THE COHOMOLOGY RING OF THE COLORED
BRAID GROUP
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The cohomology ring is obtained for the space of ordered sets of n different points of a plane.

Artin's colored braid group of the space My of ordered sets of n pairwise different points of a plane, T
It is not difficult to show that Mp is the space K(m, 1) for the group I(n):

w,(My) = I{n), s {Mp)==0 for {>1.

From this it follows that the cohomologies of I{n) coincide with those of My, (what we have in mind is the
trivial action of Z):

H (I(n)) ¢ H'(M,, Z).

In the present note a description is given of this cohomology ring. We use a realization of Mp in the
form of a complex affine space Ct = {z = (24, . . ., 2 } with "eliminated diagonals:*

My={Z&EC" 2+ 2 Vk1}.

We shall denote by A(n) the external graduated ring C;’.l generated by one-dimensional elements wy 1= w} k,
1 =k == n, C% gatisfying the relationships

wh.tmf.m ‘+“ y, m.mm,h ‘\“ Wy, gV, | == 0. (1)

THEOREM. The homology ring of the colored brald group I8 isomorphic to A(n). The isomorphisam
H*(MpZ) = A(n) is set up by the formulas

W g = e k3 (2)
* ARG By - 3y '

In other words, the one~dimensional generators wg } correspond to circults around the diagonals zy = z}.
COROLLARY 1. The cohomology groups of the colored braid group are torslon~free.
COROLLARY 2. The Poincaré polynomial of the manifold My is
p{ty=(1 p o1 +20...(1 t (n ~1)1).

In other words, the cohomology groups of the manifold My lor of the group I(n)] are the same as for
the direct product of a circle, a houquet of two cireles, . . ., & bouquet of (n~1) ecircles,

COROLLARY 3. The additive basis of the ring A{n) consists of all products of the form

Wk [, Wity + o o mkp* fps where k# -e;:: !'#1 ll ﬁ: ll ‘f: £ o0 < IP' (3)

COROLLARY 4, The subring of the ring of external differential forms (’;“f,l generated hy the forma (2)
ig isomorphic to A(n). |

COROLLARY 5, An external polynomial in the dilferential forms (8) {8 cohomologous to zero in My,
if and only if it is equal to zero.

TThe name is explained by the other definition: I(n) 18 the kernel of the natural homomorphiam B(n) —~ S(n)
of the group of braids consisting of n strands onto the symmetric group of permutations of the ends of the

braid. Tn other words, I(n) consists of braids each strand of which i8 individualized (tinted in its own color)
and ends where it begins.

M. V. Lomonosov Moscow State Universlty. Translated from Mﬂtamatlchmi 7. @tki. chl; 5,' '
No. 2, pp. 227-231, February, 1969, Original article submitted April 29, 1968.

138



COROLLARY 6, The symmetrization of an arbitrary external polynomial of degree greater than 1 in
the differential forms (2) is equal to zero.

Example. The non-obvious identity

2“’1.& /\ We,a N\ Wy 4 /\mi,n == (),

1320
holds, where the summation is carried out over all 120 permutations of the digits 1, . . ., b.
It is easy to prove

LEMMA 1, There exists a stratification My L Mnp-y; its stratum is a plane lacking n—1 points. The

action of the fundamental group of the base Mp.¢ in a cohomology of the stratum is trivial, The stratifica-
tion p has a secant.

In fact, let us asgume p(2y, + + o, Zp)) =%, o 2 o, Zp-y. Thenthe stratum Fp. ={z 6 Ciz2#® 24, « + o, Zn~q} «
The stratum Fp., {8 homotopieally equivalent to a bouquet of n—1 circles. The group of one~dimensional
(co)homologies for the stratum is isomorphic to Z + ... +Z (n—1 times). The fundamental group of the
base is the colored braid group resulting from n=1 strands, I(n—1), Its action in the stratum is the ordin~-
ary action of a brafd group in a plane with eliminated points. But the braids in I{n—1) are colored, and they

do not permute the eliminated points. Consequently, I{n—1) acte trivially in a (co)homology of the stratum.
The secant may be given by the formula

g8, 4 ... 42
1 -
By i e 4 2 MAX | 5y 34| 1.

The simple proof of Theorem 1 given above is due to D. B. Fuks.

We shall consider a cohomological apectral sequence of the stratification My — M,_;. Since mj(Mp-y)
acts trivially in a cohomology of the stratum Fp.g, the term EJ = H¥Mp~y, H¥(Fp-y) 18 the same as in the
direct product. The only possible differential d, is in fact zero (this easily follows from the existence of
the secant of the surface). Thus, E, = E«w. S0 the (colhomology groups of M, are the same as in the direct
product of Mp.q and Fy.q. Putting in successionn =2,3, ... (M; = C), we find that the (co)homologies of
M;, are the same as in the direct product of a circle, a2 lemniscate, . , ., 2 bouquet of n—1 circles. Corol-
laries 1 and 2 are proved.

We shall construct an additive basia for HYMy, 2). It follows from our spectral sequence that it can
be obtained from the Image of the additive basis of H*¥(My.y, Z) under the map p* by adding the products of
its elements by n—1 one~dimensional classes of cohomologies which transform into the generators I—Il(Fn...i.
Z) under the map {* (where {: Fp.( ~ Mp). We note that we may take as these one~dimensional classes
cohomology classes of the differential forms wy p, Wy ny « « ., Wy~ pn of (2). Putting in succession n = 2, 3,

. ., we see that the products of the type (3) of the differential forms (2) form the additive bases of H*(Mp, Z).

The differential forms (2) satisfy the relationships (1), This can be verified by direct substitution.
The cohomology classes of the differential forms (2) in the ring H*(Mp, 2) a fortiorl satisfy the relationships
(1). We can therefore construct the ring homomorphism @: A(n) - H*(M;,, Z2) by assoclating with the gen-
erators wk ! € A(n) the differential forms of HXMy, Z) in accordance with formula (2), We have shown
above that ¢ hasg no kernel, It is easy to prove

LEMMA 2. The ring A(n) {8 generated additively by the products (3).

For it follows from the anticommutative property that A(n) is generated by the products wk, 2, .. .*
Wkplp: where kg < I,,lg S la4,. The relationghip (1) enables us to get rid of equal /. For example,

wﬁ;. 1 {'ﬂth t wa m*‘-h k:: m‘!g;.. l — wk‘[, kl w*h :'

In both the summands the greater index of the first factor is strictly less than /. Thus all the products
wi 7 can be expressed additively in terms of products in which kg < lg,ls < lg4y. The lemma i8 proved,

It follows from this that the ring homomorphism @: A(n) — H* has no kernel. For the products (3)
which generate A(n) additively transform into independent elements of H* (we have established above that
they form in H* an additive basis). Consequently ¥ has no kernel; so @ is a ring isomorphism. Theorem
1 is proved, f-
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We have at the same time proved Corollary 3, since we already know that in the ring H* the products
(8) form an additive basis, Corollaries 4 and § follow from the fact that, on the one hand, the cohomology

classes of the forms generated by the forms (2) form the ring H¥*(My, Z), isomorphic to A(n}); but on the
other hand, the differential forms (2) themselves satisfy the relationships (1).

Corollary 6 follows from Corollary 5 and the finiteness of the cohomology groups HY(B(n)), { > 1 (B(n)
ig the braid group formed from n strands [1].

Note. Let M be the manifold obtained from CR by discarding an arbitrary number of hyperplanes
Me={neczC g, (#) 200, k==1,... N}

Probably, the ring H¥(M, z) is torsion-free and is generated by the one~dimensional clagses wi = (1/27{)
(day/ay), an external polynomial in wk being cohomologous to 0 in H* only when {t {8 zero,

The author thanks V. P. Palamodov and D. B. Fuks for useful discussions.
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