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Abstract

We construct combinatorial formulas of Fiedler type (i.e. composed of oriented
Gauss diagrams arranged by homotopy classes of loops in the base manifold, see [4],
[7]) for an infinite family of finite type invariants of knots in M

2
×R

1 (M2 orientable),
introduced in [5].
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1 Introduction

In [5], we have constructed an infinite family of weight systems (i.e. potential knot invariants)
for knots in an arbitrary oriented manifold M3 with non-trivial first homology group.
Namely, any unordered collection Γ = {γ1, γ2, . . . , γk+1}, γi ∈ H1(M

3)\{0}, of k+1 non-zero
1-homology classes defines a weight system IΓ of degree k for knots in M3. All these weight
systems defined by different collections Γ are linearly independent. By a theorem of [1], in
the case M3 = M2×R

1 any weight system can be integrated to a knot invariant of the same
degree. In particular, these weight systems IΓ define implicitly (i.e. up to the choice of this
integration) a series of finite type invariants of knots in such manifolds. In the case of degrees
k = 1 and 2 such invariants (with a minor exception for k = 2) were previously explicitly
constructed by T. Fiedler [3], [4] in the terms of Gauss diagrams arranged by 1-homology
classes of M2. In fact, in both constructions instead of 1-homology classes γi we can use
the loop homotopy classes of M3, i.e. the elements of the set h1(M

3) of conjugacy classes
in π1(M

3). This provides us with a more ample family of weight systems and invariants
if π1(M

3) is non-commutative. Below, we generalize the Fiedler’s construction to arbitrary
degree k and obtain a large family of explicitly defined and easily calculable invariants ΦΓ of
knots in all manifolds M3 = M2 × R

1, M2 orientable with π1(M
2) 6= {1}, whose principal

parts coincide with appropriate weight systems IΓ. These invariants ΦΓ are parameterized
by ordered collections Γ = (γ1, γ2, . . . , γk+1) of classes γi ∈ h1(M

3)\{1}, no more than two
of which can coincide. If all these classes are different, then their ordering in Γ is arbitrary,
and if some two of them coincide then they should be the first and the last elements of the
collection Γ. All (k + 1)! (in the first case) or (k − 1)! (in the second one) invariants ΦΓ′ ,
where Γ

′ is obtained from Γ by some permissible permutation of elements, coincide with ΦΓ

up to invariants of degree lover than k: the principal parts of all these invariants coincide
with one another and with the weight system IΓ, where Γ is obtained from Γ by forgetting
the order of its elements.

In §2 we define functions ΦΓ on knots in M2 × R
1 with generic projections to M2, in

§3 we prove their invariance under Reidemeister moves, and in §4 we present two knots in

1



- ee
��
��

6
∼

1 2
1 2

Fig. 1: Universal planar chain of degree 1

T
2 × R

1 not separated by any finite type invariants of degree ≤ 2 but separated by some
our invariant ΦΓ of degree 3.

2 Basic construction and main result

Recall that a k-chord diagram consists of an oriented circle (which we shall identify with the
unit circle in R

2 oriented counterclockwise) and k chords of this circle, all whose 2k endpoints
are different. A k-arrow diagram is a k-chord diagram, all whose chords are oriented, see [7].
Two chord or arrow diagrams are equivalent, if they can be transformed one into the other by
an orientation-preserving homeomorphism of the circle. We shall consider only planar chord
and arrow diagrams, i.e. those with non-intersecting chords. Obviously, any planar k-chord
diagram cuts the unit disc into k + 1 convex domains. A marking of a planar chord (or
arrow) diagram is any labelling of these domains by numbers 1, . . . , k + 1. Marked k-chord
(respectively, k-arrow) diagrams, considered up to equivalence, are in the obvious one-to-
one correspondence with equivalence classes of non-oriented (respectively, oriented) planar
trees with k+ 1 vertices marked by the same numbers and considered up to plane isotopies.
Specifically, given a planar marked arrow diagram, we can choose for the ith vertex of the
corresponding tree an arbitrary point in the ith domain of the unit disc; if two domains with
numbers i and j are separated by a single arrow, then we connect the vertices i and j by a
segment oriented in such a way that the pair of orientations of the segment and the arrow
defines the standard orientation of the plane.

Definition 1 The universal degree k planar chain is either
a) the formal sum of all equivalence classes (up to planar isotopies) of marked planar

trees with k+1 vertices, supplied with the canonical orientation of all edges, from the smaller
number to the greater one, or

b) the formal sum of equivalence classes of all marked k-arrow diagrams, corresponding
to the summands of (a) by the standard correspondence.

For example, the universal degree k planar chains with k = 1, 2 and 3 are shown in Figs.
1, 2 and 3 respectively. As S. Lando has explained to us, for any natural k the number ν(k)
of summands of the universal degree k chain is equal to (2k − 1)!/k!.

For any connected surface M2, denote by h1(M
2) the set of conjugacy classes of π1(M

2),
i.e. of free (non-punctured) homotopy classes of loops S1 →M2; denote by 1 ∈ h1(M

2) the
class of constant loops.

Definition 2 Given any ordered collection Γ = (γ1, γ2, . . . , γk+1), γi ∈ h1(M
2) (some of

which can coincide), the chain ΦΓ is defined as the formal sum of all planar k-arrow diagrams,
whose k+1 domains are labelled by these elements γi: we take the universal degree k planar
chain and in any its summand replace any label i by γi.

Definition 3 The ordered collection Γ is unambiguous, if all ν(k) summands of the chain
ΦΓ are different.
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Fig. 3: Universal planar chain of degree 3 (graph presentation only)

Lemma 1 Γ is an unambiguous ordered collection if and only if one of three conditions is
satisfied:

a) all its elements γi are different (and the ordering is arbitrary);
b) some two of these elements coincide, namely the last and the first one: γ1 = γk+1 (and

the remaining k − 1 elements are again ordered arbitrarily);
c) k = 2.

Proof. The part “if” of the proposition can be checked immediately, let us prove “only
if”. Suppose that there are numbers i, j,m ∈ {1, 2, . . . , k + 1} such that γi = γj and either
i > m < j or i < m > j. Consider a marked planar tree with two roots (i) and (j) connected
with the vertex (m) in such a way that the segments [i,m] and [j,m] are neighbors among
all segments issuing from the vertex m. Permuting the roots i and j we obtain a different
(unless k = 2) tree, defining the same summand of ΦΓ. 2

2.1 Marked arrow diagrams as functions on generic knots

Let M2 be a connected oriented 2-dimensional manifold. Let f : S1 → M2 × R
1 be a knot

in M2 ×R
1, generic with respect to the standard projection p : M2 ×R

1 →M2, i.e. p ◦ f is
an immersion with transverse crossing points only. In our pictures, we identify (a piece of)

the oriented factor M2 with the “blackboard plane”, oriented by the frame -
62

1 , and the
factor R

1 with the line orthogonal to it and oriented “to us”. Recall that the local writhe of
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a crossing point looking like
6-

(respectively,
-6

) is equal to −1 (respectively, +1).
Let A be a planar k-arrow diagram, whose k + 1 domains are labelled by elements

γi ∈ h1(M
2) \ {1}, i = 1, 2, . . . , k + 1, and

◦

A the basic circle of this arrow diagram.

Definition 4 (cf. [4], [7]) A representation of A in the generic knot f : S1 →M2 ×R
1 is

any orientation-preserving homeomorphism r :
◦

A→ S1 such that

a) for any chord of A, connecting some points x, y ∈
◦

A and oriented from y to x, the

images of x and y under the map p ◦ f ◦ r :
◦

A→ M2 coincide, and moreover the point
f ◦ r(x) ∈M2 ×R

1 lies above f ◦ r(y) in the sense of the standard orientation of the factor
R

1; in particular for any domain of the diagram A, the class in h1(M
2) of the canonically

oriented boundary of this domain under the map p ◦ f ◦ r is well-defined;
b) for any domain of the diagram A, the latter class in h1(M

2) is equal to the element
γi marking this domain.

The sign of such a representation is equal to the product of k local writhes of our knot
over all k crossing points of p◦f(S1) corresponding to the chords of A via this representation.

Two representations of A in one and the same knot f are equivalent if they coincide on
all endpoints of chords. Obviously, equivalent representation have equal signs, so the sign of
any equivalence class of representations of A in f is well-defined.

The value A(f) of the planar labelled arrow diagram A on the generic knot f is equal to
the sum of signs over all equivalence classes of representations of A in f . The value on f of
a formal linear combination of arrow diagrams (like ΦΓ) is defined by linearity.

Given a representation of a planar arrow diagram in a knot, the homotopy classes of
boundaries of domains separated by arrows can be realized as follows: we replace in the
diagram of the knot all crossing points corresponding to arrows of this diagram by the rule

�
�

��

@@
@@I ⇒

@
@

@I

��
��� } >

or⇒
} >

(1)

and consider the homotopy classes of oriented curves into which these surgeries split our
knot; see e.g. Figs. 4, 5.

Theorem 1 For any unambiguous ordered collection of elements γ1, . . . , γk+1 ∈ h1(M
2) \

{1}, the value of the corresponding chain ΦΓ is an invariant of knots in M2 × R
1.

Corollary 1 The similar statement holds, in which the set h1(M
2) \ {1} is replaced by the

set H1(M
2) \ {0} of non-zero 1-homology classes.

Indeed, for the corresponding invariant Φ̄
Γ̄
, Γ̄ ∈ (H1(M

2))k+1, we can take the sum of
invariants ΦΓ with Γ running over the pre-image of Γ̄ under the obvious map converting
homotopy classes into homology classes.

If k = 2 and the set Γ̄ satisfies one of conditions a) or b) of Lemma 1, then the invariant
Φ̄

Γ̄
defined in this corollary coincides with some invariant IK

3 from Theorem 2.10 of [4].

Remark 1 In [4], the representations were defined for all (not necessarily planar) arrow
diagrams, with homology classes associated with the arrows, and not with pieces of the disc.
In the case of planar arrows, the homology class associated in [4] with an arrow is equal to
the sum of homology classes of boundaries of all domains of D2 on a certain side of this
arrow. However, in our particular case the current notation is much more convenient.
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Fig. 5: Second move (−)

Remark 2 The invariants described in Theorem 1 are closely related to but are not reduced
to the ones from [5], [6]. It is easy to see that for any unambiguously ordered set Γ satisfying
the condition a) or b) of Lemma 1, the weight system of the corresponding invariant ΦΓ is
equal to IΓ (see [5]), where Γ is obtained from Γ by forgetting the ordering. On the other
hand, if we subtract two our functions ΦΓ, ΦΓ′ , where Γ and Γ

′ differ only by the order
of elements γi, then we obtain an invariant of smaller degree, and we do not see why the
weight system of this invariant should be of the same type.

3 Proof of Theorem 1

We need to prove that the value ΦΓ(f) of the sum ΦΓ is invariant under all Reidemeister
moves of the generic knot f , cf. [3].

First move. The crossing point arising/perishing at this move cannot contribute to the
calculation of any function ΦΓ because the smoothing (1) at such a point provides a loop in
M2 not satisfying the condition γi 6= 1.

Second move. There are four different situations to consider. First, the projections of
participating branches of the knot can have coinciding (+) or opposite (−) directions at the
instant of the surgery, see the left-hand parts of Figs. 4 and 5 (and also Fig. 4 of [3]). Also,
we need to count the contributions to the value ΦΓ(f) arising from the representations of
marked plane arrow diagrams such that both (II) or only one (I) of crossing points vanishing
at this move correspond to some arrows of these diagrams.

In the case (II+) there are no such representations of planar diagrams, because already
the corresponding two chords cross one another.

In the case (II−) there also are no such representations of diagrams participating in
the chain ΦΓ, because the image in M2 of the boundary of the domain, placed in the disc
between these two chords, is homotopic to a constant loop.

In cases (I+) and (I−) any relevant representation of a marked diagram is matched by
another representation of the same arrow diagram, counted with the opposite sign, see the
right-hand parts of Figs. 4 and 5 respectively.
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Fig. 7: Third Reidemeister move (∇)

Third move. We need to consider six different cases. Indeed, there are (up to reflections)
exactly two topologically different arrangements of orientations of participating branches of
a knot: ∆ and ∇ shown respectively in Figs. 6 and 7 (and in Fig. 4 of [3]). The letters
in these pictures indicate the way in which the endpoints of the visible (i.e. shown in the
picture) part of the knot are connected through the exterior of the picture. Also, for both
cases ∆ and ∇ we need to consider and compare the representations of arrow diagrams in
which exactly one, two or three different chords correspond to the crossing points shown in
our picture.

In the first two cases, ∆I and ∇I, any such representation in a knot, whose part is
shown in one of four pictures of Figs. 6, 7, is matched by a unique representation of the
same arrow diagram in the knot shown on the other side on the same picture. Indeed,
such a representation deals with only one arrow corresponding to the crossing point of
some two local branches of the knot in our picture; our move does not change the mutual
disposition of any such two branches. These matched representations have equal signs, so
their contributions to the value ΦΓ(f) are equal to one another.

In the case ∆III, every splitting (1) of the knot diagram at all three crossing points shown
in any side of Fig. 6 provides a contractible component; therefore there are no representations
of arrow diagrams participating in the sum ΦΓ and realizing this case ∆III. In the case ∇III
at least two of three arrows corresponding to crossing points in any side of Fig. 7 cross one
another, so again such representations do not contribute to the value ΦΓ(f).

In the case ∆II (respectively, ∇II) the possible splittings (1) at some two of three crossing
points of a picture in Fig. 6 (respectively, 7) provide diagrams shown in Fig. 8 (respectively,
9). In the case ∆II, only three of these six splittings, namely all the left-hand ones in Fig. 8,
are related with non-crossing pairs of arrows. The product of local writhes of corresponding
two crossing points in any of these three cases is equal to −1, −1 and +1 respectively. The
arrow diagrams composed by only these pairs of arrows are as shown in Fig. 12, where A,
B and C indicate the labels of endpoints of visible parts of boundaries of corresponding
domains in Fig. 8.

Lemma 2 For any unambiguous collection Γ = (γ1, . . . , γk+1) and any generic knot f in
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Fig. 8: 2-splittings at the third Reidemeister move (∆II)
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Fig. 11: Possible representations in the knot of Fig. 10

M2 × R
1, whose local part is shown in the left-hand picture of Fig. 6, there is a natural

matching on the set of pairs (ϕ, r) consisting of a summand ϕ of the formal sum ΦΓ and an
equivalence class r of representations of this summand in our knot f , such that exactly two
arrows of the arrow diagram ϕ correspond to crossing points of this picture. For any two
matched pairs (ϕ1, r1) and (ϕ2, r2) the signs of representations r1 and r2 are opposite.

Example 1 Suppose that M2 is the plane R
2 with five discs removed, and our knot

is as shown in Fig. 10, with its central part (distinguished by the rectangular frame)
coinciding with the left-hand picture of Fig. 6. Denote by a, b, c, d and e the classes in
h1(M

2) of boundaries of these removed discs oriented counterclockwise, see Fig. 10, and
by ā, b̄ etc the classes of these boundaries with opposite orientations. There are only three
equivalence classes of planar arrow diagrams arranged by classes a, b, c, d̄ and ē and having
representations in this knot, see Fig. 11. Namely, any of these three diagrams has exactly
one such representation, sending the endpoints of some two arrows into some two of three
crossing points of the boxed central part of our knot. For the first (respectively, the second,
the third) from the left diagram in Fig. 11 it are the crossing points, the splitting at which
is shown in the upper (respectively, the middle, the bottom) left-hand picture of Fig. 8.
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Let Γ be the collection of classes a, b, c, d̄, ē ordered somehow. If at least one of three arrow
diagrams of Fig. 11 participates as a summand in the chain ΦΓ, then in this ordering we
necessarily have ē < a < c and d̄ < c > b. Namely, if additionally we have a < b, then exactly
the left-hand and right-hand diagrams of Fig. 11 participate in ΦΓ, and if a > b then exactly
the middle and the right-hand diagrams do. In both cases the signs of two corresponding
representations are opposite, so all functions ΦΓ defined by such orderings take zero value
on our knot.

Proof of Lemma 2. Let f : S1 →M2×R
1 be a knot, whose diagram is partially shown in

the left-hand part of Fig. 6; let W be a marked arrow diagram participating in the chain ΦΓ,

and r :
◦

W → S1 some representation of W in f having exactly two arrows corresponding to
the crossing points shown in Fig. 6. Depending on these points, the corresponding splitting
of the knot provides one of three pictures of the left-hand part of Fig. 8, and the arrow
diagram W looks like one of three diagrams of Fig. 12, maybe with some additional non-
intersecting arrows inside the area covered by black discs. Namely, two arrows in this diagram
of Fig. 12 should coincide with arrows of W corresponding to crossing points in question,

and the letters A, B and C indicate the arcs of
◦

W not shown in Fig. 6 and connecting the
correspondingly marked endpoints of segments of this figure.

Consider the link in M2 × R
1, obtained from f(S1) by the desingularization (1) at

crossing points corresponding to all arrows of the diagram W via the representation r. By
definition of ΦΓ, this link consists of k+1 components, whose classes in h1(M

2), γ1, . . . , γk+1,
constitute the set Γ. Some three of these components, with some homotopy classes γa, γb, and
γc, intersect our picture of Fig. 8; here the indices a, b, c correspond to the capital letters
labelling the endpoints of intersections of these components with this picture. Since Γ is
an unambiguous ordered set, the numbers a, b, c ∈ {1, 2, . . . , k + 1} are uniquely defined. It
follows from (the lower part of) Fig. 12 that we necessarily have c < a and c < b. Further, our
representation r of W is matched by exactly one other representation of an arrow diagram
participating in the sum ΦΓ, also having two arrows corresponding to crossing points of the
left-hand picture of Fig. 6. Namely, this pair of matched diagrams always contains the right-
hand diagram of Fig. 12, and exactly one of other two diagrams, depending on whether
a < b or a > b. These two matched representations always have opposite signs, so their
contributions to the value ΦΓ(f) annihilate one another. 2

In the case ∇II the following three splittings of the knots shown in Fig. 7 can participate
in the calculation of the values of some chains ΦΓ on these knots: the upper and the lower
splittings in the left-hand part of Fig. 9, and the middle one in the right-hand part of the
same figure. The products of local writhes of corresponding arrows are equal to +1 in all

9
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three cases.

Lemma 3 Suppose that Γ = (γ1, . . . , γk+1) is an unambiguous collection, and f1, f2 are
two generic knots in M2 ×R

1, coinciding respectively with the left- and right-hand pictures
of Fig. 7 in some small domain in M2 × R

1, and with one another outside of this small
domain. Then there is a natural one-to-one correspondence between

1) the set of pairs (ϕ, r) consisting of a summand ϕ of the formal sum ΦΓ and an
equivalence class r of representations of this summand in the knot f1, such that exactly two
arrows of the arrow diagram ϕ correspond to crossing points of the left-hand picture of Fig.
7, and

2) the set of similar pairs (ψ, ρ) where ρ is a representation of ψ in f2, also with exactly
two arrows of ψ corresponding to crossing points of the right-hand picture of Fig. 7.

For any two pairs (ϕ, r) and (ψ, ρ), related via this correspondence, the signs of repre-
sentations r and ρ are opposite.

This lemma can be proved very similarly to the proof of Lemma 2 and terminates the
proof of the fact that the third Reidemeister move of type ∇ also does not change the value
ΦΓ(f).

If we consider the Reidemeister move that is a mirror image of Fig. 6 (respectively,
7) with respect to the blackboard plane, then instead of C dominated by (respectively, A
dominating) both other elements we need only to consider the opposite condition. 2

4 Realization of invariants ΦΓ

In this section we demonstrate two knots in T
2 × R

1 which cannot be separated by any
finite type invariants of degree 1 or 2, but are separated by some invariant ΦΓ of degree 3.

We depict knots in T
2 ×R

1 by diagrams in rectangular domains of R
2. The torus T

2 is
considered as the factor of such a domain by the identification of its opposite margins, and the
knot diagrams may have paired endpoints on these margins. 1-dimensional homology classes
in T

2 will be expressed by pairs of integers (a, b), where the class (1, 0) is the horizontal
generator oriented from the left to the right, and (0, 1) is the vertical generator oriented to
the top of the page.

Theorem 2 Two knots (2) in T
2×R

1 cannot be separated by any degree 1 and 2 invariants,
but are separated by our invariant ΦΓ with Γ = ((1, 0), (1,−1), (0, 1), (1, 0)).

10



(2)

Proof. We orient our knots so that their classes in H1(T
2×R

1) are equal to (3, 0). These
knots are connected in the space of maps S1 → T

2 × R
1 by the path (3–4).

→ → →

(3)

→ → ≡

(4)

This path contains two surgeries, their signs are equal to + and − respectively. These
surgeries represent homotopic singular knots: a generic homotopy connecting them in the
space of singular knots is realized by the path (5–7). Thus our knots (2) are not separated
by degree 1 invariants.

→ → → →

(5)

11



→ ≡ → →

(6)

→ → →

(7)

Let us prove that all degree 2 finite type invariants also do not separate these knots.
Given such an invariant, the difference of its values at the knots (2) is equal to the difference
of values of first order indices of this invariant on two surgery points in the path (3–4). This
difference is equal to the sum of values of the principal part of our invariant at all second
order surgeries in the path (5–7) multiplied by the signs of these surgeries.

There are four such surgeries of order 2 with signs equal to +, −, − and + respectively.
The first and the third (respectively, the second and the fourth) surgeries can be connected
by a smooth path inside the self-intersection locus of the discriminant variety, namely, by
the path (8–10) (respectively, (11–13)) below. Therefore the principal parts of all degree 2
invariants take equal values on these surgeries, in particular all such invariants take equal
values on initial knots (2).

→ → → →

(8)

12



→ ≡ → → →

(9)

→ → → →

(10)

→ → → →

(11)

→ ≡ → → →

(12)

13



→ → → →

(13)
Two paths (8–10) and (11–13) contain in total ten surgeries of third order, only one of which
(the very first one) has a chord diagram with non-intersecting chords. The corresponding
marked planar chord diagram is as follows:

◦ (0, 1)

◦
(1, 0)

◦
(1, 0)

◦ (1,−1)

�
��

Z
ZZ

.

Therefore any of two invariants ΦΓ with Γ = ((1, 0), (0, 1), (1,−1), (1, 0)) or ((1, 0), (1,−1), (0, 1), (1, 0))
takes a non-zero value on our knot, and Theorem 2 is proved.

Remark 3 The degree 2 invariants proposed in [4] were extended in [2] to isotopy invariants
of smooth embedded tori in certain 4-manifolds. We reproduce here the question of the
Referee, whether our generalizations of invariants from [4] also can be extended to new
invariants of smooth embeddings of surfaces into M4.

We thank the Referee for his or her remarks and suggestions. The second author was
partially supported by the science foundation of State University — Higher School of Economics
under the project 09-08-0008.
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dimension 4. C.R. Acad. Sci. Paris, Ser.I, 335 (2002) 811–815

[3] T. Fiedler, A small state sum for knots, Topology, 32:2 (1993), 281–294.

[4] T. Fiedler, Gauss diagram invariants for knots and links, Mathematics and its
Applications, Vol. 552, Kluwer Academic Publishers, 2001.

[5] S.A.Grishanov, V.A.Vassiliev, Two constructions of weight systems for invariants of
knots in non-trivial 3-manifolds, Topology and its Applications, 155(2008), 1757–1765.

[6] S.A. Grishanov, V.R. Meshkov, V.A. Vassiliev, Recognizing textile structures by finite
type knot invariants, J. of Knot Theory and its Ramifications, 18:2(2009), 209–235.

[7] M. Polyak and O. Viro, Gauss diagram formulas for Vassiliev invariants, Internat.
Math. Res. Notes 11, (1994) 445–453.

14


