
RESOLUTIONS OF DISCRIMINANTS AND TOPOLOGY OF
THEIR COMPLEMENTS

VICTOR VASSILIEV

Abstract. We study topological invariants of spaces of nonsingular geometrical
objects (such as knots, operators, functions, varieties) defined by the linking num-
bers with appropriate cycles in the complementary discriminant sets of degenerate
objects. We describe the main construction of such classes (based on the conical
resolutions of discriminants) and list the results for a number of examples.

The discriminant subsets of spaces of geometric objects are the sets of all objects
with singularities of some chosen type. The important examples are: spaces of poly-
nomials with multiple roots, resultant sets of polynomial systems having common
roots, spaces of functions with degenerate singular points, of non-smooth algebraic
varieties, of linear operators with zero or multiple eigenvalues, of smooth maps
S1 → Mn (n ≥ 3) having singular or self-intersection points, of non-generic plane
curves, and many others.

The discriminants are usually singular varieties, whose stratifications correspond
to the classification of degenerations of the corresponding objects. E.g., the discrim-
inant subset in the space of polynomials x3 + ax + b is the semicubical parabola
(a/3)3 + (b/2)2 = 0: its regular points correspond to polynomials with a root of
multiplicity exactly 2, and the vertex to the polynomial x3. The discriminant in the
space of polynomials x4+ax2+bx+c is the swallowtail, i.e. the surface shown in the
right-hand part of Fig. 1: its self-intersection curve consists of polynomials having
two double roots, and the semicubical edges correspond to the polynomials with one
triple root; the most singular point is the polynomial x4 with a root of multiplicity
4. Similar stratifications hold for polynomials of all higher degrees: their strata are
indexed by the multiplicities and orders in R1 of all corresponding multiple roots.

Usually one is interested in the space of non-singular objects which is the comple-
ment of the discriminant Σ, e.g. in the space of polynomials without multiple roots,
of smooth varieties, of non-degenerate operators, or of knots, i.e. maps S1 → R3

having no self-intersection or singular points.
If the total space F of geometric objects is an N -dimensional vector space then

the homology groups of these complementary spaces are related by the Alexander
duality formula

(1) H i(F \ Σ) ' H̄N−i−1(Σ),

where H̄∗ denotes the Borel-Moore homology group, i.e. the homology group of
the one-point compactification relative to the added point. It was Arnold [3] who
first used this reduction in the case of the space of complex polynomials with(out)
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Figure 1. A swallowtail and its resolution

multiple roots, see also his works [4], [5], [7], [10] where this reduction is applied for
some other discriminant spaces. This reduction is always very useful, because the
space F \ Σ is an open manifold without any clear geometrical structure; on the
other hand a lot of topological properties of the singular space Σ can be expressed
in terms of its stratification.

The method of computing the groups H̄∗(Σ) invented in [57] is based on the
notion of the simplicial resolution of the discriminant variety. One of its advantages
consists in the fact that all its ingredients behave properly under stabilizations of
F (e.g. if we consider the sequence of spaces of polynomials of increasing degree, or
of operators of increasing order), and therefore allows us to calculate the left-hand
groups in (1) even for infinite-dimensional spaces F , when the right-hand part of
(1) has, formally speaking, no sense.

Some first results of this method are described in [64], [55], [56]. Below we describe
a more general version of it, based on the notions of topological order complexes
and conical resolutions, and extending similar calculations to many new situations,
especially related to non-normal discriminants. For a more extended description of
this construction, see [73].

1. Order complexes of discrete posets and simplicial resolutions of
subspace arrangements

In this section we demonstrate the method of simplicial resolutions in a simple
‘discrete’ case: that of plane arrangements, cf. [24], [28], [62], [77]. The ‘continuous’
version of the method will be demonstrated in the next section.

Definition. Let (A,≥) be a discrete poset (=partially ordered set). The cor-
responding order complex ∆(A) is the simplicial complex whose vertices are the
elements of A, and whose simplices span all strictly monotone finite sequences
{a1 < . . . < am}, ai ∈ A.

Consider any affine plane arrangement L, i.e. a finite collection of affine subspaces
L1, . . . , Lk of arbitrary dimensions in RN . Set L = ∪Li, and, for any set of indices
I ⊂ {1, . . . , k}, LI ≡ ∩i∈ILi. Then all possible nonempty planes LI form a partially
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Figure 2. Resolution of a cross

ordered set (by inclusion). Denote by ∆(L) the corresponding order complex. The
simplicial resolution of the variety L can be constructed as a subset of the Cartesian
product ∆(L)× RN .

For any plane LI the corresponding order subcomplex ∆(LI) ⊂ ∆(L) is defined
as the union of the simplices all of whose vertices are subordinate to {LI}, i.e.
correspond to planes LJ containing LI . This is a cone with vertex {LI}. Denote by
∂∆(LI) its link, i.e. the union of all simplices in ∆(LI) not containing the vertex
{LI}.

The resolution space L′ ⊂ ∆(L)× RN is defined as the union of all spaces of the
form ∆(LI) × LI over all geometrically distinct planes LI . The obvious projection
∆(L)×RN → RN induces a map π : L′ → L. This map is proper, and all its fibers
are contractible finite complexes of the form ∆(LI). It follows easily that this map is
a homotopy equivalence, and its extension to the map of one-point compactifications,
π̄ : L′ → L̄, is also a homotopy equivalence.

Example. Let L be the union of two intersecting lines a and b in R2, see the mid-
dle part of Fig. 2. The corresponding order complex ∆(L) consists of two segments
(see the right-hand part of Fig. 2) joining the vertices (a) and (b) (corresponding
to these lines) to the vertex (ab) (corresponding to the point of intersection). The
resolution space L′ consists of three complexes: the line (a)×a, the line (b)× b, and
the complex ∆(L)× (a ∩ b), see the left part of the picture.

In the general case, the resolution space L′ has a natural increasing filtration
F1 ⊂ F2 ⊂ · · · ⊂ FN−1 = L′: the term Fm is the union of the spaces ∆(LI)×LI over
all planes LI of codimension ≤ m in RN . The difference Fm \ Fm−1 is the disjoint
union of the spaces (∆(LI) \ ∂∆(LI))× LI over all planes LI of dimension exactly
N − m. Also we get a filtration F̄0 ⊂ F̄1 ⊂ · · · ⊂ F̄N−1 = L̄′ of the one-point
compactification L̄′ of the space L′: the term F̄0 is the added pont, and each space
F̄i, i > 0, is the closure of the corresponding subspace Fi ⊂ L′.

The results of [77] imply in particular that this filtration is homotopically split:
there is a homotopy equivalence

(2) L̄′ ∼ F̄1 ∨ (F̄2/F̄1) ∨ . . . ∨ (F̄N−1/F̄N−2),

where ∨ denotes the wedge (∼ bouquet). An equivalent result was obtained simul-
taneously in [62].

This formula implies the Goresky–MacPherson formula for the cohomology of the
complementary space RN \ L (see [28]), and also the fact that the stable homotopy
type of this space is determined by the dimensions of the planes LI .
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2. Conical resolutions of determinant sets

Let K be any of the fields R, C or H. The determinant variety Det(Kn) ⊂ End(Kn)
consists of all degenerate operators Kn → Kn.

Its tautological resolution is defined by elimination of quantifiers. Namely, an
operator A belongs to Det(Kn) if ∃ a point x ∈ KPn−1 such that {x} ⊂ ker A. Define
the resolution space det1(Kn) as the space of all pairs (x, A) ∈ KPn−1 × End(Kn)
such that {x} ∈ ker A. This space admits the (tautological) structure of a (n2− n)-
dimensional K-vector bundle over KPn−1, whose fiber L(x) consists of all A such that
x ∈ ker A. The obvious projection π : det1(Kn) → Det(Kn) is regular over operators
with 1-dimensional kernels, but the pre-image of an operator with dim ker = l is
isomorphic to KPl−1.

The situation is very similar to the one in the previous subsection: the variety
Det(K, n) is the union of planes L(x) in the same way as the space L was the union of
planes Li. Keeping the analogy, we construct the order complex of all intersections
of these spaces L(x). However we have two important new difficulties: the family of
planes L(x) is not discrete, and moreover the set of such planes passing through one
and the same point of Det(Kn) can be continuous. Indeed, the possible intersections
of several planes L(xj) ⊂ End(Kn) are just the planes of the form L(X) where X
is a subspace of a certain dimension in Kn (i.e. a point of a certain Grassmannian
manifold Gi(Kn), i ∈ [1, n]), and L(X) consists of all operators whose kernels contain
X.

Thus the set of parameters indexing the planes in our poset is the disjoint union
of all Grassmann manifolds G1(Kn), . . . , Gn−1(Kn), Gn(Kn). The continuous or-
der complex of all these Grassmannians is defined as follows. Consider the join
G1(Kn) ∗ . . . ∗ Gn(Kn), i.e., roughly speaking, the union of all simplices whose ver-
tices correspond to points of different Grassmannians. Such a simplex is coherent
if the planes corresponding to its vertices form a flag. The desired order complex
Θ(Kn) is the union of all coherent simplices, with topology induced from that of the
join. This is a cone with vertex {Kn} ∈ Gn(Kn). Its link ∂Θ(Kn) is the union of the
coherent simplices not containing this vertex {Kn}.

This link ∂Θ(Kn) is homeomorphic to the sphere SM , M = 1
2
n(n− 1)(dimR K) +

n − 2. (Probably this fact is assumed in the remark 1.4 of [20], see also [61], [56].)
Hence Θ(Kn) is homeomorphic to a ball.

The conical resolution of Det(Kn) is constructed as a subset of the direct product
Θ(Kn)×Det(Kn). For example, let K = R, n = 2. The space End(R2) of all oper-
ators R2 → R2 is 4-dimensional, and Det(R2) is a 3-dimensional conical subvariety
in it. There is a single point in Det(R2), over which the tautological resolution is
not a homeomorphism: the zero operator. Its preimage is the line RP1. In order to
get from this resolution a space homotopy equivalent to Det(R2), we need to insert
a disc whose boundary coincides with this preimage. It is useful to take this disc as
the space Θ(R2).

We proceed in a similar way for any n and K. To any plane X ⊂ Kn there
corresponds a subspace Θ(X) ⊂ Θ(Kn), namely, the union of all coherent simplices
whose vertices correspond to planes lying in X. This is a cone with vertex {X}, and
is homeomorphic to a closed ball. Define the conical resolution δ(Kn) ⊂ Θ(Kn) ×
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Det(Kn) as the union of the products Θ(X)×L(X) over all planes X of dimensions
1, . . . , n. It is easy to see that the obvious projection δ(Kn) → Det(Kn) induces
a homotopy equivalence of one-point compactifications of these spaces (indeed, this
projection is proper and semialgebraic, and all its fibers are contractible cones of
the form Θ(X)). On the other hand, the space δ(Kn) has a nice filtration: its term
Fi is the union of products Θ(X) × L(X) over planes X of dimensions ≤ i. The
term Fi \ Fi−1 of this filtration is the total space of a fibre bundle over Gi(Kn). Its
fiber over a point {X} is the space (Θ(X) \ ∂Θ(X))× L(X), and is homeomorphic
to an Euclidean space. Thus the Borel–Moore homology group of this term can be
reduced to that of the base. The spectral sequence, generated by this filtration and
converging to the Borel–Moore homology group of Det(Kn) (or, equivalently, to the
cohomology group of the complementary space GL(Kn)), degenerates at the first
term (i.e. Ep,q

1 ≡ Ep,q
∞ ) and gives, in particular, the homological Miller splitting

(3) Hm(GL(Cn)) =
n⊕

k=0

Hm−k2(Gk(Cn))

and similar splittings over R and H.

3. Some more examples and difficulties

All the other discriminant spaces can be resolved in a similar way. However, in
some examples we meet two further difficulties: 1) the families of spaces LI forming
our posets may not be closed, and 2) the function space can be infinite-dimensional,
so that the Alexander duality (1) formally does not work in it. We discuss these
difficulties in the next two subsections and show in the easiest examples how to
overcome them.

3.1. All the families of planes should be closed. Following [3], [7], consider the
space Fd of polynomials xd+a1x

d−1+ . . .+ad over K = R or C, and the discriminant
space Σk consisting of polynomials having at least one root of multiplicity ≥ k. It
can be swept out by a family of planes L(x), x ∈ K1, of codimension k in Fd: any
such plane consists of polynomials with a k-fold root at x. Nonempty intersections
of such planes are parametrized by the points of configuration spaces B(K1, i), i.e.
by unordered collections X = (x1, . . . , xi) of i distinct points in K1, i = 1, . . . , [d/k].
Unfortunately, if i > 1 then the set of all such planes L(X) is not closed in the
manifold of all planes of codimension ik in Fd. For instance, if all the i points of
a configuration X (depending on a parameter) tend smoothly to one and the same
point x ∈ K1, then the corresponding planes L(X) tend to some limit position,
which is not of the form L(X ′) for any X ′ ∈ B(K1, i) (but lies in the plane L(x);
this limit position depends on the relative velocities with which our points tend to
x). Therefore, if we formally apply the construction of §§1, 2 to the poset formed by
spaces B(K1, i), then we get a non-closed resolution space, whose projection onto
Σk is not proper and does not preserve its local homotopy type. The space B(K1, i)
of such planes needs to be completed. In our 1-dimensional case such a completion
B(K1, i) is obvious: it is the space Si(K1) of all collections of i not necessarily
distinct points (or, equivalently, the space of all ideals of codimension i in K[t]).
In more general cases, when we resolve discriminants in C∞(Mn, R), we can take
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any reasonable completion of the configuration space, e.g. just its closure in the
space of all affine planes of codimension k in C∞(Mn, R) with respect to the natural
Grassmannian topology.

The disjoint union of these closures forms a poset (by the inclusions of correspond-
ing ideals), and we can construct its continuous order complex and the resolution of
the discriminant exactly as previously; for subtleties see [55], [56], [73], [68].

This situation is shown in the left part of Fig. 1. The right-hand segment in it sym-
bolizes the space B(R1, 2). Its interior points are regular configurations (x, y), x 6= y;
they are connected by two coherent segments with the points {x} and {y} of the
space B(R1, 1) ∼ R1 shown by the parabola on the left. The endpoint of the segment
corresponds to a degenerate configuration (x, x) and is joined with only one point
{x} ∈ B(R1, 1).

3.1.1. Geometrization. This construction can be slightly simplified: all the ‘nonge-
ometrical’ coherent simplices arising in the construction of the resolution (i.e. the
simplices containing ‘nongeometrical’ vertices corresponding to the added boundary
points of configuration spaces) can be contracted onto their maximal ‘geometrical’
faces: this contraction does not change the homotopy type of the one-point com-
pactification of the resolution space. For instance, in Fig. 1 we can contract the
segment [(x, x), {x}] into a point. (For a direct construction of such a ‘geometrical’
resolution in many cases see [55], [56].) The quotient space obtained is in obvious
set-theoretical bijection with the subset of the resolution space consisting of coher-
ent simplices all whose vertices are ‘geometric’, i.e. belong to spaces B(R1, i) and
not to their boundaries. However as topological spaces they are different.

In our case of the discriminant Σk ⊂ Fd the spectral sequence again degenerates
at the first term, E1 ≡ E∞ (see [55], [58]). Moreover, in this case we also have
homotopy splittings of discriminants similar to (2). This is especially obvious if
K = R: indeed, in this case any term Fi \ Fi−1, i ≤ [d/k], is fibered over the trivial
space B(R1, i) ∼ Ri with fiber equal to the product of the affine space of dimension
d − ik and an open (i − 1)-dimensional simplex. So these terms are open cells of
decreasing dimensions, and the summands of the wedge will be the spheres of the
same dimensions.

3.2. Stabilization and resolution of infinite dimensional discriminants. The
power of the above-described construction of resolutions is shown by its perfect
functoriality under embeddings of functional spaces and their discriminants. For
instance, let us consider the space Fd from the previous section, and a polynomial
f ∈ Σk ⊂ Fd having exactly one root of multiplicity c ∈ [k, d] and no other multiple
roots. In a neighborhood of f , the variety Σk ⊂ Fd is ambient diffeomorphic to the
direct product of the variety Σk ⊂ Fc and the space Kd−c. (E.g. the strata {A2}
of the swallowtail in Fig. 1 are locally direct products of R1 and the semicubical
parabola.) In the restriction to this neighborhood, our resolution of the discriminant
Σ ⊂ Fd coincides with the resolution of Σk ⊂ Fc multiplied by Rd−c. Therefore we get
a morphism of spectral sequences converging to the Borel–Moore homology groups
of these discriminants: it maps any cell Er

p,q(d) to Er
p,q−(d−c)(c). Further, we can
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formally replace these homological sequences by the cohomological ones (converging
to the Alexander dual cohomology groups of complements of discriminants),

(4) Ep,q
r (d) ≡ Er

−p,D−q−1(d)

(where D is the dimension of the functional space and in our particular case is equal
to d). These ‘inverted’ spectral sequences lie in the second quadrant, {p ≤ 0, q ≥ 0}.
The induced morphisms of them preserve both gradings p and q; moreover their final
action on the groups E∞ is compatible with the cohomology map induced by the
corresponding embedding Fc \ Σk ⊂ Fd \ Σk.

This allows us to define a stable spectral sequence Ep,q
r (∞), converging to the

cohomology of some limit space: ‘Fd \ Σk with infinitely large d’. For K = R,
the last space can be realized as the space of all smooth functions R1 → R1 with
some standard behavior at infinity (say, equal identically to 1 outside some com-
pact) and having no zeros of multiplicity k. This is the simplest manifestation
of a general method of computing cohomology groups of complements of discrimi-
nants in infinite-dimensional functional spaces: we consider an increasing sequence
of finite-dimensional approximations, consider resolutions of their intersections with
the discriminant set, and then prove a stabilization theorem for the corresponding
spectral sequences converging to the cohomology groups of the complements of these
intersections. These theorems can be of different strength in different situations: we
will discuss some of them in items G (convergence) and I (stabilization) in the next
section.

4. List of examples

4.1. What can be said on a discriminant and its resolution. In this section
we outline in a uniform way resolutions of different discriminant spaces and results
on the topology of their complements. The description of each case consists of the
following items (some of which may be omitted):
A. Functional space.
B. The discriminant.
C. The tautological resolution (the set of maximal planes sweeping out the
discriminant.)
D. Description of the poset.
E. Topology of the corresponding continuous order complex (or of its
link if the poset has a unique maximal element).
F. The support of the cohomological spectral sequence.
G. Convergence of the spectral sequence: does it converge (in some sense)
to the whole cohomology group of the complement of Σ? Or perhaps to an important
subgroup of it? Of course this question is trivial if the function space is finite-
dimensional, or if on any line {p + q = const} we have only a finite number of
nonzero groups Ep,q

1 and all these groups are finitely generated.
H. Degeneration of the spectral sequence: what is the least r for which
we have E∞ ≡ Er? If r = 1, then maybe even a homotopical splitting (2) of
discriminants holds ?
I. Stabilization of spectral sequences. Often our problems form a directed
family: e.g. the discriminants Σk ⊂ Fd with different d, or determinant varieties
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in End(Kn) with different n. Then their resolutions and the corresponding spectral
sequences can stabilize to interesting limit objects.
J. Comparison theorems and Smale–Hirsch principle. Often we have iso-
morphic spectral sequences for related but different discriminant spaces. This proves
the isomorphism of the cohomology groups of their complements, and often reflects
the fact that these complements are homotopy equivalent (at least stably). Such
comparison theorems often provide versions of the generalized Smale–Hirsch prin-
ciple relating the space of smooth maps without singularities of certain types and
the space of continuous sections of the jet bundle not intersecting the corresponding
singular set. Example: the space of functions S1 → R1 without zeros of multiplicity
k is homotopy equivalent to the space of all maps of S1 into Rk \ 0 (or, equivalently,
to Sk−1): this equivalence is induced by the jet extension map sending any function
f to the collection of k functions f, f ′, . . . , fk−1.
K. Explicit formulas expressing cohomology classes obtained from the spec-
tral sequence (i.e. in terms of the Alexander dual cycles) in terms intrinsic to the
complement of the discriminant.
L. Multiplication in the spectral sequence.

4.2. Monic polynomials without k-fold roots. A. The space Fd of all poly-
nomials xd + a1x

d−1 + . . . + ad, ai ∈ K = C or R.
B. The discriminant is the set Σk of polynomials having at least one root of
multiplicity k or more in K1. For K = C and k = 2, the space Fd \ Σk is the
classifying space for the group of braids with d strings.
C. The tautological resolution is fibered over K1 with fiber Kd−k, see §3.1.
D. The poset consists of [d/k] terms B(K1, i), i = 1, . . . , [d/k].
E. The order complex is contractible, as K1 is.
F. The support. For K = R, it consists of [d/k] + 1 nonzero terms Ep,q

1 ∼ Z
with p = 0,−1, . . . ,−[d/k] and q + (k − 1)p = 0. For K = C it lies in the domain
{(p, q)|p = 0,−1, . . . ,−[d/k], q ∈ [−p(2k − 3),−p(2k − 2)− 1]}.
G. Convergence. Yes, as dimFd is finite.
H. Degeneration. Yes, E∞ ≡ E1, and for K = R even the homotopy splitting
(2) holds: probably also for K = C.
I. Stabilization. For K = R the spectral sequences stabilize to one calculating
the cohomology groups of the space F∞ \ Σk of functions R1 → R1 with fixed
behavior at infinity and without k-fold zeros, and also the cohomology group of the
loop space Ω(Rk\0) ∼ ΩSk−1, see [58], [55], [56]. For K = C and k = 2 the stabilized
spectral sequence calculates the cohomology group of the stable braid group (with
infinitely many strings). For any k it also calculates the cohomology group of the
double loop space Ω2(Ck \ 0) ∼ Ω2S2k−1.
J. Comparison and Smale–Hirsch principle. For K = R, the limit space
F∞ \ Σk is homotopy equivalent (via the k-jet extension map) to the loop space
Ω(Rk \ 0). Any particular term Fd \ Σk is homotopy equivalent (via the same
embedding) to the space of loops of length < 2π([d/k] + 1) in the unit sphere Sk−1.

For K = C, the comparison of stable spectral sequences allows us to establish a
stable homotopy equivalence between the limit space limd→∞Fd \ Σk and Ω2S2k−1.
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In particular, these spaces have the same cohomology groups. For k = 2 this stable
homotopy equivalence was first proved by J.-P. May and G. Segal, see [39], [47].
K. Explicit formulas. These formulas can be induced via the same embedding
from the known expressions for the space ΩSk−1. For K = R, k = 3, the generator
of the group H1(Fd \ Σ3) ' π1(ΩS2) ' π2(S

2) (with index equal to 1) is identified
in [3], the generator of π2(Fd \Σ3) 'd≥9

π3(S
2) (with Hopf invariant 1) in [58], [55],

[56].
L. Multiplication. In this case, the spectral sequence coincides with the Adams-
Eilenberg-Moore-Anderson spectral sequence for loop spaces (see e.g. [1]), whose
‘de Rhamization’ is also known as the theory of iterated path integrals, and admits
a natural multiplicative structure compatible with the multiplication in the limit
cohomology group.

For K = C these spaces were studied by V. Arnold from 1968: in his work [3] he
invented the seminal reduction (1) and essentially started the topological study of
discriminant sets. For k = 2, the complete calculation of cohomology rings was then
obtained (by different methods) by D. B. Fuchs (for Z2-coefficients) and F. R. Cohen
(over Z). Similar problems for K = R were also considered by Arnold in [7], where
in particular the cohomology groups of Fd \ Σk were calculated. The Smale-Hirsch
principle for stabilizations of these spaces was found in [58] in answering Arnold’s
question on the multiplicative structure in these groups.

4.3. Resultants. A. The space Syst(k,m) of all systems of k polynomials of the
form xm + b1x

m−1 + . . . + bm over K = C or R.
B. The discriminant is the resultant set Res(k,m) of all systems having a re-
peated root in K1.
C. The tautological resolution is fibered over K1 with fiber over x ∈ K1

equal to the space of all systems having a repeated root at x.
D, E, F, G, H, K, L are exactly the same as in the previous subsection with the
same k and d = km.

The unique difference for items I, J is that for K = C the limit of spaces
Syst(k,m) \ Res(k,m) as m → ∞ is homotopy equivalent to Ω2S2k−1 (and not
just stably homotopy equivalent as in the previous case); this is a theorem of G. Se-
gal [48].

Moreover, a comparison of resolved discriminants and resultants allows us to prove
that for any finite k and m the space Syst(k, m) \ Res(k,m) is stably homotopy
equivalent to Fkm \ Σk. For k = 2 this fact was proved in [23], for arbitrary k
in [55]. As usual, it is easier here to prove stable homotopy equivalence of one-
point compactifications of resultants and discriminants, so that the stable homotopy
equivalence of their complements follows by Spanier–Whitehead duality, see [55].

In [35] an even stronger comparison theorem for real discriminants and resultants
was proved: the resultant variety in the space of pairs of two monic polynomials of
degree m is homeomorphic to the discriminant subset of the space of such polyno-
mials of degree 2m.

4.4. Homogeneous polynomials R2 → R without multiple roots. A. The
space Hd of all homogeneous polynomials R2 → R of degree d.
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B. The discriminant Σk consists of polynomials divisible by the k-th power of
some linear function.
C. The tautological resolution is fibered over RP1 with fiber equal to the
space of polynomials having a zero of multiplicity k along the corresponding line.
D. The poset is the disjoint union of all compactified configuration spaces
B(RP1, i), i = 1, . . . , [d/k], plus the one-point set {RP1} (corresponding to the iden-
tically zero polynomial).
E. The link is homotopy equivalent to S2[d/k]−1 (theorem of C. Caratheodory).
F. The support belongs to the union 2[d/k] + 3 cells (p, q): for any p =
0,−1, . . . ,−[d/k], the number q can be equal to either −p(k − 1) or −p(k − 1) + 1,
and there is one cell more, (p, q) = (−[d/k]− 1, d− [d/k] + 1). For a description of
the corresponding groups Ep,q

r see [67], [56].
G. Convergence. Yes, as dimHd < ∞.
H. Degeneration. E∞ ≡ E1 except for the case when k is odd and d is a multiple
of k: in this case E∞ ≡ E2 6= E1.
I. Stabilization. For any fixed k > 2 and d → ∞ the corresponding spectral
sequences stabilize to one calculating the cohomology group of one of two homo-
topy equivalent spaces of smooth functions S1 → R1, those even or odd under the
involution of S1, and having no zeros of multiplicity k. For k = 2 the stable spectral
sequence is also well-defined but does not give the entire cohomology group of the
space of functions without double roots. Indeed, there is an obvious 0-dimensional
cohomology class (i.e. an invariant of such functions): the number of their sim-
ple zeros. It turns out that all other invariants arising from our spectral sequence
depend polynomially on this one. In particular they cannot distinguish the identi-
cally positive and negative functions. These cohomology classes are exact analogues
of finite-type knot invariants, and we get a picture showing how the space of such
invariants may not be complete.
J. Comparison and Smale–Hirsch principle. The spectral sequence allows us
to prove the homotopy equivalence of these spaces with the free loop space ΩfS

k−1 ≡
{S1 → Sk−1} (or, in the case of odd functions, with the other component of the space
of free loops Ωf (RPk−1) which consists of loops not liftable to closed loops in Sn−1).
K. Explicit formulas. Again, can be inferred from these for H∗(Ωf (RPk−1)).
L. Multiplication. Again, this is induced from the Eilenberg-Moore spectral
sequence for the loop space.

4.5. Spaces of smooth functions Mm → Rn without complicated singulari-
ties. A. The space of all smooth functions Mm → Rn (with some fixed behavior
close to ∂Mm, if the latter is nonempty).
B. The discriminant is the space of functions having singular points of some class
of codimension σ ≥ 2 in the function space (i.e. defined by any Diff(Rm)-invariant
closed subvariety of codimension m + σ ≥ m + 2 in the jet space JT (Rm, Rn) for
some T ).
C. The tautological resolution is fibered over the space of pairs (x ∈ Mm;
ϕ ∈ JT

x (Mm, Rn)) such that ϕ belongs to our singularity class, with the fiber equal
to the space of functions Mm → Rn with this T -jet at the point x.
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D. The poset is the disjoint union of appropriate compactifications of configuration
spaces B(Mm, i) over all natural numbers i.
F. The support is in the wedge {(p, q) : p ≤ 0, q + σp ≥ 0}.
G. Convergence. Yes, because there are only finitely many nonzero terms Ep,q

1

on any line {p + q = const}.
H. Degeneration. The entire spectral sequences (especially their higher differen-
tials) for different singularity classes seem to be strong invariants of smooth mani-
folds. To what extent can they be derived from topological invariants?
J. Comparison and Smale–Hirsch principle. The spectral sequence coincides
with one calculating the cohomology group of the corresponding space of all con-
tinuous sections of the jet bundle not intersecting our singular subset. This allows
us to prove the homological Smale-Hirsch principle stating the homology (and even
stable homotopy) equivalence of these spaces (and hence, if σ ≥ 3, even the usual
homotopy equivalence), see [58], [55], [56]. Moreover, in the most classical case of
codimension 2, when n = 1 and the forbidden singularity class consists of all germs
more complicated than Morse and A2, ordinary homotopy equivalence also holds: it
was proved up to dimension m− 1 in [32] and in all dimensions in [25].

4.6. Spaces of continuous maps of m-dimensional topological spaces into
(m − 1)-connected ones. This is essentially the special case of the calculation
given in the previous subsection when the forbidden singularity class is defined in
the terms of the 0-jets of maps. In this case the source space does not need to be a
smooth manifold.

Any finite (m− 1)-connected cell complex Y is homotopy equivalent to the com-
plement of a closed subset Λ(Y ) of codimension ≥ m + 1 in some space RN . If the
topological space X is ≤ m-dimensional, then the maps X → RN not intersecting
Λ(Y ) are dense in the space of all maps. Therefore we get the following way to
study the homotopical properties of the space of maps X → Y (maybe fixed on
some subcomplex Z ⊂ X). (If X is a manifold, then the spectral sequence obtained
in this way coincides with one constructed by D. Anderson, see [1], but our approach
allows us to remove this restriction.)
A. The space of all continuous maps X → RN (maybe coinciding with a fixed
map X → RN \ Λ(Y ) on some subcomplex Z ⊂ X.)
B. The discriminant consists of maps whose images meet Λ(Y ).
C. The tautological resolution is fibered over the space of pairs (x ∈ X \Z,
y ∈ Λ(Y )) with fiber equal to the space of maps sending x to y.
D. The poset is the disjoint union of suitably completed configuration spaces
B(X \ Z, i) with all natural numbers i.
F. The support is in the wedge {(p, q) : p ≤ 0, q+σp ≥ 0}, where σ = n−dimX−
dim Λ(Y ).
G. Convergence. If σ ≥ 2 and both X and Y are finite cell complexes (or,
more generally, finite type cell complexes, i.e. have finitely many cells in any given
dimension) then the spectral sequence obviously converges to the cohomology group
of the space of continuous maps X → Y .
H. Degeneration. Often we have E∞ ≡ E1. For instance this holds if X =
Sm, Y = Sn, m < n and Z =(one point), so that the space of maps considered is
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the iterated loop space ΩmSn; in that case the degeneration theorem provides the
Snaith splitting formula (more precisely, its homological version)

(5) Ht(Ω
mSn) '

∞⊕
i=0

Ht−i(n−m)(B(Rm, i),±Z⊗(n−m))

for the homology group of this space of maps, where±Z is the ‘sign’ local system over
the configuration space, cf. [62], [56]. Many other cases when such a decomposition
holds were found by C.-F. Bödigheimer, F. Cohen, L. Taylor and others, see the
references in [56].
J. Comparison and Smale–Hirsch principle. Conversely, the spaces of such
maps are the ultimate objects to which one tries to reduce function spaces defined
in terms of jet extensions, see e.g. all the previous items of this subsection.
K. Explicit formulas. For instance, the splitting (5) can be realized as follows.
Let us fix any standard (n − m)-spheroid Ξ generating the group πn−m(ΩmSn) ∼
πm(Sm) ' Z as a family of maps Rm → Sn equal to the constant map outside a
ball of small radius ρ centered at 0 and depending on a parameter running over the
sphere Sn−m. For any i-configuration X = (x1, . . . , xi) ∈ B(Rm, i) such that the ρ-
neighborhoods of all its points are disjoint, we can consider the i(n−m)-parameter
family ΞX of maps Rm → Sn constant outside these neighborhoods and in the
neighborhood of any point xj ∈ X coinciding up to a parallel translation {0 → xj}
with maps of the family Ξ. Any homology class in B(Rm, i) can be realized by
a compact cycle in the set of configurations X all whose points are 2ρ-separated.
Associating to any point of such a cycle the corresponding cycle ΞX we sweep out
a cycle in ΩmSn. Homology splittings for other spaces of maps X → Y as above
usually can be realized in a similar way.
L. Multiplication. If X is a manifold, then this spectral sequence coincides with
that of [1], and also admits a natural multiplicative structure. How can this be
extended to the most general situation?

4.7. Determinants. A. The space is End(Kn), K = R, C or H.
B. The discriminant is the set Det(Kn) of degenerate operators.
C. The tautological resolution is fibered over KPn−1 with fiber over x equal
to the space of operators whose kernel contains the line {x}.
D. The poset is the disjoint union of Grassmannians Gi(Kn), i = 1, . . . , n− 1, n.
E. The link is PL-homeomorphic to SM , M = dimRK · n(n− 1)/2 + n− 2.
F. The support is in the wedge

{(p, q) : p ∈ [−n, 0], q ∈ [dimRK(p(p− 1)/2) + p, dimRK(−np− p(p + 1)/2) + p]}.

G. Convergence. Yes, as the function space is finite-dimensional.
H. Degeneration. E∞ ≡ E1. See the end of §2.
I. Stabilization. For n → ∞, the spectral sequences stabilize to one calculating
the cohomology group of the stable group GL(K,∞).
K. Explicit formulas. The Miller splitting (3) for H∗(GL(Cn)) ∼ H∗(U(n))
has the following realization (see [61], [56]). For any i = 1, . . . , n and any point
L ∈ Gi(Cn) we imbed a copy of the group U(i) into U(n) as the set of all unitary
operators acting trivially on the orthogonal complement of the i-plane {L}. When
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L runs over a cycle in the Grassmann manifold, such copies of U(i) sweep out a
cycle in U(n). For K = R or H realizations of homology groups of O(n) and Sp(n)
are exactly the same (although in the real case we need to take care of orientations
and use homology with twisted coefficients).
L. Multiplication. The ring H∗(U(n)) is the exterior algebra with canonical
generators α1, α3, . . . , α2n−1 of corresponding dimensions. For any i = 1, . . . , n, the
term Fi of its filtration induced by the above spectral sequence (i.e. consisting
of linking numbers with cycles in the i-th term of the filtration of the resolved
determinant) is spanned by all monomials with ≤ i factors α2j−1.

4.8. Knots and links in Rn, n ≥ 3, and in other manifolds. The 0-dimensional
cohomology classes of the space of knots in R3 are exactly the numerical knot in-
variants. The invariants arising from the resolutions of discriminants are exactly
the finite-type knot invariants, see [14]. However the study of the whole cohomol-
ogy rings of spaces of knots is a more natural problem, leading to equally beautiful
algebraic structures, of which the algebraic theory of invariants can be obtained by
easy factorization, see [52].

A. The space of all smooth maps S1 → Rn, n ≥ 3. (Variants: all smooth maps
of S1 to any manifold Mn, all smooth maps of a finite collection of circles to Rn

or Mn; all smooth maps R1 → Rn coinciding with a standard embedding outside a
compact subset in R1 (‘long knots’).
B. The discriminant is the set of maps S1 → Mn (or R1 → Mn etc.) which are
not smooth embeddings, i.e. have either self-intersections or singular points with
vanishing derivative.
C. The tautological resolution is fibered over the completed configuration
space B(S1, 2) with fiber over the configuration (x, y) ⊂ S1 equal to the space of
maps f : S1 → Mn such that f(x) = f(y) if x 6= y or f ′(x) = 0 if x = y. If Mn 6= Rn

then this space can be not a plane.
D. The poset is a model example of a poset of multi-configurations in the same
way as the ones in subsections 3.1, 4.4 were the typical examples of posets of
(mono)configurations. Namely, consider a multi-index A = (a1 ≥ . . . ≥ ak), where
all ai are natural numbers greater than 1. Given a topological space N (say, N = S1),
a multi-configuration of type A in N is a collection of a1 + · · · + ak distinct points
in N divided into groups of cardinalities a1, . . . , ak. Denote by V (N, A) the set of
all A-configurations in N . It is convenient to consider any such configuration as a
subspace (even a subring) in the space of continuous (or smooth if N is a manifold)
functions N → R1: namely, as the space of all functions taking equal values at the
points of any group. The codimension of this subspace is equal to

∑k
i=1(ai − 1),

therefore this number is called the complexity of the multi-index A and of any multi-
configuration of type A. Let V (N, A) be the closure of V (N, A) in the corresponding
Grassmannian topology. For example, if N = S1, k = 1 and a1 = 2, then the space
V (N, A) is the configuration space B(S1, 2), i.e. an open Möbius band, and V (N, A)

is the space B(S1, 2), i.e. a closed Möbius band.

For any natural number s, we consider the union ρ(N, s) of spaces V (N, A) over
all possible multi-indices A of complexity s. The disjoint union of such unions
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with different s is a poset under the natural subordination of multi-configurations
(this subordination can be interpreted as the inverse inclusion of the corresponding
functional subspaces).
E. Order complexes. For any natural d consider the topological order complex
Ω(S1, d) of all spaces ρ(N, s) with s ≤ d. The homological study of these order
complexes Ω(S1, d) is known as the theory of finite-type knot invariants (and other
cohomology classes of the space of knots) and is very complicated. Indeed, the
homology group of the quotient space Ω(S1, d)/Ω(S1, d − 1) is the first (and, ac-
cordingly to M. Kontsevich, in the case of rational coefficients also the last) step in
the calculation of all such invariants and classes of order d modulo similar classes of
order d− 1.
F. The support. The wedge {(p, q) : p ≤ 0, q + (n − 2)p ≥ 0}. If Mn = Rn then
we can indicate also the upper boundary of this support: q ≤ np + [−p/2] + 1, see
[60], [55], [56].
G. Convergence. If n > 3, then the spectral sequence converges to the entire
cohomology group of the space of knots in Mn, and there are only finitely many
nonzero terms Ep,q

1 on any line {p + q = const}. If additionally Mn = Rn then all
terms Ep,q

1 are finitely generated (and explicitly described in [55], [56], [69]). On the
other hand, for n = 3 already the problem of the convergence on the line {p+q = 0}
(responsible for the 0-dimensional cohomology classes, i.e. the knot invariants) is
unsolved (and is now one of the main problems of knot theory).
H. Degeneration. The well-known Kontsevich integral [37] proves that for
Mn = R3 the spectral sequence (with complex coefficients) degenerates on the
main diagonal {p + q = 0}. The same construction proves degeneration for any
Rn on the main diagonal {q + (n− 2)p = 0}. Moreover, Kontsevich knows (at least
since 1994) a similar proof of degeneracy of the entire spectral sequence for any Rn:
E∞/C ≡ E1/C (still unpublished). My guess is that a) for long knots R1 → Rn

even a homotopy splitting of the discriminant like (2) holds (in some exact ‘stable’
sense, although the discriminant and all terms of its filtration are infinite dimen-
sional, see Problem 5.1 in [72]), but b) for standard knots S1 → Rn such a splitting
(and moreover even the integer homology splitting) does not hold because of torsion
terms arising from the topological nontriviality of the source manifold S1. On the
other hand, there are easy counterexamples to the degeneracy property in the case
of manifolds Mn 6= Rn, see e.g. [66].
I. Stabilization. Our spectral sequences calculating the cohomology groups of
spaces of knots in vector spaces Rn, Rm are very similar if n and m are of the
same parity. Namely, in this case their initial terms E1 coincide up to shifts:
Ep,q−pn

1 (n) ' Ep,q−pm
1 (m). In the case of spectral sequences with coefficients in

Z2 such isomorphisms hold independently of the parity of m − n. All this follows
immediately from the cellular structure of the resolved discriminant, see [60], [55].
J. Comparison and Smale–Hirsch principle. Any smooth function f : S1 →
R1 defines a curve in Rn given by its (n−1)-jet extension (f, f ′, . . . , fn−1) : S1 → Rn.
Such a curve is called a holonomic knot if this map is a smooth embedding. If n > 3
then the space of holonomic knots (or links) in Rn is homotopy equivalent to the
space of standard knots (respectively, links with the same number of components).
If n = 3 then any isotopy class of links can be represented by a holonomic link
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(see [65]); conversely, any two holonomic links isotopic in the space of all links are
isotopic also in the space of holonomic links (see [16]).
K. Explicit formulas for all cohomology classes can be found (as well as in all
other problems discussed here) by the direct calculation of the spectral sequence. In
the case of knots in Rn, any element γ of the term Ep,q

1 can be encoded as a linear
combination of certain graphs (known as chord diagrams for q + p(n − 2) = 0 and
slightly more general for arbitrary p and q) satisfying certain homological condition
(ensuring that the corresponding chain in the term Fi\Fi−1 of the filtration, i = −p,
consisting of cells encoded by these graphs, actually is a cycle modulo Fi−1). The
conscientious calculation of the spectral sequence is the following process: we find
the boundary of the chain γ in the next term Fi−1\Fi−2 and span it by some chain in
this term (it does no matter that this chain will be of infinite dimension). Then find
the boundary of this spanning chain in Fi−2 \ Fi−3, etc. By Kontsevich’s theorem,
all these steps can actually be performed, i.e. such spanning chains always exist (at
least in the case of complex coefficients). At the last step we already have a cycle
in all of Σ and span it by a relative chain in the space of all maps N1 → Rn mod
Σ. The corresponding explicit formula works as follows: to any generic cycle in the
space of knots F \ Σ it associates the number of its intersection points with this
relative chain (counted with appropriate signs).

For invariants (i.e. 0-dimensional cohomology classes) of knots in R3, some combi-
natorial expressions were obtained by J. Lannes, M. Polyak and O. Viro, P. Cartier,
S. Piunikhin, S. Tyurina, a.o., see [38], [45], [53], [54]. It was then proved by
M. Goussarov [31] that expressions of Polyak–Viro type exist for any invariants of
finite filtration for long knots R1 → R3.

These expressions (and their extensions to the case of n > 3) arise naturally in
the above-described algorithm if we choose the spanning chains in some natural way
(a semialgebraic chain in RN , distinguished by several equations, the last of which
is f(x) = g(x), should be spanned by the chain given by all the same conditions
with the last one replaced by f(x) ≥ g(x), etc.).

Several examples of cohomology classes of spaces of knots other than the knot
invariants (and not related to them by the stabilization mentioned in item I above)
are known, see [66], [69], [56]. Namely, for ‘compact’ knots S1 → Rn there are two
linearly independent cohomology classes of filtration 1 (of dimensions n − 2 and
n − 1) and two cohomology classes of filtration 2 (one of which is the well-known
knot invariant or its stabilization mentioned in I and has dimension 2(n−3), and the
second is of dimension 2n− 3). For ‘long’ knots R1 → Rn there are no cohomology
classes of filtration 1 or 2 other than the knot invariant or its stabilization, and in
filtration 3 for any n there is exactly one more independent cohomology class having
dimension 3n − 8: it was found by D. Teiblum and V. Turchin in the case of odd
n and in [69], [56] for even n. Combinatorial formulas for all these classes will be
given in [74].
L. Multiplication. The multiplication formula for chord diagrams expressing
the multiplication of corresponding knot invariants was found by Kontsevich. For a
similar formula for higher cohomology classes, see [52].



16 VICTOR VASSILIEV

There exists a huge theory of finite type knot invariants (i.e. zero-dimensional
cohomology classes), see [14]. In this case the natural filtration on the space of such
classes has an elementary characterization in terms of finite differences (see e.g. §0.2
in [60]). However the direct translation of this elementary definition turns out to
be very misleading if one tries to apply it to different problems such as the study
of generic plane curves or the calculation of higher-dimensional cohomology classes
of spaces of knots. The families of classes and invariants arising from such a direct
translation are usually unnatural and only weakly related to more classical ones,
and the algebraic structures describing them are non aesthetic1. The reason for
this is that in these cases the singularities of discriminant spaces essential for the
calculation of these classes and invariants are more complicated than just normal
crossings.

4.9. Generic plane curves. There are dozens of problems of this kind. We shall
consider four of them and denote them by (i), (si), (d) and (o) (for ‘immersions’,
‘immersions/strangeness’, ‘doodles’ and ‘ornaments’, respectively).
A. The space consists for (i) and (si) of all smooth immersions of a circle (or a
collection of circles) to R2, for (d) of all smooth maps of a circle to R2, and for (o)
of all smooth maps of the union N1 of s ≥ 3 circles to R2.
B. The discriminant consists for (i) of non-generic immersions (i.e. having self-
tangencies or triple points of the image); for (si) of immersions with triple points;
for (d) of maps with triple points or their degenerations (i.e. double points at one
of which f ′ = 0 or single points at which f ′ = f ′′ = 0); and for (o) of maps such
that images of some 3 different components meet at some point in R2.

The study of the complement of the discriminant in case (i) (and its subproblem
(si)) was initiated in [8], [9]; for (d) a similar problem was formulated in [62], [63]
and studied in various versions in [36], [41], [42], [70] under the name of the theory
of doodles. The problem (o) in the general multidimensional situation goes back at
least to Kronecker, see also [26], [27], [35]. The homological problems related to the
study of the corresponding resolved discriminants were formulated in [62], [63] and
studied, in particular, in [18], [63], [40].
C. The tautological resolution for (si) is fibered over the configuration space
B(S1, 3). The fiber over a triple (x, y, z) ⊂ S1 consists of all immersions f such that
f(x) = f(y) = f(z). For (i) the resolution space also includes the set fibered
over B(S1, 2) whose fiber over (x, y) ⊂ S1 is the space of immersions f such that
f(x) = f(y) and f ′(x) is collinear with f ′(y). For (d) the resolution space is fibered

over the completed configuration space B(S1, 3) = S3(S1) (or B(N1, 3) if we consider
many-component curves). The fiber consists of maps gluing together the points of
the configuration, in particular it is an affine subspace of codimension 4 in the space
of all maps. For (o) all is the same, but only the configurations whose points belong
to different components of the curve are considered.

We mention below only the problems (si), (d) and (o). The remaining theory
(i)\(si) includes, among others, Arnold’s basic invariants J+ and J− (dual to the

1A nice counterexample is provided by the theory of finite type invariants of 3-manifolds started
by T. Ohtsuki and extended by S. Garoufalidis, M. Goussarov and others. Unfortunately I cannot
include this wonderful theory in the general framework of discriminant theory
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sets of immersed curves with codirected and counter-directed self-tangencies), and
the theory of Legendrian knots, see [9], [11].
D. The poset. See the description of the poset of multi-singularities in §4.8, with
the sole difference that all indices ai of a multi-index A should be greater than
2, and not only greater than 1. Additionally, in the case (si) we do not consider
completions of spaces of multi-configurations, but only their regular points, and in
the case (o) we consider only multi-configurations such that in any of the groups of
cardinalities a1, . . . , ak there are present points of at least three different components
of the manifold N1.
E. Topology of the order complex is a good open problem.
F. The support. For problems (d), (o) the wedge {(p, q) : p ≤ 0, p + q ≥ 0}. For
the analogous problem on plane curves without self-intersections of multiplicity k,
the wedge {(p, q) : p ≤ 0, p + q ≥ k − 3}.
G. Convergence. In the cases (is) and (d), the terms Ep,q with p+q = 0 converge
(weakly) to the group of invariants of the corresponding objects: all nonequivalent
doodles or generic immersions can be distinguished by finite-type invariants, see
[42].
H. Degeneration. For cases (o) and (d), the spectral sequences conjecturally
degenerate at the first term on the diagonal {p + q = 0}, i.e. Ep,q

∞ = Ep,q
1 for such

p, q. This is an experimental fact proved (by A. B. Merkov) up to filtration 6, as
well as for many other important cases, but in general it is a conjecture.
K. Explicit formulas. The first explicit formulas for non-obvious finite-type
invariants of generic curves in problem (o) were found in [63]: we can count all
intersection points of some two components of a curve with their signs (i.e. mutual
orientations of these components at these points) and weights (which are polyno-
mial functions of the indices of these points with respect to different components
of the curve), see [63]. Strong generalizations of these index-type invariants were
found in [40], see also [46]. Similar expressions were found in [50], [51] for the sim-
plest strangeness invariant in problem (si) of [8], [9] and some of its generalizations;
combinatorial expressions for the invariants J+, J− were constructed in [76].

4.10. Nonsingular hypersurfaces of degree d in CPn. A. The space H(d, n)
of all homogeneous polynomials Cn+1 → C of degree d.
B. The discriminant consists of polynomials whose zeros form a non-smooth
hypersurface in CPn.
C. The tautological resolution is fibered over CPn with fiber over x equal
to the space of polynomials with zero differential at the corresponding line in Cn+1.
D. The poset. We take the space of all possible singular sets defined by such
polynomials in CPn and supply it with the topology induced from the Grassmann
manifolds Gi(H(d, n)) by the map sending any such set into the space of all poly-
nomials whose singular set contains this one. Finally, we take the closures of these
spaces in this topology.
E. The order complex. For d = 2, this order complex coincides with that
considered in §4.7 for the space End(Cn+1), and hence its link is homeomorphic to
the sphere of dimension (n + 1)2 − 2. For d = 3 and n = 2, 3 the rational homology
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groups of these links vanish in all positive dimensions. For (d, n) = (4, 2) its rational
Poincaré polynomial is equal to t14(1 + t3)(1 + t5), see [68].
G. Convergence. Yes, as the dimension is finite.
H. Degeneration. For all cases calculated with d > 2, i.e. for (d, n) = (3, 2), (3, 3)
or (4, 2) the rational spectral sequence converges at the first term: E∞/Q ≡ E1/Q.
However, this is just an experimental fact, and not a part of a general theorem.
Also, in the most ‘rigid’ case d = 2 the spectral sequence does not degenerate at E1,
see [68].
I. Stabilization. For any fixed n and d →∞ the corresponding spectral sequences
stabilize to one calculating the cohomology of the space of non-vanishing sections of
an (n + 1)-dimensional vector bundle over CPn.
J. Comparison and Smale–Hirsch principle. The gradient mapping
H(3, 2) → H(2, 2)3, sending any polynomial of degree 3 in C3 into the triple of
its partial derivatives, induces an isomorphism between the rational cohomology
groups of the space H(3, 2) \ Σ of nonsingular polynomials and the space of qua-
dratic vector fields in C3 with unique singular point at 0. This isomorphism follows
by comparison of the corresponding spectral sequences, see [68].
K. Explicit formulas. For d = 2, the spacesH(d, n)\Σ are homotopy equivalent
to the corresponding Lagrange Grassmannian manifolds U(n + 1)/O(n + 1), whose
homology groups are well known together with their various realizations. For any
d, n the projective linear group PGL(n + 1, C) acts on the space of nonsingular
hypersurfaces in Cn+1. In particular any orbit is the image of a map of this group
into this space. If (d, n) = (3, 2) or (3, 3) then any such map defines an isomorphism
of rational cohomology groups. Thus the cohomology classes of our spaces can be
expressed in terms of generators of the cohomology of the group. On the other
hand, the Poincaré polynomial of the rational cohomology group of the space of
nonsingular quartics in CP2 is equal to (1+ t3)(1+ t5)(1+ t6) (see [68]), i.e., we have
a new generator of dimension 6. As J. Steenbrink explained to me, this generator
is induced from a cohomology class of the moduli space of curves of genus 3: the
cohomology groups of this space were calculated by E. Looijenga in [34].

The problem of calculating topological invariants of spaces of nonsingular plane
algebraic curves was posed by V. Arnold, see problems 1970-13 and 1981-13 in [11].
V. Kharlamov [33] used the topology of the real discriminant in the parallel theory
of rigid isotopy classification of real algebraic plane curves.

4.11. Hermitian matrices with simple spectra. A. The space of all Hermitian
operators in Cn.
B. The discriminant is the set of operators having at least two equal eigenvalues.
This set (as well as its complement) was studied in Arnold’s papers [4], [10]. For
some related physical motivations see also [44]. The cohomology ring of the comple-
mentary space is well known at least since [19] (as it coincides with the cohomology
ring of the space of complete flags in Cn), nevertheless the induced ‘stable’ structures
in it arising from the resolutions seem to be interesting.
C. The tautological resolution is fibered over the Grassmannian manifold
G2(Cn); the fiber over any point is the space of all operators whose restrictions to
the corresponding 2-plane are scalar.
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D. The poset is indexed by the same multi-indices A = (a1, . . . , ak), ai ≥ 2, as in
§4.8 (with the additional condition

∑
ai ≤ n).

E. The link. The explicit formula for the ranks of its homology groups in the case
of general n is unknown to me. It was calculated in [71] for n = 3, 4 and 5: the
Poincaré polynomials of such rational groups (reduced modulo a point) are equal in
these cases to t2(1+t2), t3(1+t4)(1+t2+t4) and t4(1+t2+t4+t6)(1+t2+t4+t6+t8+t10)
respectively. For any n, such rational homology groups are trivial in all dimensions
of the same parity as n.
G. Convergence. Yes, as the problem is finite dimensional.
H. Degeneration. E∞ ≡ E1 in the case of rational coefficients. However, homo-
topy splitting surely does not hold since the groups Ep,q

1 with integer coefficients can
have torsion (due to coinciding indices ai). See [71].
I. Stabilization. There is a natural stabilization of our spectral sequences as n
increases. The stabilized spectral sequence converges to the cohomology group of
the space of infinite Hermitian matrices with simple spectra (with the topology of
the direct limit) and provides a natural filtration on this group. All cells Ep,q

1 of
this stable spectral sequence are finitely generated, although the limit cohomology
group certainly is not; thus we get the notion of finite type cohomology classes of
the space of infinite Hermitian matrices with simple spectra, see [71].
K. Explicit formulas. A few are given in [71]. Finding the others (i.e. the
expression of our filtration in the terms of the Chern classes of tautological bundles)
seems to be an interesting problem.
L. Multiplication. A conjectural multiplication formula was given in [71] but is
not yet proved.

4.12. (Stabilized) cohomology groups of complements of bifurcation di-
agrams of zeros of complex function singularities. A. The space is the
parameter space of a deformation (say, a versal deformation) of a complex function
germ f : (Cn, 0) → (C, 0) with isolated singularity. E.g., the space of complex
polynomials as in §4.2 considered as a deformation of the function xd.
B. The discriminant is (the germ at the origin of) the set of parameter values,
for which the corresponding perturbation of f has a critical point close to the origin
in Cn with critical value 0.
C. The tautological resolution is fibered over (a neighborhood of the origin
in) Cn, the fiber over x consists of all parameter values for which the corresponding
perturbed function has x as a critical point.
D. The poset. If the singularity is sufficiently complicated with respect to the
number d, and the deformation is versal, then its elements corresponding to planes
of complex codimension≤ d(n+1) are the (completed) configuration spaces B(Cn, i),
i = 1, 2, . . . , d (see [57]).
F. The support is in the wedge {(p, q) : p ≤ 0, q + 2p ≥ 0}.
G. Convergence. Yes, as the problem is finite dimensional (for any particular f
and its deformation).
H. Degeneration. If the singularity is sufficiently complicated with respect to
d (as in D) then all its differentials dr, r ≥ 1, act trivially on the groups Ep,q

r

with p ≥ −d. Since by F all nontrivial groups Ep,q
r with smaller d satisfy the
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inequality p + q > d, we get the degeneration Ep,q
∞ ≡ Ep,q

1 for pairs (p, q) in the
domain {p + q < d}, see [57]. Moreover, for such d we have a homotopy splitting
F̄d ∼ F̄1 ∨ (F̄2/F̄1) ∨ . . . ∨ (F̄d/F̄d−1), see [55], [56].
I. Stabilization. If a singularity f is ‘more complicated’ than g (i.e. in any versal
deformation of f we have singularities equivalent to g), then the parameter space of
a versal deformation of g can be embedded into that of f in such a way that the dis-
criminant goes to the discriminant, see problem 17 in [5] and also problems 1975-19,
1976-28 and 1980-15 in [11]. These embeddings induce morphisms of the corre-
sponding spectral sequences, which stabilize to a limit spectral sequence calculating
the limit cohomology group (which can be thought of as that of the complement of
the discriminant of an immensely complicated isolated singularity).
J. Comparison and Smale–Hirsch principle. The stable spectral sequence
coincides with that (described in §4.6) calculating the cohomology ring of the space
Ω2n(R2n+2 \ 0) of all continuous maps R2n → R2n+2 with fixed behavior at infinity
and avoiding 0. For any isolated complex function singularity and its deformation,
the 1-jet extensions of functions [ϕ 7→ (ϕ, ∂ϕ/∂x1, . . . , ∂ϕ/∂xn)] define an embed-
ding of the complement of the corresponding discriminant into this iterated loop
space. Our comparison theorem proves that for sufficiently complicated functions
this map induces a homology (and even stable homotopy) equivalence up to some
high dimension.
K. Explicit formulas. Follow from those for iterated loop spaces.

The above stabilization map defined by adjacency of functions was proposed by
Arnold about 1975 (see [5]) together with the problem of computing the correspond-
ing stable cohomology rings (and of proving that they are well defined). Stating this
problem was one of the main steps in all the theory described in this section, since it
forced one to find ‘stable’ structures of discriminants and ‘stable’ methods of com-
puting their homology groups. The corresponding resolution and stable spectral
sequence were constructed in April 1985, see [57]. This was the first of the series of
calculations listed in this paper.
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