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ABSTRACT

We construct an infinite series of invariants of Fiedler type (i.e. composed of oriented
arrow diagrams arranged by elements of H1(M3)) for multicomponent links in M

3 =

M
2 × R

1, M
2 orientable with π1(M2) 6= {1}.

Keywords: Link invariant, combinatorial formula

1. Introduction

In [5, 6] we have constructed an infinite series of weight systems (i.e. potential

knot invariants) of all degrees for knots in orientable 3-manifolds M3. By [1, 2]

in the case M3 = M2 × R1 all weight systems can be integrated to finite type

knot invariants of the same degree, so we obtain also a series of such invariants

(up to the choice of integration). These weight systems (and corresponding knot

invariants) of degree d are indexed by collections of d + 1 non-zero elements of the

group H1(M
3). For degrees 1 and 2 these invariants in M2×R1 essentially coincide

with ones introduced by T. Fiedler [3, 4] in the terms of arrow diagrams arranged

by homology classes of M2. In fact (see [7]) the indexation by non-zero 1-homology

classes can be replaced by the indexation by homotopy classes of non-contractible

maps S1 → M3; this gives us a more ample family of weight systems and knot

invariants if π1(M
3) is not commutative.

In [7] we give explicit combinatorial formulas, similar to the Fiedler’s construc-

tion, for all knot invariants from [5, 6] indexed by collections of 1-homotopy classes,

no more than two of which can coincide. In [8] we extend the construction from

[5, 6] to the case of multi-component links in orientable 3-manifolds: for any un-

ordered collection of d + 2 − n elements of H1(M
3) \ {0} we construct a degree

d weight system of n-component links (with ordered components) in M3. Again,

the 1-homology classes in this construction can be almost literally replaced by free
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Figure 1: Natural resolution

1-homotopy classes. In the case M3 = M2 × R1 this also gives us (up to the

integration of weight systems) invariants of such links in M3.

Below, we complete the commutative diagram of papers
[6] → [7]
↓ ↓
[8] → ?

, i.e., in

the case M3 = M2 × R1, M2 orientable, we construct explicit combinatorial for-

mulas for link invariants from [8] defined by any collections of different 1-homology

(and in the case of ≤ 2-component links even 1-homotopy) classes.

Also, we prove an easy general characterization for the class of chord M-diagrams,

essential for the construction of [8], and give new proofs of Theorem 1 and Propo-

sition 5 from [8].

We always assume that the factor M2 of the ambient manifold M2 × R1 is a

connected and oriented smooth surface.

2. Main construction and statement

2.1. H-diagrams, h-diagrams and universal chains

We use notions and notation from [8], in particular the following ones.

Definition 1. Denote by Cn the ordered collection of n oriented circles: Cn ≡

S1
1 ⊔ . . . ⊔ S1

n. An n-component link in M3 is a smooth embedding of the manifold

Cn into M3.

A k-chord diagram over Cn is any graph obtained from Cn by adding k segments

(called chords) connecting some points of Cn, such that all their 2k endpoints in Cn

are pairwise distinct. A smooth map F : Cn → M3 respects some chord diagram if

F (x) = F (y) for the endpoints x, y of any its chord. Obviously, the set F (Cn) is

connected if and only if some chord diagram over Cn respected by F is a connected

graph.

Two k-chord diagrams are equivalent if they can be transformed one into another

by a diffeomorphism of Cn preserving all components and their orientations.

An intersection point F (x) = F (y), x 6= y ∈ Cn, of the curve F (Cn) is transverse

if the derivatives F ′(x) and F ′(y) are linearly independent in TF (x)M
3. Given a

smooth map F : Cn → M3 with k different transverse intersection points and

no other more complicated singular points of F (Cn), the natural resolution of the

subvariety F (Cn) ⊂ M3 is the oriented curve in M3 obtained from F (Cn) by the

surgery shown in Fig. 1 at all intersection points.

For any such map F , the number of connected components of the natural res-
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olution of F (Cn) is determined by the equivalence class of the k-chord diagram

respected by F . Denote by m(G) this number defined by the k-chord diagram G.

Theorem 1 (see [8]). If the k-chord diagram G over Cn is a connected graph,

then m(G) ≤ k − n + 2.

Proof. Any chord diagram G over Cn can be embedded into a compact surface

K(G), obtained from G by gluing some n + m(G) discs according to some maps of

their boundary circles to G, see [9]. Namely, the boundaries of first n of these discs

should be mapped homeomorphically to the components of Cn. The boundary of

any of the remaining m(G) discs starts from any regular point of a component of

Cn, goes along this oriented component of Cn to the nearest endpoint of a chord,

moves along this chord to the other component of Cn, goes along this component

(again respecting its orientation) to the next endpoint of a chord, and so on until

the return to the starting point. It is easy to see that the union of all these added

discs is homeomorphic to a closed surface, which can be oriented in such a way that

the initial orientation of all components of Cn coincides with the boundary orien-

tation of the first n discs bounded by these components. The number of connected

components of K(G) is equal to that of the graph G. The Euler characteristic of

K(G) is equal to n + m(G)− k. If G is connected, then this number cannot exceed

2, and theorem is proved. 2

Definition 2. A k-arrow diagram is a k-chord diagram with some orientation of all

its chords. A connected k-chord (or arrow) diagram over Cn satisfying the equality

m(G) = k − n + 2 is called an M -diagram.

In all our drawings of chord M -diagrams we shall assume that the plane of the

drawings coincides with the sphere K(G) with one point removed; the components

of Cn bounding the discs in K(G) \ G not containing the removed point will be

oriented counterclockwise, and the “exterior” component surrounding the entire

picture will be oriented clockwise.

Let us fix once and forever the sphere S2 with n disjoint ordered discs D1, . . . ,Dn

in it, let D ≡ D1 ⊔ . . . ⊔ Dn.

Proposition 1. 1. A connected k-chord diagram G over Cn is an M -diagram if

and only if the graph G can be embedded into S2 in such a way that the image

of any component S1
i of Cn bounds the disc Di, its orientation induced by this

embedding from S1
i coincides with the boundary orientation induced from that of

Di, and these discs Di do not contain images of chords.

2. All embeddings of a M -diagram to (S2,D), satisfying these conditions, are

isotopic in the class of embeddings sending any S1
i to ∂Di.

3. The equivalence classes of k-chord (respectively, arrow) M -diagrams over

Cn are in a natural one-to-one correspondence with isotopy classes of embedded

non-oriented (respectively, oriented) graphs in S2 \ D with k edges and k − n + 2

vertices, such that all n discs of D are separated in S2 from one another by these

graphs.
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Proof. The first assertion follows from the construction of the surface K(G). The

isotopy uniqueness of the embedding (statement 2) can be proved easily by induc-

tion over the number n of components of Cn. The correspondence from statement

3 is just the duality of embedded graphs: with any M -diagram G canonically em-

bedded into (S2,D) we associate a graph in S2 \ D having exactly one vertex in

any connected component of S2 \ (D∪G) and exactly one edge crossing any chord

of G; if this chord is oriented then also the corresponding edge inherits an obvious

orientation. 2

Definition 3. A marking of an M -diagram G is any labelling of all k − n + 2

connected components of the complement of G in S2 \ D (or, equivalently, of the

vertices of the dual graph) by the numbers 1, . . . , k − n + 2.

Given a marked M -diagram, the natural orientation of its chord separating

two different components of the complement of G in S2 \ D is such one that the

component with the smaller number lies to the left of this chord with respect to

this orientation. If the chord is approached by one and the same component from

both sides, then it necessarily connects two different discs Di,Dj , and its natural

orientation is defined as that from the disc with smaller number to that with the

greater one.

Equivalence of marked M -diagrams is any isotopy in the class of such diagrams

in (S2,D) preserving the numbers of components of their complement in S2 \ D.

The universal (n, k)-chain is the formal sum of marked k-chord M -diagrams in

(Cn,D), taken one from each equivalence class of such diagrams, and supplied with

the natural orientation of all their chords (so that the summands of this chain are

some marked arrow diagrams).

Given an oriented connected surface M2, we denote by h1(M
2) the set of ho-

motopy classes of maps S1 → M2; it naturally coincides with the set of conjugacy

classes of the group π1(M
2).

An H-diagram (respectively, h-diagram) of type (n, k) in M2 is any k-arrow

M -diagram over Cn, with all k − n + 2 components of its complement in S2 \ D

labelled by some elements of the group H1(M
2) (respectively, of the set h1(M

2)).

Given any ordered collection Γ = (γ1, . . . , γk−n+2) of k−n+2 pairwise different

non-zero elements γi ∈ H1(M
2) \ {0} (respectively, of non-contractible elements

γi ∈ h1(M
2) \ {1}), the chain ΦΓ is defined as the formal sum of H-diagrams

(respectively, h-diagrams) of type (n, k), obtained from the universal (n, k)-chain

by replacing any labelling index i ∈ {1, . . . , k − n + 2} by the corresponding class

γi ∈ H1(M
2) (respectively, γi ∈ h1(M

2)).

Example 1. If n = 1, then k − n + 2 = k + 1 and S2 \D is homeomorphic to R1,

so the k-chord M -diagrams over Cn are dual to the planar trees, and the universal

(n, k)-chain is equal (via the duality correspondence from statement 3 of Proposition

1) to the formal sum of all equivalence classes of naturally oriented planar trees with

k+1 vertices labelled by the numbers 1, . . . , k+1. The first three such chains (with

k = 1, 2 and 3) are shown in Figs. 1, 2 and 3 of [7].
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Figure 2: The universal (2,2)-chain
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Figure 3: The universal (2,2)-chain (graph presentation)

For (n, k) = (2, 1) the universal chain consists of the unique arrow in S2 directed

from D1 to D2; the corresponding invariants of 2-component links in M2 (which we

shall define below) are the generalized linking numbers discussed in §2.2 of [8].

The first non-trivial new case is that of (n, k) = (2, 2). In this case the universal

(n, k)-chain is shown in Fig. 2, its dual graph presentation is given in Fig. 3.

2.2. H-diagrams as functions on generic links

This subsection is an almost literal translation of §2.1 of [7] to the case of multi-

component links, see also [10], [4].

We distinguish the source manifold C ′

n of the links F : C ′

n → M2 × R1 from

the basis Cn of chord and arrow diagrams, although both of them are equal to the

disjoint union of n ordered circles.

Let M2 be a connected oriented 2-dimensional manifold. Let F : C ′

n → M2×R1

be a link in M2×R1, generic with respect to the standard projection p : M2×R1 →

M2, i.e. the composition p◦F is an immersion with transverse crossing points only.

In our pictures, we identify (a piece of) the oriented factor M2 with the “blackboard

plane”, oriented by -
62

1 , and the factor R1 with the orthogonal line oriented “to

us”. Recall that the local writhe of a crossing point looking like
6-

(respectively,

-6
) is equal to −1 (respectively, +1).

Let G be an H- or h-diagram of type (n, k), i.e. a k-arrow M -diagram over Cn,

with k − n + 2 domains of its complement in K(G) \ D labelled by elements γi ∈

H1(M
2) \ {0} (respectively, by elements γi ∈ h1(M

2) \ {1}), i = 1, 2, . . . , k − n + 2.

Definition 4 (cf. [3], [10], [4]). A representation of the diagram G in the generic

link F : C ′

n → M2×R1 is any homeomorphism r : Cn → C ′

n, preserving the numbers

and orientations of all components, such that
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a) for any chord of G, connecting some points x, y ∈ Cn and oriented from y to

x, the images of x and y under the map p◦F ◦ r : Cn → M2 coincide, and moreover

the point F ◦ r(x) ∈ M2 × R1 lies above F ◦ r(y) in the sense of the standard

orientation of the factor R1; in particular for any component of K(G)\(G∪D), the

class in H1(M
2) (and even in h1(M

2)) of the boundary of this component under

the map p ◦ F ◦ r is well-defined;

b) for any component of K(G) \ (G ∪ D), the latter class in H1(M
2) (or in

h1(M
2)) is equal to the element γi marking this component.

The sign of such a representation is equal to the product of local writhes of our

link over all k crossing points of p◦F (C ′

n) corresponding to the chords of G via this

representation.

Two representations of G in one and the same link F are equivalent if they

coincide on all endpoints of chords. Obviously, equivalent representations have

equal signs, so the sign of any equivalence class of representations of G in F is

well-defined.

The value G(F ) of the H- or h-diagram G on the generic link F is equal to the

sum of signs over all equivalence classes of representations of G in F . The value

on F of a formal linear combination of H- or h-diagrams (like ΦΓ) is defined by

linearity.

Given a representation of the arrow M -diagram G in a link, the homology and

homotopy classes of boundaries of components of K(G) can be realized as follows:

we replace in the diagram of the link all crossing points corresponding to arrows of

this diagram by the rule

�
�

��

@@
@@I ⇒

@
@

@I

��
��� } >

or⇒
} >

(2.1)

and consider the homology and homotopy classes of oriented curves into which these

surgeries split our link.

Theorem 2. For any ordered collection Γ = {γ1, . . . , γk−n+2} of k−n+2 pairwise

different elements of H1(M
2) \ {0}, the value of the corresponding chain ΦΓ is an

invariant of links in M2 × R1. In the case of ≤ 2-component links, the similar

statement holds, in which instead of elements γi of the set H1(M
2) \ {0} we can

take arbitrary different elements of the set h1(M
2) \ {1} of homotopy classes of

non-contractible continuous maps S1 → M2.

If n = 1 and k = 2, then the invariants ΦΓ defined in this theorem coincide with

some invariants IK
3 from Theorem 2.10 of [4], for n = k = 1 they coincide with

invariants from [3]; for n = 1 and arbitrary natural k they were introduced in [7].

3. Proof of Theorem 2

We need to prove that the value ΦΓ(F ) of the sum ΦΓ is invariant under all

Reidemeister moves of the generic link F , cf. [3], [7].
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Figure 4: Arrow diagram for the second Reidemeister move with coinciding direc-
tions

First move. The crossing point arising/perishing at this move cannot con-

tribute to the calculation of any function ΦΓ because the smoothing (2.1) at such

a point provides a contractible loop in M2.

Second move. Let us consider separately the contributions to the sums ΦΓ(F )

provided by the representations in which only one (I) or both (II) crossing points

arising/perishing at this move are counted. In the case (I) the proof is exactly the

same as in [7], see also [3]: to any representation of this type of an H- or h-diagram,

sending an arrow to some crossing point in the standard picture of this move, there

corresponds another representation of exactly the same diagram, sending the same

arrow in the other crossing point and having the opposite sign.

In the case (II), if the projections to M2 of branches of the link at the instant of

surgery are tangent with opposite directions, then the simultaneous splitting (2.1)

at both these crossing points provides a contractible component of the split link.

Therefore the summands of the chain ΦΓ cannot have such representations.

In the remaining case (II) with coinciding directions, we need to consider two

subcases: two local branches of the link participating in the move can belong to

one and the same or to two different components of Cn. In the first subcase, the

pre-images of these two crossing points are the alternating pairs of points in this

component of Cn, therefore these arrows cannot participate simultaneously in an

M -diagram, since otherwise two corresponding arrows of the H- or h-diagram G

would intersect in K(G).

In the second subcase, the represented diagram G ⊂ K(G) can have only the

topological form shown in Fig. 4 or the same with both arrows reversed; here the

black circles can cover other arrows or/and components of G. However, each of

these two arrows separates the same two different domains of K(G) \ D, hence by

the definition of the natural orientation exactly one of them (depending on the order

of these domains) should be oriented in the opposite direction.

Third move. As in [7], we need to consider six different cases (any of which has

a further subdivision into eight subcases related with our new situation). Namely,

there are (up to reflections) exactly two different arrangements of orientations of

participating branches of a link: ∆ and ∇ shown respectively in Figs. 5 and 6.

Fortunately, the second of them obviously is a composition of the first one and two
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second Reidemeister moves, therefore it is enough to consider the moves of type

∆ only. Also, we need to consider and compare the representations of diagrams

G in which exactly one, two or three different chords correspond to the crossing

points shown in our picture. This number of chords is indicated by the lower index

I, II or III under the notation ∆. Further, we distinguish the cases when three

local branches of the link, participating in the picture of the move, belong 1) to one

and the same, 2) to exactly two, or 3) to three different global components of C ′

n.

These numbers will be indicated by the upper indices over the notation ∆. Finally,

the cases ∆(2) should be subdivided into six subcases depending on the choice of

the local branch that belongs to a component of C ′

n other than that for other two

branches, and also on whether the number of this distinguished component is smaller

(m) or bigger (p) than that of the other component. Depending on the position of

this selected branch in Fig. 5, the corresponding signs −, \ and / will occur in the

notation of the case; so, a typical case to be considered is denoted like ∆
(2)
II (−; p)

or ∆
(2)
III(\;m).

All cases ∆
(·)
I can be considered in exactly the same way as in [7]: in these cases

the move does not affect the set of corresponding representations.

All eight cases ∆
(1)
III , ∆

(2)
III(· ; ·), and ∆

(3)
III are void, because the simultane-

ous splitting (2.1) at all three crossing points of either part of Fig. 5 provides a

contractible component of the curve.

So, it remains to consider only the (different versions of) the case ∆II .

3.1. The case ∆
(1)
II

Consider a link F : C ′

n → M2 × R1, some component of which experiences

the move shown in Fig. 5. The six endpoints of the left- or right-hand part of
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this figure have a natural pairing defined by the continuation of this component

through the exterior of this picture. There is essentially unique possibility for this

pairing: (a − b), (c − d) and (e − f) (the other possibility can be reduced to this

one by the permutation of parts of our figure, reversion of the orientation of the

factor R1 and a rotation of the plane). Suppose that the H- or h-diagram G is a

summand of the chain ΦΓ, and we have a representation of it in our link F , sending

one of components of Cn to the knot shown in Fig. 5(L) or 5(R), such that exactly

two arrows go into crossing points of this picture. If the pairing of endpoints of

this picture is as above, then such a representation can exist only for Fig. 5(L):

indeed, any two chords corresponding to the crossing points of Fig. 5(R) intersect

one another in the disc bounded by the corresponding component of Cn.

Suppose first that the arrows of our representation correspond to two upper

crossing points of Fig. 5(L). Then our arrow diagram G (embedded into the cor-

responding sphere K(G)) looks as is shown in Fig. 7(L); here the black circles

can cover additional chords and/or components of Cn. Consider the resolution

(2.1) of our link at all crossing points corresponding to the arrows of G by this

representation. Denote by A (respectively, B, respectively, C) the 1-homology (or

1-homotopy) class of the component of this resolved link containing the points a

and b (respectively, c and d, respectively, e and f). Then in our ordering of ho-

mology or homotopy classes (see Definition 3) we have A < B < C: otherwise the

orientation of our H-diagram is not natural. The H-diagram, obtained from G by

the flip replacing two arrows explicitly indicated in Fig. 7(L) by the arrows shown

in Fig. 7(R), also is a summand of ΦΓ having a representation in our link: its two

arrows correspond to the upper right-hand and the lower crossing points in Fig.

5(L). The sign of this representation is opposite to that of the initial representation

of G, and the collection of 1-homology (homotopy) classes associated with this H-

(h-)diagram is the same as for G; so the contributions of these two representations

to the value ΦΓ(F ) annihilate.

Almost the same reasonings hold if we suppose that the arrows of a given repre-

sentation of G correspond to the lower and right-hand crossing points in Fig. 5(L).

In this case we get Fig. 7(M) and ordering B < A < C; again, the contribution of
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this representation is annihilated by that of a representation of the diagram shown

in Fig. 7(R).

Finally, if we start from the representation reflected in Fig. 7(R) (which assumes

the order relations A < C > B), then its contribution is killed as previously by

exactly one of representations considered above (see Figs. 7(L), 7(M)), depending

on whether A < B or A > B.

3.2. The case ∆
(2)
II (\ ;m)

In this case the pairing of endpoints of either part of Fig. 5 is as follows: the

pairs of points (c − f), (a − b), and (d − e) are connected somehow through the

rest of M2 ×R1. Suppose that there is a representation of the H-diagram G in the

link shown in Fig. 5(L), sending a segment of one component (S1
i ) of Cn to the

\-like local branch and two segments of some other component (S1
j ) to the other

two local branches, and such that exactly two arrows of the diagram G go to the

crossing points of this part. Depending on the choice of these two points (whose

position is indicated by pluses in the bottom of Fig. 8) this diagram G (as it occurs

in the sphere K(G)) looks as is shown in the corresponding picture of the upper

part of the same Fig. 8. Again, here black domains can cover other chords and/or

components of Cn; A is the homology or homotopy class of the component of the

split link containing points a and b. In the present and two next subsections we

consider the case (m), i.e. we assume that i < j.

There are two main cases. In the first one, the bigger black spot in our pic-

ture indeed should be necessarily drawn as a continuous one, connecting our two

components of Cn: this means that there is a chain of arrows and (maybe) other

components of Cn in G connecting some points of S1
i and S1

j , besides the arrows

explicitly drawn in our picture. In this case we can perform the partial splitting

(2.1) of our link F at the crossing points corresponding to the arrows of this chain

only, which turns all the components of Cn participating in this chain (including S1
i

and S1
j ) into a single component, and we fall into the conditions of Subsection 3.1.

In particular, the diagram G can be matched by a different diagram, obtained from

it by a single flip, together with a representation in the link F , having the same

collection Γ of 1-homology (homotopy) classes and the opposite sign.
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Figure 9: Case ∆II(\ ;m), the left-hand part (reduced)'
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Figure 10: Case ∆II(\ ;m), the right-hand part

In the second case such a chain does not exist, and the corresponding part of

Fig. 8 can be redrawn in the refined way shown in one of three parts of Fig. 9.

The right-hand part of the latter figure cannot correspond to an M -diagram by

the orientation rule, see Definition 3. The remaining two diagrams (whose parts

covered by black circles are assumed to be the same up to an isotopy preserving the

numbers of all hidden components of Cn) match each other: to any representation

of one of them in F there corresponds a representation of the other, with the same

set of represented crossing points outside of Fig. 5(L), and the unique change of

these crossing points inside this figure. The signs of these matched representations

are always opposite, and the sets Γ of 1-homology or 1-homotopy classes are the

same, so their contributions to the value ΦΓ(F ) annihilate.

The possible representations sending two arrows to crossing points shown in Fig.

5(R) can be considered in exactly the same way, see Figs. 10, 11; here B is the

homology or homotopy class of the component of the split link containing the points

d and e.

3.3. The case ∆
(2)
II (/;m)

In this case the pairing of endpoints of Fig. 5 is as follows: (a− d), (b− c), (e−

f). Possible arrow M -diagrams, having representations in Fig. 5(L) (respectively,

5(R)) with exactly two arrows sent to its crossing points, are shown in Fig. 12

(respectively, 13). In any of these pictures the letter B (respectively, A) denotes

the 1-homology or 1-homotopy class of the component of our link, split (see 2.1))
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Figure 11: Case ∆II(\ ;m), the right-hand part (reduced)'
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Figure 12: Case ∆II(/;m), the left-hand part

at crossing points indicated by the arrows of the corresponding representation and

containing the points e and f (respectively, b and c). As previously, it is enough

to consider only the case when the long black bars can be broken. Then the right-

hand diagrams in both Figs. 12, 13 contain arrows prohibited by the orientation

rule or Definition 3 and in fact are impossible. The remaining two diagrams of Fig.

12 (respectively, 13) (with isotopic parts covered by black domains) have opposite

signs and equal sets Γ of 1-homotopy (and hence also 1-homology) classes; moreover,

depending on the orders of these classes in the list Γ they either both are or both

are not naturally oriented. Therefore their contributions to ΦΓ(F ) are opposite.

3.4. The case ∆
(2)
II (−;m)

In this case the pairing of endpoints of Fig. 5 is as follows: (a − f), (b − e),

'

&

$

%
���

'

&

$

%
���

'

&

$

%
���

◦
+ +

6

-
A

x
x
x

+
+ ◦

6

6

Ax xx

+
◦ +

?

-
A

x
x
x

?6 ?
?

?
?S1

i S1
i S1

i

S1
j S1

j S1
j

Figure 13: Case ∆II(/;m), the right-hand part
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Figure 15: Case ∆II(−;m), the right-hand part

(c − d). The diagrams similar to the ones considered above are shown in Figs. 14

and 15. Again, we consider only the case of broken black bars in these pictures. In

this assumption, all six diagrams of these figures are prohibited by the orientation

rule of Definition 3.

3.5. The cases ∆
(3)
II

Let F1 and F2 be two links coinciding outside of some domain in M2×R1, and in

this domain situated as shown in Figs. 5(L) and 5(R) respectively. Suppose that all

three local branches of either of these links belong to different global components

of this link, namely, the component of Cn going into the horizontal segment of

Fig. 5 is called S1
k, the component situated as / is called S1

j , and the \ – like

component is called S1
i , k 6= j 6= i 6= k. Let G be an H-diagram participating as a

summand in the chain ΦΓ and represented in the link F1 (respectively, F2) in such

a way that exactly two arrows of G go to crossing points of this representation.

Then the diagram G is isotopic to that shown in one of three pictures of Fig. 16

(respectively, 17); the choice of one of three pictures in this figure depends on the

choice of two crossing points of Fig. 5(L) (respectively, 5(R)) represented by the

arrows of this diagram: their positions are indicated by pluses in the bottom part

of our figures 16, 17. The black spot in this picture covers all the pieces of these

three components of Cn whose images in the link F1(C
′

n) (respectively, F2(C
′

n))

lie outside the area shown in Fig. 5; also they can cover additional arrows and/or

components of Cn in G. Again, we consider two main cases. In the first one, this
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Figure 16: Case ∆
(3)
II , the left-hand part'

&

$

%
��� ���

'

&

$

%
��� ���

'

&

$

%
��� ���

◦
+ +

u
u u

6 6

+
+◦

u
u u�

6

+
◦+

u
u u

6
�

S1
k S1

k S1
k

S1
j S1

j S1
jS1

i S1
i S1

i

Figure 17: Case ∆
(3)
II , the right-hand part

black spot for our picture cannot be broken into three separated pieces, each of

which touches only one of our circles S1
i , S1

j , S1
k. This means that there exists a

chain of arrows and (maybe) other components of G connecting some two of these

three circles, besides the arrows explicitly drawn in our picture. In this case the

further consideration can be reduced to the above-considered case ∆
(2)
II in the same

way in which in subsections 3.2–3.4 we have reduced that case ∆
(2)
II to ∆

(1)
II . So

it remains to consider the second case when our picture can be reduced to one of

pictures shown in Fig. 18 or 19.

Let us perform all the splittings (2.1) of our link F1(C
′

n) or F2(C
′

n) corresponding

to the arrows of the diagram G except for two ones shown in our picture; let x, y and

z be the components of the resulting split link containing respectively some points

of images of circles S1
i , S1

j , S1
k in our picture and oriented in accordance with the

'
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Figure 18: Case ∆
(3)
II , the left-hand part (reduced)
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Figure 19: Case ∆
(3)
II , the right-hand part (reduced)

orientation of the original link. Let x′, y′ and z′ be the classes of these components in

the group π1(M
2) with the basepoint somewhere in the area shown in Fig. 5. Then

the homotopy class of the single component obtained by the concluding splitting at

two arrows shown in our picture is equal to x′z′y′ for all diagrams of Fig. 18 and

to x′y′z′ for all diagrams of Fig. 19. In particular, the homology classes of these

last components are the same in all six cases.

The further possibilities depend on the order of components S1
i , S1

j , S1
k. If i > k

then such representations of summands of ΦΓ in our links F1, F2 simply do not

exist. Indeed, our two arrows do not separate any components of S2 \ G, hence in

any summannd of ΦΓ they should be oriented from components of Cn with smaller

numbers to these with greater ones.

If j < i < k then by the same reason only the left-hand pictures of Figs. 18 and

19 can be realized by naturally oriented H-diagrams having such a representation.

Let us call two such H-diagrams the siblings if their parts covered by spots are

pairwise isotopic in K(G), and these isotopies preserve the numbers of all touched

components of Cn. There is an obvious one-to-one correspondence between the

representations of any left-hand diagram of Fig. 18 in F1 and representations of its

sibling in the left-hand diagram of Fig. 19 in F2; these representations have one

and the same set of crossing points outside Fig. 5, into which the arrows of these

diagrams are sent. In particular, almost all curves into which the splittings (2.1)

corresponding to these arrows break the links F1(C
′

n), F2(C
′

n) are the same (and in

particular have the same 1-homotopy and 1-homology classes); the unique possible

exception is provided by the curves obtained from the entire non-spotted parts of

our diagrams, because one of them (corresponding to the left-hand part of Fig. 18)

has the homotopy class x′z′y′, and the other one the class x′y′z′. Nevertheless,

the homology classes of these two curves also do coincide, and the signs of these

representations coincide too, so they make the same contributions to the values

ΦΓ(F1) and ΦΓ(F2) if Γ is an ordered collection of classes of H1(M
2). However,

if the elements x′z′y′ and x′y′z′ are not conjugate in the group π1(M
2) then we

cannot replace in the construction of our invariants the collections of 1-homology

classes by collections of 1-homotopy classes. Of course, this obstruction is void in

the case of ≤ 2-component links, where the entire case ∆
(3)
III cannot happen.
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If i < k < j then only the middle pictures in Figs. 18, 19 can be realized; they

can be compared in the same way as in the previous paragraph.

Finally, if i < j < k then all six pictures of these two figures are allowed;

with an representation of any of them the representations of all its five siblings

are associated such that all collections of homology classes of curves, into which

their arrows split these links, are the same. The signs of all four representations

corresponding to the left-hand and middle parts of Figs. 18, 19 coincide with one

another and are opposite to these of the right-hand ones; so again their sums give

equal contributions to the values of ΦΓ(F1) and ΦΓ(F2). 2

Remark 1. Although for the case of ≥ 3 components we do not have combinatorial

formulas, related with collections of the 1-homotopy (and not just 1-homology)

classes, the construction [8] of weight systems associated with collections of (not

necessarily different) homology classes can be generalized to the similar construction

based on collections of 1-homotopy classes in the case of arbitrary n. The unique

place in [8] that needs an additional care for this generalization is the proof of the

4T-relation in the situation of Fig. 12 of [8]. If we replace homology classes by

homotopy ones, then this relation in this situation is no more the equality of zero

terms (as in the proof of Theorem 2 of [8]), but is the equality of differences, both

whose minuends and subtrahends are respectively the same.

Problem. In the special case of one-component links, considered in [7], the

condition that all elements of the collection Γ = (γ1, . . . , γk+1) should be different,

was slightly reduced: some two of these classes can coincide. Is it possible to reduce

the similar restriction also in the case of multi-component links?
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