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1 Problem 1. Topological classification of polynomi-

als

1. Consider the smooth mapping f : R2 → R, defined by a degree n polynomial in 2

variables. Such mappings are topologically different for different polynomials of degree n:

f = (x2 + y2 − 2)(2x2 + y2 − 1) is not equivalent to g = (x2 + y2 − 2)(2x2 + 4y2 − 1).

The problem is to evaluate the growth rate of the number N of the topologically

different types as a function of n: is it smaller than some polynomial anb or greater than

some exponent cn ?.

2. One might restrict the class of polynomials, considering only the Morse polynomials,

(whose critical points are all non degenerate and whose critical values are different), or

only to Morse polynomials f , having (n−1)2 real critical points. What is the growth rate

of the number N2(n) of their topological types?

3. In the case, when the highest degree homogeneous part of f is positive definite (like

fn = xn + yn for n = 2m), the polynomial mapping f : R2 → R defines naturally a class

of smooth mappings f̂ : S2 → R, having a Morse critical point ∞ ∈ S2 and attaining

there a maximal value (one constructs the sphere S2 adding to R2 one point ∞).

The number of topological classes of such smooth very good Morse functions on S2,

having T saddles, is growing asymptotically (for T → ∞) as T 2T (for T = 4 there are

17746 classes).

It would be interesting to understand which part N3 of these T 2T classes is realized

by the above polynomials (of degree n = 2m for T = 2m(m− 1)). For n = 4 (T = 4) the

conjectured answer N3 is smaller than 1000.

2 Problem 2. Equipartition of indivisible integer vec-

tors

A plane vector (u, v) ∈ Z2 is divisible, if the integers u and v have a common integer

divisor d > 1 (in which case the vector, divided by d, belongs to the lattice Z2). Consider

the set M of all indivisible vectors.

o

Let K be an angle at vertex 0 of the plane. Consider the set M ∩K of the indivisible
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vectors, belonging to angle K. Denote by NM(R, K) the number of the points of set

M ∩ K belonging to the disc u2 + v2 ≤ R2 of radius R. Denote by S(R,K) the total

number of the integer points (divisible and not) of angle K inside this disc.

The (conjectural) equipartition property of the set M is the asymptotical independence

of density ρ of M on the angle K:

lim
R→∞

NM(R, K)

S(R, K)
→ ρ,

the constant ρ being independent of the angle K.

Example. If K = R2 is the whole plane, the limiting density ρ exists and is known to

be ρ = 1
ζ(2)

= 6
π2 (Euler discovered it also for K = Rm). For the indivisible integer points

in the n-dimensional space Zm the asymptotical density (for K = Rm) is ρ = 1/ζ(m),

where ζ is the zeta-function

ζ(m) =
∞∑

n=1

1

nm
=

∞∏
p=2

1

1− 1
pm

(product over all the primes, p = 2, 3, 5, 7, 11, 13, 17, . . . ).

3 Problem 3. Geometrical progressions’ fractional

parts’ equipartitions

Let a > 1 be a real number. Consider the geometrical progression (a, a2, a3, . . . ) and

replace each term t of it by its fractional part {t} (where t = [t] + {t}, the integer part [t]

being an integer and {t} belonging to [0, 1): 0 ≤ {t} < 1).

The equipartition of the resulting sequence ({a}, {a2}, {a3}, . . . ) means that for any

interval A ⊂ (0, 1) the number nA(N) of members of this sequence {ax}, for which 1 ≤
x ≤ N , belonging to A, is growing with N the following way:

lim
N→∞

nA(N)

N
= (length of A),

whatever be the interval A.

The problem is to prove (or to disprove) the conjecture that this equipartition property

occurs for almost every real number a (the exceptional values forming a set of measure

zero).

The equipartition property might even be true for those real numbers a, all whose

integer powers are irrational.

The (non rigorous) arguments for the geometric progressions’ equipartition property,

based on the physical theory of adiabatic invariants, is described in the book: V.Arnold,

Galois fields, their dynamics, statistics and projective geometry, MCCME, 2005.
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Remark. As an arithmetical model of the above equipartition conjecture one might

consider the following (different) conjecture on the geometrical progressions of the residues

(ax(modM)), where x = 1, 2, 3, . . . , N, numbers a and M being positive integers with no

common divisor (greater than 1). Suppose, for simplicity, that M is a prime number.

Example: For M = 97, N = 15, a = 3 the resulting geometric progression of 15

residues (modulo 97) with base 3 is

3, 9, 27, 81, 49, 50, 53, 62, 89, 73, 25, 75, 31, 93, 85.

Conjecture. Such arithmetical progressions of the residues become asymptotically

equipartitioned, provided that M →∞, the number N of terms of the progression being,

say

aM < N < bM

for some constants a and b, 0 < a < b < 1.

The asymptotical equipartition statement here is the statement that, for any interval

A ⊂ (0, 1) the number nA(N) among the N fractional parts
{

ax

M

}
(where x = 1, . . . , N)

of the fractional parts, belonging to A, grows with N the following way:

lim
M→∞

nA(N)

N
= (length of A).

Example. Among the N = 15 residues modulo M = 97 above, 5 are smaller than 97
3
,

and 6 bigger than 2
3
97; 5 = 15

3
and 6 ≈ (1− 2

3
)15.

4 Problem 4. Statistics of continued fractions of eigen-

values of matrices

Consider the matrices of order 2×2, A =

(
a b
c d

)
, with integer elements and determinant

+1, A ∈ SL(2,Z). Suppose that the eigenvalues are irrational real numbers. Their

continued fractions are then periodic. Consider the periods for all such matrices A in the

ball a2 + b2 + c2 + d2 ≤ R2 of radius R. Among the N(R) elements of all these periods

there are some elements equal to k; let Nk be their number:

N(R) = N1(R) + N2(R) + N3(R) + . . . .

The statistics, required in this problem, is the calculation of the asymptotical frequency

fk of element k,

lim
R→∞

Nk(R)

N(R)
= fk.
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Remark. The Gauss-Kuz’min frequency of element k for a random real number

continued fraction statistics is

gk =
1

ln 2
ln

(
1 +

1

k(k + 2)

)
.

The frequencies fk are perhaps different, and the problem is to evaluate how different

they are. For instance, gk decline as C/k2 for k →∞. Is it also true for fk?

Similar problems are also interesting for the eigenvalues of other types of matrices. For

instance, one might consider the case A ∈ End(Z2) (of arbitrary 2 × 2 integer matrices)

and the cases A ∈ SL(n,Z) or A ∈ End(Zn) of n× n, where the periodicity fails.

Example. The mean lengths T̂ (R) of the periods of the continued fractions of the

eigenvalues of the integer matrices A ∈ End(Z2) is growing with the radius R of the ball

a2 + b2 + c2 + d2 ≤ R2 in the space of the matrices A =

(
a b
c d

)
with integer elements

(the average growth rate being, it seems, T̂ (R) = CR).

For the unimodular matrices A ∈ SL(2,Z) (for which det A = 1) there is no such

growth of the lengths of the periods of the continued fractions of the eigenvalues:

lim
R→∞

T̂SL(2,Z)(R) = 2.

This fact implies the difference of the frequencies Fk of the elements k of the continued

fractions of the eigenvalues of these matrices A ∈ SL(2,Z) from the Gauss-Kuz’min

frequencies gk.

For instance, g1 = ln(4/3)
ln 2

≈ 0, 415, while F1 = 0, 5 > g1. It follows from the fact that

the periods (for the continued fractions of the eigenvalues for A ∈ SL(2,Z)) have mostly

the form [1, a], at least one half of their elements being 1.

The statistical problem 4 for these matrices is to find (at least empirically, for R ∼ 100)

the frequencies Fk (or at least the averaged frequencies Fk(R) for a2 + b2 + c2 + d2 ≤ R2)

of the elements of the (periods of) continued fractions for the eigenvalues of the matrices

A ∈ SL(2,Z).

5 Problem 5. Growth rate of elements of periodic

continued fractions

Consider the quadratic equation

x2 + px + q = 0

with integer coefficients p and q, having real roots (p2 ≥ 4q).
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The continued fractions of these roots are periodic. Consider the mean value of the

elements of the period, consisting of elements (a1, . . . , aT ):

â =
a1 + a2 + . . . aT

T
.

Numerical experiments show that â is generally growing, when the coefficients p and

q are growing.

To formulate the problem of the of study of this growth rigorously, construct the

averaged mean values

A(R) =

(∑
p2+q2≤R2 â(p, q)

)

N(R)

where N(R) is the number of the summands, that is of the integer points (p, q), for which

p2 ≥ 4q, in the ball p2 + q2 ≤ R2.

The problem is to evaluate (at least empirically) the growth rate of A(R): is A greater

than CRα for some positive C, α ? Or is it smaller than some C(ln R)α ? Numerical

experiments for R ∼ 1000 are already quite interesting.

Similar problems are also interesting for other families of the integer coefficients

quadratic equations.

Example. rx2 + px + q = 0 (with (r, p, q) ∈ Z3), x2 + px + 1 = 0 (p ∈ Z), rx2 + q = 0

((r, q) ∈ Z2).

Example. The continued fractions of the roots of the equations x2 + px + 1 = 0

(which are the characteristic equations of the matrices A ∈ SL(2,Z) discussed in Problem

4) have, for |p| ≥ 4 the periods with T (p, 1) = 2 elements, [1, a], a ∼ |p|.
It follows that the averaged element of the continued fractions behave for |p| ≤ R, like

R/4, which seems to be a much faster growth than the (unknown, rigorously speaking),

growth for the general 2× 2 integer elements matrices A ∈ End(Z2).

6 Problem 6. Periods of geometrical progressions of

residues

The geometrical progression of residues modulo an integer n (1, a, a2, . . . (mod n)) with

integer base n is periodic (Fermat’s little theorem for prime values of n extended by Euler

to arbitrary integers n).

The period’s length T (a, n) is a peculiar function, and the problem is to find its

asymptotical behaviour for n →∞.

Example 1. For the prime values n = 17 and base a = 2 the progression starts from

(1, 2, 4, 8, 16, 15, 13, 9, 1, 2, . . . )
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and hence has the period’s length T (2, 17) = 8.

For n = 100 and base a = 2 the progression starts from

(1, 2, 4, 8, 16, 32, 64, 28, 12, 24, 48, 96, 92, 84, 68, 36, 72, 44, 88, 76, 52, 4, 8, . . . )

and hence has the period’s length T (2, 100) = 20.

Euler proved that T (a, n) is a divisor of the number ϕ(n) of the residues modulo n,

which are mutually prime to n. The values of ϕ(17) and ϕ(100) are 16 and 40 (since for

a prime p one has ϕ(p) = p − 1 and ϕ(pa) = (p − 1)pa−1, while ϕ(uv) = ϕ(u)ϕ(v) for

mutually primes u and v).

To find the asymptotical behaviour of T , one starts with the study of the asymptot-

ical behaviour of Euler’s function ϕ. Euler calculated the Cesaro mean value ϕ̂(n) =
1
n

∑n
m=1 ϕ(m) to grow asymptotically rather regularly as cn, where the constant c =

1/ζ(2) = 6/π2 is approximatively 2/3 (while the particular values of ϕ oscillate chaoti-

cally):

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ϕ 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8

Next one tried to evaluate the growth rate of the divisors of large numbers.

The number τ(n) of the integer divisors of n grows chaotically:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
τ 1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5

Dirichlet calculated the simple asymptotical behaviour of the Cesaro means:

τ̂(n) =
1

n

n∑
m=1

τ(m) ∼ ln n

(the sign ∼ means that the ratio of the left hand side to the right hand side tends to 1

for n →∞).

Similarly, the Cesaro means σ̂ of the sums σ(n) of the integer divisors of n regularize

the chaotical oscillations of σ:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
σ 1 3 4 7 6 12 8 15 13 18 12 28 14 24 24 31

while σ̂(n) = 1
n

∑n
m=1 σ(n) ∼ c1n, the coefficient being c1 = ζ(2) = π2/6 ≈ 3

2
.

The mean divisor of integer n is defined as d(n) = σ(n)/τ(n). One is tempted to

guess that the Cesaro means of the ratio behave like the ratio of the Cesaro means of the

numerator and the denominator,
σ̂(n)

τ̂(n)
≈ c1n

ln n
.
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However the true asymptotical behaviour of the Cesaro averaged mean divisors, d̂(n) =
1
n

∑n
m=1 d(n) does not coincide with the above ratio: it is much higher, namely

d̂(n) ∼ c2n√
ln n

.

Of course, the fact that the mean value of the ratio differs from the ratio of the mean

values is not too astonishing and the difference is even not too big for reasonable values

of n (< 106).

Uniting the preceding information, one is tempted to predict the following mean be-

haviour of the periods T (a, n) (say, for some fixed a, even for a = 2): T is expected to be

the mean divisor of the mean Euler function value

(∗) d̂(ϕ̂(n)) ∼ c2ϕ̂(n)√
ln ϕ̂(n)

∼ c2cn√
ln cn

∼ c3n√
ln n

however, the empirical studies (for n ≈ 1010) showed a different behaviour, conjec-

turally

T̂ (a, n) ∼ c4n

ln n
(the multipliers like ln ln n being empirically constant even for n ∼ 1010).

These empirical observations show that something is wrong in the naive reasoning

(∗). The problem is to discover (at least empirically) what is practically happening.

Theoretically the following 3 main events are possible:

1) The asymptotics of the mean divisors d(ϕ(n)) of the values of the Euler function

might differ from the asymptotics of the mean divisors of arbitrary integers m at places

m = ϕ(n), due to the difference of the arithmetics of the numbers

n =
∏

pas
s and m =

∏ (
(ps − 1)pas−1

s

)
.

2) The divisor T (a, n) could be not at all the mean divisor d(ϕ(n)), but one of the

other divisors, making wrong the evaluation of T (a, n) in terms of ̂d(ϕ(n)).

3) This Cesaro mean values might also behave differently than d̂(ϕ̂(n))).

The problem 6 requires both the computation of the true asymptotics of the Cesaro

means T̂ (a, n) of the periods’ lengths T (a, n), and the evaluation of the differences between

the terms of reasoning (∗), explained above in the description of 3 events.

7 Problem 7. Kolmogorov’s distributions

The Kolmogorov’s distribution function Φ equals

Φ(Λ) =
k=+∞∑

k=−∞
(−1)ke−2k2Λ2

(where Λ > 0). (1)
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It grows from Φ(0) = 0 to Φ(+∞) = 1. Kolmogorov claimed that for Λ → 0 it has

the flat asymptotics (all the derivatives vanishing at 0)

Φ(Λ) ∼
√

2π

Λ
e−

π2

8Λ2 .

The first question is to explain this asymptotical formula, at least to prove it (but

also to relate it to the Brownian motions behaviour).

The second question is to extend the Kolmogorov’s formula (1) to the following more

general situation than the theory of empirical observations of a real random variable x

having a continuous distribution function

S(X) = (probability of the appearance of value x ≤ X).

Namely, for n observed values (ordered by the growth order) x1 ≤ x2 ≤ · · · ≤ xn

Kolmogorov compared their empirical counting function Cn(X) =(number of the val-

ues xj ≤ X) with the theoretical counting function C0(X) = nS(X). He defined their

deviation as the uniform convergence norm

F = supX |Cn(X)− C0(X)| (2)

and defined his stochasticity parameter value λn as

λn = F/
√

n.

If (x1, . . . , xn) are mutually independent observed values of random variable x, the quan-

tity λn is itself a random number. Kolmogorov proved (in his paper in Italian Sulla deter-

minazione empirica di una legge di distribuzione, in Giorn. Ist. Ital. Attuar,(1933),Vol.

4,1, 83-91) that the random variable λn has the probability distribution converging for

n →∞ to the distribution, whose distribution function is his function Φ (the distribution

function of λn converging to Φ uniformly).

The second question of Problem 7 requires the following generalizations of this Kol-

mogorov’s theorem: is it possible to replace the real random variable x ∈ R in the

Kolmogorov’s theorem by the random variables with other values, for instance in the

following 4 cases:

a) x ∈ Z; b) x ∈ {1, 2, . . . , N}; c) x ∈ S1; d) x ∈ ZN(= Z/NZ).

One might conjecture that such extensions are possible, and even that the resulting

distribution function would approach the Kolmogorov’s expression (1) for N → ∞ (in

cases b) and d)).
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The third question on Φ is to compare the distribution of λn (say, for the case

x ∈ ZN) of n random vertices of regular N -gon) to the statistics of the distances between

the neighbours

Σn = |x1 − x2|2 + |x2 − x3|2 + · · ·+ |xn − x1|2

(where 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn < N and the distance |x− y| is the length of the shortest

path between points x and y of the finite ZN).

Example: for the n = 3 points 1,3,6 of Z7 the quantity Σ has the value |1− 3|2 + |6−
3|2 + |1− 6|2 = 17.

One expects some inequalities between the values of λn and Σn (and with its math-

ematical expectation). Even the experimental studies of these interrelations (say, with

N = 100 or 1000) would provide interesting information (and conjectures).

The fourth question on the Kolmogorov’s distribution Φ is related to the difficulty of

the determination of the theoretical counting function C0 (see, for instance, its discussion

for the geometrical progressions residues case in Problem 6).

If C0 is unknown, one might use a similar device the following way. Consider, instead

of one sample (x1 ≤ x2 ≤ · · · ≤ xn) of n observations of random variable x, two (inde-

pendent) samples. Denote the second sample (x′1 ≤ x′2 ≤ · · · ≤ x′n). The pair of samples

define the pair of the counting functions Cn and C ′
n.

To evaluate the stochasticity parameter value one might replace the distance (2) by

the similar distance

F ∗ = supX |Cn(X)− C ′
n(X)|, λ∗n = F ∗/

√
n.

The problem is to relate the distribution Φ∗
n of this random variable λ∗n with the

Kolmogorov’s distribution Φ: are Φ∗
n converging to some universal limit Φ∗ for n →∞ ?

The natural conjecture would be the similarity of the random variable λ∗n to Cλn for

some constant coefficient C (which should obviously belong to the interval 1 ≤ C ≤ 2,

the Euclidean guess
√

2 being even possible).

Similar questions are also natural for the random variables, whose values belong to Z,

to {1, . . . , N}, to S1 and to ZN (as in question 2).

Some information on the preceding question (on the relations of Φ∗
n to Φ) might, it

seems, be found in the old article:

N.V. Smirnov, On the difference between the empirical curves of a distribution for two

independent series, Moscow University Bulletin, 1939, N.2, 3-14 (in Russian).

It would be nice at least to report to the Seminar the results of this paper (whose

author was highly appreciated by Kolmogorov).
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8 Problem 8. Stochasticity degree of arithmetical

progressions of fractional parts.

Consider the arithmetical progressions of the fractional parts of the n numbers (a, 2a, 3a, 4a, . . . , na)

(each real number t is the sum of its integer part [t] ∈ Z and its fractional party {t}, which

belong to the interval 0 ≤ {t} < 1).

The n numbers {xa} (x = 1, 2, . . . , n) form a subset of the interval [0, 1), and their

Kolmogorov’s stochasticity parameter value λn is well defined (in Problem 7 above).

The question is to understand the typical behaviour of the values λn for n →∞.

Example 1. For all rational values of the step length a of the arithmetical progression

the stochasticity parameter values tend to 0: limn→∞ λn = 0.

Example 2. There exist irrational values of the step’s length a such that λn attains

(for suitable time moments n) arbitrarily large values (λn > K) (and hence do not tend

to 0 for n →∞).

The problem is to decide which behaviour is typical. For instance, the set of those

step’s lengths a, for which λn → 0, is either of Lebesgue measure 0, or of full Lebesgue

measure (its complement being of Lebesgue measure 0).

Similarly, for any asymptotical behaviour of the sequence of the values λn for n →∞
(like: λn 9 0, λn are unbounded, λn → ∞ and so on) the set of those lengths a of the

step of the arithmetical progression of the fractional parts, for which this behaviour takes

place, contains either almost all values a ∈ R or almost none. It means that either the

Lebesgue measure of the complement of the set or the Lebesgue measure of the set itself

is equal to zero: in the first case the set contains almost all the values and in the second

almost none.

The examples 1 and 2, discussed above, are proved to take place at least for some sets

of Lebesgue measure 0 of values a ∈ R (the subset of all the rational numbers Q ⊂ R,

being countable, has the zero Lebesgue measure).

But whether a typical arithmetical progression of fractional parts is random or not is

not clear, and even the possibility of the behaviour “λn → 0 for almost every value of a”

is not excluded (while I would rather expect that the behaviour “λn 9 0” is typical, or

even “there exists such a subsequence nj, such that λnj
→∞”.
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9 Problem 9. Is a generic geometrical progression of

fractional parts random?

Starting from a real number a > 1, consider the geometrical progression of the fractional

parts of its powers, {a}, {a2}, {a3}, . . . , {an} (like in problem 3).

For this finite set of n elements of interval [0, 1) construct the Kolmogorov’s stochas-

ticity parameter value λn (as in problem 7).

One might presuppose here the uniform distribution conjecture to be true, to choose

the “theoretical distribution”, needed to define λn.

Or, otherwise, one might replace it by the version λ∗n (defined by a pair of independent

progressions, say, studying

{aA}, {a2A}, {a3A}, . . . , {anA} (3)

for two different choices of A).

The problem is to study the typical behaviour of the values λn for n →∞.

Example. For any rational base value a the Kolmogorov’s stochasticity parameters

λn of the geometrical progressions of fractional parts (3) tend to 0 for n → ∞. This

follows from the Fermat and Euler periodicity theorem (see Problem 6).

However, the experiments with the shorter geometrical progressions of residues modulo

N

(aA, a2A, a3A, . . . , anA)(mod N) (4)

showed rather the randomness of these sets of n residues modulo N (measuring random-

ness by the values of the Kolmogorov’s stochasticity parameter λn, discussed in Problem

7).

Namely, denote by T (= T (a,N)) the (shortest) period of sequence (2) of residues.

The “shortness” condition is the inequality

pT ≤ n ≤ qT (5)

for some fixed constants 0 < p < q < 1.

Example. For n = 31 and a = 3 the period is T (3, 31) = 30, and the 15 terms of

geometrical progression (of resides mod 31) are

(3, 9, 27, 19, 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28).

The Kolmogorov stochasticity parameter is λ15 = 3/
√

15 ≈ 0, 76. (reasonably close to

the mean value Λ ≈ 0, 87 for the Kolmogorov’s distribution Φ (of Problem 7).
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The conjecture is that in the shortness situation (5) the values of the stochasticity

parameter λn of the “short” geometrical progression of residues (4) with different initial

points A ∈ ZN attain such values λn(A) that their distribution tends to the Kolmogorov’s

distribution Φ (of Problem 7) for n →∞ , N →∞.

This is the arithmetical version of the conjectural generic randomness of the geomet-

rical progressions (3) of fractional parts (for almost every base number a): for instance,

the conjecture claims that the cases λn → 0 for n →∞ and λn →∞ for n →∞ are the

exceptions, realized only for the base numbers a forming a Lebesgue measure 0 set.

10 Problem 10. Prime numbers distribution’s ran-

domness

The residues modulo N of the n successive prime numbers form strange sets, which look

randomly. Say, for the 21 prime numbers 100 < p < 200 we obtain the following n = 21

residues modulo N = 100:

1, 3, 7, 9, 13, 27, 31, 37, 39, 49, 51, 57, 63, 67, 73, 79, 81, 91, 93, 97, 99

(corresponding to the primes 101, 103, 107, . . . , 199).

The Kolmogorov’s stochasticity parameter λn, calculated from this sequence (for the

Legendre distribution of the prime numbers, whose density at n is inversely proportional

to ln n) is approximatively λ21 ≈ 0, 5.

The Kolmogorov’s distribution Φ (of Problem 7) provides the small probability Φ(0, 5) ≈
0, 07 of the randomness for this sequence of 21 residues.

The Problem is to understand the behaviour of the stochasticity parameter λn for the

other sequences of successive primes’ residues.

For instance, one might consider the primes in the intervals 100a < p < 100(a + 1)

(modulo N = 100), or in the intervals {pk+1 < · · · < pk+n}(mod N) containing the

modulo N residues of n successive primes (say for n = 20 and N = 100, k → ∞, or for

N = 2n, k = 2n, n → ∞): what would be the behaviour of the stochasticity parameter

for larger n (empirically) or even for n →∞ (theoretically)?

Even the empirical study of these questions (for few millions of primes) would be

interesting: it might provide some conjectures on the randomness of the distribution of

the prime numbers, even in the case, where these conjectures’ proofs would wait some

centuries (like it happened to the Legendre distribution, quoted above).

Among others randomly looking objects of number theory one might consider the

quadratic residues x distributions (in ZN). I have no doubts that they are distributed
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uniformly (with density 1/2) – say, the set of pairs (x,N) is uniformly distributed in the

angle 0 ≤ x ≤ N of the plane. But it would be interesting to see whether they are really

random, computing the Kolmogorov’s parameters values for these subsets of ZN . The

conjecture is that the quadratic residues are genuinely randomly chosen residues in the

sense of the Kolmogorov stochasticity parameter.

11 Problem 11. Algorithmic unsolvability of prob-

lems of higher dimensional continued fractions

The n-dimensional continued fraction is defined by any open simplicial cone K, bounded

by n hyperplanes, containing the origin 0 ∈ Rn. It measures the interrelations of this cone

K to the standard sublattice Zn (of the points with integer coordinates).

The additive semigroup P = K ∩ Zn defines its convex hull P̂ (which is the minimal

convex body, containing P ). The boundary of this convex body

S = ∂P̂ ,

is an (infinite) polyhedral hypersurface, called the sail of K (and being the higher di-

mensional version of the ordinary continued fractions).

Consider now an integer elements matrix of order n × n A ∈ SL(n, Z), defining a

linear operator A : Rn 7→ Rn mapping the lattice of the integer points Zn onto itself

isomorphically.

Suppose that A has n different positive eigenvalues (λ1, . . . , λn). The n correspond-

ing invariant hyperplanes (generated each by (n − 1) eigenvectors) subdivide Rn into 2n

simplicial invariant cones. Choose one of these cones, K.

Operator A sends K, Zn, P , P̂ and the sail S = ∂P onto themselves isomorphically.

The group of such isomorphisms, containing those matrices B ∈ SL(n,Z) which com-

mute with A and preserve K, having the same eigenvectors as A, form the commutative

symmetry group G of the sail S, isomorphic to Zn−1 (as Dirichlet proved).

Consider the orbits space S/G. Topologically the action of group G ≈ Zn−1 on S ≈
Rn−1 is homemorphic to the action of the translations of space Rn−1 by its integer vectors,

and therefore the quotient space S/G ≈ T n−1 is the (n− 1)-torus.

This torus inherits from the sail S its polyhedral structure: T n−1 is decomposed into

“convex faces”, intersecting along convex boundaries of the faces and so on, so it will

be called “the triangulation (of the periodic n-dimensional continued fraction of operator

A)”.
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Example. The “3-dimensional golden ratio” matrix A =




3 2 1
2 2 1
1 1 1


 provides the

triangulation
a

b

V

V V

V

of 2-torus into two triangles a and b, three segments and one

vertex V .

Which other triangulations are possible? Some triangulations are not realizable by

the continued fractions of any operator A.

No algorithm to decide whether a given triangulation of T 2 (of T n) is isomorphic to

the triangulation generated by the continued fraction of any operator A ∈ SL(2,Z) (of

SL(n + 1,Z)) is known.

The problem 11 is to determine whether there exists any of such algorithm. The

conjecture is that it does not exist.

This problem for the triangulations of the tori T n might be easier than for the par-

ticular case of T 2, since it might be possible that, say, starting from T 17 there exists no

such algorithm, while for T 2 the problem is algorithmically solvable (by a very difficult

algorithm).

12 Problem 12. Periods of continued fractions of

roots of quadratic equations

Consider the quadratic equation with integer coefficients

x2 + px + q = 0. (6)

According to a theorem of Lagrange, the continued fractions developments of the (real)

irrational roots of such equations are periodical.

Example. For the equation

x2 + x = 28

the period of the continued fraction of x is of length T = 7,

√
113− 1

2
= 4 +

1

1 + 1
4+...

= [4 + [1, 4, 2, 2, 4, 1, 9]]

(ak+7 = ak for k ≥ 1).

The problem is to describe which sequences [ak+1, . . . ak+T ] of T natural numbers are

the periods of the continued fractions of roots of equation (6) with integer coefficients

(p, q) ∈ Z2.

One wishes to find some restrictions, whose fulfillment might be easily verified.
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Example. One peculiar property of all such sequences is the palindromicity property

of the period.

The palindrome is a sequence which can be read back (from right to left): it remains

the same. The infinite periodic sequence of the preceding example

(. . . , 1, 4, 2, 2, 4, 1, 9, 1, 4, 2, 2, 4, 1, 9, 1, 4, 2, 2, 1, 4, 1, 9, . . .

coincides with the same sequence read back, which is

(. . . , 9, 1, 4, 2, 2, 4, 1, 9, 1, 4, 2, 2, 4, 1, 9, 1, 4, 2, 2, 1, 4, 1, . . .

The palindromicity property is verified by the continued fractions of the roots of

all quadratic equations (6) with integer coefficients. It is also verified by some other

quadratic irrational numbers’ continued fractions, including all the (irrational) square

roots of rational numbers.

Example. √
11/8 = [1 + [5, 1, 3, 1, 5, 2]]

is a periodic continued fraction of period, consisting of T = 6 elements. This period is

palindromic:

. . . , 5, 1, 3, 1, 5, 2, 5, 1, 3, 1, 5, 2, 5, 1, 3, 1, 3, 1, 5, 2, . . .

is the same (infinite) periodic sequence as the inverse one,

. . . , 2, 5, 1, 3, 1, 5, 2, 5, 1, 3, 1, 5, 2, 5, 1, 3, 1, 3, 1, 5, . . . .

The palindromicity property of continued fractions of roots of equations (6) and

rx2 + q = 0. (7)

is a non evident fact. The periods of the continued fractions of the roots of general

quadratic equations with integer coefficients (p, q, r) ∈ Z3

rx2 + px + q = 0. (8)

are just arbitrary finite sequences of integers.

It is known that the sequences forming the periods of the continued fractions of the

roots of equation (6) or of the roots of equation (6) (or of the roots of equation (7)) have a

lot of peculiar properties, distinguishing them from the periods of the continued fractions

of other equations (9), but these properties remain unknown (except their palindromicity).

The statistics of the sequences, forming the periods of the continued fractions of roots

of equations (6) and (7) also might differ from the statistics of the same sequences as
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forming subsets of these periods (which coincides with the Gauss-Kuz’min statistics of

Problem 4): the frequency of the period [1, 2, 3] among the periods might be quite different

from the part (1,2,3) of longer periods.

Remark. I think that the quantity of the triples (r, p, q) ∈ Z3 for which the periodic

continued fraction of the root of equation

rx2 + px + q = 0

is palindromic is small, in the sense that the number of such triples in the ball r2+p2+q2 ≤
R2 form a small part of the whole set of integer points in this ball for R →∞. But this

conjecture is neither proved nor confirmed by the empirical data.

13 Problem 13. Statistics of lengths of periods of

continued fractions of quadratic irrational num-

bers

The problem is either to confirm or to reject the empirically discovered conjecture on the

growth rate of the lengths T (p, q) of the periods of the periodic continued fractions, for

the root(s) of the quadratic equations with integer coefficients

x2 + px + q = 0 (p, q) ∈ Z2. (9)

To evaluate the growth rate one calculates the values of the period’s lengths T (p, q)

for those N(R) integer points of the ball p2 + q2 ≤ R2 of radius R, where the roots are

real: ∆ > 0, where ∆ is the discriminant value

∆(p, q) = p2 − 4q (10)

The mean values

T̂ (R) =

(∑
p2+q2≤R2 T (p, q)

)

N

behave more regularly than the “chaotically oscillating” function T (p, q).

The empirical conclusion is the linear growth rate conjecture

T̂ (R) ∼ cR (with c ≈ 0, 15).

Examples.
R 20 40 60 80 100

T̂ 3, 8 6, 9 9, 8 12, 5 15, 1
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Of course, the numerical continuation of these empirical calculations would be a useful

thing, while even at present I have no doubts that the asymptotics ought be correct.

Remark. The proof might be difficult, and I am not including its requirement into

the problems formulation.

However, some parts of the statement might be easier. For instance, one of such parts

is the conjectural estimation from above

T̂ (R) < constR

(or even T (p, q) < constR for p2 + q2 ≤ R2).

The value T (p, q) equals 0 for the equations with rational roots, where ∆(p, q) is a

square of an integer. For instance, T (p, q) vanishes at those points (p, q), which belong to

the double roots parabola, ∆ = 0 (where q = −4p2).

This fact suggests that T (p, q) might behave like some function of ∆(p, q), at least

asymptotically. The constancy of the value T (p, q) along the parabolas ∆ =const follows

from the action of the shift x 7→ x + 1 on the coefficients p and q of equation (9).

The empirical study suggests that this function might behave like T ≈ √
∆.

Therefore the problem 13 includes the study (at least at the empirical level, say, for

R ≤ 1000) of the ratio T (p, q)/
√

∆(p, q).

This study might provide the information on the mean values of such ratios (along the

discs of radius R), on the distribution of other values and on the behaviour of the “ level

lines”, where

T (p, q)/
√

∆(p, q) = const,

for different constants.

14 Problem 14. Random matrices’ characteristic poly-

nomials distributions

Consider some natural set of matrices with integer elements, like the set of all n × n

matrices with integer elements, End(Zn), or the group SL(n,Z) of the unimodular n× n

matrices A with integer elements (where det A = 1).

In the radius
√

M “ ball”, consisting of the matrices of our set, whose sum of the

squares of the elements does not exceed M , there is a finite set of matrices. Each of these

matrices has its characteristic equation with integer coefficients

xn + a1x
n−1 + · · ·+ an = 0.
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The problem is to study the behaviour (for M →∞) of the numbers N(a1, . . . , an; M)

of those matrices A, belonging to the ball of radius
√

M , whose characteristic equations

have fixed coefficients.

Example. For the case A ∈ SL(2,Z) the characteristic equation has the form

x2 + px + 1 = 0, p = −trA,

and the problem is to study the distribution of the traces a + d of the matrices

(
a b
c d

)
,

for which ad− bc = 1 and a2 + b2 + c2 + d2 ≤ M .

Is it true, in this case, that the growth rates of the numbers of matrices of different

traces p (p ≤ 2
√

M) for M →∞ are similar?

The total number of matrices of SL(2,Z) in the ball of radius
√

M grows like LM

for some constant L, and therefore the equipartition of the traces −p (in the interval

|p| ≤ 2
√

M) would provide the growth rate of the number Np(M) of matrices of fixed

trace −p of the form Np(M) ∼ √
M .

One can prove, overcoming some difficulties, the inequalities Np(M) ≤ LpM
5/6, and

also, for p = 2, N2(M) ≤ K
√

M ln M .

But what are the genuine asymptotics of Np(M) is not clear even for the case n = 2

of 2× 2 matrices in SL(2,Z) of different traces −p.

For the arbitrary determinants second order matrices case, A ∈ EndZ2, the total

number of matrices in the radius
√

M ball grows like its volume, M2, and the question is

whether Np(M) behave like the value, suggested by the equipartition of the traces, M3/2.

For the higher order matrices A (n > 2) the characteristic polynomials have more

coefficients, and their distribution statistics for M → ∞ is more complicated, but one

might suppose it to be similar to the Euclidean geometry distribution of the masses for

the preimages of different points a ∈ Rn in the image space of the mapping, sending each

matrix A to its characteristic polynomial, (a1, . . . , an) ∈ Rn.
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