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In these times, the angel of topology and the devil
of abstract algebra fight for the soul
- of each individual mathematical domain

H. Weyl*

The study of the discriminant variety in a functional space of smooth map-
pings is a traditional and fundamental part of the theory of singularities.
The discriminant variety is the set of those points of the functional space
which represent the mappings having nongeneric singularities. The topo-
logical, homotopical and even homological invariants of the complement to
the discriminant variety (that is, of the space of generic mappings) are im-
portant for many applications. However, progress in these difficult global
problems of singularity theory was rather slow until Vassiliev [1] over the
last few years has demonstrated the new perspectives opened up by the
singularity theory approach in knot theory.

A knot is a connected component in the space of smooth embeddings
of a circle into 3-space. Hence, we start with the functional space F of all
smooth mappings of S into R® and we define the discriminant variety
as the set of mappings, which are not embeddings {that is, those that have
either self-Intersections or singularities (see Figure 1).

The discriminant variety is a hypersurface in the space F of all map-
pings since the self-intersections occur in generic one-parameter families of
mappings of a curve in 3-space. This hypersurface subdivides the comple-
ment into connected domains which are the knots.

We wish to study the topological properties of the knot space F —
Y. For instance, the elements of its 0-dimensional cohomology group are
locally constant functions, that is knot invariants. Such functions can be
multiplied, forming a ring:

H°(F — X) = knot invariants ring.

* Invarients, Duke Math. J., 5 (1939). This description seems to be an
allusion to a painting by Uccello (at the Urbino castle) “I’hostie profannée,”
representing an event that happened in Paris in 1290. The event is also
represented in a series of pictures in the church Saint-Jean-Saint Francois
in Paris.
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functional space physical space

Figure 1. Generic mappings and the discriminant variety in the space F
of mappings S! — RS

- The space F is linear and hence contractible. The study of the coho-
mology of the space of knots is therefore reducible to that of the discrimi-
nant (modulo co), by the Alexander duality. The difficulties of the infinite
dimensionality of F can be overcome by the standard finite dimensional
approximation technique of singularity theory (see e.g., [2]-{10]). For in-
stance, one can replace 7 by the space Fu of trigonometric polynomials of
degree at most N. Then each homology group H*(Fn — £) stabilizes for
N — o

HY(Fy — %) = HY{F — %) for N > i.

Thus the Alexander duality is essentially used only in finite dimensional
cases. '

The advantage of the discriminant variety (over its complementary
knot space which is our main object of study) is that this variety is nat-
urally stratified according to the hierarchy of the singularities (while the
knot space is smooth). Thus, to study homology, we need to cut the knot
spaces into pieces, while for the discriminant variety, the pieces are pro-
vided by the strata of the stratification. This stratification induces an
additional structure in the homology of the discriminant which survives
also in the cohomology of the knot space, for instance, in the ring of its
zero-dimensional cohomology. This talk is an introduction to the study of
the Vassiliev structure in the ring of knot invariants.

The works of J. Birman, X.S. Lin, D. Bar-Natan, and M. Kontsevich
([11]-{15]) bave shown that this Vassiliev structure is a fundamental general
combinatorial mathematical object, related to the Jacobi identity, Yang-
Baxter and Knizhnik-Zamolodchikov equations, the hierarchy of Feynman
integrals of perturbative theory in the Chern-Simons action, the D. Zagier
¢-functions of several variables, and to the cohomology of the Lie algebra
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of Hamiltonian vector fields on infinite dimensional spaces.

1. Vassiliev invariants

These invariants form an increasing sequence of finite dimensional sub-
spaces in the ring of knot invariants, similar to the sequence of spaces of
polynomials of increasing degree in the ring of power series. Together these
finite dimensional subspaces form the subring V of the Vassiliev invariants:

H AL DVD...0V,D...0Vi DV

The subspace V,, (or the subgroup, if we consider cohomology with integer
coefficients) is called the space (group) of Vassiliev’s invariants of order n.
The product of invariants of orders m and n will be an invariant of order
m+ n.

The polynomials of degree at most n are defined by the condition
d*™1p = 0. The Vassiliev invariants of order n are defined by a similar
condition

vrtli=0, i€ HYF-X),

with the jump operator V replacing the derivative (and which we shall see
is also similar to the residue) is defined by the following construction.

Lemma. The discriminant hypersurface in F has a natural coorientation
(Figure 2).

Indeed, fix the orientations on the circle and in 3-space. A generic
(nonsingular) point of the discriminant hypersurface is represented in the
physical space by an immersed curve v with one point of transversal self-
intersection. A small displacement of the point from the discriminant hy-
persurface in a direction, transversal to it, transforms the curve v into an
embedded curve v or 4. The self-intersection point is represented on
each of these embedded curves by two points 1 and 2. The velocity vec-
tors of the embedding at points 1 and 2, together with vector 12, form a
frame in 3-space. Its orientation is positive in one case (™) and negative
in the other (the result does not depend on the choice of points 1 and 2,
for instance, not on their ordering). O

Definition. The jump of an invariant 7 at a point of the discriminant
hypersurface is the difference of the values of the invariant, evaluated at
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Figure 2. Coorientation of the discriminant variety

both sides of the hypersurface:
(Vi)y =i(y") —i(y7), ie HY(F-3).

Thus, Vi is a locally constant function on the set of nonsingular points of
the discriminant.

Iterating this construction, one defines the n-th Jump, V™, which is
a locally constant function on the set of immersions whose images have n
double points.

Example. The second jump of an invariant is defined at the self-
intersection points of the discriminant hypersurface as the jump of the first
jump of the invariant at the first branch of the discriminant hypersurface
(Figure 3). Its value does not depend on the choice of the branch of the
discriminant hypersurface which was called above the first one. Simiiarly,
the higher jumps are well defined.

Definition. A Vassiliev invariant of order n is a knot invariant whose
7+ I-th jump vanishes identically.

Theorem. The Vassiliev invariants form a subring of the ring of all knot
wnvariants. Indeed, the following version of the Leibniz formula holds:
V(ig) =i7j7 i7" =ittt — T 4T T = (V) + (7)) Vi

Hence the product of Vassiliev invariants of orders m and n is a Vassiliev
mvariant of order at most m -+ n.
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Figure 3. The independence of the second jump of an invariant on the
ordering of the branches of the discriminant variety

Before we start to calculate the ring of Vassiliev invariants, let us dis-
cuss the motivations behind its definition.

The standard technique of topological work with discriminant varieties
is the following resolvent construction. Replace each self-intersection point
by two copies of it (one at each branch) and add a segment so that these
are joined points. Then replace all the triple points by triads of points and
glue a closed 2-simplex to each such triad. Glue 3-simplices to the resolved
quadruple points, and so on (Figure 4).

Figure 4. The resolution of self-intersections

The resulting topological space is homotopy equivalent to the initial
one. It has an increasing filtration Xg C X C Xy C ..., where X — X
replaces the self-intersections of multiplicity greater than ¢. The difference
X; — X;_1 is the closure of the space of the fibration into open ¢-simplices
over the set of self-intersection points of multiplicity ¢. The space X is the
closure of the set of those points of the initial (discriminant) variety, which
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are not self-intersection points.

Now one considers the spectral sequence associated to this fltration.
Vassiliev’s iterated jumps occur naturally in the study of the first differ-
ential of this spectral sequence (see [1]). If this sequence converges to the
cohomology of the knots space, then the Vassiliev invariants distinguish all
knots. This way of thinking, so natural from the singularity theory point
of view, was rather unusual for the knot theorists. Vassiliev theory had not
been noticed by the knot theory community until I explained it to Joan
Birman, and posed the problem of whether Vassiliev invariants distinguish
more knots than do the one variable Jones polynomials (a question which
she and X. S. Lin ssubsequently settled affirmatively).

Kontsevich stated in his Bonn lectures in March 1992 that the Vassiliev
spectral sequence degenerates at the first term (at least when tensored with
C). |

Remark 1. Vassiliev has conjectured that his invariants distinguish any
two knots. This conjecture has been neither proved nor disproved. In any
case, the Vassiliev invariants distinguish at least as many knots as all other
known invariants. For instance, if one substitutes et for the variable in the
Jones polynomial and develops the resulting function in a Taylor series,
then the coefficient of the term containing " will be a Vassiliev invariant
of order n (Birman and Lin {11]). Hence all knots, distinguished by the
Jones polynomials, are distinguished also by Vassiliev invariants. Similar
results hold for all other known polynomial invariants.

Remark 2. The Vassiliev ring has not yet been computed explicitly. How-
ever Bar-Natan and Kontsevich announced that the corresponding graded
ring (tensored with C) is isomorphic to the graded ring of polynomials in
an infinite set of indeterminates whose degrees are such that the number
#(n) of indeterminates of any fixed degree n is finite:

6 78 9
5 8 12 7

One thus finds the dimensions of the spaces of Vassiliev invariants of small
order n to be:

345 6 7 8 9
3 6 10 19 33 60 7

For n < 5, these dimensions and spaces had been calculated by Vas-
siliev {1] and for higher n they have been calculated by Bar-Natan (using
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many hours of Cray computations).

2. Calculation of the Vassiliev invariants

The dual of the free finitely generated abelian group V,,/V,,_1 admits an ex-
plicit combinatorial description: it is generated by the Feynman diagrams
of a special form (Vassiliev diagrams), and their relations are described
below. These relations, while rather complicated, are as fundamental as
the relations in braid groups, the Jacobi identity, the Yang-Baxter and
Knizhnik-Zamolodchikov equations mentioned above {which are closely re-
lated to the combinatorics of the relations between the Vassiliev diagrams).

'To understand the nature of these relations, we shall start to calculate
the Vassiliev invariants of small order n. It is technically convenient to
represent the knots by embeddings R — R? with boundary conditions at
infinity -(the corresponding functional space of mappings F is an affine
space).

2.1 Invariants of order O

The defining relation Vi = 0 means that the invariant i is constant globally.
Hence the space of zero order Vassiliev invariants is the space of constants.

Ww=2Z
(similar to the space of polynomials of degree zero)

2.2 Invariants of order 1

The defining equation V2 = 0 means that the first jump of the invariant
¢t 15 constant on all the immersions with just one point of transversal self-
intersection (Figure 5).

(V2% = 0) = ((Vi) (g-j)) = (V1) (ZS))

Figure 5. The constancy of the jump of an invariant of order 1

Indeed, each pair of immersions of this class is joined by a finite chain
of surgeries (“perestroikas”) during which one branch of the curve moves
through the other (introducing at that moment one new double point of
transversal self-intersection of the immersed curve). The jump of the first
jump at any such surgery vanishes, since Vi = (. Hence the value of the
Jump is the same as for the standard plane curve «y (Figure 6)
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Figure 6. The calculation of the jump of an invariant of order 1

For the standard plane curve -y with one self-intersection point the
discriminant is surrounded by the same component of the complement from
both sides {the curves v~ and v are regularly isotopic). Hence {Vi}y = 0,
and thus any first order invariant is a zero order invariant:

Vi =V, =2

Remark. In terms of the functional space F, the preceding result expresses

the following information on the discriminant hypersurface:

(1) the strata, corresponding to more complicated singularities of the dis-
criminant hypersurface, as well as the transversal self-intersection of
two branches, do not divide the discriminant hypersurface.

(2) the stratum (of codimension 2) in F, formed by the simplest (cusped)
singular curves in R3, is the boundary of the discriminant hypersurface.
The mini-versal deformation of a semi cubical cusp is two-parametrical,

and the discriminant hypersurface intersects the plane of the parameters

along a ray, ending at the point representing the cusped curve. (Figure 6

is thus rather realistic).

It is clear that the points of the plane at both sides of a ray belong
to the same component of the complement to that ray. That explains the
existence of a regular isotopy between the embeddings v+ and y~.

The calculations of the higher order invariants are similar to what
we have done; only the simplest information on the stratification of the
discriminant hypersurface, corresponding to the hierarchy of singularities,
is used. This information is provided by the versal deformations of some
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few very simple singularities. The next step, where the relevant singularity
is the triple point, is crucial for the whole theory.

2.3 Invariants of order 2

The defining equation V3i = 0 means that the second jump of the invariant
i does not change under surgery of an immersion whose image has two
points of transversal self-intersection, which introduces for a moment a
third self-intersection point

Unlike the immersions whose image has one self-intersection point, the
immersions with fwo such points cannot in general be connected by a finite
chain of surgeries each of which introduces momentarily one more self-
intersection point.

Indeed consider the preimages of the double points on the oriented line
by examining their mappings in 3-space. There are 4 preimages and they
form two pairs (the two points of a pair have the same images in 3-space).

It is convenient to describe a decomposition of the set {1,2,...,2n}
into 7 pairs by a system of arcs in the upper halfplane (connecting the i-th
point with the j-th one iff (7, 7) is a pair). I shall call any such system of
n arcs a Vassiliev diagram of order n {Figure 7).

AN, N T\

Figure 7. The Vassiliev diagrams of order 2

Of course, many people have previously studied these diagrams, which,
for instance, describe the classes of complete flags in a linear symplectic
space of dimension 2n. The components of the knot space are the orbits
of the coadjoint representation of S Diff R®, which may be more than just
a coincidence.

There exist exactly 3 Vassiliev diagrams of order 2 (Figure 7).

The Vassiliev diagram of an immersion with n double points does not
change under a surgery, which introduces momentarily one more double
point of the immersed curve. Hence there exist at least three immersions
of a line with 2 double points which cannot be reduced to one another by a
chain of such surgeries {Figure 8).

Any immersion with two self-intersection points on the immersed curve
can be reduced to one of these three standard curves by a finite chain of
standard surgeries, which introduces a third self-intersection point.
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Figure 8. The three standard immersed curves with 2 double points

Therefore, any Vassiliev invariant of order 2 is determined (up to an
additive constant) by the values of its second jump on the three standard
curves of Figure 8.

The values of the second jump of any tnvariant on the first two standard
curves of Figure 8 vanish. This follows from the fact that both resolutions
of one of the self-intersections produce equivalent (smoothly isotopical)
immersed curves with one transversal self-intersection. (Figure 9).

w9 (00)= (D) - w0 Q)= o0
@ (§)=wa(§) - @a(§)=0

Figure 9. Evaluation of the second jump

Thus, the second jump of an invariant of the second order is unambigu-
ously defined by its value on the third curve. If this value does not vanish
(i.e., if the invariant is genuinely of second and not of the first order) then
we can multiply it by a constant in such a way that the value on the third
curve of Figure 8 will be equal to 1.

A second order Vassiliev invariant with these properties exists and is
unique (up to an additive constant). Thus, V3 = Z2. We can eliminate the
constant, choosing the value of the invariant on an unknot to be zero. The
calculation of this invariant for the trefoil knot is presented in Figure 10
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(where, for simplicity, the signs are neglected):

(V2)(K) = (Vi) (K*) —~ (Vi)(K™), (Vi) (K™) =0;
(Vi) (KF) = i(KH) = i(K),6(KT7) = 0;

i(K™7) = the value of the invariant evaluated at a trefoil knot.

1
1
1

The existence of this invariant is proved in [1].
\ @
N

K++

K- K+-

///l@

(VH)K)=1

(Vi) (K™) =0 WK+ =

<

Figure 10. Calculation of the Vassiliev invariant of order 2

This invariant is nontrivial. But it can be reduced to the known ones (it
is equal to the x2? coefficient in the Conway version of the Alexander poly-
nomial). In this case Vassiliev’s approach gives an algorithm for calculation
of an old invariant. In more complicated cases it generates invariants auto-
matically, by standard combinatorial calculations similar to the preceding
ones.

3. The group of diagrams

The calculation of the Vassiliev invariants of order n is similar to the cal-
culations of those of order 2. The defining equation V**{ = 0 means that
the n-th jump of the invariant i is a locally constant function on the space
of immersions, whose images have n self-intersection points, which does
not change under the surgeries, which introduces momentarily one more
double point. It follows that the n-th jump, V", depends only on Vassiliev
diagram of the immersion with n double points. ]

The number of Vassiliev diagrams formed by n arcs is equal to

2n—1=1-3-5....-(2n—1).
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An invariant of order n is defined by the values of its n-th jump on
those diagrams up to the addition of an invariant of a smaller order. Hence
we obtain the inequality

dimV;, / Vg < (20— 1)

showing that the space of Vassiliev invariants of any given order is finite-
dimensional.

To describe explicitly the space V,,/V},_.1, it is convenient to start from
the free abelian group Z2"~ D" whose generators are the diagrams of order
n. The n-th jump of an invariant of order n is a linear function on the
additive group, generated by the diagrams. However, as we have seen
above for n = 2, some of these linear functions are not equal to the n-th
jump of any n-th order Vassiliev invariant. For example, for n = 2 the
values of this function on the first two diagrams of Figure 7 must vanish.

In the general case of arbitrary n, the admissible linear functions are
those which vanish on some special diagrams or linear combinations of
diagrams. We shall describe below these diagrams and combinations. It is
convenient to introduce the following.

Definition. The group of diagrams of order n is the abelian group A,
whose generators are the Vassiliev diagrams consisting of n arcs and whose
relations subgroup (in the free abelian group generated by the diagrams)
is generated by the two types of relations, as described below:

Z2n~1!1
A, =

(relations 1 and 2)

Relation 1. (The easy relations). Each diagram, containing an arc joining
two neighboring points belongs to the relations subgroup (Figure 11).

Relation 2. (The 4-term relations). The combination of four diagrams
S1— 85+ 83— 8,

belongs to the relations subgroup. Here S; are the diagrams consisting of
n arcs, which are described in (Figure 13) below.

The 4-term relation is a fundamental combinatorial relation whose role
in Vassiliev invariants theory is similar to that of the Jacobi identity in Lie
algebra theory.
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Figure 11. An easy relation and its motivation

Figure 12. The construction of a 4-term relation

To write the Jacobi identity as a system of relations between the struc-
ture constants we have to fix the value of four indices (4,7, k,{) and then
add the corresponding products of the structure constants with those in-
dices. Thus the Jacobi identity is in fact a family of numerical equations,
parameterized by the choice of indices.

The parameter of the 4-term relations of the group A,, consists of the
following data:

(1) a Vassiliev diagram of order n — 2 (shown in Figure 12 by the ordinary
lines);

(2) one more distinguished arc in the upper halfplane (shown in Figure 12
by a wavy line);

(3) one more distinguished point on the border line (0 in Figure 12).

Thus the total number of points at the border line is 2n — 1. These
points divide the line into parts. Let us consider the 4 parts adjacent to
the endpoints of the distinguished arc (some of these parts may coincide).
We denote them by the numbers (1,2,3,4) in the order defined by the
orientation of the border line.
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‘The diagram 5; is the union of the n—1 arcs defined by the above data
and of one more arc joining the distinguished point to a point of the part
i. A 4-term relation, corresponding to the data in Figure 12, is represented
in Figure 13.

AN RN AN AT
[ L. { \ [ _ ol =
1 2 + 3 4 0

5 - S5 + S5 - Sy

Figure 13. A 4-term relation

Remark . The 4-term relations, which were implicit in Vassiliev’s initial
work [1], have been written in the form described above by Birman and
Lin [11].

The number of independent relations among the relations 1 and 2 is at
present known only for small n. According to the computations of Vassiliev
(n < 5) and Bar-Natan, the ranks of the free abelian groups A,, are given
by the following table:

Any function on the set of diagrams with n arcs defines a linear function
on the free abelian group generated by the diagrams.

Theorem. The value of the n-th jump of any Vassiliev invariant of order
n on each relation of the diagram group A, vanishes.

Proof. Fix an easy relation, that is, a diagram containing a short arc.
Consider an immersed curve with n double points whose diagram has a
short arc. Introducing one more double point at the moment of the surg-
eries, we can transform this immersion into an immersion for which the
short arc is represented by a standard short simple loop in a ball of 3-space
containing no other parts of the curve (Figure 14).

The value of the n~th jump of any invariant on such a curve is equal to
the difference of the values of the preceding jump on two regularly isotopical
immersed curves with n — 1 double points; hence it vanishes. 8



