curve

This pushing does not introduce triple points, hence does not change the value of St.
Thus the strange summation additivity follows from the ordinary additivity.

§4 Properties of the invariants J*

 The invariants J* are not additive under the strange summation, but they are ad-
ditive under the usual one, This follows, for instance, irom the explicit formula for the
combinations J*435% in terms of the rotatlons of the radius-vectors connecting the double
points c_)f the curve to its moving point.

Choose such a representative of a generic immersion (or such a metric on the plane)
that the intersecting branches in all double points are orthogonal. Choose the ordering
of the directions of the outgoing branches (1,2) at each double point for which the frame
(1,2) orients the plane pos1t1ve1y .

Deﬁmtmn. The ha{ﬁndez iofa , double pomt (respectwely iz) is the angle of the
rotation of the radius-vector connecting this double point to & point moving along the
branch 1 (respectively 2} from the double point to itself divided by /2. The indez of a
double point is the difference ¢ = 4; — 15.

The index does not depend on the orientations of the curve and of the plane (Fig.
12). . |

Deflnition. The invariants I* are defined by the summation of the indices of all the
n double points, namely, - _ _
S e Zidn
_ 4
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Figure 12:
The halfindices and indices of double points

Theorem. The invariants J= are related to I* by the relation
JE =I* - 35¢,

Proof. For the special curves K; of Fig. 5, one can check it directly. For instance,
St{co) = 0, S1(K,) = 1. Hence Fig. 12 corresponds to the values

THK) =0, J(K)=-1, J¥(K;)=-2, J (K3)=-3.

To prove the theorem for the curves of an arbitrary index it suffices hence to ealculate the
increments of I¥ under the elementa,ry perestroikas. '

Case 1. Direct selftangency. Consider the crossing of 2 direct selftangency gen-
erating two double points 4 and B, We wxsh to prove that the value of I* increases by 2
while that of I~ does not change.

Lemma. i(4) + i(B) =
Proof. First calculate the sum for one example (Fig. 13).

The lemma for the general case follows. Indeed, any other example is different from
this one only outside the neighbourhood of the newborn point. The replacement of any of
- the branches of the curve outside this neighbourhood can be considered as an adding to
this branch of a closed curve which does not intersect the neighbourhood. Such an addition
changes the halfindices by the (quadrupled) number of the turns the added curve makes
around the double point A or B. Or these two numbers are equal, since the added curve
~does not intersect the neighbourhood. However, the ordering of the branches at 4 and at

B are opposite, and the increment of i1(A) takes place together with an equal increment
of 1, (B) (similarly for i,(4) and i;(B)). Thus the increment of the sum

(44)4*%(»3)m*l(A)**z(B)'%"h(B)“"‘z(-‘i) |
under the addition of the closed curve v*a.mshes

Hence I+ and I~ behave correctly under the dxrect selftangency perestrolka.
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[ (A=3 — 7 N L ®)=1
'LQA)*‘""“@' X .

Figure 13:
The increment of the sum of the indices of
double points under the direct selftangency perestroika

Case 2. Inverse selftangency.
Lemma. i(4) +i(B) = ~4.

Proof. A particular example is shown in Fig. 14,

,iicA)f-"i/”\ | _'/"""\ i'_:l..(\B)ﬂm'i

(AY=-2 ! - X, > | - | |
ot RN @)=

L(A)«iL(B)=-4

Figure 14:
: The increment of the sum of the indices of double
pomts under the inverse selffangency pcrestxmka :

- ‘The genera.} case is reducxble to tha.t of Fxg 14 by the same arguments as in the chrect
selftangency case.

Hence I does not change its value ﬁ_nder the crossing of an inver'se.selfté.ngency giving
birth to two double points while the value of I™ decreases by 2.

Case 3. A triple pom‘t The number n of double pomts does not change under a
crossing of a triple point,

14



Lemma. The indez of each of the three vertices of the vanishing triangle increases by
{ under ¢ positive c¢rossing of a triple pomﬁ - :

_ Proof. We can fix tivc’a of the'three branches of the curve and move the third one.
Let A;, Az be the fixed branches leawng the fixed intersection point A along the vectors
(1,2) orienting the plane positively. The third visit of the triple point takes place on one
of these two branches. The rotation of the radius-vector will change under the crossing
of the triple point for one of the branches, namely for the one containing the third visit
moment. The increment of the angle of the rotation will be +2x. It will be positive if,
after the crossing, the third branch will define a frame (radius-vector from A to a point of
the third branch, velocity vector of the third branch) positively orienting the plane.

 This increment of the argument divided by 7/2 is equal to the increment of the index
of the point A4, with the plus sign if the third visit point belongs to the branch Al (leaving
A in the direction 1). :

There exist four possibilities for the occuring vanishing triangles (for which the incre-
ments of the argument along the branch and of the index of the point A are both positive).
They are shown in Fig. 15.

A g2

Figure 15:
Vanishing triangles whose births imply increments
of arguments and of the index of point A

We observe that all these four vanishing triangles are positive.

The case of the third visit on the branch 2 can be considered sumlarly But one also
can avoid this, since J* and i do not depend on the orientations.

Thus, the quantities [ + . 351 and J * behave the same way under all the three
elementary perestroikas. Since their values on the standard curves K; of Fxg 5 also
comczde, the theorem is proved

Corollary, The invariants J% are additive with respect to the usual connected sum
of immersions.

15



" Proof. The invariants 5t and n (the number of double points) are additive. Hence
we only have to check the additivity of the sum of the indices of the double points.

The double points of the sum are just the double points of the left and of the right
curve, The addition preserves any halfindex of any double point of the left (mght) curve,
since the added part of the curve may be contracted in the right (ieft) halfplane to the cnd
of the j joining segment

Remark. Of course,
Jt—J" =TI — .I""_’ = ﬁ , the number of double pdints,

is also an additive invariant. However, the preceeding theorems show that it is better
to consider JT* and J~ as the basic invariants. The invariant J* measures some kind
of self-linking of the Legendre curve formed by the directions of the plane curve in the
3-dimensional space of plane contact elements.

§5 The sxiomatic description of the basic invariants

Definition. An invariant (of an immersion of a circle into a plane with no triple
points) is local if its jump at the generic crossing of the hypersurface of immersions with
triple points depends only on the behaviour of the family in the neighbourhoods of the
three points sent to the tnple point by the critical immersion.

It means that the jump will not change if we replace our famﬁy by any other fam;ly
outside the above mentioned neighbourhoods.

Theorem. The jump of any local invariant of immersions with no triple points is
proportional to the jump of the invariant St {with a coefficient independent of the immer-
sion).

Proof. The only strata of codimension one on the triple points discriminant are the
strata corresponding to the following singularities of immersions:

(2) a triple point with a tangency of iwo branches;

(b) a gquadruple point;

(¢) two triple points. | |
The jump of an invariant which is local does not change along any of the two intersecting

‘branches of the discriminant when one crosses the other branch movmg along the ﬁrst in
case {c).

The jumps near the strata (2) and (b) must be consistent, We shall see that the
consistency condition at the (a) stratum leaves for the jump only one possibility — the
one we have described above in the definition of 1. :

16



The versal deformation of the singularity of type (a) is a two-parameter family of
curves on a plane {z,y) with parameters « and v:

=0, w-s() y=z*t+uz+tv.

_ The discriminant is shown in Fsg 16.

Figure 16:
The versal deformation of a degenerate triple point

The stratum of triple points is hence smooth in the neighbourhood of the singularity
of type (a) — the event happemng there is the tangency to the stratum of selftangency.

The consistency condition says that the jumps of the invariant due to the transversal
crossing of the line v = 0, say from » > 0 to v < 0, should be the same on the left (u < 0)
and on the right (z > 0) part of Fig. 16.
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" The local situation in the neighbourhood of a triple point crossing is descnbed by the
vanishing triangle formed by three oriented lines ordered cyclically. :

There exist eight types of such triangles in the plane (up to orientation preserving
diffeomorphisms of the plane). Indeed, the angles between the three lines may be reduced
to 60°. Then the angles between their directions are either all equal to 120° {case A) or
are (607, 60°, 120%) (case B).

The cyclical ordering of the three rays leaving the triple point defines an orientation
of the plane which may be positive or negative. We thus define four types of triple points,
A., Ay, B.,By. In each case we have two types of vanishing triangles — one from each
side of the discriminant hypersurface. We shall denote these by the types of the triple
point with a superior index q (equal to the number of su.ies directed conformally to the
cyclical order).

All the eight resulting tnangles are shown in Fig. 17,

Figure 17’
Classxﬁca.txon of the va,mshmg tna.ngles

18



Remark. The pairity of ¢ always changes under the crossing of the discriminant of
the triple points. Indeed, the orientation of the plane, defined by the cyclical ordering of
the sides of the triangle, changes while the directions do not change, hence g( ~)+g(+) =3
- for any two neighbouring points (~) and (+) separated by the discriminant.

Lemma 1. The pairs of the types of the vanishing triangles in the domain v < 0 of
Fig. 16 may be only
Ai and Bi , AY and BL | A° and B? ,-Ai and Bi,'
B? and Bi , B and Bi_ .
depending on the orientation and ordering of the three curves éf'Fig. 16.

To prove this it suffices to calculate the types of both curvilinear triangles formed by
the parabola and the coordinate axis for different orientations and orderings. Two crucial
examples are shown in Fig. 18,

- . Figure 18:
Coexisting vanishing triangles
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Thus, if there exists a local invariant, then, in the corresponding coorientation of the
stratum of triple points, the points corresponding to the four coexistent triangles A" ~
B? ~ B% ~ AY should all be on one side of the discriminant, and those corresponding to
Ad ~ 3 ~ BY ~ A% on the other. Thus g is even for all the triangles on one side and
odd for those on the other side, conformally to the coonentatlon rule deﬁmug the invariant

- S5t

Remark. The independence of this coorientation of the choices of the orientations of
St and R? follows thus from the localness of the jump.

Lemma 2. The coorientation of the triple points discriminant is consistent af the
points of the stratum of quadruple points.

- Proof. The (topologtcal) versal deformation is the two«parameter family of quadru—
ples of lines in the plane, given by the table

I Ir Irr v
e =0 y =0 y=z+u Y= -z +v,

where u and v are parameters. The stratum of triple points intersects the plane (u,v)
along four lines corresponding to the 4 types of triple points (Fig. 19)
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Figure 18:
The versal deformation of a quadruple point
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- Proposition. The coorientations of the triple points discriminant defines on each of
the four lines the same coomeniat:on along both rays into which this line is dzmded by the
origin,

Proof. Consider for example the discriminant line (ITI III), » = 0. The configurations
of the branches at the u > 0 side of this line for v = 0 and for v < 0 are shown in Fig. 20.

Figure 20: :
The cons:.stency of coonentatlons at a quadruple point

| The vanishing triangles for fixed and very small » > 0 simply coincide, they are the
- same for v > 0 and v < 0. Hence ¢(K;) = ¢(K.) and both points Ky and K. hc on the
same side of the stratum of triple points.

Theorem. There ezists ezactly one invariant, 5t, of immersions 8§t — R* without
triple points with the fo![owmg properties:

1) it is Iocai (the jump only depends on the behaviour near the selftangency poxnt)
2) it is additive (under the ordinary connected summation),

3) it is orientation independent (at least for one of the orientations: that of 51 or that
of R?).

The conditions 1-3 define the invariant up to a multiplicative constant. To fix the
constant it is sufficient to fix the value at one curve, where the value of St is not zero. We
choose the condition

4) The invariant takes the value I at the immersion of indez £ with one selfintersection
point (K, in Fig. 5).

Remark. We already know that 5% has all these properties (and moreover that it is
additive under the more general strange summation and independent on both orientations).
So we only have to prove its uniqueness.

Proof. The jump of an invariant which is local is proportional to the jump of S,
according to the preceeding theorem. Hence the invariant is defined by its values on the
standard immersions K; of index 7 of Fig. 5 (i = 0,+1,42,...), and the difference of {wo
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such invariants is constant along the set of immersions of index 1. Let this dlﬁ'erence be

f(2). Then we have
(i +is "“"“1) = f(‘fi)-f'f(fz),

hence f(i) = c(i —1). The mdependence of onentatmn implies f(1) = f(—1), hence ¢ = 0,
- which proves the theorem. - .

Theorem. There exists exactly one invariant, J¥{(J ™), of tmmersions with no direct
(inverse) aefﬂangencws with the following properties:

1) it is local (the jump only depends on the behaviour near the selftangency point},
2) it is additive (for ordinary connected summation),
\ ' 3) it is orientation .ir.zdepe.ndeht (for at least one of the two orientations, of §! or of
R?). R
These conditions define the invariant up to the multiplicative constant which we fix
by the condition
4) JT(Ky)= -2 (J (o0} = ~1).

Remark. The multiplicative constant has been chosen in such a2 way that a crossing
of the direct selftangency discriminant increases J¥ by the same number as it increases
the number n of double points, while the crossing of the inverse selftangency discriminant
increases J~ by the opposite of the increment of n. These choices imply J* —J~ = n,
- Note that the jumps of J* at the crossings of the correspondmg discriminants are thus £2
and not 1. :

56 The “pushing away” formula

The calculation of the invariant St is greatly sunphﬁed by the following method one
can control the increment of §t when a fragment of & curve is pushed away, as it is shown
in Fig. 21.
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—ct =
St=st to)

0=-4-(1)

o Figure 21:
- The “pushing away” perestroika -
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The fragment encirceled by an interrupted line in Fig. 21 is an arbitrary immersed
closed curve, equiped with a fail consisting of two parallel segments joining the segment
to an other main closed curve. We suppose that the tail does not intersect the fragment
at other points than the joining place.

Let = be a regular point of an oriented circle immersed into the oriented plane. A
double point of the immersion is called positive (negative) with respect to z, if the frame
(1,2) formed by the velocity vectors of the first and of the second visit of the point by
the curve orients the plane positively (negatively). (Here the ordering of the visits refers
to the immersion of the oriented interval obtained from the circle by the exclusion of the
point z).

Definition. The Whitney function defined at the ordinary points z of the circle

immersion is the difference between the numbers wy(z) and w_(z) of double points of the
circle immersion, which are positive and negative with respect to z:

wlz) = wi(z) —w-(z).

The examples are shown in Fig. 22.

Figure 22:
Calculation of Whitney function

Theorem. The increment of St under the pushing of a fragment through an interval
of @ main curve is equal to the value of the Whitney function of the fragment at the point
of the joining of the tail, provided that the frame (direction of the pushing, direction of the
interval of the main curve) orients the plane positively (if it orienis the plane negatively
the increment is —w(z} ).

The examples are shown in Fig. 21.

Remark. The standard orientation of the plane might be excluded from the for-
mulation. We should count the positive (negative) points of the curve while defining the
Whitney function using the orientation of the plane defined by the pushing direction and
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the main curve interval direction. This way we see that the increment of § t is mdcpendent
of the choice of the standard onentatmn of the plane.

Proof of the theorem. While we push the iragment, each of its double points will
contribute *1 to the mcrement of St The sign 'depen_d's o’n the s‘ign of -tife va,nishing

triangle.

The cychc oﬁ:denng of the sides of the vamshmg tnangle is (1 2 43 the ﬁrst vmt the

' second visit, the interval of the main curve visit.

The vamshmg trzangle, born at the crossing of the triple point is positive if and only if

' the omentaiwn (1, 2) coincides with the omentaf:on (3, 4’), where 2 is ihc pushmg cf:recéwn

and § the main curve interval direction.

This fact is checked directly by inspection of the eight possxhlc cases (we have done it
before, see Fig. 15). Summation over all the vanishing triangles prondes now the theorem

1t is clear that the jump of the W}ntncy function at any double point of the curve
equals +2. . . _

Theorem The va?ue of tfae Wh:fncy functzon at an ordmary point = of an smmersed
circle 1s

w(z) =i(z} —ind,

where i(z) is the number of half-turns of the vector connecting z to a peint y moving along
the curve from z to x, and where ind is the number of turns of the tangent vector,

Example. These values for a curve with two selfintersection points are shown in
Fig. 23.

\\9”(&):“2) L(oc.):;-m'i) Lm_cl::i

ur @)=

.

L@E)=1, wd=1

. Figure 23:
Whitney function and indices

~ Proof. The jumps (:1:2) of w(x) and i(z). at each double point of the curve are equal.
Hence the difference is independent of = and is an invariant of the immersed curve.
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" This invariant does not cha'nge.its value under the three basic perestroikas, Indeed,
one may choose the point = far away from the perestroika place. Both w(z) and i(z) will
theﬁ be contmuous ancﬁ hence constant under the perestrmka,

o The constancy of w(z) whcn two &auble points are borzn follows from the fact that
‘the orientations (1,2) at these two points are different. Thus, the difference w{z) — i(z) is
constant along the space of immersions of a given index. For the standard curves of Fig.
5, this difference is equal to the index, whence the theorem follows.-

. Remark, Applying this theorem to the points of the exterior contour, we obtain
the following thtncy formula for the mdex Connect a pomt of the exterior contour to
infinity by a transversal ray which does not intersect the curve at other places.

Theorem. The indez of an immersed circle is equal to a+ Z where @ = £1 and E
is the sum of =1 over the double points of the curve. o

"The signs are defined by the following rule: a = i(z), where z is the exterior point,
Y. = —w{z). In other words, ¢ = 1 iff the frame (ray’s direction, curve’s direction) is
positive, and the contnbutlon of a double point to E is pasxtwe 1ff the frame (2,1} is
positive (Fig. 24). . .

a=4,3 =-1, ind=0

a=4,7=4, ind=2_

Figure 24:
Calculation of the index by the summation of the double points

Corollary. The modulus of the indez of a generic curve with n selfiniersection points

26



is at most n+1 and takes all the values between —1 —n and L+n congruent to 1+4n mod 2:

findf <n+1, ind~n=1mod?2.

87 The extremal curves

_ Deﬁmtlon A generic curve with n double points is eztremaf if the absolute value of
its index 7 takes the maximal possible value: il =n+1.

The extremal curves with four double points are shown in Fig. 25.

- Figure 25: _
Extremal curves with n = 4 double points

Theorem. There ezist nafural bzgect:om befween,
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1) the set (of classes) of immersed circles of indez n + 1 with n double points;
2) the set {of classes) of plane rooted trees with n edges;

3) the set (of classes) of the decompositions of a disc into parts by n chords with no
common points and one part distinguished.

Remark. Two curves (trees, decompositions) are here equivalent if one can be trans-
formed into the other by a homeomorphlsm of the plane {which may preserve, or not, the
orientation).

A similar result holds also in the oriented case, when the equivalences preserve the
orientation of the plane.

The construction of the bijections uses the following

Definition. The Gauss diagram of a generic immersion of a circle into a plane is
the system of chords of the immersing circle, connecting the points sent by the immersion
to the same double point of the immersed curve. (Gauss has stuched the questmn, which
chord diagrams correspond to immersions). :

Lemma, The Gauss dz’agmm of an eztremal immersion is planar (consists of nonin.
terseciing chords) '

In other words, the two loops inte which a double pomt breaks an emtrema? curve do
not intersect at other points.

Proof. The smoothening of the immersed circle at a double point transforms the
curve into two immersed branches. The indices and the numbers of double points of the
initial curve and of the two branches are related by the following equations

Ty +is, n=14ny+ny-Fng.

Since the curve is extremal, i = n+ 1 = 2+ n -+ nz + n13. The Whitney inequalities (§6)
ix <1+ mn imply i =1; +1i2 < 2+ n; + ny. Hence the number n;, of the intersections of
the branches vanishes.

Thus we have associated to each extremal curve a disc decomposition (the Gauss
diagram). To each bounded component of the complement to the exiremal curve there
corresponds a component of the disc decomposition (it is bounded by the arcs sent to the
boundary of the component of the complement by the immersion).

Lemma. Among the bounded components of the complement fo an eztremal curve in
the plane ezactly one component has common boundaries with the unbounded component.

Proof. The Whitney formula implies that: {1} The exterior contour of an extremal
curve is well oriented by the immersion. (2) The loops connected to the extierior contour
at the double points lie inside the doma.xn bounded by this exterior contour (wl:uch bounds
a topological disc}.
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These loops, as we have seen, do not intersect. Hence, the complement to the domains
~ bounded by these loops in the above disc is connected. This proves the lemma

We distinguish the part of the decomposition given by the Gauss diagram, which cor-
- responds to the above distinguished bounded component (the circle arcs bounding this
part are sent to the exterior contour by the immersion). We ha.ve thus associated & de-
- composition with a distinguished part to an extremal curve.

Choose a point in each part of the decomposition. Connect these points by edges when
two parts have a common chord. We obtain a plane rooted tree. We have thus constructed
the required mappings from extremal curves to plane rooted trees and to disc partitions.

The fact that these mappings are bijective is proved inductively on the number n of
‘double points, The branches of the iree encode the places where loops should be attached to
“ the exterior contour, and these loops are themselves standard by thc mductxve conjecture,
since they have less double points.

Remark. All the nine plane rooted trees thh 4 edges (Fig. 25) are also different as
abstract rooted trees. : . .
For trees with > 5 edges the situation is different. The number of nonequivalent plane

rooted trees with 5 edges is 21, while that of abstract rooted trees is only 20.

Theorem. The invariant §1 of an emiremaf eurve is egual to the sum o_f the distances
of the vertices of the corresponding tree from the root.

Figure 26:
Calculation of the invariant $¢ for the gxtremal curves
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Proof. Induction on the number n of double points. We see directly that the result is
true for n = 1. If the exterior contour contains several double points, we use the additivity
{Fig. 26). :

If there is only one clouble point, we e push away the loop attached at that point, as
it is shown in Fig. 26 below. The resulting curve is the connected sum of two extremal
curves (since the “{1,2)” orientation at all the double points is as it should be}. Using the
~additivity of St and knowing its values for the summands, we can compute the 5t of the
sum.

The value of St at the initial curve is greater than this sum (accordingly to the “push-
ing away” theorem of §6) by the value w{z) of the Whitney function at the attachement
point. - This value, in our case, is equal to the number of double points of the fragment
since all the “(1,2)" orientations are as they should be. Thus we have an expression of the
value of St in terms of the value of St at the main curve and at the fragment and of the
number of double points of the fragment.

On the level of trees our operation is the decomposition of the tree into two: we cut
off a branch at distance one from the root and preserve the vertice at the cut place both
~on the initial tree and on the branch (where it becomes the root vertice),

The sum of the distances from the vertices to the roots decreases under this operation
by the number of cclges of the branch we cut off, i.e. by w(z). Thus

St(initial curve) = St{mutilated tree) + St(branch) + 'w(a)

= S(mutilated tree) + S(branch) + w(z) = S(mxtxai tree) )

where S means the sum of the distances of the vertices to the root., Tha theorem is thus
proved.,

Corollary. The val’ue.'of the invariant St on the eztremal curves with n double points
lies between n and n{n+41)/2. The equalities are reached only on the standard curves A,y
{with the tree ® — « — .- — .) and K, 4; (Fig. 27).

The results and conjectures on the maximal and minimal values of the invariants
over the set of i immersions of a fixed index Wlth a fixed number n of double points are
summarized in the table below.

Remark. It is not diﬁic:ult to prove that J* 4 28t = 0 for any extremal curve.
F. Aicardi has recently proved that this is also true for all curves having planar Gauss
diagrams, Her formula for St of such curves implies that the minimum of §t for curves
with planar Gauss diagrams with n double points is attained on & curve having an index
which is close to n/3,
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Figure 27:
The extremal curves of index n + 1 having the
maximal and minimal §t values

31

invariant ind min max min curves Imax curves
St -1 i1 n(n+1)/2 Kn+1 An+1
St n—1 0 n{n—1)/2 Fig. 28 Fig. 28
St n—3 2—-n ? Fig. 29 ?
Jt n-41 —n? L —-2n An+1 Kn+1
Jt -1 =n? +n 0 " Fig. 28 Fig. 28, 30
Stmih:: . K'ﬂ-l-ﬁ = | (if\ oioug& Pom“fs)
n{n+4 L - .
S+ - ) ); A = (V\ Aoug?e poL v\‘fs)
©omase 44
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_ Figure 28: _
Curves of index n — 1 maximizing and minimizing 5t

Figure 29:
Curve of index n — 3 minimizing 5t

Recall that J— = J¥ — n, and hence the theorems and conjectures for J= follow,
Consider a curve with n double points whose index n 4+ 1 — 2k > 0 is by 2k smaller than
the maximal possible value. Call k the defect and consider the maximal and the minimal
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- values of an invariant U over the set of all generic immersions having a fixed number n
of double points and a fixed defect k. 'We shall denote them Um“(k) and Ugin(k); these
numbers depend/s’ onm. : : o

n=3 2

~ Figure 30:
Exceptional curves

Conjecture. The numbers Sima (k) and k) are monotonic in k (ciécreasing for

51, increasing for J*),

mm(

Conjecture. The mazimal value of St on all generic curves with n double points is
atiained only on the curve A,y of Fig. 27

St<n(n+1)/2.

Conjecture. The minimal values of J* on all generic curves with n double points is
attained only on the curve 4,4y of Fig. 27:

J+2~—n2_n, JT > —-n?—92n.

Conjecture. The minimal value of 5t and the mazimal values of J* on all generic
curves with n double points are attained on the same curve if n is sufficiently large.

The minimum of St for n = 2 and the maximum of J* for n = 3 are also attained at
the exceptional curves of Fig. 30.

It would be mterestmg to study the curves with the exircmal values of the mvana.nts
I* of §4. : :

§8 The cobordisms -

The final goal of our work is the study of the components of the complemen’t of
different strata of the discriminant in the space of immersions. The classification of the
additive invariants, constant on such components, provides the dual objects — the abelian
groups which we may call the K-theories of the corresponding classification problems,
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- The classification problems I have in mind are, for instance, the classification of the
- components of the complement of the whole discriminant (it coincides with the classifi-
cation of the immersions up to orientation preserving diffeomorphisms of the plane and
of the circle), or the classification of the components of the complement to one of the
three branches of the discriminant (corresponding to one of the three perestroikas — triple
points (x), direct selftangency (+), inverse selftangency (—)), or of the components of the
complement of the union of two branches. There exisi also other posgibilities, since each
branch consists of infinitely many components (which we shall discuss later in §9).

In any case none of these K-theories is calculated. As a very rough approximation
I calculate here the oriented cobordism theories corresponding to different parts of the
diseriminants (0, 1, 2 or 3 of the branches (*), (+), (=)). In this way we obtain eight
theories, according to the lists of permitted and forbidden perestroikas,

Definition. An immersion of a circle (or of a finite set of disjoint oriented circles) into
the plane is called cobordant in the sense of one of the eight theories to an other immersion
(of different system of circles) if one can join these two immersions by a chain of isotopies
of immersions and of the perestroikas of the types mentioned in the name of the theory
together with the (oriented) Morse perestroikas (shown in Fig. 31),

o L, =->0

Figure 31:
Oriented Morse perestroikas of immersed curves

The addition of two cobordism classes is defined as the disjoint union of two immer-
sions: one into the left half-plane, the other into the right one. :

The eight commutative semigroups formed by the cobordism classes (most of them are
groups) are connected by twelve natural homomorphisms and form a commutative cube
(the growing of the list of permitted perestroikas reduces the (semi-) group of cobordism
classes).

Denote by X; the basic immersion of total index i shown in Fig. 32 (i = 0, 31,
£2,...). _
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Figure 32:
The basic immersions

Theorem. The eight (semi-) groups of cobordism classes of curve immersions are
given by the following table: '

permitted - + * - s+ | 4= * 4 -
forbidden Cx - S g + — * -
answer o f’f IR Zg" H 7, | 2, Ly Ly
generators X X; X; X; Xo Xo X; Xo
where

£ is the semigroup of nonegative infegers
Z, is the group consisting of two elements
 H is the semigroup with generators X;, i = 0, +1, £2,...

and relations

3X; =3X;, 2X:+ Xin m X,' +2X:41 .

Lemma 1. Each curve is Morse cobordani lo & sum of the curves X; (none of the
pet‘estmzkas (*) (+) {(-) being perm:iied) : :

Proof. 1°. Each double point might be cut off of the curve by a pa.xr of Morse
perestroikas (Fig, 33). '
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Figure 33:
The cobordism lsola.tmg the double points

The new born Figure eight _c_urvcs_a,re vold,_other components of the resulting curve
do not intersect any other embedded circle.

2°. Each disc containing several inclusions can be transformed by a Morse perestroxka
into several discs, each containing only one inclusion (Fig. 34).

Figure 34:
The cobordism isolating the_inc}usions

., lterating these two proccdures we obtain a curve consisting of the nests of two
types endmg by 8 or by 0 (Flg 35).

Figure 35:
The two types of nests

4°. The nest II is cobordant to the void curve (a series of Morse perestroikas).
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5% The nest 1is cobordant to one of the nests X;, where all the embedded circles are
oriented the same way (Fig. 36). Thus the semigroup of cobordism classes is generated by
the X;. '

. _ Fzgure 36: .
The cobordism of a nest I to the standard one

Definition. The indez of a double point (of a generic immersion of a union of oriented
circles into the plane) is the number of turns around the origin of the radius-vector from
this double point to the point moving along the oriented curve which is obtained from the
given immersed curve by isolation of the double point with 2 subsequent ehmmatmn of the

newborn figure eight curve {(Fig. 37T).

Example. The double point of the curve X; has index <.

: " Figure 37:
The index of a double point

Theorem. The classes of the X; (i € I) in the largest semigroup of cobordism classes
(“everything forbidden” } are independent. Hence this semigroup is the direct sum of the

It X, ie 1.

Proof. The double points are not born or killed by Morse perestroikas and isotopies,
The indices of the existent double points are the integrals of (27i)™? dfn(z ~ 2,0, ) along
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the curve obtained as the result of the isolation of 245,,. Hence the number of double points
of index i is an invariant of our cobordisms, which proves the theorem.

Theorem. If the selfiangency peresiroikas are permilted {but the iriple points are
not), the cobordism classes semigroup is the group L3° = ©L X;.

Proof. 1°. The class of X has order 2 (Fig. 38).

XX ~ (O ~0 > 0 X 5«-_-40

OO + OX D ~

Figure 38:
Calculation of 2X, in the “(+), () permitted” case

2°. The class of any X; has order 2 (Fig. 39).

Figure 39:
Calculation of 2X; in the “(+), (—) permitted” case

3°, The numbers of double points of index ¢ change under the permitted selftangency
perestroikas by even numbers (Fig. 40).

In the (+) case both newborn pmnts, A and B, have equal indices. In the (—) case
the newborn island is void and the two newhorn points have equal indices.

The indices of other points do not change, since these points are far from the pere-
stroika region and the integral along the island is small. Hence, the classes of the X; are
the generators, and {2X; = 0} generates all the relations of our group.
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Figure 40:
The preservation of parity of the number of double points of index ¢

Theorem. The cobordism classes (), (x) permitied” form the group I, generated
by Xo. The class of a curve is zero iff it has an even number of double points.

Proof. 1°. 2X, = 0 as above.  2°. X; ~ X, (see Fig. 41).

: Figure 41: : :
Ga.lcula.t:.on of the cobordisin group “(—), (*) permitted” -

3°. The parity of the number of double points is an invariant of aH perz:mtted pere-
stroikas.

Theorem. The cobordisms classes “(4), (%) permitted” form a group I, {generator
oo, the class is zero iff the number of double points is even).

Proof. See Fig. 42.
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ONO”“ON’@ Gggg OO+ OO 2X, ~

(D3~ (G303 ~ o> > (XX, )@(X_w 0)%.

Figure 42:
Calculation of the cobordism group “(+), (*) permitted”

Theorem. The increment D of the class of o curve in the group Z3° of the theory
“+), () permitted” under the crossing of a triple point has the following form

D.x Xj - Xj+1 3
where the pair (j,5+ 1) s
(.73.7 '+' 1) = (cold + Chew I }-)/2

and where co1q and cpew are the indices of the curve w:th respect to the center of the
vanishing triangle before and afier the crossing of the triple point.

Examples are shown in Fig. 43.

C?d§2 ) [o?&]‘:BKd '_ ol
ﬁe\j bix rﬁe‘ﬂ:%}(o

Figure 43:
The triple point crossing
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Remark. In the semigroup of the theory * cverythmg forbidden” the formula for the
increment I has one of the following forms: _

A) case of symmetry of order 3 (all angles 120°):

D= 3X=m~ Xio:d 3 -
where ' :
2Chew + Cola . . Fnew + 2¢1d
tnew = l-ﬂm-uuugmmw 3 "'old - mgm

‘ (in th{;{‘ case iaew o igld = (Cnﬂw“‘C(’Id)/S o :&:1«

" B) case of symmetry of order £ '(a.ngles 60°, 60°, 120°):

D=2X

Coew

= X"—'old

(in this case inew — iota = 1, Cosw — Cotd = F1).

Proof (of the Remark and hence of the Theorem).

_ Case A. 1" Conmder the parts of the old and the new curves near the tnpie crossing.
The results of the isolation of the three doubie points are shown in Fig. 44.

Figure 44:
The calculation of the increment of the class of the
curve under a crossing of a triple point with 3-symmetry
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Figure 46:
The relations of the semigroup H

To prove that the list of relations is complete we consider any triple point crossing
and compare two curves Kog and Kpew obtained from the old curve Cyg and the new
curve Cuew by isolation and elimination of the three double points. The reasoning of the
preceeding proof gives the following cobordisms (Fig. 47).
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 Figure 47:
The completeness of the list of relations
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Case A- C@Id Lo Koid +_3X£old’ Gﬁgw lad new ‘+’ 3X€¢nsw° Sincc Kold el Knew, the
cobordism Coig ~ Crew follows from 3X;,,, ~ 3X;

tnew®

Case B. O@ld i KoE.d "+’ 2Xs’ + Xi:i:l; Crew ~ new 1 X'i + 2Xiﬁ;1» Since Koq ~ Knew:
the cobordism Cgq ~ Chew follows from 2X; 4+ X491 ~ X; +2X;41. Hence all the relations
are generated by those of the theorem which is thus proved.

Theorem. The cobordism classes of the theory “only {~) permttted” form. the same
group £3° as that of the theory “(+) end (—) permitied”,

Proof. The perestroikasi of Fig. 38 and 39 were either Morse or inverse selftangency
perestroikas, direct selftangency perestroikas have not been used.

Theorem. The cobordism classes of the theory “only (+) permitied” form the group
Z, (only the parity of the number of double points counts).

Proof. We deduce 2X ¢ = 0 from Fig. 42, then 2X; = 0 from Flg 39 the nontriviality
follows from Fig. 40 (the first case).

We have thus calculated the seven (s;emi»)_group_s'of curve cobordisms. The eighth
group (“everything is permitted”) has been calculated earlier (3].

§9 The lang' curves

Definition. A long curve is an immersion of a line into the pla.né which differs from
the standard embedding of the z-axis only in a bounded domain (Fig. 48).

All the Pteﬁ:ceeding theory can be repeated for these curves. These ones are better
objects than the circle immersions for two reasons: '

(1) the “addition” (which is associative but in general noncommutative) is well defined,
and the index (the number of turns of the tangent vector) is additive.

(2) the space of long curves of a given combinatorial type is contractible.

The combinatorial type of a generic long curve is defined by its oriented Vassiliev dia-
gram. The (nonoriented) Vassiliev diagram consists of a set of arcs in the upper haliplane,
connecting the preimages of the double points belonging to the boundary. The orientations
are defined in the following way.

A generic long curve may be constructed step by step, adding the segments joining
two consequential preimages of double points. At each step the new segment should join
a given initial point with a given final point which belongs either to a simply-connected
domain or to its boundary (to which also the initial point belongs). This simply-connected
domain is one of the components of the complement of the part of the curve which has
been constructed earlier. The last point Lies inside this domain if it is the double point
visited the first time or on its boundary if it is the second visit,
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: Flgure 48: :
Long curves with one and with two selﬁntersectlon pomts

The possible choices of the last point a.nd of the path form a contracublc set, uniess the
‘endpoint belongs to a segment of the boundary to which the above domain is a.djacent from
both sides (which may happen) In this ‘case, the space of possible choices consists of two
contractible components and they are distinguished by the “orientation” supplementa:y
structure. A similar structure exists for the strata of any codimension in the dxscnrmnant

Thus the combinatorics of the long curves, described by the onented d:agrams and by
their adjacencies, provide us with a variant of a cell decomposition of the complement of the
~ discriminant and of the stratification of the discriminant. In principle, our questions about
" the topology of the comp}ement of different strata of the discriminant might be answered
in terms of the algebra of the oriented diagrams. However, the correspondang mvana.nts
are yet to be calculated and we present below only the first steps in this dzrect:on

We call below “the discriminant” the hypersurface formed by the immersions mth no
direct selftangenc:es in the sPace of long curves., : :

Deﬁmtmn; A Vassiliev mvar;ant of _oxder one is a function of a lbng curve which is
constant on the components of the complement of the discriminant and whose jump under
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the positive crossing of the discriminant does not change under the crossing of the strata
of codimension one in the discriminant.

Theorem. The additive Vassiliev invariants of order one of long curves are uniguely
defined (up to the addition of a zero order invariant proportional to the indez) by the
collection {ft,a € 7} of their jumps at the crossings of the discriminants (in the direction
of the increase of the number of double points) at the special long curves £; of Fig. 49.

The numbers f; are independent and may be chosen arbitrarily.

¥ (C

Figure 49:
Special long curve £; having a direct selftangency of index i

Remark. This theorem shows that the theory of plane curves is much more compli-
cated tha.n the ‘theory of knots where the ﬁrst order Vassiliev invariants are trivial,

Proof. 1°. The first order conchtxon lmphes that the jump rmght only depead on the
follomng data:

(=) the indices § and i of the long and of the short branches of the curve mth a direct
_selftangcncy (the index j - vanishes for the standard curve ¢£;);

(b) the orientation of the plane, defined by the pair (short branch long bmnch) leaving
the selftangency point.
20, The additivity 1mphes that the j Jump cannot depen& on 3

o . The mdependence of the j jump of the onentatmn (b) follows fmm the exmtcuce of
the perestrmka. of codxmensmn one shown in Flg 50

This perestroxka does not change the index ¢ of the short component but changes the
Onenta.tlon (b)

. The existence of an invariant having jump 1 at the perestrmkas of mdex i and
jump 0 at the perestroikas of all other indices follows from the fact that the long curves
~with & direct selftangency of index { form a codlmenswn 1 cycie in the simply connected
space of long curves of a given index. : ST
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- 5% To make this invariant additive it is sufficient to add a constant depending only
on the index. -

Suppose that we wish to make additive the invariant F whoée jump under the pesxtive

crossing of the discriminant at a direct selftangency of mdex 0 is equal to a {above, a is
either 1 or 0). '

We choose the values of the invariant at the long curves K; of mdex i, shown in Fig.
51, to be

P(K:) = —i| a/2

: Figure 50:
Crossing of a stratum of codimension one in the discriminant

Figure 51:
The long standard curves K;

Our chmce 1mplzes the relatxon
F(K +K ) = F(K)+ F(K,)

: Thxs relatxon is ewdent for ¢ and 7 of the same sign.
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- The curve K7 + K.y can be transformed into Ky by one positive direct selftangency
perestroika of index 0 (Fig. 52).

o _ Figure 52: _
The index 0 perestroika of K; + K. into K

Hence F{(K; + K1) = F(K3) — a = —a, which is also the value of F(K,) + F(K_.,).
Iterating this argument, we prove that F(K; + K;) = F(K;)+ F(K;) for any i and j.

Any long curve K; of index i can be connected by a generic path with K in the space
of long curves. Connecting also K; to K;, we construct a path connecting a long curve
K;+ K; to K; + K;.

The increment of F' on this path is equal to the sum of the increments of F' on the
paths from K; to K; and from K; to K;. Hence we have

F(K; + K;) — F(K: + K;) = F(K;) - F(K;) + F(K;) - F(K;).
Thus the additivity of F' on the special curves K implies its additivity on any two curves:
F(K; + K;) = F(K;) + F(K;).
6°. The uniqueness of an additive invariant with given jumps: the difference of two
such invariants has no jumps and hence is a function of the index. The additivity implies
that this function is linear.

7°. The basic invariants we have constructed have the nice property that their values
at a fixed curve are almost all zero (only a finite number of nonzero values is possible).
Indeed, any curve can be obtained from the basic curve by a finite chain of perestroikas
changing a finite pumber of invariants, while for the basic curves all the invariants but a
finite number of them vanish.

It follows that any infinite formal linear combination of the basic invariants has a well
defined value at each curve and hence represents a genuine invariant, The theorem is thus
proved,
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§10 Tables of curves

Here I discuss the classification of generic immersions of a circle into a plane or &
sphere up to the diffeomorphisms of the plane or of the sphere and of the circle. These
diffeornorphisms may preserve, or not, the orientation of the plane (sphere) and that of
the circle. Hence there exist four different classification problems. The calculations {which
- are rather long and for which I am very gratefull to F. Aicardi, SISSA Trieste) lead to the
following numbers of classes. = : S S x

Plane closed curves

The number of typés (taking or not taking into account the orientations of the plane
and of the circle) of generic immersions with n double points are given by the following
table: S : : : : : S

oriented | n=0 1 7 34 5
R%, 51 | 2 310 .39 204 1262
R? 12 5 21 102 639
51 1 2 5 21 102 640
~ 1 2 5 20 82 435

Remark 1. The standard crientation reversing involutions ¢ of the circle and 5 of
the plane act on the space of immersions. Some immersion classes are, and some are not,
invariant under the action of these involutions.

Denote by 7 and by T the standard antipodal involutions of the circle and of the
plane. An immersion f: §! -+ R? is symmetric with respect to the orientation reversals
(of the circle and of the plane) if

fo = Zf (or, equivalently, Ife = f).
If the index of f vanishes, there are two other possibilities for the symmetry:
fe=Tf (o, equivalently, Tfo = f),

zf = fr (or, equiva,lént}.y, Lfr=f).

An immersion is asymmelric, symmetric, or supersymmetric if the number of different
classes among the classes of the immersions

fy Bfo, Tfo, Bfr
is 4,2, or 1. .
Example. The standard “8” immersion is supersymmetric. The standard “0” im-

mersion is symmetric (Efe = f, Tfo = Tfr). If an immersion has two of the three
symmetries, it has the third and is supersymmetric.
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An asymmetric curve contributes to the table of types a column (4, 2, 2, 1). A
supersymmetric curve contributes (1, 1, 1, 1). A symmetric curve of type Dfe = f
contributes (2, 1, 1, 1}. The symmetric curve of the types Tfa = f and Lfr = f
contribute (2 2,1, 1) and (2,1, 2, 1), respectively. .

Remark 2. If a ciass z:sf acurveis transformed mto itself by one of the three involutions
(( E o), (T,o),(£,1)}, then there exists an immersion of this class which is exactly invariant
under this involutionn

This is also true for the equivalence classes, defined by any of the three strata of the
discriminant, studied above. These three strata are invariant under the involutions. Hence
_ these involutions act on the set of classes which are the components of the complement.
 Whenever a class is invariant, it conta.ms an invariant point.

It seems that this observation {not too difficult to prove for genemc curves with only
double points) is true in a very general situation of finite {or even compact) group actions
on the siratified spaces of subvarieties {or on the stratified spaces of mappings).

The distribution of the oriented curves on |
the oriented plane by their indices

1 1
1 1 1
2 3 3 2
_ 4 10 - 11 16 . 4 g
10 35 57T 57 '35 10
26 133 280 364 290 133 26

For instance, the number of types of curves having 5 double points and index 6 is equal to
26, of those of index 4, the number is equal to 133, and so on.

Curves on §%, The number of types

oriented 7= 0

1 2 3 4 5

52, 51 1 1.3 9 37 182

ek 1 1 2 6 2 99

st 1 1 2 6 921 - 9T
- 1 1 2 86 19 %

Definition. A circle immersion is reducible if ,any “double point cuts the i image into
two non-intersecting loops.

" The plane extremal curves are in this sense completely reducible.

Irreducible spherical curves with n < 7 selfintersection points
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The following table gives the number NV of types (no orientations taken into account), |
a0 1 2 3 4 5 & T
N|1 o o 1 1 2 5 8

The curves themselves are shown in Fig. 53.

n=0 1

Figure 53:
The irreducible spherical curves

The classification of spherical curves is simpler, since the number of spherical curves
with n double points is smaller than that of the plane curve (some of which are conformally -
equivalent). To obtain all the plane curves from the list of spherical curves it suffices to
place the point oo inside all ihé components of the complement to the spherical curve, -

The classifications of the spherical curves having n < 4 and n = 5 double points is
shown in Fig. 55 and Fig. 56. The classification of plane curves with » < 3 and with
n = 4 is shown in Fig. 57 and Fig. 58, where each curve is accompanied by the values of
the invariants §¢, J*+, J~. '

Asit is explained in the introduction, the knowledge of these values provides thousands
of theorems on the generic immersions, similar to the three examples described in the
introduction. - - :
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‘Figure 54 : =
Sphemcal curves with n < 4 double points
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‘Figure 55:
Spherical curves with 5 double points
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- Figure 56:
Plane curves with n < 3 double points
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Figure 57:
Plane curves with n = 4 double points
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