Homology Isomorphism of the Complex of 2-Connected Graphs and
the Graph-complex of Trees

V. Turchin*

In this paper we prove that the homology of the complex of 2-connected graphs is naturally isomorphic to
the homology of the graph-complex of trees. Both complexes are connected with combinatorics of knot spaces.
More precisely the first complex appears in the spectral approach to the calculation of the homology of the space
of knots in R™, n > 3 (see [V2, V4]). The homology of the second complex has a natural interpretation in the
bialgebra of Chinese diagrams (see [BN]). This bialgebra turned out to be a very useful tool in the investigation
of the space of finite order knot invariants. The isomorphism in question provides a connection between the two
mentioned approaches.

Let D be a set of cardinality n. We shall consider loopless graphs without multiple edges on the
vertex set . A connected graph I' is called 2-connected if any graph obtained from I' by deleting
some vertex and its adjacent edges is connected.

We assign a simplex with n(n — 1)/2 vertices to the set D. Any pair of distinct points in our set
corresponds to a vertex of the simplex. Then each face (subsimplex) of the simlex is assigned to some
graph on the set D (the edges of the graph correspond to the vertices of the subsimplex).

The union of all faces that correspond to the graphs that are not connected (resp. not 2-connected)
is a simplicial complex. Factorizing the complex of all faces by one of these two subcomplexes, we
obtain the complexes Ap (resp. A%) of the connected (resp. 2-connected) graphs.

We consider these complexes as pointed CW-complexes, where the marked point # is always the
image of a subcomplex of factorization. We define factorization by the empty set as the adding of one
point *.

Both these two complexes have been introduced by V. Vassiliev.

Evidently, the geometry of these complexes depends only on the cardinality n. Set M, =
{1,2,...,n} and denote Ay;, (resp. Ajzwn) by A, (resp. A2).

The homotopical type of the complexes has a nice description as follows.

THeorREM 1 [B&BWa, V1]. The complex A, is homotopy-equivalent to a wedge of (n — 1)!
spheres of dimension n —2. O

TreEOREM 2 [BBLSW, T]. The complex A2 is homotopy-equivalent to a wedge of (n—2)! spheres
of dimension 2n — 4. O

We refer the reader to [K, W] for various definitions of the graph-complex of trees, but we will
describe its homology, that is not trivial only in one gradation.

For the set D we consider the set of all trees, that have n univalent vertices (leaves) in correspon-
dence with the elements of D; we also suppose that all the other vertices are 3-valent. In every such
tree we fix orientations of 3-valent edges (cyclic order of adjacent edges). These trees are called binary.

Consider the Z-module Tp (in fact Tp is the homology of the graph-complex of trees), that is
generated by all binary trees, and the relations are of the two following types:
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(absence of an arrow that would orientate a 3-valent vertex means a clock-wise orientation; outside
the circles the trees are supposed to coincide).
We define T,, = Ty, similarly, where M,, = {1,2,...,n}.

TueEorREM 3 [W]. T), ~ Z(=2!  Ag §,-modules T,, @ C ~ Ind%" _J(/Ind%" ¥, where Z,_1 (resp.

Z,) is a subgroup of the symmetric group 9, generated by a cycle of the length n — 1 (resp. n), x
and v are their primitive characters. O

MAIN THEOREM. T}, ~ H*""*(A2 Z) as S,-modules.
COROLLARY. H* (A2 «;C) ~ Ind%’;_lx/lnd%;lb as 9,-modules.

Remark 1. For the first time the result in the corollary was obtained in [BBLSW] by calculation
of the characters of the 5,,-action.

Before proving the theorem we introduce some complementary notions and prove some auxiliary
results.

Consider a decomposition of the set M, into a (not necessary disjoint) union of its subsets (of
cardinality >2) s1,s2,...,5;. Using this object we construct a certain graph of inclusions, that will
have k black vertices (corresponding to the subsets sq,s2,...,5;) and n white ones (corresponding to
the elements of M,,). Edges of this graph can join only vertices of different colours, and it is supposed
that an edge joins the white vertex number ¢ with the black vertex number j if and only if ¢ € s;.

DEFINITION 1. A system of subsets s1,s2,...,s; is called a structure (of multiplicity k), if the
obtained graph of inclusions is a tree.

DEFINITION 2. Two sets are called touching, if their intersection consists of exactly one element.
We say also, that one set touches the other.

LEMMA 1. (s1,82,...,5;) is a structure if and only if there exists a permutation ¢ € Si, such that
forany ¢ = 1,2,...,k — 1, the set s,(;41) touches Uj_;s,(;).

Proof of lemma 1. Obvious. O
Let us show that any connected graph I' on M,, defines naturally some structure Y(I').

DEFINITION 3. We say that a subset s C M, is proper with respect to a graph I, if the restriction
of the graph I' on the subset s is a 2-connected graph. A proper set is called mazimal (with respect
to the graph I'), if it is not contained in another proper set.



It is easy to see that the system YT(I') of all maximal subsets is a structure (connectedness of
the resulting ”black-and-white” graph follows from the connectedness of the initial graph, absence of
cycles — from the property of maximality (def. 3)).

FErample 1. If the initial graph is 2-connected then there is only one maximal set that coincides
with M,,.

Frample 2. If the initial graph is a tree then each of the maximal sets has exactly 2 points and
corresponds to a certain edge of the graph.

Now let us consider the complex of connected graphs A,, and a decreasing filtration on it:
A, =YiDY,D...D0Y, =+

Here Y; is generated by the graphs that have a structure of multiplicity > .

Let T = (s1,52,...,8k) be a structure of multiplicity k. Let us consider the subcomplex Yy (of
the complex Y} /Yy11) generated by all graphs I', such that T(I') = T. Any such graph is a union of
k 2-connected graphs respectively on the sets s, s2,...,s; (by a union of graphs we mean a union of
the sets of their edges).

LEmMA 2. The complex Yy is (k — 1)-fold suspension (in the category of pointed sets; in other
words we factorize a usual suspension by the segment over a marked point) of the tensor product of
the k complexes of 2-connected graphs respectively on the sets sq1, 59, ..., s:

Yr = S #ILAL)

(tensor product of two spaces is X#Y = (X xY)/(X VY)).

Proof of lemma 2. The lemma is an obvious consequence of the previous considerations and of the
fact, that if X and Y are two C'W-complexes, X1 C X, Y; C Y — their subcompexes, then

(X +Y)/(X1*Y)U (X *Y1)) 2 X (X xY)/(Xe xY)U(X x Y1)~ S (X/X1)#(Y/Y1)).

The symbol * means a join, ¥ means a suspension (in the category of pointed sets). O

Remark 2. The complex Yy can be described in the following way:
Vr o (AR (A2 J(0ART g A2 )

Here AR~ is a simplex of dimension k — 1, whose k vertices correspond to the sets s1,89,..., 5. In
particular the orientation of the simplex A*~! changes after renumeration of the sets depending on
the sign of a permutation.

LEMMA 3. Yy/Yiiq is a wedge of the complexes Yy over all structures T of multiplicity &.

Proof of lemma 3. Obvious. O

Remark 3. It follows from lemma 1 that Zle #s; =n+k — 1 (# is the cardinality), and hence,
HI(Yy,%) £ 0ifand only if j = Y8 (2#s; —4)+k—1 = 2042k —2—4k+k—1 = 2n—k — 3. Besides
that H?"5=3(Yy) ~ RF, Hz#si_‘l(Azi, k). Then any collection of elements a1, as, . .., ay respectively
in the groups H%’#&Si_‘l(Azi7 ¥),1=1,...,k defines a cycle in H**~#*=3(Yy, ) and therefore a cycle in
H2n—k—3(Yk,Yk + 1). We denote this cycle by ag A az A ... A a;. This notation is relevant, because
the following holds:

g1y N g2y N oo N gy = sgn(o)ag Aag A ... A ag,



for all ¢ € S (by remark 2 and by the fact that all the a;, ¢ = 1,...,k, belong to even dimensional
homology).

Let us consider a spectral sequence associated with the filtration
x=Y,CY,.1C...CYI =A,,

and calculating the groups H*(A,, *).

LEMMA 4. a) The first term Ey of this spectral sequence has only one non trivial line.

b) The spectral sequence degenerates in the second term.

c¢) The first differential d; in this spectral sequence is acyclic everywhere but in the term Y,, of the
filtration.

Proof of lemma /4. a) Follows from remark 3.
b) Follows from ).
c¢) Follows from ) and theorem 1. O

Let T = (s1,82,...,85) be a structure, s; and s; be two touching sets, o; and «; be elements
respectively in H%’#&Si_‘l(Azi7 %), HQ#SJ_“(AEJ,*). We consider also the spectral sequence associated
with the same filtration on the complex of connected graphs on the set s; U s;. Let dy be (by abuse
of the language) the first differential in it. Define [y, o] = di(a; A ) € Hz#(siusﬂ)_‘l(AinS],*). If
s; N s; =0, then for all a; € Hz#si_‘l(Azi, *), o € HQ#SJ_“(AEJ,*) we set [a;, a;] = 0.

Let us return to the initial spectral sequence. Let dy be its first differential.

LEMMA 5. di(aqn Aag A ... Aay) = Zi<j(—1)(i+j_1)[ai,aj] ANag Ao by by Aoy (a "hat”
over an element means its absence).

Proof of lemma 5. 1t follows from lemmas 2 and 3. O

Let us define a similar ”commutator” on the spaces of binary trees. Let s; and s; be two touching
sets and let sq Nsy = {i}. Now we are going to construct a map

[,.]:Ts, @Ts, — T Us,-

For binary trees T; € T;,, j = 1, 2, we define [Ty, T3] as follows. We glue the trees Ty and T at the
point ¢. So we get there two adjacent edges. Then we add the third one. Finally we have a new 3-valent
vertex (the former point ¢) and a new univalent vertex (the second endpoint of the constructed edge).
The new univalent vertex inherits the number i; the new 3-valent vertex gets the following orientation
(cyclic order of the adjacent edges): as the first we take the edge going to the tree T, then the just
constructed edge and then the edge going to the tree T5.

Obviously, this operation can be correctly defined on the whole group 7T, ® T, and this operation
is antisymmetric, that is [T1, T3] = —[T3, T1] (by the AS-relation).

If s1 N sy = 0, then the "commutator” is, by definition, identically zero on Ts, @ Ts,.

Now let us prove the theorem.

Proof of the main theorem. We are going to construct isomorphisms (that agree with 5,,-action) A,, :
H?"=4(A2 x) — T,, n > 2. We do it by induction and in a way compatible with the ”commutator”.
That is, let 51 and sp touch each other, A, , As,, As,us, be the isomorphisms between the homologies of
the complexes of 2-connected graphs and the spaces of binary trees on the sets s1, 52, $1Usg respectively
(these isomorphisms are uniqely defined in a natural way by the isomorphisms Ay, , Ass, . Ag(51Us2)>5
because the latters agree with the action of the symmetric group). Let a; € Hz#si_‘l(Azi, x),1=1, 2.
We demand

’\51U52([a17 042]) = [/\51(041), ’\52(a2)]'



Let us define the isomorphism Az. There is only one (non-trivial) graph on two points. This graph
is 2-connected and provides the only cycle in H°(AZ2, ). Let the map A, take it to the only binary
tree on two points (Note that this tree is also a segment). It is easy to see that the property of the
compatibility with the ”"commutator” defines the unique map Az : H?(AZ2,*) — T3, that turns out to
be an isomorphism of one-dimensional S5-modules that realize the sign representation.

Now let n > 4. We have constructed already the isomorphisms Ag, As, ..., A,_1, that are compatible
with the "commutator”. First of all we construct a certain map

p: H" 3 (Yy,Y3) — T,

If (s1,s2) is a structure (of multiplicity 2), a; € Hz#si_‘l(Azi, ¥), 1= 1,2, then ay Aag € H*"72(Yy, Y3).
We set
play Aaz) = [As (1), Asy(a2)].

Evidently, p can be extended correctly to the whole H?"~5(Y5,Y3), because az A @y = —ay A az, and
because the ”commutator” on the spaces of binary trees is antisymmetric. Now let us check that p
takes Imdy(H?"~%(Y3,Y})) to zero.

We have to show that, if (s1, 2, s3) is a structure (of multiplicity 3) on M, o; € HQ#S"_‘I(A;,*),
i =1, 2,3, then p(di(ay AN ag A asz)) = 0. We have

pldi(ar Aaz A ag)) = p(lag, @] A as) + p([az, as] A ar) + p([as, ar] A az) =

= Asius: ([on; @), Asy(@3)] + [Asyuss ([, as])s Asy (@1)] + [Asyus, ([as, aa]); Asy (a2)] =
= [Asi (@), Asy(a2)], Asy(@a)] + [[Asy(@2), Asa(@a )]s Asy (@1)] + [[Asy (a3), Asy (@1)]; Ay (a2)]

(the first equality holds by lemma 5, the second one by the definition of p, the third one is the
expression of the compatibility with the ”"commutator”).
Let us prove the 7Jacobi’s identity” for the spaces of binary trees, that is

[T, To), T3] + [[T2, T5), Th] + [[T5, T1], T2] = 0.

for any trees T; € Ts;, 1 =1, 2, 3.

If sy Nsy Ns3 =0, then it is evident, because one of the summands equals zero and the other two
provide the same trees but with different signs. The case when s; N s3 N s3 # @ (and hence consists of
one point) follows from the I H X -relation.

Finally we obtain p = 0 on Imdy(H?*"~%(Y3,Y,)). But on the other hand from lemma 4 we get (for
n>4)

H*"(Y,,Y3) /Imdl(HQ”_G(Yg,Y4)) ~ H* (Yo, x) = H (Y1, Ys) = HY Y (AL, #).
Consequently, by means of the map p and the above isomorphisms we have constructed a map
At H*7HAZ %) = T,

Note that p is a surjection, therefore so is A,, but T}, ~ Z"=2) (theorem 3), H?""4(AZ x) ~ Z(n=2)!
(theorem 2). It follows that A, is an isomorphism. By construction A, agrees with 5, -action and is
compatible with the "commutator”. Thus the theorem is proved. O

Finally I would like to explain some notations used above (”exterior product” and ”commutator”).
The homology of the complex of connected graphs is isomorphic to some component of the coho-
mology algebra of the group of coloured braids (see [V2, V3]). On the other hand the space of binary
trees can be considered as some component of the infinitesimal algebra of coloured braids. These



algebras are Koszul dual. It means, for example, that each of them is the cohomology algebra of the
other. As soon as the second is the universal enveloping algebra of some Lie algebra, its cohomology
can be calculated as the cohomology of the Lie algebra. In fact, the non-trivial line in the term F; of
our spectral sequence together with the first differential d; is isomorphic to a certain part of the chain
complex of this Lie algebra.
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