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Abstract

A new family of weight systems of finite type knot invariants of any

positive degree in orientable 3-manifolds with non-trivial first homology

group is constructed. The principal part of the Casson invariant of knots

in such manifolds is split into the sum of infinitely many independent

weight systems. Examples of knots separated by corresponding invariants

and not separated by any other known finite type invariants are presented.
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1 Introduction

The starting point in the construction of finite type invariants of knots in a 3-
dimensional manifold M3 is the construction of corresponding weight systems,
i.e. functions on the set of homotopy types of singular knots in M3, satisfying
certain natural conditions, see [6], [8]. This paper describes two new construc-
tions of weight systems in 3-manifolds with π1(M

3) 6= {1}.
Any weight system in R3 generates a weight system in an arbitrary orientable

M3. If π1(M
3) is non-trivial, then the obtained weight system obviously splits

into the sum of independent weight systems corresponding to different homotopy
types of loops in M3 defined by these singular knots. This splitting does not
help in separating knots. However any of these summands splits further into
a sum of many weight systems that can generate independent knot invariants.
In §2 such a splitting is described for the simplest (of degree 2) invariant of
knots in R3; if rank H1(M

3) ≥ 2 then we obtain infinitely many independent
weight systems in this way, in particular infinitely many independent degree 2
invariants of knots in M2 × R1.

In §3 we describe an infinite family of weight systems of arbitrary degrees
for knots in 3-manifolds with non-trivial first homology group. For any k, these
systems of degree k are parameterized by unordered collections of k + 1 non-
zero elements of the group H1(M

3). These weight systems are characterized
by taking zero values on all singular knots whose chord diagrams have crossing
chords. For M3 of the form M2 × R1 the simplest (of degree 1) such weight
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Figure 1: Examples of chord diagrams

systems coincide with the principal parts of Fiedler’s invariants [4], and our
degree 2 weight systems improve the principal parts of invariants IK

3 (a, b) from
Theorem 2.10 of [5].

In §4 we show how the invariants with these new weight systems separate
knots that cannot be separated by previously known finite type invariants.

1.1 Definitions (see [6], [8])

A chord diagram of degree k (or simply a k-chord diagram) is an arbitrary
collection of 2k distinct points in S1 matched in pairs. For examples of such
diagrams, see Fig. 1, where the matched points of the circle are connected by
thin chords. A smooth map f : S1 → M3 respects some chord diagram if it joins
the points of any of its pairs. Two k-chord diagrams are equivalent if they can be
transformed into one another by orientation-preserving diffeomorphisms of S1.
Given an equivalence class A of k-chord diagrams, two maps f1, f2 : S1 → M3

belong to one and the same A-route of degree k, if they both respect some k-
chord diagrams Ā1, Ā2 of class A, and can be reduced to one another by the
composition of 1) a homotopy in the class of maps S1 → M3 respecting Ā1,
and 2) an orientation-preserving diffeomorphism of S1 transforming Ā1 to Ā2.
Thus, the A-routes in M3 are the equivalence classes of singular maps S1 → M3

under this equivalence relation.
A degree k weight system in M3 is a numerical function on the set of all

A-routes of degree k in M3, satisfying some two sets of restrictions.
One, the simplest restriction, called 1T-relation, claims that this function

should take zero value on any A-route of degree k such that:
1) any chord diagram of class A contains a pair of points xi, yi not separated

in S1 by points of other pairs of this diagram (i.e. one of segments [xi, yi] or
[yi, xi] in S1 does not contain points xj or yj, i 6= j, as e.g. in pictures 11, 21,
31, 32, 33 of Fig. 1), and

2) the loop f : [xi, yi] → M3 or f : [yi, xi] → M3, defined by the image of
this segment under a map f from our A-route, is contractible in M3.

The second series of restrictions (1), called 4T-relations, is more complicated;
it can be derived from the study of singular maps with k − 2 double points and
one triple point. Let us consider any such generic map, i.e. a map f : S1 → M3

with exactly k−2 generic self-intersections and one triple self-intersection point
such that three derivatives of f at this triple point are linearly independent in
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Figure 2: Resolutions of a triple point
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Figure 3: Possible resolutions of a transverse self-intersection

the tangent space of M3. Then the triple point can be partially resolved in
six different ways, moving it into two double self-intersection points, see Fig.
2, so that f splits in six different ways into singular knots with exactly k self-
intersections.

Let I be a degree k weight system, and I(m), m = 1, . . . , 6, be its value on
the singular knot obtained from f by a local move indicated in Fig. 2 in the
sector labelled by m. Then 4T-relation claims that

I(1) − I(4) = I(2) − I(5) = I(3) − I(6). (1)

The importance of 1T- and 4T-relations is determined by the fact that the
residues of finite type knot invariants should satisfy these conditions; let us
recall this notion. A self-intersection point f(x) = f(y), x 6= y, of a smooth
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map f : S1 → M3 is called transverse if the derivatives of f at x and y are not
collinear in Tf(x)M

3. Any transverse self-intersection of a map f : S1 → M3

can be resolved in two essentially different ways by small local moves of f , see
Fig. 3. These two local resolutions cannot be connected by a short local path in
the space of embeddings S1 → M3 since they are separated in a neighborhood
of f in this space by a piece of the discriminant variety consisting of maps with
self-intersections as in the middle picture in Fig. 3. This variety is a singular
hypersurface in C∞(S1, M3); its regular points are exactly the maps with unique
transverse self-intersection. If M3 is oriented, then there is an invariant way
to call one of these resolutions as positive, and the other as negative; for the
canonical orientation in R3 this discrimination is indicated by indices + and −
in Fig. 3. Indeed, if we fix an affine chart in M3 close to the self-intersection
point f(x) = f(y) and a parameterization in S1, then the determinant of the
triplet of vectors {f ′(x), f ′(y), f(y) − f(x)} is a well-defined function in a
neighborhood of the point f in the space C∞(S1, M3). The derivative of this
function defines a transversal orientation of the discriminant variety at the point
f , and hence the desired difference between two possible resolutions of f .

Given a numerical invariant I of knots in M3 (i.e. of smooth embeddings
S1 → M3) and an arbitrary map f : S1 → M3 with k transverse self-intersection
points f(xi) = f(yi), df(xi) 6‖ df(yi), i = 1, . . . , k, which does not have any other
self-intersections or singular points, we can resolve all these singularities in 2k

different ways, replacing any self-intersection point as it is shown in the left- or
right-hand part of Fig. 3. The residue of the invariant I at the singular knot f
is defined as the alternated sum of values of I at all these 2k non-singular knots
obtained from f ; the value of invariant I at such a desingularization should be
taken with the coefficient 1 or −1 depending on the parity of the number of
negative local resolutions defining the desingularization.

By definition, a knot invariant is of degree ≤ k if its residue at any singular
knot with more than k transverse self-intersections is equal to 0.

It is easy to see that the residue of any degree k invariant of knots in ori-
entable M3 is a weight system, i.e. it satisfies 1T- and 4T-relations.

In general, these necessary conditions are not sufficient. For example, there
exists a degree 1 weight system in S2×S1 that does not correspond to any knot
invariant, see [8]. For M3 of the form M2 × R1 the situation is much better.

Proposition 1 (see [2], [1]) Suppose that M3 = M2 ×R1, M2 an orientable
surface (maybe with boundary), and Ik is a non-zero R-valued weight system of
degree k in M3. Then there exists an R-valued degree k invariant of knots in
M3, whose residue coincides with this function Ik. 2

2 Degree 2 invariants with the chord diagram ⊕

Any weight system I in R3 defines also a weight system (of the same degree) in
any orientable 3-manifold M . Indeed, for any chord diagram A there exists only
one A-route in R3. Thus, any degree k weight system in R3 is just a function
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on the set of equivalence classes of k-chord diagrams. We can define the desired
weight system in M3 as the function whose value on an A-route is equal to the
value of I on the chord diagram A. The obtained function obviously satisfies
the 1T- and 4T-relations, since the original weight system does.

If π1(M
2) 6= 0 then weight systems of this origin can be split into sums

of more specific independent systems. Consider for example the unique degree
2 weight system in R3 taking value 1 on the crossing 2-chord diagram ⊕ and
value 0 on the non-crossing diagram. We denote by I⊕(M3) the correspond-
ing degree 2 weight system in M3. This system splits into many independent
summands, corresponding to the splitting of the set of ⊕-routes in M3 into
equivalence classes generated by the following equivalence condition: two ⊕-
routes are equivalent if one can approach one and the same singular knot with
a generic triple point (see Fig. 2) along both of these ⊕-routes. Let us describe
these equivalence classes algebraically.

In Fig. 2 the singular knots with crossed 2-chord diagram are shown in
sectors 1, 2 and 3. Contracting one of four segments of such a knot, bounded by
two self-intersection points, we obtain a singular knot with a triple point. Let
a, b and c be three elements of the group π1(M

3) defined by three loops of this
singular knot, taken in the cyclic order defined by the orientation of the knot.

Definition 1 Given a group π, the related trefoil structure ♣(π) is the set of
equivalence classes of cyclically ordered triplets of non-unit elements of π, with
equivalence relation generated by the following basic equivalences:

0) definition of the circular ordering: (a, b, c) ∼ (b, c, a) ∼ (c, a, b);
1) simultaneous conjugation by an element of π: (a, b, c) is equivalent to

(g−1ag, g−1bg, g−1cg) for any g ∈ π;
2) (a, b, c) is equivalent to the following six triplets: (a, ba, a−1c), (a, ba−1, ac),

(ac−1, cb, c), (ac, c−1b, c), (b−1a, b, cb), and (ba, b, cb−1).

The last six expressions have the following sense. Given a singular knot with
a triple point as in Fig. 2, we choose 1) one of its three partial desingularizations
having the crossed chord diagram as in pictures 1, 2 or 3 of this figure, and 2) an
endpoint of the “short” segment in the corresponding singular knot, joining its
two self-intersection points; this in total gives six possibilities. Then we expand
this segment by moving the chosen self-intersection point until it meets another
self-intersection point. The homotopy classes in π1(M

3) of three loops of the
resulting curve with a triple point are expressed through the similar classes of
the initial (central in Fig. 2) singular knot in one of six ways indicated in item
2) of the previous definition.

Definition 2 A singular knot in M3 with exactly two transverse self-intersec-
tions respects the element τ of the trefoil structure ♣(π1(M

3)), if
1) the chord diagram, represented by this singular knot, is crossed, and
2) contracting an arbitrary segment of this knot, joining its two singular

points, we obtain a singular knot with a triple point, whose three loops (cycli-
cally ordered by the orientation of the knot) define a triplet of elements of
π1(M

3) (with the basepoint at the triple point of f) belonging to τ .
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Proposition 2 A. The last definition is correct, i.e. the class of the obtained
triplet in the trefoil structure does not depend on the choice of one of four
segments to be contracted.

B. All singular knots from one and the same ⊕-route in M3 define one and
the same element of ♣(π1(M

3)).

This proposition follows immediately from the definition. 2

Proposition 3 Let M3 be an orientable 3-manifold, and τ an element of the
trefoil structure ♣(π1(M

3)). Then the function on degree 2 routes in M3 which
takes value 1 on all singular knots in M3 respecting τ , and value 0 on all other
singular knots with two transverse self-intersections, is a weight system.

Indeed, only the ⊕-routes, representing one and the same element of the
trefoil structure, can meet in one and the same 4T-relation. Therefore for any
element τ the described function satisfies 1T- and 4T-relations. 2

There is an Abelian version of this notion which generally defines a smaller
number of independent weight systems, but is simpler. Let us describe it.

If the group H is Abelian, then the related trefoil structure ♣(H) is the set
of equivalence classes of cyclically ordered triplets of non-zero elements of H ,
with equivalence relation generated by elementary equivalences as follow:

(a, b, c) ∼ (a, b + a, c − a) ∼ (a, b − a, c + a) ∼ (a − c, b + c, c) ∼ (1)

∼ (a + c, b − c, c) ∼ (a − b, b, c + b) ∼ (a + b, b, c− b).

Definition 3 A singular knot in M3 with exactly two transverse self-intersec-
tions respects element Θ of the structure ♣(H1(M

3)), if
1) the chord diagram of this singular knot is crossed, and
2) the contraction of an arbitrary segment of this knot, joining its two sin-

gular points, gives a singular knot with a triple point, such that three loops of
this knot (taken in the cyclic order defined by its orientation) define a triplet of
elements of H1(M

3) belonging to the element Θ.

According to (1), contracting a different segment of the singular knot we
obtain the same element of ♣(H1(M

3)).

Proposition 4 Let M3 be an orientable 3-manifold. Given an element Θ of the
trefoil structure ♣(H1(M

3)), there exists a weight system in M3 taking value 1
on all singular knots in M3 respecting Θ and value 0 on all other singular knots
with two transverse self-intersections. 2

An obvious invariant of elements of trefoil structures is the subgroup in π
generated by elements a, b and c. However, there are many other invariants. For
instance, if π ≡ Zk, k ≥ 2, and a + b + c = 0 in Zk, then the integer area of the
oriented triangle with vertices a, b, c is the same for all triplets (a, b, c) defining
one and the same element of ♣(π).
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3 Invariants defined by non-crossed chord dia-
grams

Every unordered collection of k+1 non-zero elements of the group H1(M
3) (M3

orientable) defines well a degree k weight system in M3.
Given such a collection Γ of elements γ0, . . . , γk ∈ H1(M

3) \ 0, the cor-
responding function IΓ on the space of all A-routes of degree k is defined as
follows. If the chord diagram A has at least one pair of crossing chords (i.e.
chords whose four endpoints alternate in S1, as e.g. in diagrams 22, 33, 34, 35

of Fig. 1), then the value of IΓ on any A-route is equal to 0. If A has no such
crossing chords, then for any generic immersion f : S1 → M3, respecting this
chord diagram and having no other self-intersections, the variety f(S1) defines
naturally k + 1 elements of H1(M

3); to obtain these elements, we smooth any

self-intersection of f(S1) by the rule ���@@I I�=⇒ and take the classes of k + 1
separate circles, into which this smoothing splits our curve. The value of the
desired function IΓ on an A-route is equal to 1 (respectively, to 0) if the ob-
tained unordered collection of elements of H1(M

3) coincides (respectively, does
not coincide) with the given collection (γ0, . . . , γk).

Theorem 1 For any collection Γ of non-zero elements γ0, . . . , γk of H1(M
3),

this function IΓ on the space of A-routes satisfies the 1T- and 4T-relations.

Proof. Consider a generic singular knot f : S1 → M3 with one triple point
and k − 2 double points, see Fig. 2. If one of its six decompositions into
singular knots with k double points defines a chord diagram without crossing
chords, then exactly two other decompositions also have chord diagrams with
this property; in Fig. 2 they are decompositions 4, 5 and 6. The collections
of k + 1 homology classes, corresponding to these three decompositions, also
coincide, therefore our function satisfies the 4T-relations; 1T-relation follows
now from the condition that none of elements γi is trivial. 2

Remark 1 If M3 has the form M2 × R1, then the initial (of degree 1) weight
systems of this series coincide with residues of Fiedler’s invariant of [4], and
a majority of our degree 2 weight systems coincide with residues of certain
invariants IK

3 (a, b) from Theorem 2.10 of [5]. However, the construction of [5]
requires some additional restrictions (in our terms, difference of all elements γi),
which are unnecessary for us, and misses one necessary restriction (a 6= K in
notation of [5]).

3.1 Non-Abelian version

As in the previous section, we can consider also the non-Abelian version of these
weight systems, replacing homology types of loops by their homotopy types. Let
us describe explicitly the corresponding weight systems of degree 1 and 2.
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Proposition 5 Let M3 be a connected orientable manifold. Then
A) (see [8]) degree 1 weight systems in M3 are in the natural one-to-one

correspondence with the functions on the set of unordered pairs of non-unit
elements of π1(M

3) considered up to the simultaneous conjugation: a pair (b, c)
of such elements is considered equal to (g−1bg, g−1cg) for any g ∈ π1(M

3).
B) degree 2 weight systems in M3, taking zero value on all ⊕-routes, are in

the natural one-to-one correspondence with the functions on the set of cyclically
ordered triplets of non-unit elements of π1(M

3) taking equal values on triplets
related by the following elementary equivalence relations:

a) definition of the cyclic ordering: (b, c, d) ∼ (c, d, b) ∼ (d, b, c);
b) simultaneous conjugations: the triplet (b, c, d) of such elements is equiva-

lent to the triplet (g−1bg, g−1cg, g−1dg) for any g ∈ π1(M
3);

c) the relation (b, c, d) ∼ (b, cdc−1, c).

Proof. A. The irreducible components of the discriminant variety in C∞(S1, M3)
(i.e. the 11-routes) are in the one-to-one correspondence with such equivalence
classes of pairs (b, c) of (maybe unit) elements of π1(M

3). 4T-relation is void in
this case, and 1T-relation coincides with the restriction b 6= 1 6= c.

B. Let A be the class of non-crossed two-chord diagrams. Any A-route in

M3 consists of parameterized singular knots

�
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	mapped somehow

into M3. Contracting the image of one of two segments connecting the self-
intersection points of this singular knot, we obtain a singular knot with a triple
point in M3. We can assume that this triple point is the basepoint in M3,
then three loops of our knot define three cyclically ordered elements of π1(M

3).
Exactly three of six partial resolutions of this triple self-intersection (see Fig.
2) correspond to singular knots respecting non-crossed 2-chord diagrams. By
4T-relation our weight system should take equal values on all such singular
knots, and hence determines a function on the set of cyclically ordered triplets
of elements of π1(M

3) defined by either of them. Travelling inside the stratum
of singular knots, we can arbitrarily move the common basepoint of our three
loops; this implies restriction b) in Proposition 5 B). If we contract a differ-
ent segment between two self-intersection points, then we arrive at a similar
stratum characterized by the triplet (b′, c′, d′) with b′ = b, c′ = cdc−1, d′ = c,
which implies restriction c) in our proposition. It is easy to see that this set of
restrictions is complete. 2

4 Examples of practical calculations

A wealth of non-trivial knots in T2 × R1, T2 ≡ S1 × S1, is provided by the
textile structures. These structures define 1-dimensional submanifolds in R3

invariant under a lattice of parallel shifts Z2, and hence knots or links in the
quotient space R3/Z2 ∼ T2 × R1.

For example, the single jersey structure [7] can the depicted
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in the standard rectangular chart of T2 by the picture . To distinguish
it from the trivial structure in the same homotopy class, we join these two
structures by a generic path in the space C∞(S1,T2 × R1) :

→ → → → ≡ (1)

This path crosses the discriminant variety twice. These crossing points belong
to irreducible components of the discriminant, characterized (in accordance with
Proposition 5A) by two pairs of homotopy classes

((0, 1)(1,−1)) and ((0,−1)(1, 1)) ; (2)

here (1,−1) denotes the class in the Abelian group π1(T
2) equal to the difference

of the horizontal generator of this group oriented “to the right” in our picture
and the vertical generator oriented “to the top of the page”. Any of these
components defines a dual weight system of degree one. Therefore any of two
degree one invariants, corresponding by Proposition 1 to these weight systems,
separates single jersey from the trivial structure.

Remark 2 Adding a constant function to a degree k knot invariant, k ≥ 1, we
obtain an invariant of the same degree and the same weight system, therefore
we can and will assume that all our invariants take zero value on the trivial knot
indicated in the right-hand part of (1).

The next example is more complicated. The 1 + 1 rib structure
[7] is the connected sum of the single jersey structure with its “mirror image”.
To separate 1 + 1 rib from the trivial structure, we join them by the generic
path

→ → → →

→ → → → → ≡

(3)

There are four surgeries in this path; they belong to components of the discrim-
inant characterized by pairs

((0,−1)(1, 1)), ((0, 1)(1,−1)), ((0, 1)(1,−1)), and ((0,−1)(1, 1)) (4)

respectively. It is easy to calculate that at these four points our path crosses
the discriminant respectively in the positive, positive, negative and negative di-
rections. Thus, this path crosses exactly two different irreducible components
of the discriminant; each of these components is crossed twice in different di-
rections. Therefore the first and the last structure in the sequence (3) are not
separated by first degree invariants. Let us try to separate them by second
degree invariants. According to the general theory (see [8]), the same sequence
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(3) can be used for this, however, different surgeries of this sequence should be
taken not only with their signs, but also with certain weights defined by these
second degree invariants. Moreover, for our calculation the exact values of these
weights are not necessary since it is sufficient to know the differences of such
weights for surgeries within one and the same component of the discriminant.

To calculate these differences, we join the first and the fourth surgery in (3)
by a generic path inside the discriminant:

→ → → →

→ → → → → ,

(5)

and then the second and the third surgery:

→ → → → . (6)

The first and the last surgeries in (5) have non-crossed chord diagrams. Their
characteristic triplets of elements of H1(T

2) (see Theorem 1) are equal to
((0,−1)(1, 0)(0, 1)), but their signs are opposite (and equal to + and − re-
spectively). The second surgery also has a non-crossed chord diagram; its char-
acteristic triplet is equal to ((0,−1)(1, 2)(0,−1)), and the sign is equal to −.
The third surgery has a crossed chord diagram and sign +, the corresponding
element of the trefoil structure ♣(π1(T

2)) is represented by the triplet

((0,−1)(0,−1)(1, 2)). (7)

The first surgery of (6) has a non-crossed chord diagram, sign −, and charac-
teristic triplet ((0, 1)(1,−2)(0, 1)). The second surgery has the crossed chord
diagram and sign +; the corresponding trefoil element is defined by the triplet

((0, 1)(0, 1)(1,−2)). (8)

Thus, in total we have in (5) and (6) six crossings of the set of singular
knots with two self-intersections. Considering all these surgeries, we arrive at
the following statement.

Proposition 6 Both degree two invariants defined by non-crossed chord dia-
grams and characteristic triplets ((0, 1)(1,−2)(0, 1)) and ((0,−1)(1, 2)(0,−1))
take on the 1 + 1 rib knot values equal to −1. All other basic invariants with
non-crossed 2-chord diagrams take zero value on this knot. The cumulative de-
gree 2 knot invariant defined by the crossed 2-chord diagram ⊕ takes value +2
on the same knot. In particular, any of these three invariants separates the 1+1
rib knot from the unknit. 2

Further, consider the fake weaver’s knot in T2 × R1 given by the picture

. (9)
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It can be reduced to the trivial knot by the sequence of two surgeries

→ → → → ≡ . (10)

Characteristic pairs of these surgeries are both equal to ((0,−1)(1, 1)), their
signs are equal to − and + respectively. Therefore the initial knot (9) cannot
be separated from the trivial knot by invariants of degree one. Now, let us try
to separate these knots by degree two invariants. To do this, we connect two
singular knots, occurring in (10) at surgery points, by a generic path inside the
discriminant variety:

→ → → → ≡ →

→ → ≡ → → ≡ .

(11)

The first and the last surgeries in this path have crossed chord diagrams cor-
responding to the trefoil element ((0,−1)(0, 0)(1, 1)); signs of both of these
surgeries are equal to −. Two other surgeries have non-crossed chord diagrams,
both with characteristic triplets ((0,−1)(0, 0)(1, 1)), are useless for the calcula-
tion of degree two invariants. In the same way as in the previous subsection,
this implies the following statement.

Proposition 7 The second degree invariant defined by the crossed chord dia-
gram and element ((0,−1)(0, 0)(1, 1)) of the structure ♣(π1(T

2)) takes value
+2 on the knot (9). All second degree invariants corresponding to other trefoil
elements or to non-crossed chord diagrams take zero value on the same knot. 2

It is easy to calculate that this triplet ((0,−1)(0, 0)(1, 1)) defines the same
element of the trefoil structure ♣(π1(T

2)) as (7) and (8). Thus, comparing
propositions 6 and 7 we obtain the following statement.

Corollary 1 1) The 1 + 1 rib structure and the fake weaver’s knot (9) are sep-
arated by the second degree invariants IΓ defined by non-crossed chord diagrams
and characteristic triplets ((0, 1)(1,−2)(0, 1)) and ((0,−1)(1, 2)(0,−1)).

2) These two structures are not separated by any other second degree invari-
ants (including invariants Ik

3 (a, b) of [5]).

Now we consider a more complicated knot in T2 ×R1 obtained from (9) by
the following operation. We cut our knot (9) at both of its points placed over
the top/bottom margin of the quadrilateral chart in T2×R1, and replace these
cutting points by loops such that 1) their projections to T2 are (almost) vertical
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segments in our picture, and 2) all crossing points of these vertical segments with
the initial knot diagram are undercrosses only, see (12).

(12)

We can calculate the first and second degree invariants of this knot in exactly
the same way as for the knot (9). The inserted strings do not participate
in the surgeries; their only contribution is that all second coordinates in the
formulae for characteristic triplets and trefoil elements become multiplied by
two. Therefore we obtain the following statement.

Proposition 8 The second degree invariant defined by the crossed chord di-
agram and the element ((0,−2)(0, 0)(1, 2)) of the trefoil structure ♣(π1(T

2))
takes value +2 on the knot (12). All second degree invariants corresponding to
other trefoil elements or to non-crossed chord diagrams take zero value on the
same knot. 2

Corollary 2 Knots (9) and (12) are separated by second degree invariants cor-
responding to different elements of the trefoil structure ♣(π1(T

2)), although they
are not separated by degree 2 invariants corresponding to non-crossed chord di-
agrams, as well as by the cumulative invariant corresponding to the Casson
invariant.

Proof. Comparing Propositions 7 and 8, it remains to show that the triplets
((0,−1)(0, 0)(1, 1)) and ((0,−2)(0, 0)(1, 2)) belong to different elements of the
trefoil structure ♣(π1(T

2)). But the subgroup in Z generated by the second
coordinates of vectors a, b and c ∈ Z2 obviously is an invariant of the trefoil
structure. 2

In the next proposition we show that the entire system of invariants of all
degrees in T 2 × R1, whose weight systems are induced from weight systems in
R3, cannot separate the knots (9) and (12). We need to be careful with the
statement, because any weight system of degree k determines an invariant only
up to adding the invariants of lower degrees, some of which can distinguish our
knots.

Proposition 9 For any weight system W in R3 there exists an invariant of
knots in T2 × R1, whose weight system is induced from W as described in the
beginning of §2, but which takes equal values on the knots (9) and (12).

Proof. Let I be an arbitrary invariant of knots in R3 (or, equivalently, in S3)
with the weight system W ; such an invariant I exists according to the Kontse-
vich’s theorem. The manifold T2 × R1 can be identified with the complement

12



of the Hopf link (i.e. two unknotted linked circles) C1 ⊔ C2 ⊂ S3 in such a way
that

1) any line x × R1, x ∈ T2, tends to C1 (respectively, to C2) when the
parameter in R1 tends to +∞ (i.e., “to the reader” in our pictures) (respectively,
to −∞);

2) the horizontal (respectively, vertical) generator of H1(T
2) ∼ Z2 in our

pictures generates the kernel of the induced homomorphism H1(T
2) → H1(S

3 \
C2) (respectively, H1(T

2) → H1(S
3 \ C1)).

The images of our knots (9) and (12) under this embedding T2 × R1 → S3

are isotopic in S3 (and even in S3 \ C1), therefore they cannot be separated by
the invariant induced from I by this embedding. 2.
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