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Abstract. This is a glossary of notions and methods related
with the topological theory of collections of affine planes, includ-
ing braid groups, configuration spaces, order complexes, stratified
Morse theory, simplicial resolutions, complexes of graphs, Orlik–
Solomon rings, Salvetti complex, matroids, Spanier–Whitehead
duality, twisted homology groups, monodromy theory and mul-
tidimensional hypergeometric functions.

The emphasis on the most geometrical explanation is done; ap-
plications and analogies in the differential topology are outlined.

Some recent results of the theory are presented.

1. Introduction

Finite collections of affine planes in RN or in CN (shortly, affine plane
arrangements) form a remarkable class of algebraic varieties. Indeed,

1) they are a meeting point of topology, combinatorics, linear al-
gebra, representation theory, algebraic geometry, complexity theory,
mathematical physics and differential equations;

2) they are a wonderful proving ground for methods and motivations
in these fields, having very far generalizations;

3) they provide a successful elementary visualization of abstract al-
gebraic and combinatorial notions and constructions.

Formulas, constructions and theorems once arising in this theory
appear then again and again in very distant fields and problems.

One of main problems of the theory asks to which extent the topolog-
ical properties of the union of several planes (and of the complement of
this union) are determined by the formal data, i.e. by the information
on the dimensions of all subcollections of planes.
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We shall use this problem to demonstrate such notions and meth-
ods as braid groups, configuration spaces, order complexes, strati-
fied Morse theory, simplicial resolutions, complexes of graphs, Orlik-
Solomon rings, matroids, Spanier–Whitehead duality, twisted homol-
ogy groups, monodromy theory, hypergeometric functions, etc.

There are several very good expositions of the theory of arrangements
or different its aspects, see e.g [39], [23], [60], [95], [73] and especially
[15]. An exhaustive survey of algebraic aspects of the theory of complex
hyperplane arrangements is given in S. Yuzvinsky’s article [92].

In this short article, I tried to give an elementary introduction to
the theory, making emphasis on a) the most geometrical aspects and
motivations of the theory, b) the most recent results not reflected yet
in introductory texts, c) the subjects that traditionally are treated in
more formal and abstract way than it is necessary, d) the results having
important applications and generalizations in the fields familiar to me:
differential topology, singularity theory, integral geometry, complexity
theory...

2. Main definitions, notation and examples

An affine plane arrangement is any finite collection of affine planes
(of arbitrary, maybe different, dimensions) in RN .

An arrangement is called central if all its planes contain the origin
in RN . In this case one says also that we have a subspace arrangement.

One can define also the complex plane or subspace arrangements in
CN : they are a special case of usual arrangements in R2N .

In a similar way one defines plane arrangements in RPN or in CPN :
they are in the obvious one-to-one correspondence with central arrange-
ments of nontrivial subspaces in RN+1 (respectively, in CN+1).

Any real affine plane in RN defines a complex plane of the same
dimension in CN : its complexification. Therefore the complexification
of any real plane arrangement is well defined.

Suppose that we have a plane arrangement L consisting of planes
L1, . . . , Lm. The union L1∪· · ·∪Lm of these planes is called the support
of L and will be denoted by L. For any subset of indices I ⊂ {1, . . . ,m}
we set

(1) LI ≡
⋂
i∈I

Li.

The first example of a hyperplane arrangement is provided by the
coordinate cross in RN given by the equation x1 · . . . · xN = 0.

The next famous arrangement, the diagonal arrangement A(N, 2) ⊂
CN , consists of

(
N
2

)
hyperplanes Vij ≡ Vji, {i 6= j} ⊂ {1, . . . , N}, given
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by equations xi = xj. The complement of this arrangement in CN

can be considered as the N th ordered configuration space of C1, i.e the
space of all ordered collections of N pairwise different points in C1.

More generally, for any k ∈ [2, N ] the k-equal arrangement A(N, k)
consists of

(
N
k

)
planes V (i1, . . . , ik), 1 ≤ i1 < · · · < ik ≤ N, given by

conditions xi1 = · · · = xik . We can define such arrangements both in
RN and in CN .

Another generalization of the arrangement A(N, 2) is as follows (see
[22]). Consider any finite group W of isometries of the Euclidean space
RN generated by reflections in several hyperplanes (mirrors). (Such
groups are well-known, see [13]: irreducible groups of this type form
four infinite series Am (m ≥ 1), Cm (m ≥ 2), Dm (m ≥ 4), and I2(p),
and seven exceptional cases G2, F4, H3, H4, E6, E7 and E8.) Almost all
orbits of the action of W in RN have one and the same cardinality. The
union of irregular orbits of smaller cardinality consists of the mirrors
generating the group and their images under its action. All components
of the complement of this union are simplicial cones (Weyl chambers).
The action of W in the space RN extends in the obvious way to an
action in its complexification CN . The union DW of irregular orbits
of the latter action consists of complexifications of mirrors and their
orbits; it is called the diagonal of the group W .

For instance let the mirrors be all the hyperplanes given by equations
xi = xj, i 6= j. Then the group W is isomorphic to the permutation
group S(N), and the corresponding diagonal arrangement coincides
with A(N, 2). This is the case AN−1 of the classification of reflection
groups.

A hyperplane arrangement in RN or CN or RPN or CPN has normal
crossings if for any subset I ⊂ {1, . . . ,m} the plane LI either is empty
or its codimension N − dimLI is equal to the cardinality of I.

A hyperplane arrangement in RN or CN is generic if, being aug-
mented by the infinitely distant hyperplane it becomes an arrangement
with normal crossings in RPN (respectively, in CPN).

It is easy to see that for all generic arrangements of m hyperplanes in
CN the corresponding triples (CPN ,CN , L) are homeomorphic. Generic
arrangements form an open dense subset in the space of all ordered
collections of m hyperplanes.

3. Basic example: cohomology rings of pure braid groups

Denote the open manifold CN \ A(N, k) by M(N, k).
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Proposition 1 (see [31], [3]). For any N , the manifold M(N, 2) is a
K(π, 1)-space, i.e. all its higher homotopy groups π2, π3, . . . are trivial.

Indeed, forgetting the last point of a N -point configuration we obtain
a fiber bundle

(2) M(N, 2) →M(N − 1, 2)

with fiber equal to C1 \ {N − 1 points}. Proposition 1 follows by
induction from the exact homotopy sequence of this bundle.

The group π1(M(N, 2)) is called the pure braid group with N strings.
The fundamental group of the similar space of non-ordered sets is called
simply the braid group with N strings, see [8]. For algebraic and ho-
mological properties of these groups see, in particular, [51], [4], [40],
[66].

A similar statement holds for any finite reflection group.

Theorem 1 (see [22], [28]). For any finite group W acting by reflec-
tions in RN , the corresponding space CN \DW (i.e. the union of regular
orbits of the complexified action in CN) is a K(π, 1)-space.

This theorem was proved by Brieskorn for reflection groups Cm, Dm,
G2, F4, I2(p); Deligne has proved it in the general case. The groups
π1(CN \ DW ) for these arrangements are called the Brieskorn braid
groups, see [22].

Theorem 1 implies that the cohomology rings of these groups are
equal to these of spaces CN \ DW . These rings were calculated in [3]
for the case AN−1 (i.e. that of the arrangement DW ≡ A(N, 2)) and in
[22] for all other reflection groups.

Moreover, the complement MR(N, 3) of the real 3-equal arrange-
ment also is a K(π, 1)-space for any N : this fact was conjectured by
A. Björner and proved by M. Khovanov [47].

The calculation of the cohomology ring in the Arnold’s case M(N, 2)
is based on the same fiber bundle (2).

Proposition 2 (see [3]). The group H∗(M(N, 2)) is torsion-free and is
isomorphic to the tensor product H∗(φN−1)⊗H∗(φN−2)⊗· · ·⊗H∗(φ1)
where φi is the wedge of i circles. In particular the Poincaré polynomial
of H∗(M(N, 2)) is equal to (1 + t)(1 + 2t) · . . . · (1 + (N − 1)t).

Indeed, it is easy to see that the bundle (2) is homologically simple,
i.e. the fundamental group of the base acts trivially in the homology
of its fiber (which is homotopy equivalent to φN−1). The spectral se-
quence of this bundle stabilizes in the term E2, therefore we have a
ring isomorphism H∗(M(N, 2)) ' H∗(M(N − 1, 2))⊗H∗(φN−1). �
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The ring structure in this cohomology, also calculated in [3], is as
follows. For any plane Vjk of our arrangement denote by ωjk the log-

arithmic form with singularity at this plane, ωjk ≡ 1
2πi

dzj−dzk

zj−zk
; the

integral of it along a closed path in M(N, 2) equals the linking number
of this path with the plane Vjk.

Proposition 3. For any three different indices i, j, k ∈ [1, N ] the equal-
ity

(3) ωij ∧ ωjk + ωjk ∧ ωki + ωki ∧ ωij = 0

holds identically in M(N, 2). In particular the similar identity on the
corresponding cohomology classes holds in the ring H∗(M(N, 2)) : if
Ωjk is the cohomology class of the form ωjk, then

(4) Ωij ^ Ωjk + Ωjk ^ Ωki + Ωki ^ Ωij = 0.

The integer cohomology algebra H∗(M(N, 2)) is canonically isomorphic
to the quotient algebra of the exterior algebra formally generated by

(
N
2

)
elements Ωjk through the ideal multiplicatively generated by left parts
of all possible expressions (4) with arbitrary i, j and k.

4. Orlik–Solomon ring and cohomology of complements
of complex hyperplane arrangements

A general statement very similar to Proposition 3 holds for an arbi-
trary complex central hyperplane arrangement.

Let L = {L1, . . . , Lm} be such an arrangement in CN , whose planes
Li are given by linear equations fi = 0. A collection of indices I ⊂
{1, . . . ,m} is dependent if the codimension of LI is smaller than the
expected value |I| (i.e. the corresponding equations fi are linearly
dependent). For any dependent set I = {i1 < · · · < ik} denote by ρ(I)
the rational differential (k − 1)-form

(5)
k∑

j=1

(−1)j dfi1

fi1

∧ · · · ∧
d̂fij

fij

∧ · · · ∧ dfik

fik

.

It is easy to see that this form is equal to zero in CN \ L.

Theorem 2 (see [59]). For any central complex hyperplane arrange-
ment L in CN , the integral cohomology ring H∗(CN \L) is canonically
isomorphic to the quotient algebra of the exterior algebra on generators
αj corresponding to hyperplanes of L through the ideal generated by all
elements

(6)
k∑

j=1

(−1)jαi1 ^ · · ·^ α̂ij ^ · · ·^ αik
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corresponding to all dependent collections I = (i1, . . . , ik). Moreover,
the same ideal is generated by expressions (6) over only minimal de-
pendent subsets I.

Example. For the arrangement A(N, 2) the minimal dependent sets
are exactly the collections of planes of the form Vi1i2 , Vi2i3 , . . .Viq−1iq ,
Viqi1 , where {i1, . . . , iq} ⊂ {1, . . . , N} is any set of indices, q ≥ 3. It is
easy to see that any form (6) defined by such a subset belongs to the
ideal generated by similar forms with q = 3.

A main step towards Theorem 2 was done in [22].

Corollary 1 (see [22]). The group H∗(CN \ L) is torsion-free.

The case of not central hyperplane arrangements in CN can be easily
reduced to that of central hyperplane arrangements in CN+1.

5. How much the topology of the complement is defined
by the dimensional data: a summary

Let L be an arbitrary affine plane arrangement in RN , consisting of
m planes. Suppose that for any I ⊂ {1, . . . ,m} we know the dimension
of the plane LI (and whether this plane is empty or not). What can be
then said about the topology of RN \L? Given a topological invariant
of RN \ L, is it determined uniquely by these data ?

For homology and cohomology groups of RN \ L the answer to the
last question is positive, see [41] and §6 below.

For the stable homotopy type the answer also is positive, see [80],
[96] and §8 below.

For the multiplicative structure in cohomology the answers are as
follows.
A. In the most general situation not, see [94], [95].
B. For complex arrangements of arbitrary dimensions: yes. For hyper-
plane arrangements it follows from the above Orlik-Solomon theorem.
For an arbitrary complex arrangement this was proved in [24] for ratio-
nal cohomology. Then S. Yuzvinsky [90] proposed an explicit formula
for this rational cohomology multiplication, and finally it was proved
[25], [29], that the same formula expresses the multiplication in the
integral cohomology ring, see §11 below.
C. There is a more general class of real arrangements for which a large
part of the multiplicative structure is determined by the dimensional
data.

Definition. The arrangement L in RN is called a ≥ 2-arrangement if
for any two its incident planes LI $ LJ we have dim J − dim I ≥ 2.
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For instance any complex arrangement satisfies this condition.
For such arrangements an explicit formula of the multiplication in

the cohomology was proved in [25], [29]. In particular it implies the
following proposition.

Suppose that two planes LI , LJ of an arrangement are transversal,
i.e

(7) N − dim(LI ∩ LJ) = (N − dimLI) + (N − dimLJ).

Let us fix also an orientation of RN . Then any choice of orientations
of planes LI , LJ defines in a standard way an orientation of LI ∩LJ ≡
LI∪J . If the orientations of all planes LI of our arrangement are fixed,
then for any ordered pair of transversal planes LI , LJ we get a sign
+ or − indicating whether the fixed orientation of LI∪J coincides with
the orientation defined by fixed orientations of LI and LJ .

Proposition 4. Suppose that we have two plane ≥ 2-arrangements L,
L′ in RN such that dimLI = dimL′I for any I, and there are systems of
orientations of all these planes such that for any pair of multi-indices
I, J satisfying (7) the corresponding signs coincide. Then the cohomol-
ogy rings of RN \ L, RN \ L′ are isomorphic.

Certainly, the complex arrangements with equal dimensional data
satisfy the conditions of this proposition: if we choose the complex
orientations of all planes then all indices will be equal to +.
D. On the other hand this condition on orientations cannot be removed:
a counterexample see in [94].
E. Still, something good can be said even in the most general case of an
arbitrary real affine plane arrangement. The group H∗(RN \L) always
admits a natural filtration, see §6, 8 below. The corresponding graded
ring is uniquely determined by the dimensional data and the system of
signs as in item C above. Its description also follows from the results
of [25], [29], see §11.

The most fragile invariant is the fundamental group of the comple-
ment of an arrangement.

Theorem 3 (see [64]). There exist two complex line arrangements in
C2 with equal dimensional data (i.e. sets of lines having a common
point) but with nonisomorhic fundamental groups of complements of
their supports.

Finally, if we consider the topology not of the complement of the
support L but of this support itself or its one-point compactification
L̄, then the dimensional information is very strong.
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Figure 1. Evolution of sets of smaller values

Theorem 4 (see §8). The homotopy types of topological spaces L and
L̄ are completely defined by the dimensional data.

6. Order complex of a poset. Goresky–MacPherson
formula

For an arbitrary real affine plane arrangement, a calculation of the
cohomology group of its complement was given by M. Goresky and
R. MacPherson as a bright application of their Stratified Morse theory
[41].

In our special case this theory works as follows. Let us fix a generic
point X0 ∈ RN \L and a positive quadratic function f : RN → R with
origin at this point (i.e. equal to x2

1+· · ·+x2
N in some affine coordinates

centered at X0). The critical values of f are the critical values of its
restrictions on all nonempty planes LI of our arrangement. If X0 and
f actually are generic then all these values corresponding to different
planes LI are different. Further, for any positive t let us consider the
ball Bt ≡ {x : f(x) ≤ t} in RN and the manifold of lower values
Λ(t) ≡ Bt \L. If the segment [a, b] contains no critical values of f then
Λ(a) and Λ(b) are homotopy equivalent (and even homeomorphic). If t
is sufficiently small then Λ(t) is a ball; if t is sufficiently large then Λ(t)
is a deformation retract of the desired space RN \L. Thus RN \L can
be constructed from a topologically trivial space by a finite sequence
of local surgeries corresponding to all critical values of f .

For instance let us consider the line arrangement in R2 shown in
Fig. 1 and its complexification L in C2. There are four essentially
different noncritical values t1 < t2 < t3 < t4: the intersections of the
corresponding balls Bti with R2 are shown in Fig. 1. Let Λi ≡ Λ(ti) be
the corresponding varieties of our inductive process.

The manifold Λ1 is topologically trivial. Passages from Λ1 to Λ2 and
from Λ2 to Λ3 are homotopy equivalent to gluing 1-dimensional cells, so
that Λ3 is homotopy equivalent to the bouquet of two circles. Finally,
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Figure 2. Simplicial resolutions of line arrangements

passage from Λ3 to Λ4 is equivalent to addition of a 2-dimensional cell.
And indeed, it is easy to see that the resulting manifold Λ4 is homotopy
equivalent to the two-dimensional torus.

In general, for an arbitrary arrangement the inductive calculation
of homology groups of RN \ L includes many local problems of the
following sort. Suppose that values a, b are non-critical and the segment
[a, b] contains exactly one critical value of f ; namely, it is the critical
value of the restriction of f to some plane LI . Topological types of
manifolds Λa,Λb differ by a surgery localized in a small neighborhood
of the corresponding critical point of f on LI . How does it relate the
cohomology groups of these manifolds?

This problem was solved in [41] in the combinatorial terms of our
arrangement. The answer is formulated in terms of the order complex
of a partially ordered set (= poset).

Definition 1. Given a poset (A,<), the corresponding order complex
Υ(A) is the simplicial complex, whose vertices are the points of the set
A, and the simplices span all the sequences of such points monotone
with respect to the partial order.

Every plane arrangement L = {L1, . . . , Lm} defines the poset of all
corresponding nonempty sets LI , I ⊂ {1, . . . ,m}, and hence the order
complex Υ(L).

For instance for three line arrangements shown in the lower row of
Fig. 2 the corresponding order complexes are given in Fig. 3. For the
diagonal arrangement A(4, 2) (see §2) the order complex is shown in
Fig. 4.

To any I with LI 6= ∅ the order subcomplex Υ(I) ⊂ Υ(L) is as-
sociated: this is the union of all simplices in Υ(L) all whose vertices
correspond to planes LJ containing LI . Any such subcomplex Υ(I) is
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Figure 4. Poset and order complex for the diagonal
arrangement A(4, 2)

contractible: indeed, all its maximal simplices have the common ver-
tex corresponding to the plane Υ(I) itself. Denote by ∂Υ(I) the link
of this subcomplex, i.e. the union of all its simplices not containing its
maximal vertex {Υ(I)}.

Theorem 5 (see [41]). Suppose that the segment [a, b] contains exactly
one critical value of f ; let LI be the corresponding plane. Then

1) H i(Λ(b),Λ(a)) ' HN−i−dim LI−1(Υ(I), ∂Υ(I));
2) The exact homological sequence of the pair (Λ(b),Λ(a)) splits, i.e.

H̃∗(Λ(b)) ' H∗(Λ(b),Λ(a))⊕ H̃∗(Λ(a)); here H̃∗ denotes the cohomol-
ogy group reduced modulo a point.
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Corollary 2 (see [41]). For an arbitrary affine plane arrangement L
in RN ,

(8) H̃ i(RN \ L) '
⊕

I

HN−i−dim LI−1(Υ(I), ∂Υ(I)),

summation over all nonempty planes LI of the arrangement.

In section 8 we shall explain this formula and prove its homotopical
version.

Example. Suppose that we have a complex hyperplane arrangement
with normal crossings in CN . Then the group Hr(CN \L) is isomorphic
to Zλ(r) where λ(r) is the number of sets of indices I = {i1, . . . , ir} of
cardinality r such that LI 6= ∅. Indeed, for any such set I the corre-
sponding order subcomplex Υ(I) is (the first barycentric subdivision of)
an (r− 1)-dimensional simplex, its link coincides with the boundary of
this simplex, the group H∗(Υ(I), ∂Υ(I)) has unique non-trivial term Z
in dimension r−1, and dimR LI = 2N−2r. In particular, for the generic

arrangement of m hyperplanes in CN we have Hr(CN \ L) ∼ Z(m
r ) for

any r = 0, 1, . . . , N . In the last case a more strong statement holds: the
space CN \L is homotopy equivalent to the N -skeleton of (the standard
cell decomposition of) the m-dimensional torus. Indeed, let us consider
the universal hyperplane m-arrangement †m, i.e. the coordinate cross
in Cm. There exists an affine embedding φ : CN → Cm such that the
planes of our generic arrangement in CN are preimages of intersections
of φ(CN) with coordinate planes in Cm. The cohomology group of the
space Cm \ †m ∼ Tm can be calculated as above by means of an arbi-
trary generic real quadratic function f : Cm → R. It has exactly 2m−1
critical values corresponding to all planes L!I , and the surgeries cor-
responding to the passages through these critical values are homotopy
equivalent to adding the cells of the standard cell decompositions of
the torus. Now, we can choose our function f with center at a point of
the embedded plane φ(CN) ⊂ Cm and in such a way that it grows very
slowly along φ(CN) and very fast in the transversal directions. The
“balls” {x : f(x) ≤ t} will then look like pancakes spread along φ(CN).
For some t, such a ball will intersect all planes LI with |I| ≤ N but
do not intersect any planes of smaller dimensions. The corresponding
manifold Λ(t) is homotopy equivalent to CN \ L, on the other hand it
is homotopy equivalent to the N -skeleton of the torus Tm ∼ Cm \ L!.

The isomorphism (8), as it follows from its proof in [41], is not canon-
ical: its realization depends on some choices. However it allows one to
define an important increasing filtration in the group H∗(RN \ L): for
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any realization of this isomorphism the term Fi of this filtration cor-
responds to the sum of terms H∗(Υ(I), ∂Υ(I)) over all planes LI of
codimensions ≤ i. This definition already does not depend on the
choices, see §§8, 10.

7. Simplicial resolutions and inclusion-exclusion
formula. Mayer–Vietoris spectral sequence and its

modifications

The simplicial resolutions are a far extension of the combinatorial for-
mula of inclusions and exclusions. They allow us to study effectively the
topology of spaces represented as unions of several subspaces, whose
(multiple) intersections are much easier than their symmetric differ-
ences.

First let us demonstrate this method in the simplest discrete situa-
tion. Suppose that a finite set S is represented as the union of finitely
many finite sets Si, i = 1, . . . ,m, and we need to find the cardinal-
ity of S. To do it we construct the simplicial resolution of S. First,
we take all sets Si separately. If some two sets Si, Sj have a common
point, then we draw a segment between the corresponding points in
the separated copies of Si and Sj. If some point belongs to the triple
intersection Si ∩ Sj ∩ Sk then we get three separated points joined by
three segments. On the next step, we add the “interior part” of this
triangle, then construct tetrahedra over quadruple intersections, etc.
The obtained complex S ′ is homotopy equivalent to the initial set S:
to any point of S there corresponds a simplex in S ′. In particular S
and S ′ have equal Euler characteristics. But the Euler characteristic
of the finite set S is its cardinality, while that of S ′ is the number of
vertices (i.e. of points of all sets Si taken separately) minus the number
of edges (i.e. the sum of cardinalities of all sets Si ∩ Sj over all pairs
(i 6= j) ⊂ {1, . . . , r}) plus the number of triangles, etc. The result is
nothing else than the exclusion-inclusion formula.

The same method works in the “continuous” case, say if the set
S = ∪Si is a CW -complex, and all sets Si and all their intersections SI

are its cell subcomplexes. Namely, we consider the (m−1)-dimensional
simplex ∆ whose vertices are in one to one correspondence with the
indices 1, . . . ,m. The simplicial resolution of S can be constructed as
a subset in ∆ × S. For any set of indices I we take the simplex ∆(I)
whose vertices are the points of the set I. The simplicial resolution S ′

is defined as the union of all products ∆(I)×SI over all subsets I. The
obvious projection ∆ × S → S induces the map S ′ → S. It is easy to
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see that this map is proper and is a homotopy equivalence. This space
S ′ is often much easier to study than the initial space S.

Example. If there are only two sets S1, S2, and S = S1 ∪ S2, then we
get the Mayer-Vietoris exact sequence
(9)
· · · → Hi(S1 t S2) → Hi(S) → Hi−1(S1 ∩ S2) → Hi−1(S1 t S2) → · · · .

Indeed, the corresponding simplex ∆ is the segment [1, 2]. The dis-
joint union S1tS2 can be realized as the subset ({1}×S1)∪({2}×S2) ⊂
[1, 2] × (S1 ∪ S2), and we can consider the exact sequence of the pair
(S ′, ({1} × S1) ∪ ({2} × S2)).

More generally, for an arbitrary number m of sets Si the resolved
complex S ′ also has a standard filtration φ1 ⊂ · · · ⊂ φm : its set φk is
the union over l = 1, . . . , k of all sets ∆(I)× SI with l-element subsets
I ∈ {1, . . . ,m}. The corresponding spectral sequence calculating the
homology of S ′ ∼ S is called the Mayer-Vietoris spectral sequence of
the composite set S = ∪Si. It is useful in some topological problems,
however in the study of plane arrangements it is quite useless: in this
case a different filtration in the resolution set should be considered, see
the next section.

8. Homotopy type of an affine plane arrangement and
stable homotopy type of its complement

Let our spaces Si be affine planes in RN forming the arrangement L.
In the bottom row of Fig. 2 we give three examples of line arrangements
in RN , in the top row their simplicial resolutions are indicated. Over
the right-hand picture we have two different resolutions. The left one of
them is constructed exactly as previously: the preimage of the central
point is the entire simplex ∆ whose vertices correspond to all lines Li.

In the general situation, let us denote by ∆(L) the union of all faces
∆(I) ⊂ ∆ such that the plane LI is not empty. The simplicial reso-
lution of the plane arrangement L constructed previously is a subset
of ∆(L) × L. Another, more economical resolution is constructed as
follows. Instead of the complex ∆(L) ⊂ ∆ we can consider the or-
der complex Υ(L) and define the simplicial resolution as a subspace
of Υ(L) × L: namely as the union of all products Υ(I) × LI over all
nonempty planes LI of the arrangement. The order complexes of three
arrangements of Fig. 2 are shown in Fig. 3.

For two left arrangements in Fig. 2 both constructions give one and
the same space, but for the right-hand one the latter construction gives
a different space, see the very right top picture.
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These two constructions are homotopy equivalent. Indeed, the or-
der complex Υ(L) can be identified with a subcomplex of the first
barycentric subdivision of ∆(L): the vertex {LI} of Υ(L) goes to
the center of the simplex in ∆(L) spanned by all vertices {Li} with
Li ⊃ LI . This identification defines an embedding of the latter con-
struction into the former one. Conversely, for any set of indices I with
nonempty LI we can send the center of the simplex ∆(I) into the ver-
tex {LI} ∈ Υ(L) ⊂ ∆(L); extending this map by linearity we obtain a
map homotopy inverse to our embedding. We shall call two construc-
tions of simplicial resolutions using the complexes ∆(L) and Υ(L) the
naive and the economical simplicial resolutions, respectively.

Almost all further considerations in this section are equally true for
both constructions. In particular we have the following their properties
(see Proposition 5). Suppose that LI 6= ∅. Some face ∆(J) of the
simplex ∆(I) is called marginal if the corresponding plane LJ is strictly
greater than LI . Denote by ∂∆(I) the subcomplex in ∆(I) formed by
all its marginal faces.

Proposition 5. 1. There is a homotopy equivalence ∆(L) ∼ Υ(L).
2. For any nonempty plane LI , the pairs (∆(I), ∂∆(I)) and (Υ(I), ∂Υ(I))
are homotopy equivalent. �

In particular the Goresky–MacPherson formula (8) can be rewritten
in the following way

(10) H̃ i(RN \ L) '
⊕

I

HN−i−dim LI−1(∆(I), ∂∆(I)),

The space of the resolution of the arrangement with support L will
be denoted by L′, and its one-point compactification by L̄′. The next
well-known fact, basic for the entire theory of simplicial resolutions,
follows easily from the Borsuk’s lemma, see e.g. [77] (unfortunately I
do not know the first reference).

Proposition 6. The obvious projection π : L′ → L is a proper map
and a homotopy equivalence. Its extension to a map of one-point com-
pactifications, π̄ : L̄′ → L̄, also is a homotopy equivalence.

Theorem 6. For any finite affine plane arrangement with support L,
there are homotopy equivalences

(11) L′ ∼ L ∼ Υ(L) ∼ ∆(L),

(12) L̄′ ∼ L̄ ∼
∨
I

Σdim LI (Υ(I)/∂Υ(I)) ∼
∨
I

Σdim LI (∆(I)/∂∆(I)),
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where Σk denotes the k-fold suspension, and the bouquets in (12) taken
over all nonempty planes LI of the arrangement.

The middle equivalence in (11) was found in [41], see also [18].
The middle equivalence L̄ ∼

∨
I Σdim LI (Υ(I)/∂Υ(I)) of (12) was

proved in [96]; simultaneously the composite equivalence

L̄′ ∼ ∨IΣ
dim LI (∆(I)/∂∆(I))

of (12) was proved, see [80]. By Propositions 5, 6 these two equalities
involved in the formula (12) are equivalent to one another and to entire
this formula.

For other statements of this type see [58], [45].

Corollary 3. The Goresky–MacPherson formula (8), (10).

Indeed, this formula follows from (12) and the Alexander duality

(13) H̃ i(RN \ L) ' H̄N−i−1(L)

where H̄∗ is the Borel–Moore homology group, i.e. the homology group
of the one-point compactification reduced modulo the added point; cf.
[4]. (An equivalent definition: the Borel–Moore homology group is the
homology group of the complex of locally finite singular chains in X.)

The resolution space L′ has a very useful filtration: its term Fi(L)
is defined as the union of all products ∆(I)× LI (respectively, Υ(I)×
LI) over all nonempty planes LI of codimensions ≤ i. In particular
L′ = FN(L). This filtration extends to that on L̄′: the term F̄0 of
the latter filtration is the added point and F̄i, i ≥ 1, is the closure of
Fi. The filtration mentioned in the end of §6 is Alexander dual to the
corresponding filtration in the homology of L̄′ ∼ L̄.

Corollary 4. The stable homotopy type of the complement of an ar-
bitrary affine plane arrangement L is determined by the dimensions of
all its planes LI , in particular the same is true for all extraordinary
homology and cohomology groups.

This corollary is based on the following notion.

Definition. Two topological spaces (having homotopy types of CW -
complexes) are Spanier–Whitehead dual to one another if they are ho-
motopy equivalent to two complementary subsets X and Y ≡ SN \X
of a sphere SN .

The homology and cohomology groups of such spaces are related by
the Alexander duality.

For instance our spaces L̄ and RN \ L are Spanier–Whitehead dual
to one another.
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The important fact (see e.g. [89]) is that the Spanier–Whitehead du-
ality determines an involution on the set of stable homotopy types: all
spaces Spanier–Whitehead dual to stably homotopy equivalent spaces
are stably homotopy equivalent to one another. This reduces Corollary
4 to Theorem 6.

The use of simplicial resolutions makes the proof of Theorem 6 es-
pecially transparent.

Indeed, let us consider the projection L′ → Υ(L) induced by the
standard projection of the space Υ(L)×L ⊃ L′. All fibers of this map
are planes LI for certain sets I. The homotopy equivalence L′ ∼ Υ(L)
follows by induction over the consequent contractions of these fibers
over different strata of Υ(L), cf. Lemma 1 in §III.3.4 of [77]; at any
step of induction the homotopy equivalence follows from the Borsuk’s
lemma.

To prove (12) we use a version of the induction from §6. For any
t > 0 we denote by L̄(t) the quotient space L/(L ∩ {x : f(x) ≥ t}).
Then for sufficiently small t we have L̄(t) = {one point}; for sufficiently
large t L̄(t) is homotopy equivalent to L̄. If the segment [a, b] contains
no critical values then L̄(a) is homotopy equivalent to L̄(b), so that all
we need is the following lemma.

Lemma 1. If the segment [a, b] contains only one critical value of f ,
namely the critical value of its restriction to the plane LI , then we have
a homotopy equivalence

(14) L̄(b) ∼ L̄(a) ∨ Σdim LI (Υ(I)/∂Υ(I)).

Proof. Let us consider also the spaces L̄′(t) = L′/(L′ ∩ π−1({x :
f(x) ≥ t})). Then the projection π induces homotopy equivalences
L̄′(t) ∼ L̄(t), and it is enough to prove a version of Lemma 1 with L̄(b)
and L̄(a) replaced by L̄′(b) and L̄′(a) respectively. In this proof we
use the topological operation of attaching topological spaces by maps.
Namely, given two topological spaces X, Y, a subspace A ⊂ X and
continuous map φ : A→ Y , the space Y ∪φX is defined as the quotient
space of the disjoint union X tY through the relations a ∼ φ(a) for all
a ∈ A. In particular if we have Z = X ∪ Y then Z can be considered
as X attached to Y via the identical embedding X ∩ Y → Y . An
important property of this operation is its homotopy invariance: any
homotopy equivalence f : Y → Y ′ induces a homotopy equivalence

(15) Y ∪φ X ∼ Y ′ ∪f◦φ X.

For any plane LJ of our arrangement, let L′J be its proper preimage,
i.e. the set Υ(J) × LJ ⊂ Υ(L) × L. Let L!a ⊂ L′ be the union of
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proper preimages of all planes LJ such that LJ ∩ {x : f(x) < a} 6= ∅.
In particular L!b = L′I ∪ L!a.

Given a subspace X ⊂ L′, denote by X/t its reduction modulo the
set of its points x such that f ◦ π(x) ≥ t. Then we have

(16) L̄′(b) = (L!b)/b = (L′I)/b ∪ (L!a)/b ≡ (L′I)/b ∪id (L!a)/b

where id is the identical embedding (L′I)/b ∩ (L!a)/b → ∪(L!a)/b.

Lemma 2. There is a homotopy equivalence (L!a)/b → (L!a)/a ≡ L̄′(a)
induced by the reduction modulo the layer {x : f ◦ π(x) ∈ [a, b]}. �

This homotopy equivalence maps the entire set (L′I)/b ∩ (L!a)/b into
one point (obtained by the factorization from this layer). Therefore by
(15) the space (16) is homotopy equivalent to the wedge of L̄′(a) and
the quotient space (L′I)/b/((L

′
I)/b ∩ (L!a)/b).

The latter space (L′I)/b/((L
′
I)/b ∩ (L!a)/b) is homotopy equivalent to

(Υ(I) × LI)/((Υ(I) × (LI))/b ∪ (∂Υ(I) × LI)) ∼ Σdim LI (Υ(I)/∂Υ(I))
(cf. [80]); Lemma 1 and Theorem 6 are proved.

9. Examples: resolutions of important arrangements.
Complexes of connected graphs and hypergraphs

Let us consider again the diagonal arrangement A(N, 2) in CN or
RN , see §2, and its naive simplicial resolution L′ ⊂ ∆(L) × L. The
smallest plane LI of this arrangement is the line {x1 = · · · = xN}. The
preimage of any its point is the entire simplex ∆ ≡ ∆(L) whose

(
N
2

)
vertices correspond to all possible hyperplanes Vij ≡ {xi = xj}.

Let us draw somewhere N points labelled by numbers 1, . . . , N. It is
convenient to depict any hyperplane Vij by the segment connecting the
points i and j. Any face of the simplex ∆ defines the graph consisting
of segments corresponding to all vertices of this simplex. It is easy to
see that the subcomplex of marginal faces ∂∆(L) ⊂ ∆(L) consists of
all faces corresponding to not connected graphs. Thus the homolog-
ical study of our arrangement appeals to the homology group of the
complex of connected graphs which is defined as the quotient complex
of the standard (acyclic) triangulation of the simplex ∆ through the
subcomplex spanned by all faces corresponding to all not connected
graphs.

Proposition 7 (see [80]). The complex of connected graphs with N
vertices is acyclic in all dimensions other than N − 2. Its (N − 2)-
dimensional homology group is isomorphic to Z(N−1)! and is freely gen-
erated by the classes of all snake-like (i.e. homeomorphic to a segment)
trees, one of whose endpoints is fixed.
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The first assertion of this proposition is a special case of the Folk-
man’s theorem on the homology of geometric lattices [32].

Remark. The number (N−1)! already appeared in this work. Indeed,
by Proposition 2 the group HN−1(M(N, 2)) is (N−1)!-dimensional. In
the Goresky–MacPherson formula this group corresponds to the sum-
mand HN−1(Υ(I), ∂Υ(I)) ≡ HN−1(∆(I), ∂∆(I)) where I is the entire
set {1, . . . , N}.

A nice description of the cohomology group of the same complex is
given in [71].

A natural generalization of this complex is provided by complexes of
i-connected graphs, see [82], [9], [69], [70]. They also have important
applications in the differential and homotopy topology.

In a similar way, if we consider the k-equal arrangement A(N, k) in
RN or in CN (see §2) then the smallest plane LI is again the line {x1 =
· · · = xN}. The corresponding simplex ∆ has

(
N
k

)
vertices, its faces are

the k-hypergraphs with the same N nodes 1, . . . , N, and the marginal
subcomplex ∂∆ ⊂ ∆ is the complex of not connected hypergraphs. The
homology groups of this complex (and of the complement M(N, k) of
the arrangement) were studied by A. Björner and V. Welker [19], see
also [17], [18].

In particular, the following facts were proved.

Theorem 7 (see [19]). For any k ≥ 2 the simplex with
(

N
k

)
vertices

reduced modulo the union of faces corresponding to non-connected k-
hypergraphs is homotopy equivalent to a wedge of spheres, in particular
all its homology groups are torsion-free. Moreover, these groups can be
nontrivial only in dimensions equal to N − (k − 2)t− 2, 1 ≤ t ≤ N/k.
The ranks of these groups are multiples of

(
N−1
k−1

)
, and in the higher

possible dimension d = N − k the rank of HN−k is equal to
(

N−1
k−1

)
.

A general formula for these ranks also is given in [19] (see Theorem
4.5 there), but it is much more complicated.

Remark (see [18]). The topology of the real variety M(N, k) ⊂ RN

gives good estimates in the following olympic problem. Suppose we
have N coins, some of which are fake, and a weighbridge. It is natural
to assume that all regular coins are of the same weight, and the weights
of all fake are different from one another and from the weight of regular
coins. Given some k ≥ 2, how many measurements is it enough to do
to check that we have at least k regular coins?

Indeed, any measurement separates the space RN of all possible col-
lections of weights into three convex parts: two half-spaces and the
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hyperplane separating them. Any sequence of measurements together
with their results specifies some cell (maybe empty) in RN . Any cor-
rect strategy of solving our problem (such strategies are called decision
trees) should separate our space RN into such cells, any of which be-
longs to either the arrangement A(N, k) or to its complement M(N, k).
Thus the number of generators of the total homology group of either
of these spaces provides a lower estimate of the number of cells, and
hence of the complexity of the decision tree.

Among the origins of the theory of arrangements there is one class
of olympic problems more: that on the cut cake, see [93].

10. Combinatorial realization of cohomology classes of
complements of arrangements

The Goresky–MacPherson formula (8) has the following direct re-
alization (found essentially in [96], the present form given in [55]).
Suppose that an Euclidean metric is fixed in RN .

Consider a constant vector field V (“power”) in RN . For any r-
dimensional simplex of the order subcomplex Υ(I)/∂Υ(I) (i.e. for a
strictly decreasing sequence of r+1 planes LI1 ⊃ LI2 ⊃ . . . ⊃ LIr ⊃ LI)
and any point x ∈ LI consider the sequence of r+1 rays in RN issuing
from x, namely the trajectories of x in the planes RN , LI1 , . . . , LIr under
the action of this power. (We can realize V as the gradient field of a
linear function θ : RN → R, then these rays will be the trajectories of
gradients of restrictions of θ to these planes.)

Definition. The constant vector field V is in general position with
respect to the plane arrangement L if for any I and any simplex in
Υ(I)/∂Υ(I) these rays are linearly independent in RN .

It is easy to see that such vector fields form an open dense subset
in the space RN of all constant fields. Let us assume that our field
V is generic. Then for any I and simplex as above the convex hull
of our r + 1 rays is linearly homeomorphic to an (r + 1)-dimensional
octant with origin at x. Such octants over all x ∈ LI sweep out an
(r + 1 + dim LI)-dimensional wedge in RN .

If we have a r-dimensional cycle α of the complex ∆(I)/∂∆(I),
then the sum of (uniformly oriented) corresponding wedges is a rel-
ative cycle in RN(mod L), and the relative homology class ∇α ∈
Hr+1+dim LI

(RN , L) of the latter cycle depends on the class of α in
H∗(∆(I), ∂∆(I)) only (up to a sign depending on the choice of the
orientation of the plane LI).
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Finally we take the class in H∗(RN \ L) Poincaré–Lefschetz dual to
∇α in RN \L, i.e. defined by intersection indices with the relative cycle
∇α.

This realization of the formula (8) depends on the choice of the direc-
tion V , but not very much. Two elements in H̄∗(RN , L), corresponding
in this way to one and the same class α ∈ H∗(∆(I), ∂∆(I)) via differ-
ent generic vector fields can differ by elements of lower filtration only:
more precisely, by sums of similar classes coming from the summands
H∗(∆(J), ∂∆(J)) corresponding to planes LJ strictly containing LI .

Moreover, if all planes LI have codimensions ≥ 2 in all greater planes
LJ , then the isomorphism (8) is canonical (up to the choice of orienta-
tions of all planes LI): indeed, in this case the space of generic vectors
fields V is path-connected.

By the analogy with the knot theory (cf. [63], [85]), such realizations
of elements of H∗(RN \L) can be called their combinatorial expressions.

This construction allows one to investigate the multiplicative struc-
ture in H∗(RN \ L), in particular to determine this structure in the
associated graded ring.

11. Multiplication in cohomology.

Let us rewrite the equality (8) as that for associated graded groups:

(17) GrH∗(RN \ L) ∼= ⊕Hk−∗−1−dim LI
(Υ(I), ∂Υ(I))

This isomorphism is canonical (up to the choice of orientations of
planes LI), and the multiplication in the associated graded ring is as
follows.

Let us consider two planes LI , LJ ⊂ L and two cycles A,B of the
quotient complexes Υ(I)/∂Υ(I) and Υ(J)/∂Υ(J), dim A = u, dim
B = v, represented by chains (=linear combinations of simplices) of
subcomplexes Υ(I),Υ(J) with boundaries in ∂Υ(I) and ∂Υ(J) only.
The shuffle product A♦B of these cycles is defined as follows (see [90]).

If LI and LJ are not transversal (i.e. belong to some proper plane
in RN) or have no intersection points, then A♦B = 0. Now suppose
that LI and LJ are transversal and LK = LI ∩ LJ 6= ∅ (we can take
K = I∪J). Let a ⊂ A and b ⊂ B be some two simplices with u+1 and
v + 1 vertices respectively, i.e. some decreasing sequences of intersec-
tion planes of L having {LI} and {LJ} as their last elements. Consider
all

(
u+v+2

u+1

)
possible shuffles of these sequences, i.e. all (non-monotone)

sequences of u + v + 2 planes in which all elements of a and b appear
preserving their orders in the sequences a and b. To any such shuffle a
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monotone sequence corresponds: any element λ of the shuffle coming
from the sequence a (respectively, b) should be replaced by the inter-
section of the corresponding plane with the last plane coming from the
sequence b (respectively, a) and staying before λ in the shuffle. The
obtained monotone sequence is by definition an (u+v+1)-dimensional
simplex of the order complex Υ(K). The shuffle product of our sim-
plices a and b is defined as the sum of all such simplices taken with
signs equal to parities of the corresponding shuffles (i.e. numbers of
transpositions reducing them to the simple concatenation of sequences
a and b) multiplied by one sign more, which depends on multi-indices
I, J and K only and is defined by the comparison of the fixed coorien-
tation of the plane LK in RN with the ordered pair of coorientations
of LI and LJ . The shuffle product of cycles A and B is defined by
linearity. It is a relative cycle defining an element of the summand in
the right-hand part of (17) corresponding to the plane LK ; this ele-
ment depends only on homology classes of A and B in the summands
corresponding to LI and LJ .

Theorem 8 (see [90], [91], [25], [29]). The isomorphism (17) commutes
the shuffle product in its right-hand part and the multiplication in its
left part obtained from the usual cohomological multiplication. If all
planes LI have codimensions ≥ 2 in all greater planes LI′, then the
same is true for the isomorphism (8) and the multiplication in the ring
H∗(Rm \ L) itself, and not in its graded ring only.

This is a corollary of the explicit construction of relative homology
classes described in the previous section. Indeed, the multiplication
in the cohomology ring of an oriented manifold M can be realized as
follows. Given two classes α, β ∈ H∗(M), we take Borel–Moore cycles
[α], [β] Poincaré dual to them and meeting transversally, take their
intersection [α] ∩ [β] supplied with natural orientation, and consider
the cohomology class Poincaré dual to this intersection.

Given two planes LI , LJ of our arrangement and classes

α ∈ H∗(Υ(I), ∂Υ(I)), β ∈ H∗(Υ(J), ∂Υ(J)),

we can realize corresponding elements in the left part of (8) with the
help of different constant vector fields VI , VJ in RN that are in general
position to one another if LI and LJ have nonempty transversal inter-
section; if not then these directions should be opposite to one another
and transversal to a hyperplane separating or containing these planes.

Proposition 4 follows immediately from Theorem 8.

Exercise: deduce the (Orlik–Solomon) Theorem 2 from this one.
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12. Salvetti complex for complexified real hyperplane
arrangement

Consider the complexification of a real affine hyperplane arrange-
ment, i.e. the set of complex hyperplanes Lj ⊂ CN , j = 1, . . . ,m,
distinguished by the same linear equations fj(x) = 0, fj(RN) = R. Its
complement CN \ L is an N -dimensional Stein manifold, in particular
is homotopy equivalent to a cell complex of dimension ≤ N . M. Sal-
vetti [65], following some ideas of [28], has constructed explicitly an
N -dimensional simplicial complex, embedded into the space CN \ S
as its deformation retract. Here we give an easy description of this
construction in the terms of the dual complex.

For any one of our planes Lj, its complement CN \ Lj can be sub-
divided into four cells +j −j, ↑j ↓j, given by conditions Refj > 0,
Refj < 0, {Refj = 0, Imfj > 0} and {Refj = 0, Imfj < 0} respec-
tively. To any of 4m possible sequences of m signs +,−, ↑ and ↓ we
associate the intersection of corresponding cells (like e.g. (+1) ∩ (↑2

)∩ (−3)∩ . . .∩ (↑m)). This intersection of several real affine planes and
open half-spaces in CN is homeomorphic to a cell. By definition it lies
in CN \ L, and any point of CN \ L belongs to exactly one cell of this
sort.

Lemma 3. The subdivision of the manifold CN \ L into cells corre-
sponding to all possible sequences of signs +,−, ↑ and ↓, augmented
with one 0-dimensional cell, defines a cellular structure on the one-
point compactification of this manifold.

The proof is elementary, cf. [33]. �

The Salvetti complex (as a topological space) is just the complex dual
to this cell decomposition. As a combinatorial object, it is defined as
a certain subdivision of this dual complex.

This construction was used in [37] for defining some topological in-
variants of abstract oriented matroids (see §14 and [14]). See also [20].

The above described cell decomposition of CN \ L can be simpli-
fied very much if our arrangement has only normal crossings. In this
case to any plane LI distinguished by several equations fi = 0, i ∈ I,
fi(RN) ⊂ R, we associate the imaginary wedge in CN distinguished by
the conditions {Re fi = 0, Im fi > 0}, i ∈ I. Denote by ∇I this wedge
from which its intersections with L and with all smaller wedges ∇J ,
J % I, are removed.
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Lemma 4 (see [75]). If L is the complexification of a real hyperplane
arrangement with normal crossings, then any nonempty set ∇I is home-
omorphic to a cell of dimension 2N − #I, and all these sets form a
cellular decomposition of the one-point compactification of CN \ L.

All the incidence coefficients of the corresponding cell complex are
trivial, therefore the Borel–Moore homology group H̄∗(CN \ L) is free
Abelian, with the rank of H̄2N−p equal to the number of nonempty
planes LI with #I = p. Of course, the last statement follows also
from the Goresky–MacPherson formula, but the cones ∇I provide an
especially easy its realization.

On combinatorial and topological properties of hyperplane arrange-
ments see also [72], [73], [74], [75], [34], [35], [36], [37], [39], [15]–[20],
[38], [43], [57], [58], [59], [60], [93]–[96].

13. Homology of complements of arrangements with
twisted coefficients. Resonances

Things become slightly more difficult if we consider homology groups
with coefficients in local systems.

Definition. A linear local system on a (locally simply connected)
topological space X (say, X = CN \ L) is a vector bundle π : M → X
with fiber C1 supplied with a flat connection respecting the C-module
structure in the fibers.

In other words, for any point x ∈ X, any sufficiently small neighbor-
hood U of x in X and any point a ∈ π−1(x) we have a distinguished
section of our bundle over entire U equal to a at x; this section will be
the same if we start from some other point x′ ∈ U and the intersection
point a′ of the old section with the fiber π−1(x′). For any two points
a1, a2 of π−1(x) the distinguished section equal to a1 + a2 at x consists
of fiber-vise sums of images of sections equal to a1 and a2 at x, and
for any λ ∈ C the section equal to λa at x consists of multiplied by λ
images of the section equal to a at x.

An i-dimensional singular simplex of the local system Θ is a contin-
uous map of a standard simplex ∆i into the total space M of the fiber
bundle, respecting the flat connection: if a point ξ of the simplex goes
to some point a ∈ π−1(x), x ∈ X, then some small neighborhood of ξ
goes into the image of the corresponding section over a small neighbor-
hood of x. The group of i-dimensional singular chains with coefficients
in the local system Θ is defined as the quotient group of the Abelian
group generated by all such locally horizontal maps ∆i → M through
the following conditions:
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a) if we have two simplices φ1, φ2 : ∆i →M with the same projection
(i.e. π ◦φ1 ≡ π ◦φ2) then the sum φ1 +φ2 of them is equal to the third
simplex φ3 such that φ3(ξ) = φ1(ξ) + φ2(ξ) for any ξ ∈ ∆i;

b) for any λ ∈ C the singular simplex φ taken with coefficient λ is
equal to the singular simplex mapping any point ξ to λφ(ξ).

The boundary of such a singular simplex is defined in the obvious way
and is a sum of singular simplices (of reduced dimension) of the same
local system. We can consider the complex of finite chains (i.e. finite
linear combinations of singular simplices) or locally finite chains (i.e.
locally finite combinations whose projections to X also are locally finite
chains there). The corresponding homology groups will be denoted by

Hi(X,Θ) and H lf
i (X,Θ), respectively; they are called homology groups

of (or with coefficients in) the local system Θ.
These groups are connected by the canonical homomorphism

(18) Hi(X,Θ) → H lf
i (X,Θ).

In particular if our bundle M is the direct product X × C1 with
the obvious flat connection then we get the usual homology groups
Hi(X,C) and the Borel–Moore homology groups H̄i(X,C) respectively.
The cohomology groups H i(X,Θ), H i

lf (X,Θ) are defined in the stan-
dard way as homology groups of conjugate complexes.

Any linear local system defines in the obvious way the monodromy
homomorphism of the fundamental group π1(X) (or, equivalently, of
H1(X)) into the group Aut(C1) ≡ C∗: extending our sections over a
closed loop in X we multiply the fiber by the monodromy coefficient
corresponding to this loop.

To any local system Θ there corresponds its dual system Θ∗, whose
fibers are identified with spaces of C-linear functions on the fibers of
the initial system, and this identification respects the flat connections
in both. The monodromy coefficients defined by one and the same
element of π1(X) in dual local systems are inverse to one another (i.e.
their product is equal to 1). If the space X is a d-dimensional oriented
manifold then the Poincaré isomorphisms

(19) H lf
i (X,Θ) ' Hd−i(X,Θ∗), H i

lf (X,Θ) ' Hd−i(X,Θ
∗)

relate its homology and cohomology groups with coefficients in dual
local systems. (Moreover, a special local system Or, called the orien-
tation sheaf makes sense of the Poincaré isomorphisms on non-oriented
manifolds: this is true even if Θ and Θ∗ are the constant local system.
Namely, in any of two equations (19) the right-hand term should be
replaced by the similar term in which the coefficient local system is
not Θ∗ but Θ∗⊗Or: its monodromy coefficients coincide with these of
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Θ∗ up to a sign + or − depending on whether the corresponding loops
preserve the orientation of X or not.)

Local systems and their homology groups are an adequate tool for
the calculus of ramified differential forms and their integrals, see [26].
Suppose that we have a closed analytic i-form on X, such that the
analytic continuation along any closed path c in X multiplies it by
a complex number, and this number τ(c) depends on the class of our
path c in the group H1(X) only. (An important class of such forms will
be considered in §15.) Then the integration cycles for this differential
form are well defined as elements of the i-dimensional homology group
of X with coefficients in a local system, whose monodromy coefficient
at any path c is equal to 1/τ(c).

Now suppose that we have a hyperplane arrangement L = {L1, . . . , Lm}
in CN , m ≥ N, X = CN \L, and a linear local system Θ over X; let us
denote by τ1, . . . , τm the monodromy coefficients of this system corre-
sponding to small circles going around these hyperplanes in the positive
direction.

Theorem 9 (see [75], [7], [88]). Let L be a generic hyperplane arrange-
ment in CN . Then

A. If there is at least one coefficient τi not equal to 1, then the groups
Hi(X,Θ), H lf

i (X,Θ) are nontrivial only for i = N and their dimen-
sions are equal to

(
m−1

N

)
.

B. The map (18) between these groups is an isomorphism if and only
if all numbers τi (i = 1, . . . ,m), and their product τ0 ≡ τ1 · . . . · τm are
not equal to 1.

C. If all these numbers are different from 1 and the arrangement L
is the complexification of a real one, then the group H lf

N (CN \ L,Θ) is
freely generated by classes of all bounded components of RN \ L.

In the last case of a complexified real generic hyperplane arrangement
these facts (the dimensions of both groups, the bijectivity of the map
(18), and the assertion of item C) were proved first by K. Aomoto [2]
in much stronger assumptions on the coefficients τj.

For non-generic arrangements the set of exceptional values of τ ≡
(τ1, . . . , τm) for which the map (18) is not bijective, is more complicated,
see in particular Theorem 10 below. Since [75] such values are called
resonances of our local system.

Example. Let be N = 1, and L the collection of m different points
L1, . . . , Lm. If at least one of corresponding coefficients τi is different
from 1 then the group H lf

1 (C1 \L,Θ) is generated by the classes of any
m − 1 of m parallel rays ∇j connecting these points with the infinity,
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Figure 6. The cycle “double loop”

see Fig. 5. Indeed, all these m rays and the complement of the union
of them are the cells covering entire C1 \L. We can calculate the group
H lf
∗ (C1 \ L,Θ) with the help of this cellular structure. It is easy to

see that for some natural choice of generators of this cellular complex
(i.e. of pairs {a cell, a distinguished section of the local system over
it}) the incidence coefficients of the unique 2-dimensional cell with all
1-dimensional ones are equal to τ1 − 1, . . . , τm − 1. This calculates the
group H lf

∗ (C1 \ L,Θ); the structure of the “absolute” group H∗(C1 \
L,Θ) follows by the Poincaré duality from the similar statement for
the group H∗(C1 \ L,Θ∗).

If τj = 1 then a small circle around the point Lj is a nontrivial
element of the group H1(C1 \ L) (because its intersection index with
the ray ∇j is not equal to zero). On the other hand it obviously is
homological to zero via a locally finite 2-chain bounded by it, therefore
the kernel of the map (18) is nontrivial. If τ1 · . . . · τm = 1 then the
same is true for the big circle embracing all points Lj.

If all numbers τ1, . . . , τm, and their product τ0 ≡ τ1 · . . . · τm are
different from 1 then the operator inverse to (18) is provided by double
loops, i.e. cycles shown in Fig. 6 a). Such a cycle in C1 \ L goes twice
(and in opposite directions) around any of our two singular points Li,
Lj, therefore it can be lifted to a cycle of the local system Θ and defines
an element of H1(C1 \ L). Since (1− τi)(1− τj) 6= 0 the image of this

cycle in H lf
1 (C1 \ L) is equal to the class of the interval (Li, Lj) taken

with some nonzero coefficient.

Now let us prove Theorem 9 in the case of arbitrary N .
A. Consider again the universal hyperplane m-arrangement, i.e. the

coordinate cross †m ⊂ Cm, and the local system Θ̃ on Cm \ †m with
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the same monodromy coefficients τj. If τj 6= 1 for at least one j then

the group H∗(Cm \ †m, Θ̃) is trivial in all dimensions by the Künneth
theorem in (Cm \ †m) = (C∗)m. Our generic arrangement L ⊂ CN can
be realized as the preimage of †m under some generic affine embedding
CN → Cm; our local system Θ coincides with one induced from Θ̃
by the same embedding. By the Lefschetz theorem (see [41]), our
embedding CN \ L → Cm \ †m is N -connected, in particular induces
an isomorphism of homology groups in all dimensions lower than N .
Thus Hi(CN \L,Θ) is trivial for i < N . By the Poincaré isomorphism

(19) the same is true for all groups H lf
i (CN \ L,Θ) with i > N . The

dimension of these groups in the unique remaining dimension N follows
from the considerations with the Euler characteristic (which does not
depend on the choice of the system Θ).

B. If at least one of numbers τj is equal to 1 then, similarly to the
one-dimensional example, the small circle around the corresponding
plane Lj is a nontrivial element of the kernel of the map (18). If all
numbers τj and their product τ0 are different from 1 then the bijectivity
of (18) follows from a much more general fact.

Proposition 8. Let W be a compact N-dimensional complex algebraic
manifold, and L̃ a finite set of smooth divisors in it having normal
crossings only; let θ be a linear local system on W \ L̃ such that all
the monodromy coefficients corresponding to small circles going around
components of L̃ are different from 1. Then the canonical map

H∗(W \ L̃, θ) → H lf
∗ (W \ L̃, θ)

is an isomorphism in all dimensions.

In particular if W \ L̃ is a Stein manifold then both groups can be
nontrivial only in the dimension N . This proposition follows easily
from the Leray spectral sequence for sheaf cohomology, see e.g. [7],
[88].

Our assertion on bijectivity of (18) follows from this proposition if
we take W = CPN and L̃ = the union of L and the improper plane.

C. If our arrangement is the complexification of a real one, then the
reversing of the map (18) can be visualized by the “multidimensional
double loops” generalizing Fig. 6 a). The construction of them was
announced in [75] and described in [88]. Namely, let ∆ ⊂ RN be a
bounded connected component of RN \ L. The corresponding “double
loop” is an N -dimensional manifold κ(∆) together with an immersion
K : κ(∆) → CN \ L such that

a) this immersion can be lifted to a map into the space M of our
local system Θ, locally flat with respect to its connection; in particular
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it defines (up to a scalar coefficient depending on the choice of this
lifting) an element of the group HN(CN \ L,Θ);

b) the map (18) sends this element into the homology class of the
component ∆ taken with some coefficient, which is different from zero
if and only if all monodromy coefficients τj corresponding to all walls
of our polytope ∆ are not equal to 1.

This cycle can be constructed with the help of the embedding of
(CN , L) in the space (Cp, †p) of the universal p-arrangement, where p
is the number of walls of ∆. First, we construct an immersion R1 →
C1 \ {0} shown in Fig. 6 b): it coincides with the identical map in the
segment [+ε,+∞), with the map {x→ −x} in the segment (−∞,−ε],
and maps the segment [−ε,+ε] to a small loop around the origin. The
direct product of m copies of such immersions defines an immersion
Ξp : Rp → Cp \ †p that covers the positive octant in Rp ⊂ Cp with
multiplicity 2p.

Let ψi, i = 1, . . . , p, be the linear functions CN → C distinguishing
the planes Lj bounding the component ∆; they can be normed so that
all of them take positive values in ∆. These functions (ψ1, . . . , ψp)
define an embedding Ψ : CN → Cp. The desired cycle κ(∆) is induced
by this map from the universal immersion Ξp. Namely, κ(∆) is defined
as the subset in the direct product Rp × (CN \ L) consisting of such
pairs (t, x) that Ξp(t) = Ψ(x). The immersion K is the restriction of
the obvious projection Rp × (CN \ L) → CN \ L.

Remark. Similar “double loops” reverse the map (18) also in the most
general situation described in Proposition 8, but their construction
is much more complicated, see §I.10 in [88]. (Direct construction of
similar cycles in some interesting particular cases was given in [61].) In
Calculus this reversion is called the regularization of improper integrals,
see also §15 below.

Let us consider a generic linear function f : RN → R whose values
at all 0-dimensional planes LJ are different, and associate with any
bounded component ∆ its vertex L(∆) at which the function f |∆ takes
its supremum. Let ∇(∆) be the N -dimensional imaginary wedge ∇J in
CN \L with the corner at L(∆), see the last paragraph of §12. It is not
difficult to show that the number of bounded connected components ∆
is equal to dimH∗(CN \L,Θ) (a proof of a more general statement see
after Theorem 10 below). Statement C of Theorem 9 is a corollary of
the following proposition.

Proposition 9 (see [75]). If all monodromy coefficients τj, j = 1, . . . ,m,
are different from 1, then
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a) the group HN(CN \L,Θ) is freely generated by the classes of “dou-
ble loops” κ(∆) corresponding to all bounded components ∆;

b) the group H lf
N (CN \L,Θ) is freely generated by the classes of imag-

inary wedges ∇(∆) corresponding to these components.

We shall prove simultaneously assertion a) for our local system Θ
and assertion b) for the dual system Θ∗. Namely, let us lift the wedges
∇(∆) to the total space M∗ of the latter system. Then the intersec-
tion indices 〈κ(∆1),∇(∆2)〉 are well-defined for all pairs of components
∆1,∆2. It is easy to calculate that the matrix consisting of all such in-
tersection indices is triangular with nonzero numbers on the diagonal;
in particular it is non-degenerate. �

Many assertions of Theorem 9 and Proposition 9 can be extended
to more general situations. However, it this case the set of resonant
values T = (τ1, . . . , τm) becomes more complicated.

Namely, let us consider the variety L̂ ⊂ CPN consisting of the sup-
port L ⊂ CN of our arrangement and the improper plane. If this variety
is not a divisor with normal crossings then we take some its resolution
(W, L̃) → (CPN , L̂) in the sense of [44]. Spaces W \ L̃, CPN \ L̂ and
CN \L are diffeomorphic, hence we can lift the local system Θ to W \L̃.
For any irreducible component L̃j of L̃, the monodromy coefficient cor-
responding to a small circle around it is a monomial of the initial coef-
ficients τ1, . . . , τm. Our collection T = (τ1, . . . , τm) is called resonant if
the value of some of these monomials is equal to 1 for any resolution of
L̂. The trivial monomials τ1, . . . , τm and τ−1

0 ≡ (τ1 · . . . · τm)−1 always
appear among these monomials: they correspond to proper images of
initial planes Lj and the improper plane. Proposition 8 implies im-
mediately that if the set T is non-resonant then the map (18) is an
isomorphism.

Theorem 10 (see [75]). Suppose that our hyperplane arrangement L ⊂
CN is the complexification of a real one and has only normal crossings
in CN , and all numbers τ1, . . . , τm are not equal to 1. Then

A. Both groups Hi(CN \ L,Θ), H lf
i (CN \ L,Θ) are nontrivial only

for i = N and their dimensions are equal to the number of bounded
components of RN \ L.

B. The group Hi(CN\L,Θ) is freely generated by the classes of double

loops corresponding to all these components, and the group H lf
i (CN \

L,Θ) is freely generated by the classes of corresponding complex wedges
∇(∆).
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C. If moreover the collection of numbers T = (τ1, . . . , τm) is non-

resonant, then the group H lf
i (CN \L,Θ) is freely generated also by the

classes of these bounded components.

A proof of the statement A. follows from the cell decomposition
considered in the last part of §12. Indeed, the corresponding cellu-
lar complex calculating the homology group H lf

i (CN \ L,Θ) becomes,
after some norming of its canonical generators, isomorphic to the or-
der complex of our arrangement L or, equivalently, of its real part
L∩RN ≡ {Lj ∩RN}. By formula (11), the latter complex is homotopy
equivalent to the support L ∩ RN itself, which is obviously homotopy
equivalent to the bouquet of spheres corresponding to all these bounded
components. The proof of statements B. and C. is the same as for the
case of generic arrangements.

Remark. An analog of the deRham theory calculating the homology
of complex manifolds (e.g. of spaces CN \ L) with coefficients in local
systems was developed in [26], see also [30], [2] and §8 in [92].

14. Matroids and configuration spaces

The simplest example of a configuration space is the space M(N, 2)
of collections of N different points in C1, see §2. In more complicated
examples, we can consider collections of subvarieties in some manifolds;
a configuration space is the family of all collections such that the pair
(the manifold, the union of varieties) has a fixed topological type. Such
configuration spaces appear often in integral geometry and theory of
special functions, see [62], [34], [75], [88]. An important class of such
functions, called general hypergeometric functions, appears if all our
varieties are hyperplanes in CN or CPN , see [34], [73]. In this case
the topology of configuration spaces has especially deep relations with
the algebraic geometry. It is convenient to formulate these relations in
terms of the theory of matroids.

The notion of a matroid is a formalization of dimensional properties
of a central hyperplane arrangement, see [50] and [39].

Definition. A matroid is a finite set U supplied with a natural-valued
function r on the set 2U \ {∅} of all non-empty subsets of U such that

1) for any such subset I ∈ U we have 1 ≤ r(U) ≤ (the cardinality of
I);

2) if I ⊂ J then r(I) ≤ r(J);
3) for any I, J we have r(I ∩ J) + r(I ∪ J) ≤ r(I) + r(J).



TOPOLOGY OF PLANE ARRANGEMENTS AND THEIR COMPLEMENTS 31

Any central hyperplane arrangement L = {L1, . . . , Lm} defines a
matroid, whose elements correspond to the planes Li and for any col-
lection I of these elements r(I) is the codimension of the intersection
LI of all planes from this collection.

In this case the arrangement L is called a realization of the corre-
sponding matroid.

There exist matroids having complex realizations (i.e. realizations
by collections of complex hyperplanes in CN) but no real realizations,
and matroids having realizations over finite fields but no complex re-
alizations, etc. (On the other hand, any realization of a matroid over
some field defines also its realization over any extension of this field: in
particular the complexification of a real realization provides a complex
realization).

Specifical properties of real affine hyperplane arrangements (roughly
speaking, the fact that two 0-dimensional planes LI , LI′ can lie either
to one side of any hyperplane not connecting them or to different sides)
are formalized in the notion of an oriented matroid, see [14].

The next important question is as follows: given a matroid, what is
the set of all its realizations over a given field F?

The study of realizations by central hyperplane arrangements in C3

(or, equivalently, of arbitrary line arrangements in CP2) is deeply con-
nected with the theory of integer algebraic varieties (i.e. complex vari-
eties defined by equations with integer coefficients), see [56], [57].

Accordingly to [56], [57], for any integer algebraic subvariety in some
Cn there exists a matroid such that the space of its realizations by plane
arrangements in C3 is homotopy equivalent to our subvariety.

This relation allows one to construct spaces of realizations having
very delicious properties: these properties reflect the similar properties
of the corresponding algebraic varieties.

For instance, the equation x2 = −1 is related with a matroid having
complex realizations but no real realizations. The equation x2 +y2 = 0
is related with such a matroid that the real dimension of the space of
its real realizations is less than the complex dimension of the space of
its complex realizations; in particular the latter space is singular, see
[74].

The first of these examples (corresponding to the equation x2 = −1)
is constructed as follows.

The first four elements L1, . . . , L4 are in general position (i.e., r({I})
is equal to 1 for any 1-element set I ⊂ {1, 2, 3, 4}, to 2 for any 2-element
set and to 3 for 3- and 4- element sets). In the terms of possible
realizations by lines in CP2 or RP2 this means that these lines meet
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Figure 7. Imaginary line arrangement

in general position in the standard sense: none three of them meet
at one point. Given a realization of our matroid including these four
elements, they fix a coordinate system in P2: we can take L1 as the
line “at infinity”, L2 as the line {x = 0}, L3 as the line {y = 0}, and
choose the scaling of coordinates in such a way that the points L2 ∩L4

and L3 ∩ L4 have coordinates (0, 1) and (1, 0) respectively.
Further we add the element L5 with unique non-generic condition

r(L3, L4, L5) = 2, i.e. the corresponding three lines of any realization
in P2 should intersect at one point. The intersection of this line L5 with
L2 will be some point with coordinates (0, α). The next line L6 should
pass through this intersection point and be parallel to L4 (in the terms
of the matroid these conditions are expressed as r(L2, L5, L6) = 2 and
r(L1, L4, L6) = 2 respectively). The point L6∩L3 will have coordinates
(α, 0). The next line L7 passes through this point and is parallel to L5,
i.e. we have conditions r(L3, L6, L7) = 2 and r(L1, L5, L7) = 2. Its
intersection point with the line L2 has coordinates (0, α2). The next
line L8 passes through the last point and is parallel to L6 and L4, i.e.
we have r(L2, L7, L8) = 2 and r(L1, L4, L6, L8) = 2. Its intersection
point with the line L3 has coordinates (α2, 0). The next line L9 should
pass through the points (1, 0) and (0, α2), i.e. r(L3, L4, L5, L9) = 2 and
r(L2, L7, L8, L9) = 2. The line L10 should pass through the points (0, 1)
and (α2, 0), i.e. r(L2, L4, L10) = 2 and r(L3, L8, L10) = 2.

Finally, we claim that the lines L9 and L10 are parallel (i.e. r(L1, L9, L10) =
2): the intersection point covered by the “black hole” in Fig. 7 should
lie at the infinity. This is possible only if α4 = 1. But α 6= 1 (because
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L5 6= L4) and α2 6= 1 (because L8 6= L4). Therefore any complex
realization of this matroid corresponds to a number α with α2 = −1.

15. Applications in integral geometry: general
hypergeometric functions

The theory of general (or multidimensional) hypergeometric func-
tions was initiated by K. Aomoto [1], [2] and I.M. Gelfand [34]. These
functions form an important class of functions given by integral trans-
formations: they represent all these functions to the same extent as the
plane configurations represent all algebraic varieties.

The starting point of this theory is the Gauss’ hypergeometric inte-
gral

(20) Γ(a;α1, α2, α3) ≡
∫ 1

0

zα1(z − 1)α2(z − a)α3dz,

where αj and a are complex numbers, a 6∈ [0, 1]1.
This integral converges absolutely if Reα1 > −1, Reα2 > −1. For

any fixed a it is a holomorphic function in the domain of the space C3

of exponents α = (α1, α2, α3) distinguished by these inequalities. The
analytical continuation of this function to the space of all α ∈ C3 is
a meromorphic single-valued function whose poles are the hyperplanes
on which either α1 or α2 is a negative integer number.

On the other hand, fixing α and moving a we obtain an analytical
function on a with a ramification at points 0 and 1, satisfying the
famous hypergeometric equations, see [11]. If the exponents α are
generic, then the space of solutions of these equations at any point a
is two-dimensional and is spanned by different leaves of the analytic
continuation of this function.

Much more generally, we can consider the integral

(21) Γ(λ;α) =

∫
∆

fα1
1 · . . . · fαk

k dz1 ∧ . . . ∧ dzn,

where fj are some polynomial functions CN → C, depending analyti-
cally on parameters λ ∈ Cm, αj are complex exponents, and integration
is taken over some relatively closed (i.e. locally finite) but, generally,
not compact (i.e. not finite) n-dimensional cycles in the space of non-
zero values of the integration function (or, more precisely, in the space
of a covering over this space in which our function becomes single-
valued).

1Gauss himself wrote it in a different but equivalent form
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An important class of such problems is as follows. We fix some
matroid and allow the functions fj be the linear functions CN → C
whose zero sets form all possible complex realizations of this matroid.

The integral (21) also defines a meromorphic function on α (for fixed
a), cf. [12], and a branching analytical function on λ for fixed α; the set
of its ramification is the set of such values of the parameter λ, that the
corresponding functions fj have the topologically “non-generic” sets of
zeros (i.e. the rank function r of the plane arrangement “jumps”).

Again, the main problems here are as follows.
1) to describe the polar set of these integrals, considered as mero-

morphic functions on α;
2) to describe the ramification of these integrals for fixed α and

moving parameter λ of the set of functions fj;
3) to find the number of linearly independent functions on the pa-

rameter spaces Cm, given by such integrals.
The solution of these analytical problems is closely related with the

following topological ones.
A) the calculation of homology groups related with our collections

of functions fj and containing all possible integration chains ∆;
B) the study of the maps similar to (18) for such groups;
C) the study of the topology (especially of the fundamental group)

of the configuration space of all realizations of our matroid;
D) the study of the homology vector bundle over this configuration

space, whose fiber over an arrangement is the corresponding homol-
ogy group considered in A); especially the study of the monodromy
representation of the fundamental group from C) in the fiber of this
bundle.

Let us consider all these problems (and their applications) for the
classical integral (20). In this case the solution of the problem 1) follows
from Fig. 6a): if α1 and α2 are not integer, then our improper integral
along the interval (0, 1) can be replaced by a similar integral along the
“double loop” taken with the coefficient 1/(1−e2πiα1)(1−e2πiα2), which
is regular.

Similarly, in the general case of the integral (21) if the collection of
exponents τj ≡ e2πiαj is not resonant in the sense of §13 then any inte-
gration cycle can be regularized by a “multidimensional double loop”,
see [88].

Remark. The latter assertion is not a formal corollary of Proposition
8, i.e. of the invertibility of the map (18) for non-resonant exponents.
Indeed, in the study of integrals as functions of these exponents, the
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Figure 8. Monodromy of the hypergeometric integral

integration cycles cannot be considered as elements of the group

(22) H lf
N (CN \ L,Θ),

because the definition of this group involves some factorization depend-
ing on exponents. Still, the geometrical construction of “double loops”
works even in this case and allows us to regularize the integrals.

On contrary, if we fix the exponents αj then we can consider the
integration cycles as elements of the group (22). The dimension of
the space of different integral functions (considered as functions on
parameters λ of functions fj only) is then no greater than the dimension
of this group. This estimate can be not sharp in some exotic examples,
however for many important matroids it is sharp. For instance it is
so for matroids corresponding to generic arrangements and, moreover,
to all arrangements with normal crossings in CN but generally not in
CPN , see [75].

The proof (see [88]) is based on the study of the monodromy action
in the homology bundle: starting from a single integration cycle and
acting on it by all elements of the monodromy group we can obtain a
collection of cycles generating the whole group (22).

Example. In the case of the integral (20) the configuration space is the
punctured plane C1 \{0, 1} of all admissible values of the parameter a.
Let us move this value along a closed loop in this space going around
some singular point, say the point 1. Deforming simultaneously the
integration cycle (0, 1) in such a way that at no instant it intersects
singular points 0, 1 and the current value of a, we get the cycle shown
in Fig. 8 right. The integral of type (20) along this cycle is equal to
the analytical continuation of the initial integral (20) along our loop in
the parameter space. The difference between this cycle and the initial
one is equal to the interval (1, a) passed in two opposite directions on
two different leafs of the Riemann surface on which our integration
form is single-valued. If α3 is not integer, then the integral along this
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cycle is not identically equal to zero, and we get the second integral
function independent on the first one. Since the dimension of the group
H lf

1 (C1\{0, 1, a},Θ) is equal to 2, the lower and upper estimates on the
number of linearly independent integral functions coincide and problem
3) is solved in this particular case.

On algebraic properties of analytic functions of this kind see, in
particular, [27] and [38].

Similar (although much more complicated) methods allow us to prove
analogous results in multidimensional situations, see [75], [88]. In par-
ticular if the sets {x|fj(x) = 0} form hyperplane arrangements with
normal crossings in CN and the set of exponents τj ≡ e2πiαj is non-
resonant, then the homological estimate also is sharp, i.e. we have the
full number of linearly independent integral functions.

These and similar functions have wonderful applications in mathe-
matical physics, see e.g. [67], [73].

16. How if the collection of planes is infinite ?

There are many important topological subspaces in RN that can be
represented as continuous families of planes. A great source of such
spaces is the discriminant theory, see [76], [77]. The above-described
strategy of the topological investigation of unions of planes (and com-
plements of such unions), based on simplicial resolutions, works also
in these cases (after appropriate modification). In particular we need
to consider continuous order complexes and construct the conical res-
olutions of such spaces. Here we describe a simple example: that of
determinant varieties.

Let K be any of fields R,C or H. The determinant variety Det(Kn) ⊂
End(Kn) ∼ Kn2

consists of all degenerate operators Kn → Kn.
We construct a resolution of this variety that provides a calculation

of its Borel–Moore homology groups and, by the Alexander duality,
the most complicated calculation of cohomology groups of their com-
plementary spaces GL(K, n).

The tautological resolution of Det(Kn) is defined by elimination of
quantifiers (which is an analog of “taking the sets Sj separately” in
the justification of the inclusion–exclusion formula). Namely, an oper-
ator A belongs to Det(Kn) if ∃ a point x ∈ KPn−1 such that {x} ⊂
kerA. Define the resolution space det1(Kn) as the space of all pairs
(x,A) ∈ KPn−1 × End(Kn) such that {x} ∈ kerA. This space admits
the (tautological) structure of a (n2 − n)-dimensional K-vector bundle
over KPn−1, whose fiber L(x) consists of all A such that {x} ∈ kerA.
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The obvious projection π : det1(Kn) → Det(Kn) is regular over oper-
ators with one-dimensional kernels, but the pre-image of an operator
with dim ker = l is isomorphic to KPl−1.

The situation is very similar to the one considered in the arrangement
theory: the variety Det(K, n) is the union of spaces L(x) in the same
way as the space L was the union of planes Li. Keeping the analogy, we
construct the order complex of all intersections of these spaces L(x). It
is not straightforward because the family of planes L(x) is not discrete,
and moreover the set of such planes passing through one and the same
point of Det(Kn) can be continuous. Indeed, the possible intersections
of several planes L(xj) ⊂ End(Kn) are just the planes of the form L(X)
where X is a subspace of a certain dimension in Kn (i.e. a point of a
certain Grassmannian manifold Gi(Kn), i ∈ [1, n]), and L(X) consists
of all operators whose kernels contain X.

Thus our poset of all planes and their intersections is the disjoint
union of all Grassmann manifolds G1(Kn), . . . , Gn−1(Kn), Gn(Kn). The
continuous order complex of all these Grassmannians is defined as fol-
lows. Consider the join G1(Kn) ∗ . . . ∗ Gn(Kn), i.e., roughly speaking,
the naturally topologized union of all simplices whose vertices corre-
spond to points of different Grassmannians. Such a simplex is coherent
if the planes corresponding to its vertices form a flag. The desired order
complex Ξ(Kn) is the union of all coherent simplices, with topology in-
duced from that of the join. This is a cone with vertex {Kn} ∈ Gn(Kn).
Its link ∂Ξ(Kn) is the union of coherent simplices not containing the
vertex {Kn}.

This link ∂Ξ(Kn) is homeomorphic to the sphere SM , M = 1
2
n(n −

1)(dimR K) + n − 2. (Probably this fact is assumed in Remark 1.4 of
[21], see also [79], [77].) Hence Ξ(Kn) is homeomorphic to a ball.

The conical resolution of Det(Kn) is constructed as a subset of the
direct product Ξ(Kn) × Det(Kn). To any plane X ⊂ Kn there corre-
sponds a subspace Ξ(X) ⊂ Ξ(Kn), namely, the union of all coherent
simplices all whose vertices correspond to planes lying in X. This is a
cone with vertex {X}, and is homeomorphic to a closed ball. Define
the conical resolution δ(Kn) ⊂ Ξ(Kn) × Det(Kn) as the union of the
products Ξ(X) × L(X) over all planes X of dimensions 1, . . . , n. It
is easy to see that the obvious projection δ(Kn) → Det(Kn) induces
a homotopy equivalence of one-point compactifications of these spaces
(indeed, this projection is proper and semialgebraic, and all its fibers
are contractible cones of the form Ξ(X)). On the other hand, the
space δ(Kn) has a nice filtration: its term Fi is the union of products
Ξ(X)× L(X) over planes X of dimensions ≤ i. The term Fi \ Fi−1 of
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this filtration is the total space of a fibre bundle over Gi(Kn). Its fiber
over a point {X} is the space (Ξ(X) \ ∂Ξ(X))× L(X), and is homeo-
morphic to an Euclidean space. Thus the Borel–Moore homology group
of this term can be reduced to that of the base. The spectral sequence,
generated by this filtration and converging to the Borel–Moore homol-
ogy group of Det(Kn) (or, equivalently, to the cohomology group of
the complementary space GL(Kn)), degenerates at the first term (i.e.
Ep,q

1 ≡ Ep,q
∞ ) and gives, in particular, the homological Miller splitting

(23) Hm(GL(Cn)) =
n⊕

k=0

Hm−k2(Gk(Cn))

and similar splittings for K = R and H.
There is a plenty of other problems in which the technology of conical

resolutions works, see [84], [86]. Among them are the theory of knots
and generic plane curves (see the next section), topological study of
spaces of continuous maps, of smooth functions without complicated
singularities, of operators with simple spectra, of nonsingular projective
hypersurfaces...

17. Applications and analogies in differential topology

The space M(N, 2) (see §2) can be considered as the space of all
embeddings to C1 of a finite set of cardinality N . In a similar way we
can consider the space of all smooth embeddings S1 ↪→ Rn, i.e. regular
knots in Rn; if n = 3 then the 0-dimensional cohomology classes of this
space are the knot invariants. We can study these and other cohomol-
ogy classes (in the case of any n ≥ 3) by essentially the same methods
as in §7, 8 (curiously, it was done earlier, see [78]). Consider the space
K of all smooth maps S1 → Rn, define the discriminant Σ ⊂ K as the
space of all maps that are not smooth embeddings, and study the group
H∗(K\Σ). To do it, we take a conical resolution of the discriminant set
Σ. It is possible because this set is swept out by a reasonable family of
subspaces in K. These subspaces are parameterized by all unordered
pairs of points (x, y) ⊂ S1. By obvious reasons these pairs are called

chords, they run over the 2-dimensional chord space B(S1, 2).
For any such pair the corresponding subspace L(x, y) consists of all

maps f : S1 → Rn such that f(x) = f(y) if x 6= y or f ′(x) = 0 if x = y.
Such subspaces form the tautological resolution of Σ. Then we take
the order complex of all possible intersections

(24) L(x1, y1) ∩ L(x2, y2) ∩ ...
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Theory of arrangements Knot theory
Space RN Space K = C∞(S1,Rn)
Union of planes L = ∪Li ⊂ RN Discriminant subset Σ ⊂ K
Set of indices {1, . . . ,m} Chord space B(S1, 2)
A plane Li A subspace L(x, y), x, y ∈ S1

Disjoint union of planes Li Tautological resolution F1σ of Σ
Simplicial resolution L′ of L Conical resolution σ of Σ
Subsets I ⊂ {1, . . . ,m} Combinatorial types of chord
with codimLI = p configurations J with

codimL(J) = pn
A prism L′I A J-block in σ
Künneth isomorphism for Thom isomorphism for the fibration
homology of Ľ′I = ∆̌(I)× LI of pure J-blocks by spaces L(J ′)
Shuffle product formulas of §11 Multiplication formulas by

Kontsevich (for invariants)
and Turchin (for higher
cohomology classes)

Integral representations of §§3, 4 Kontsevich integral
Homotopy splitting (12) Kontsevich stabilization theorem
Combinatorial realization of §10 Combinatorial formulas for

invariants [63], [42] and other
cohomology classes [85]

Table 1. The analogy between the arrangement theory
and the knot theory

and limit positions of such intersections (all of them are subspaces in
K whose codimensions are multiples of n), supply it with a natural
topology, and define the conical resolution in exactly the same way as
previously, i.e. as a subset of the direct product of this order complex
and the space K. Then we define the filtration on this resolution by the
codimensions (divided by n) of these planes and consider the arising
spectral sequence.

The homological study of the arising resolution space is known as
the theory of finite-type knot invariants, see [10], and different its gen-
eralizations, including the (equally interesting) calculation of higher
dimensional cohomology classes of spaces of knots, see [78], [87], [71].
In Table 1 we give a short list of parallel notions and objects in both
theories. Of course, a large part of its right half cannot be explained
here; this table is rather a kind of Rosetta stone for those combinato-
rialists who will study the theory of knot invariants, see [10].



40 V.A. VASSILIEV

It is necessary also to mention the exceptional value of the Arnold’s
identity (3) for the construction of the Kontsevich’s integral [48], [49].

Of course, the space K is infinite-dimensional, and formally we can-
not use the Alexander duality in it: the usual (i.e. finite-dimensional)
cohomology classes of the space of knots K \ Σ should correspond to
“infinite-dimensional cycles” in Σ, whose definition requires some ef-
fort. The strict construction of such cycles corresponding to finite-type
cohomology classes uses the techniques of finite-dimensional approxi-
mations, see [78].

Similarly, we can consider the space of smooth embeddings of finitely
many circles into Rn, it gives us the theory of finite-type cohomology
classes of spaces of links.

One more space of this type is that of all plane curves without triple
points, see [5], [6], [80], [81], [52]–[55], [68], [46], [83]. It is related very
much with the arrangements A(N, 3), see [19] and §2.

I thank all people to whom I owe my knowledge of the described
area, including V.I. Arnold, A. Björner, V. Welker, A.M. Vershik, I.M.
Gelfand, R.T. Zhivaljevich, A.V. Zelevinskii, M.M. Kapranov, A.B.
Merkov, H.E. Mnev, S.A. Yuzvinsky, G.L. Rybnikov, V.V. Serganova,
V.E. Turchin, G.M. Ziegler, B.Z. Shapiro, and K. Schultz.
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