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Figure 14. Evaluation of the n-th jump on an easy relation

The 4-term relation appears naturally in the study of the generic triple
points of immersions (where the tangents of the three branches are 3
linearly independent lines). Such points occur unavoidably in generic 3-
parameter families of mappings of a curve in 3-space. The mappings with
a triple point form a variety of codimension 3 in the space of mappings.
Its transversal 3-space intersects the discriminant hypersurface along three
surfaces, intersecting each other transversally (Figure 15). The first surface
corresponds to the first return to a point visited by the immersion. The
second and third surfaces correspond to the subsequent return to one of
the two intersecting branches of the immersed curve (visited at the first
and at the second instances).
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Figure 15. The origin of the 4-term relations: deformations of a triple
point

Deform slightly the immersion near the third visit in such a way that
the intersection with the initial part of the immersed curve at the triple
point is replaced by the intersection with one of the 4 rays of the cross
formed at the initial self-intersection. The four deformed immersions are
shown in Figure 15 by the broken lines.
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These four deformed immersed curves are represented in the functional
space {and in the versal deformation 3-space, shown in Figure 15) by 4
points (a, 3,7, 6} belonging to the codimension 2 strata of the diserimi-
nant hypersurface (namely, to its simple self-intersection strata). All these
four points belong to one of the branches of the discriminant hypersurface
(represented in Figure 15 by a horizontal plane).

Calculate the second jumps of an invariant at these points and denote
them as the points themselves.

Lemma. a—fF-~~v+6=0

Proof. By definition

a=At+C™ — A" ~CT,
f=AY+B" - A~ — Bt
v=B"4+ D~ -~ B~ - DT,
§=Ct+D " ~C~—=D*. O

The relation between the values of the n-th jump of a Vassiliev invari-
ant of order n on the 4 diagrams S; (Figure 13) follows from the same
arguments, applied to the four deformations of an immersion having one
triple point, and n — 2 double points. The value of the n~th jump of an in-
variant on the deformed immersion with n double points can be considered
as the second jump of the n — 2-th jump (as of a locally constant function
on the space of mappings with n — 2 double points.)

The parameters of the corresponding 4-term relation have the follow-
ing meaning. The n — 2 arcs form the diagram of an immersion in which
the triple point disappears completely. The distinguished arc corresponds
to the first return to the triple point (preserved under all the four defor-
mations). The distinguished point describes the place of the last return
among the moments of the other visits of the double points. O

The theorem that we have proved implies that any (rational) Vassiliev
invariant of order n defines a homomorphism A, - Q and is defined by
this homomorphism up to an addition of an invariant of a smaller order.

Kontsevich has stated that any homomorphism A, — @ is the n-th
jump of some (rational 7} Vassiliev invariant of order n. In other words,
all the relations between the values of the n-jumps follow from relations 1
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'."Kéntsevich’s proof based on complete integration is sketched in Section
4 below. " In the original approach of Vassiliev [1], the existence of his
invariants was proved by purely combinatorial methods.

‘Remark 1. {eyclic invariance) The element of the group of diagrams, cor-
responding to an immersed closed curve with n double points, is well de-
fined: it does not depend on the place where we cut the circle to obtain a
line (which we have used in the construction of the diagram).

Indeed, consider any diagram and replace the leftmost point by a new
point at the extreme right (connecting it by a new arc to the right end of
the destroyed leftmost arc, see Figure 16).
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Figure 16. The cyclical invariance of a diagram’s class in A,,

Lemma. The new diagram defines the same element of the group of dia-
grams as the old one.

Proof. Destroy the leftmost arc and sum the four-term relations, corre-
sponding to all the choices of the distinguished arc among the remaining
n—1 arcs, the distinguished point being at the right end of the left arc. [J

Remark 2. The same reasoning proves that any diagram containing an
arc which does not intersect any other arc is equal to zero in the group of
diagrams. Indeed, one can transport the left end of this arc towards its
right end, jumping over the intermediate arcs using the same operation as
in the above proof (Figure 17).

Remark 3. One can combine the diagram groups into the diagram ring
A = @A, defining the product 4,, ® A, — A4 as the concatenation of
corresponding diagrams (Figure 18).



20 V.1 Arnold

) . Pl
&

Figure 17. A corollary of relations 1 and 2

Figure 18. Multiplication of diagrams

This ring is commutative (by cyclical invariance (proved above in Re-
mark 1).

In fact A has also a structure of a commutative and cocommutative
Hopf algebra (the comultiplication is dual to the multiplication of the Vas-
siliev invariants). The elements of the ring A {or rather of its completion)
may be viewed as models of knots—the Vassiliev invariants defining linear
functions on it.

According to a general algebra theorem, the graded algebra A is iso-
morphic to the algebra of polynomials. It would be interesting to represent
the multiplicative generators by linear combinations of special knots. The
arithmetical properties of the coefficients of these combinations are also
interesting.

4. Kontsevich integrals for Vassiliev invariants

Recently M. Kontsevich has presented some explicit formulas for the Vas-
siliev invariants of order n in a form of n-dimensional integrals, similar to
the Gauss integral for the linking number.

Represent R* as the product of the horizontal plane of a complex co-
ordinate z and of the verfical azis of a real coordinate £. Represent a knot
K as a “very mice Morse embedding” S* — R3, for which all the critical
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points of the restriction of ¢ to the knot curve are Morse nondegenerate
and all the critical values are different. :
~ The construction starts from the iterated integrals defining Morse knot
invariants, which are constant along the components of the set of embed-
dings having only Morse critical points.
Choose n noncritical values ¢; < ... < t,,. Choose two different points
(2, 2}) among the points of intersection of the knot with the horizontal

k3

plane ¢t = t; (Figure 19).

#l =1

Figure 19. The construction of the Kontsevich integral

The knot branches define locally the smooth functions z;(t}, z{(¢). The
n-times iterated Kontsevich integral is the integral with values in A, ® C,

m/f Z[w/\d’j:_z'( 1)#],

<<y {z Z g=1

where the weight w € A, represents the Vassiliev diagram, formed by n arcs
connecting (2, z;) on the oriented circle X, and where #| is the number
of descending points among {(z;, z;)} (points where the orientation of K is
opposite to that defined by dt). The summation is over all choices of the

points z; and z; for all <.

Remark . The integral is absolutely convergent. Indeed, the weight w
vanishes at a neighborhood of a zero of the denominator (according to the
easy relation 1 in A,, see Section 3).
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Thus the integral depends on the Morse embedding K continuously.

The crucial property of the Kontsevich integral is its constancy along
the deformations of the embedding K in the class of the Morse knots. This
property depends on the following, elementary but strange

le - d22 A ng — d23

Lemma. + cyclic permutations = 0.

Z— Zg Z— 29

Proof. Compute. , O

Remark . This identity first appeared in [16] as the generator of the
identities in the exterior algebra of the differential forms in the configu-
ration space C"—diag, generated (over C) by the standard forms w;; =
dfn{z; — z;). This subalgebra is isomorphic to the cohomology algebra of
C™ — U(diag).
The above identity is closely related to the Knizhnik-Zamolodchikov
equation [17].
The Kontsevich construction depends on the choice of a closed complex
n ~ l-form w on R} x RY —diag, verifying 3 conditions:
(1) the cohomology class [w] is nonzero;
(2) w is antisymmetric, that is ¢*w = (~1)"w, where o is the involution
exchanging the factors;
(3) let w;; be the form in R x R} x R} — U(diag), induced from w on
R} x R?—diag under the natural projection (where 4,7 € {1,2,3});
then

w12 Awsg g + cyclical permutations = 0.
For n = 2 such a form is given by the above lemma:
w = dén{z — 2').

For n > 2 no smooth form verifying the conditions 1-3 is known. The Kont-
sevich integrals correspond to a generalized solution in the class of currents.
One represents R™ in the form C x R™? with coordinates (z,%1,...,%tn_2).
The solution used by Kontsevich is the current

w=din(z—2")AdO(t; =t A AdO(ta_g —t,_5),

where (8)(t) is equal to 1 for positive ¢ and to zero for negative t.

To prove the deformation invariance of a Kontsevich integral, one
writes its variation as an integral of some differential form along K. This
form vanishes identically according to the preceding lemma. (We leave the



S __-";-.Tfie Vassiliev Theory of Discriminants and Knots 23

e 'detéiis to the interested reader. It is here that the four-term relations will

©*“be needed).

' The deformation invariance implies the second crucial property of the
Kontsevich integral; it can be considered as a “Vassiliev invariant of Morse
knots with values in 4, ® C”. Kontsevich has stated that the n-th jump of
the integral I,., evaluated at a Morse immersion K with n double points, is
equal to the product of (2wi)™ with the diagram of this immersion (consid-
ered as an element of the diagram group 4,). The idea is to deform K near
the singular points, as shown in Figure 20 for n = 1. It could follow from
the Kontsevich iterated jump formula that the n+ 1-th jump vanishes iden-
tically. Thus I, may be considered as a generalized vector-valued Vassiliev
invariant of Morse knots.
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Figure 20. The residue as the jump of a Kontsevich integral

|z 2| =¢
Z Z

It would follow also, that any element of A* Hom(A,C) is equal to the
n-th jump of some complexz-valued Vassiliev invariant:

Va®@Cx=(A®D...0 A @C.

"To write Kontsevich’s formulas for the ordinary knots (providing invari-
ants which do not depend on the choice of the Morse knot, representing a
given knot class), introduce the total integral with values in the completion
of the algebra A @ C,

I[(K) = @I, (K).

Consider an unknotted closed curve Ky with two Morse maxima and
two minima of ¢ (to calculate the integrals, we may replace Ky by the
nonclosed plane curve ¢ = z° — z + 40, since the integrals are deformation-
invariant).
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To make the Kontsevich integral invariant under the deformations
which change the number m of maxima of the function ¢, Kontsevich had
suggested to twist it in the following way:

I(K) = I(K)}/I(K)™

The division here is understood in the sense of the completion of the
algebra A®C: Ip(Ko)=1land (1-a) ' =1+a+a®-+..., if the order
of ¢ in A is positive.

Example. The only number-valued Vassiliev invariant of order 2 (normed
by the conditions that it vanishes on the unknot and takes value 1 on the
trefoil knot) is equal to

°0) =72 /), >

dzy —dz! dzg —dzl _
{z,2'} 1 A (=1)#lp sl 1

zl—zi 22—.22

where K is a Morse embedding of a circle with 2m critical points of ¢
on it and where the summation is over all the choices of the four points
{tisz:), (ts, 2{)(¢ = 1,2), such that the points of the first pair (¢ = 1) alter-
nate with those of the second along the closed curve K.

The Kontsevich integrals would equip the ring V @ C with a ZT—
grading (generated by that of A). However the arithmetical properties of
this transcendental grading are not clear. Conjecturally the values of I, (K)
belong to (2miQ)" @ A,,.

This arithmetic reflects the arithmetical nature of the constants in-
volved in the formulas for the integer-valued invariants (like 47* and 1/6
in the preceding formula). These constants depend on the values of the
D. Zagier (-functions of several variables at the positive integer points,

C(az, @) = > k™ ko

(the summation over the integer points in the Weyl chamber 0 < kq < ks <
oo << k).

The integer linear combinations of the numbers ((a) form a ring Z.
Kontesevich has stated that his integrals values on any knot, fn(K ) and
f(K), belong to 4, ® Z.

To understand how the (-function enters in the formulas, it suffices to
consider the simplest case of the double Kontsevich integral

1 2

: 1
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for the plane curve Ky : t = 22 — 2, 2z = z + 0 (Figure 22).

)

Figure 21. The standard curve Ky
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Figure 22. %3 as a Kontsevich's integral

Below consider the points in any pair {z;, 2} as being unordered {other-
wise one has to multiply the 2™).

The choices containing a pair {21, 21} = {as, a3} or {22,25} = {b1, b2}
are not admissible, since the corresponding quadruples cannot alternate.
The remaining 4 possibilities of the choices provide 4 terms in the integrand,
of the form

denal,g A d€n61)3(—1) + ...

where a; o = a1 — ag, and so on. Taking the signs into account, one can
reduce the integrand to the form

dﬁn(al,g/al,g) AN dgn(bgjg/bl’g).
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This expression explains the rather mysterious invariance of the in-
tegral under the deformations of Ky in the class of Morse embeddings.
Indeed, the integration domain is the triangle

Imin <1 <t2 <Tmax-
The ratios u = a12/a13, v = bo3/b1 3 send the boundary of this
triangle onto the boundary of the standard triangle u+v > 1, u < 1,v < 1

which is invariant under the deformations in the class of Morse embeddings.
Thus the integral is reduced to the standard integral along the standard

triangle,
1
// dlnu A dénv = f In(l — u)%
0

Taylorizing the logarithm, one obtains the value

) 0wk du > 1 2
ZQ(Ko)w;fo TP MR i)

Similar wonderful cancellations are responsible for the independence of
other Kontsevich integrals on the choice of the Morse representative in a
knot class. The standard infegrals occurring in these calculations always
have the form

Octi<.ctyet b =t1 ta T lgy T—taq1 tn

(n groups similar to the first product of ay forms.) This number is the
value of ((ay,...,an).

It is clear that the theories described above will be soon developed in
many directions.

Vassiliev has started from the stabilization problem ([2]-{4]) of the co-
homology rings of the complements to the discriminants and to the caustics
in the complex versal deformation spaces of critical points of holomorphic
functions of 2 complex variables ([5]-[8]). These stable rings are isomorphic
respectively to the rings

H* (92n52n+1)’ H* (92n22nU(n)/O(n))

generalizing the May-Segal ([18],[19]) result for the braid groups cohomol-
ogy (n = 1) and providing a homological version of the Gromov A-principle
while its homotopical version fails there.
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Then, applying his methods to the real functions of one variable with
restricted singularities (see [9],[10]) Vassiliev has realized that these also
work for the vector functions, for instance, for the knots.
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Figure 23. Integration domains for the Kontsevich integral equal to ()

Vassiliev has also discussed the applications of his theory to the higher
dimensional embeddings. Bar-Natan, Lin and Kontsevich have defined
Feynman diagram groups, starting from more general Feynman diagrams
than those of Vassiliev, and using more relations (inspired by the Jacobi
identity in Lie algebras).

The resulting diagram groups are isomorphic to those of Vassiliev. Bir-
man, Lin, Bar-Nathan and Kontsevich have used these constructions to as-
sociate a Vassiliev invariant to any representation of a simple Lie algebra;
Kontsevich has promised applications to the topology of 3- and 4-manifolds,
to the cohomology of infinite-dimensional Lie algebras and to associative
algebras.

The success of the singularity technique in knot theory should not
obscure the fact that many fundamental problems of the topology of the
functional spaces of mappings with restricted singularities are still open
both in the real and in the complex domain, even for the functions of one
variable (see [3], [4], [9], [10], [20], [21], [22]). Other probable domains of
application include symplectic and contact geometry and the theories of
immersed plane curves and of evolution of wave fronts.
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