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Abstract. We consider a natural covering responsible for the complexity of

the ramification of roots of the general real polynomial equation, and calculate
the homology groups of its base; for equations of degree ≤ 5 we give a complete

description of the topology of this base.

The general complex d-valued entire algebraic function x = F (a1, . . . , ad), given
by the equation

(1) xd + a1x
d−1 + · · ·+ ad−1x+ ad = 0,

is ramified at the discriminant variety ΣC ⊂ Cd, consisting of collections of coef-
ficients (a1, . . . , ad), for which the polynomial (1) has multiple roots, see. [1], [5].
The complement of this variety in Cd is the base of two standard coverings: d-
fold and d!-fold ones. The fundamental group of this complement acts on the sets
of roots of the equation (1) and generates the entire permutation group of these
roots. V.I. Arnold has exploited the homology classes of this complement Cd \ ΣC
as obstructions to inducing one algebraic functions from the others. Also, the study
of these homology groups provides lower estimates on the Schwarz genus of corre-
sponding coverings, i.e. on the minimal number of open subsets covering the base,
over any of which the covering has a continuous section, see [7], [8]. In [8], [9] these
estimates are applied to the study of the topological complexity of approximate
solution of the general equation (1).

If we consider only real equations (1), then a similar role will be played by
coverings defined on the complement of a certain subset of real codimension 2 in
the space Rd of such equations. Namely, this subset Υ consists of polynomials
having either a real root of multiplicity ≥ 3, or a couple of imaginary complex
conjugate roots of multiplicity ≥ 2. For d = 4 this set in the space of reduced (i.e.
with a1 = 0) polynomials (1) is represented by three branches of curves, going from
the origin to the infinity and distinguished in the left-hand part of Fig. 1: two
branches of the cuspidal edge of the swallowtail (see e.g. [2]) and the continuation
of its self-intersection line.

The monodromy of these coverings generates not the entire permutation group
of d roots, but only the subgroup of even permutations. As in the complex case, the
topology of these coverings provides lower estimates on the numbers of branchings
of algorithms solving real equations (1); already for d = 3 this calculation proves
the necessity of such branchings.

In §4 we calculate integral homology groups of all spaces Rd \Υ.

Supported by grant NSh-8462.2010.1 of President of Russia for the support of leading scientific
schools.
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Figure 1. The variety of essential ramification for d = 4 and 5

In §2 these coverings are described in the simplest cases d = 3 and 4. In §3 we
find the topological type of the set Υ (as an embedded subset in Rd) for d = 5.
Namely, we reduce this problem to the study of the intersection of this set with a
sphere S3 surrounding the origin in the space of reduced polynomials

(2) x5 +Ax3 +Bx2 + Cx+D

and prove the following theorem.

Theorem 1. For d = 5 the intersection of the set Υ with S3 is isotopic to the
figure shown in the right-hand part of Fig. 1. In this picture:

— points P and Q correspond to polynomials with roots of multiplicity 4;
— the shortest curvilinear interval (P,Q) consists of polynomials with a three-

fold root placed between two other real roots;
— the longer curvilinear interval (P,Q), not containing the points S and T ,

consists of polynomials with two-fold imaginary roots;
— points S and T denote two polynomials each having one two-fold and one

three-fold root;
— intervals (P, S) and (Q,T ) consist of polynomials with one three-fold root,

greater (respectively, smaller) than two other real roots;
— the curvilinear interval (S, T ), not containing the points P and Q, consists of

polynomials with a three-fold real root and two imaginary roots.

The behavior of three branches of Υ at the points P and Q repeats the behavior
at the origin of three distinguished branches in the left-hand part of Fig. 1.

Corollary 1. The complement of the set Υ in S3 is homotopy equivalent to a
one-dimensional complex.

Remark 1. The right-hand part of Fig. 1 is an expansion of Figure 28 from §2.5
of [3] (describing in detail the upper central domain of this part of Fig. 1). The
essential part of this expansion is the behavior of the “fantom” ramification line,
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consisting of polynomials with imaginary double roots, with respect to the real
part.

1. Basic covering Θd

The space Cd \ ΣC of complex polynomials (1), all whose roots are different, is
the base of the obvious d-fold covering

(3) ϕd : Md
C → Cd \ ΣC,

whose fibre over the polynomial f is the set of pairs consisting of the polynomial f
and one of its roots.

Definition 1. The essential ramification set Υ in the space Rd of real polynomials
(1) is the union of the set of polynomials with at least one real root of multiplicity
≥ 3 and the set of polynomials with at least one pair of conjugate imaginary roots
of multiplicity ≥ 2. The last two sets will be denoted by ♣ and ‡ respectively.

It is obvious that all these sets have codimension 2 in Rd.

Proposition 1. The restriction of the covering ϕd to the set Rd \ ΣC can be con-
tinued to a covering over the set Rd \Υ.

Indeed, the additional set (Rd ∩ ΣC) \ Υ, to which the covering ϕd should be
continued, consists of polynomials, having several real roots of multiplicity exactly
2. If such a polynomial f0 has exactly k double roots q1 < · · · < qk, then the set
Rd ∩ΣC close to the point f0 is ambient diffeomorphic to the direct product of the
space Rd−k and the union of coordinate planes in Rk. When a polynomial moves in
a neighborhood of such a polynomial f0 ∈ Rd, the pairs of close real roots can collide
and exit to the complex domain. Define the 2k-fold trivial covering over such a small
neighborhood U , i.e. the product of U and the set of 2k points r+1 , r

−
1 , . . . , r

+
k , r

−
k .

Suppose that f ∈ U does not belong to ΣC, and for some i ∈ {1, . . . , k} f has two
real roots, obtained by the decomposition of the root qi of f0. Then we identify
the point (f, the bigger of these roots) ∈Md

C with the point f × r+i of this product,
and the point (f, the smaller root) with f × r−i . In a similar way, if f has two
imaginary roots, obtained by the decomposition of qi, then we identify the point
(f, the root with the positive imaginary part) ∈ Md

C with f × r+i , and the point
(f, the root with the negative one) with f × r−i . This identification continues 2k
sheets of our covering ϕd to entire neighborhood U , and the remaining d − 2k
sheets are continued there in the obvious way. These continuations are compatible
for all points of the set (Rd ∩ ΣC) \Υ. 2

Let us denote this extended covering as follows: Θd : Md
R → Rd \Υ.

Remark 2. Here is another description of this covering. Any local (close to f0)
irreducible component of the set (Rd ∩ΣC) \Υ is non-singular and is transversally
oriented to the side in which the corresponding two-fold root splits into two real
ones. Define a smooth vector field v in Rd, which is equal to 0 outside of a small
neighborhood of this set, in particular on Υ, transversal to all these local compo-
nents and crossing them in the positive direction. Then move Rd \Υ in the complex
area, sending any point f into f + iv(f). If appropriate restrictions on the length
of v will be satisfied, then this map will imbed all of Rd \ Υ into Cd \ ΣC. The
covering Θd is equivalent to one induced by this shift from the covering (3).
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The covering Θd defines the monodromy representation md : π1(Rd \Υ) → S(d),
where S(d) is the group of permutations of some distinguished polynomial (for
which it is convenient to choose some polynomial with d different real roots). The
description of the covering Θd, given in Remark 2, is in a sense more convenient
than the original one, since it fixes not only the monodromy representation into the
group of permutations of d roots, but also its lifting m̄d : π1(Rd \Υ) → Br(d) into
the braid group on d strings (for whose definition see, e.g., [2], [10]).

Proposition 2. For any d, the image of representation md : π1(Rd \ Υ) → S(d)
coincides with the subgroup A(d) of even permutations. The image of the lifting m̄d

of this representation belongs to the subgroup of braids of zero twistedness.

Proof. Let us say that a polynomial f ∈ Rd \ ΣC is generic if none real number
is the real part of more than two roots of f . For any such f , let us number all its
roots in the order of increase of their real parts, and in the case of coincidence of
the latter in the order of increase of imaginary parts. There are exactly two kinds
of surgeries of generic polynomials, arising in the paths of general position in the
space Rd \ Υ and providing a discontinuous change of this numeration of sheets
of the covering Md

R over f : collision of real parts of one real and two imaginary
roots, and collision of real parts of two pairs of imaginary roots. (Note, that the
collision of two real roots and their exit to the complex domain, as well as the
converse action, do not are the surgeries providing such a renumbering). Any of
these surgeries defines an even renumbering of roots and, moreover, a braid of zero
twistedness, which is the product of two elementary braids of opposite signs. On the
other hand, the following permutations can be easily realized by the action of the
monodromy group of our covering: any cyclic permutations of triples of neighboring
elements, (i− 1, i, i+1) 7→ (i+1, i− 1, i), and permutations of pairs of neighboring
elements, ((i, i+ 1), . . . , (j, j + 1)) 7→ ((j, j + 1), . . . , (i, i+ 1)). Indeed, to realize a
permutation of the first type, we can approach a polynomial with colliding roots No.
i−1, i, i+1 inside the set of polynomials with d real roots, and turn in Rd around the
corresponding stratum of polynomials with triple roots. To realize a permutation
of second type, we can collide the corresponding pairs of roots, move them into the
complex domain, and permute them there in the simplest way. Permutations of
these two types are enough to generate the entire group A(d). 2

In [8] it was actually shown (although explicitly it was formulated only later
in [9]), that the topological complexity (i.e. the minimal number of branchings of
algorithms) of approximate calculation of one root of any complex polynomial (1) is
estimated from below by the decreased by 1 Schwarz genus of the covering (3). This
statement (essentially together with the proof) can be transferred to the problem of
approximate solution of any real equation of the form (1) (certainly, this problem
is actual only for odd d).

Proposition 3 (cf. [8]). For any odd d and a compact D ⊂ Rd, containing a
neighborhood of the origin, there is ε(D) > 0 such that the number of branchings
(i.e. IF operators) of any algebraic algorithm, calculating with precision ≤ ε a real
root of any equation (1) with (a1, . . . , ad) ∈ D, is not less than the genus of the
covering Θd minus 1. 2
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2. First reduction and simplest examples: d = 3 and 4

The group R1 of translations of the argument acts freely on the space of poly-
nomials (1) by the rule t : f(x) 7→ f(x − t), preserving the entire stratification
of this space by multiplicities and reality of roots. Any orbit of this action once
transversally intersects the subspace consisting of polynomials (1) with a1 = 0. The
fibration of the space of all polynomials into these orbits provides a diffeomorphism
(also preserving this stratification) of Rd to the product of the line R1 and this
subspace Rd−1. Therefore it is sufficient to consider only this subspace and the
restriction of the covering Θd onto Rd−1 \Υ.

2.1. The case d = 3. In this case we have the space of polynomials x3 + px +
q. It is divided by the discriminant curve {(p

3 )3 + ( q
2 )2 = 0} into two non-equal

parts, all polynomials from the smaller of them having three real roots each, and
all polynomial from the bigger part having only one. The set Υ in this space is
represented by unique point: the origin. It is easy to check that one turn around
this point, starting and finishing at a point with three real roots, defines a cyclic
permutation of these roots. In particular, the Schwarz genus of the covering Θ3

over R2 \Υ is equal to 2.

2.2. The case d = 4. In this case the discriminant subset in R3 is the swallowtail,
see the left-hand part of Fig. 1. The set Υ∩R3 consists of three non-knotted curves,
going from the origin to the infinity: two branches of the cuspidal edge A2 and the
analytic continuation of the self-intersection of the swallowtail; the visible part of
the self-intersection, consisting of manifolds having two real roots of multiplicity 2,
does not belong to the set Υ. The simplest loops in R3 \Υ, starting and finishing
at some polynomial with four real roots and embracing these three curves, define
the following permutations of these roots: (1, 2, 3, 4) 7→ (2, 3, 1, 4); (1, 3, 4, 2) and
(3, 4, 1, 2) respectively. These permutations are obviously even, dependent, and
generate the group A(4). The Schwarz genus of the covering Θ4 over R3 \Υ is not
less than 2 (which simply means that this covering has no global sections). But it
cannot also exceed 2, because the base of this covering is homotopy equivalent to
an one-dimensional complex, see [7].

In a similar way, Corollary 1 implies that the genus of covering Θ5 also is equal
to 2. This is consistent with the result of [11] that the topological complexity of
approximate solution of the general equation (2) is equal to 1. On the other hand,
in [12] it is shown that for equations of degree 7 this complexity is not less than 2,
therefore the case d = 7 is a candidate for the next growing of the Schwarz genus
of the covering Θd (to three).

3. Proof of Theorem 1

3.1. Inner topology of the essential ramification set. The group R1
+ of pos-

itive dilations of the argument acts on the space of polynomials (1) by the rule

(4) R1
+ 3 λ : f(x) 7→ λ−df(λx).

This action is free on Rd−1 \ 0 and again respects the entire combinatorial stratifi-
cation of the set of polynomials. Any orbit of this action once transversally crosses
the boundary Sd−2 of any ball with center at 0 ∈ Rd−1, and we obtain a diffeomor-
phism Rd−1 \ 0 ' Sd−2 ×R1

+. Therefore for d = 5 it is sufficient to consider such a
sphere S3 in the space of polynomials (2) and its intersection with the set Υ. For
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Figure 2. Inner topology of the essential ramification set

such a sphere we can take the set of all polynomials, the absolute values of all whose
roots do not exceed 1 and at least one of these absolute values is equal to 1; the sum
of all these roots should be equal to 0. (This sphere is not a smooth submanifold
in R4, but we consider it as a realization of the quotient space (Rd−1 \ 0)/R1

+ with
the corresponding smooth structure).

Proposition 4. The intersection of the essential ramification set Υ ∈ R5 for the
general algebraic function of 5-th degree and the sphere S3 in the space of poly-
nomials (2) is homeomorphic to the figure	. The singular points of this figure
correspond to the polynomials with 4-fold roots.

Proof of this statement consists in counting all non-ordered sets of five points in
the unit disc of C1, symmetric with respect to the real axis and having zero center
of gravity, and such that at least one of points is placed on the boundary of the
disc, and either some three points do coincide, or there are two conjugate pairs of
coinciding points. This counting is given in 2. Here the letters P,Q, S, T denote the
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Figure 3. Degree 5 polynomials with five real roots

same polynomials as in Theorem 1 and Fig. 1; the sense of letters L,K,X, V,W, Y
will be explained later. 2

It remains to understand, how this graph	 is embedded into S3.

3.2. Central simplex. The most interesting part of our sphere S3 is the set of
polynomials with 5 real roots. This set is canonically homeomorphic to the standard
three-dimensional simplex: if we denote by r1 < r2 < · · · < r5 the values of roots of
a polynomial, then the barycentric coordinates of the point corresponding to this
polynomial are α ≡ r2−r1

r5−r1
, β ≡ r3−r2

r5−r1
, γ ≡ r4−r3

r5−r1
, δ ≡ r5−r4

r5−r1
. This homeomorphism

is not an ambient diffeomorphism, see Fig. 3: for instance, close to the vertices
α = 1 and δ = 1 (or, in the terms of Fig. 2, points P and Q) this simplex is
diffeomorphic to the interior pyramid of the swallowtail, and close to the edges
{γ = δ = 0}, {α = β = 0} and {β = γ = 0} it is diffeomorphic to the smaller of
two domains bounded by the surface with semicubical cuspidal edge. These three
edges are represented in Fig. 2 by segments [PS], [QT ] and [PQ] respectively.

It remains to understand how the remaining two segments of the curve Υ are
knotted.

We will consider our sphere S3 as the quotient space of the space R4 \ 0 of
polynomials (2) by the action (4). Notice, that the set Υ∩R4 \ 0 does not contain
the axis D of R4. Remove from our quotient space S3 two points, corresponding
to halves of this axis. The remaining manifold is a trivial fiber bundle over S2

with fiber R1, where S2 can be considered as the quotient space of the space of
polynomials x5 +Ax3 +Bx2 +Cx through the action of the group R1

+ of dilations
λ : f(x) 7→ λ−5f(λx).
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Let us find pairs of points of the set Υ (i.e. of orbits of the action (4)), having
equal projections to S2, i.e. different only by the constant terms of corresponding
polynomials.

3.3. Self-intersection of the projection of the set ♣ of polynomials with
triple real roots. Let us find pairs of polynomials (2) having triple real roots and
different only by their constant terms. The common derivative of such a polynomial
should have two two-fold roots, i.e. to be equal to

ρ(x− a)2(x− ã)2

for appropriate a, ã, ρ. The coefficients of the initial polynomial (i.e. the integral
of this derivative) at the monomials of degrees 5 and 4 are equal respectively to 1
and 0, hence ρ = 5, a+ ã = 0. Then this initial polynomial is equal to

(5) x5 − 10
3
a2x3 + 5a4x

up to the constant term.
To find the value of the constant term, for which this polynomial has a triple

root, let us equate it to the polynomial

(6) (x− b)3(x2 + 3b+ c) = x5 + (c− 6b2)x3 + (8b3 − 3bc) + (3b2c− 3b4)− b3c.

The equality of coefficients of polynomials (5) and (6) at monomials x3, x2 and
x gives us the conditions a2 = b2, 3c = 8b2, so our polynomials have the form
(x − b)3(x2 + 3bx + 8

3b
2), b = ±a. Positive and negative values of b give us two

different orbits of the action (4), i.e. two points of the sphere S3. Denote by X
(respectively, Y ) such a point, corresponding to the positive (respectively, negative)
value of b. The discriminant of the polynomial x2 + 3bx + 8

3b
2 is negative, hence

both these points belong to the interval (S, T ) of the set Υ, shown in the upper
part of Fig. 2. Moreover X belongs to the left-hand part of this picture (where
the three-fold root is positive), and Y in the right-hand one. The polynomials
constituting X have negative constant terms, and Y positive ones, hence in the
diagram of the knot Υ in S2 the point Y is placed above X.

3.4. The fantom curve ‡ is projected injectively. Let us prove that the subset
in Υ, consisting of polynomials with two complex conjugate imaginary roots of
multiplicity 2, is projected injectively into S2. The polynomials (2), having such
roots, should be equal to

(7) (x2+ax+b)2(x−2a) ≡ x5+x3(2b−3a2)+x2(−2ab−2a3)+x(b2−4a2b)−2ab2

for some a, b, such that

(8) a2 < 4b.

Suppose that there exists another polynomial of the same form, i.e. equal to

(9) (x2+cx+d)2(x−2c) ≡ x5+x3(2d−3c2)+x2(−2cd−2c3)+x(d2−4c2d)−2cd2,

coinciding with this one up to the constant term. The condition of their coincidence
gives us the system of equations

(10) 2b− 3a2 = 2d− 3c2; ab+ a3 = cd+ c3; b2 − 4a2b = d2 − 4c2d.
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Excluding the variables b and d and rejecting the solutions implying the total co-
incidence of these polynomials, we obtain the equality

13a2 + 10ac+ 13c2 = 0,

non-solvable in the real domain. Hence this part of the set Υ is indeed projected
into S2 without self-intersections.

3.5. Intersections of projections of curves ‡ and ♣. Now let us count the
points in S2, which are the projections of both “fantom” ramification points (i.e.
polynomials of the form (7)), and polynomials with three-fold real roots. Polyno-
mials of the latter type should have the form

(11) (x−c)3(x2 +3cx+d) ≡ x5 +x3(d−6c2)+x2(8c3−3cd)+x(3c2d−3c4)−c3d.
Equating the coefficients of polynomials (11) and (7) at monomials x3, x2, x, we

obtain the system of equations

(12) 2b− 3a2 = d− 6c2; −2(ab+ a3) = 8c3 − 3cd; b2 − 4a2b = 3c2d− 3c4.

Excluding b and d, we get an equation on a and c:

20a6 + 60a5c− 75a4c2 − 300a3c3 + 240ac5 − 80c6 = 0.

Let be t = a/c, then

4t6 + 12t5 − 15t4 − 60t3 + 48t− 16 ≡ (t+ 2)3(t− 2)(2t− 1)2 = 0.

The solution t = −2 gives us

a = −2c, b = c2, d = −4c2.

Then the polynomials (7) and (11) coincide and are equal to

x5 − 10c2x3 + 20c3x2 − 15c4x+ 4c5 ≡ (x− c)4(x+ 4c),

so it are just the common endpoints P,Q of the considered intervals of the set Υ.
The solution t = 1/2 gives us

c = 2a, b = −6a2, d = 9a2.

Then the polynomials (7) and (11) coincide with one another and are equal to

x5 − 15a2x3 + 10a3x2 + 60a4x− 72a5 ≡ (x− 2a)3(x+ 3a)2,

so it are the vertices S and T of the simplex from Fig. 3. These points obviously
do not satisfy the discriminant condition (8).

The solution t = 2 gives us

a = 2c, b = 21c2, d = 36c2.

Then the polynomial (7) is equal to

x5 + 30c2x3 − 100c3x2 + 105c4x− 1764c5,

and the polynomial (11) is almost the same, but with the constant term −36c5.
The families of such manifolds, corresponding to positive and negative values of

c, define different pairs of points in S3, which are projected into different points
of S2. Denote by K and L the fantom (i.e. belonging to the set ‡) polynomials
of these pairs, and by V and W the polynomials belonging to ♣, corresponding
to positive and negative values of c respectively. Then the point V on the knot
diagram is placed above K, and the point L above W .
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So, we have four interesting points on the interval (S, T ) in the upper part of
Fig. 2: (Y ) the upper and (X) the lower pre-images of the self-intersection point of
the projection of this interval into S2, (V ) a pre-image of the intersection point of
projections of sets ‡ and ♣, described in the previous paragraph and corresponding
to positive values of c, and (W ) a pre-image of a similar point, corresponding to
negative values of c. The points X and V are placed in the part of Υ, depicted in
Fig. 2 on the left, and the points Y and W on the right.

Proposition 5. These points are placed on the segment [S, T ] in the upper part of
Fig. 2 in the following order: S,X, V,W, Y, T .

Proof. On this segment, the argument of the complex root with positive imagi-
nary part of the corresponding polynomial decreases monotonically from π to 0. It
is easy to check that these imaginary parts for polynomials realizing our points are
ordered in exactly this way. 2

By our previous calculations, the polynomials X and Y (respectively, K and V ,
respectively, W and L) coincide up to the constant term; in any of these three pairs
its second element has a greater constant term. This terminates the description of
the diagram of the projection of the essential ramification set Υ∩S3 into S2 up to
isotopies in S2, in particular terminates the proof of Theorem 1. 2

4. Homology groups of the complement of essential ramification set

Theorem 2. For any d and any group G = Z or Zq,

(13) Hi(Rd \Υ, G) '
⊕

k ≥ 0 ≤ m,
3k + 4m ≤ d

Hi−k−m(B(C1
+,m),±G),

where B(C1
+,m) is the space of all m-element subsets in the upper half-plane C1

+ ≡
{z : Im z > 0}, ±G is the local system of groups on this space, locally isomor-
phic to G, but reversing its orientation over the loops in the base, defining an odd
permutation of m points.

The spaces B(C1
+,m) participating in this formula are the classifying spaces of

braid groups; their homology groups are well-known, see e.g. [10].

Example 1. For d = 5, 6, 7, 8, 9 and G 6= Z2, Poincare polynomials of G-free parts
of groups H∗(Rd \Υ, G) are equal to 1 + 2t, 1 + 2t+ t2, 1 + 2t+ 2t2, 1 + 2t+ 2t2,
1 + 2t+ 2t2 + t3 respectively. For d < 8 (and if G = Zq, q odd, then also for d = 8
and 9) these groups are free G-modules. For d = 8 or 9 and G = Z (respectively,
Zq with even q 6= 2) this group contains additional summand Z2 in dimension 2
(respectively, in dimensions 2 and 3). If G = Z2 then for d = 5, 6, 7 the Poincare
polynomials of these groups are the same as above; for d = 8 and 9 these polynomials
are equal to 1 + 2t+ 3t2 + t3 and 1 + 2t2 + 3t2 + 2t3 respectively. 2

Proof of Theorem 2 follows the standard scheme from [10], based on the simplicial
resolution of the set Υ. In particular, the formula (13) can be realized in the
following way (cf. [10], §III.6). Let γ be an arbitrary cycle, representing some
element of the group Hi−k−m(B(C1

+,m),±G). Its support is compact, therefore
there is ε > 0 such that for any point of this cycle (i.e. a collection of m points
in C1

+) all these m points are ≥ 5ε-distant from one another and from the real
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axis. For any such point (z1, . . . , zm) consider an embedded m-dimensional torus in
B(C1

+, 2m), consisting of all possible 2m-configurations of the form (z1 +εeiα1 , z1−
εeiα1 , . . . , zm + εeiαm , zm − εeiαm) with all possible α1, . . . , αm ∈ [0, π). Any point
of such a torus defines a point of the space R4m \Υ4m, namely a real polynomial of
degree 4m with coefficient 1 at x4m, whose roots run over the corresponding 2m-
configuration and the configuration complex conjugate to it. So, our torus becomes
embedded into R4m \Υ4m. The union of such tori over all (z1, . . . , zm) ∈ γ sweeps
out some (i − k)-dimensional G-cycle Γ in this space. In addition, consider the
standard k-dimensional torus T k ⊂ R3k \ Υ3k, consisting of all polynomials of the
form

((x− 1)3 +cos(β1)ε2(x− 1)+ sin(β1)ε3) · · · ((x−k)3 +cos(βk)ε2(x−k)+ sin(βk)ε),

where ε is small, and β1, . . . , βk run independently over the segment [0, 2π]. The
direct product Γ×T k is embedded into Rd\Υ: with any pair of points φ ∈ Γ, ψ ∈ T k

the polynomial

φ× ψ × (x−N)(x− 2N) · · · (x− (d− 3k − 4m)N)

is associated, where N is a sufficiently large number, exceeding both k+ 1 and the
maximal value of absolute values of all points in C1

+, participating in configurations,
constituting the cycle γ. The image of this embedding defines an i-dimensional
cycle, whose homology class is the desired class in Hi(Rd \Υ, G), corresponding to
γ via the equality (13).

The simplicial resolution for Υ, constructed along the scheme from [10], gives
a spectral sequence for calculating the groups Hi(Rd \Υ, G); the sum of its terms
E1

p,q is equal to the right-hand part of (13), and the described realization of all
these summands by cycles proves the stabilization at this term. 2

Remark 3. By the Alexander duality theorem, homology groups of the space
Rd \Υ with constant coefficients can be reduced to the inner topology of the set Υ
and say nothing on its knottedness in Rd.

For estimating the Schwarz genus not the integer homology groups of spaces
Rd \Υ are most interesting, but the homology groups of appropriate local systems
associated with the covering Θd, see [7], [9]. In particular, the homotopy type of
these spaces is important.

Also, similarly to [1], the topological invariants of sets of essential ramification
(and of this ramification itself) can be used as obstructions to inducing real algebraic
functions from one another.

Finally, let me mention works [4], [6], adjoining this problematic.
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