1. GAUSSIAN VECTORS

- (a) Let ξ be a (real-valued) Gaussian variable with mean μ and variance σ^2 . Compute the characteristic function $\varphi(z) = \mathbb{E}[\exp(iz\xi)], z \in \mathbb{R}$.
- (b) Let $\xi = (\xi_1, \dots, \xi_d)$ be a Gaussian vector with mean $\mu = (\mu_1, \dots, \mu_d) \in \mathbb{R}^d$ and covariance matrix $G = (G_{jk})_{j,k=1}^d \in \mathbb{R}^{d \times d}$. Prove that the matrix G is positive definite, i.e. $\lambda^{\top} G \lambda = \sum_{j,k=1}^d \lambda_j G_{jk} \lambda_k > 0$ for all $\lambda = (\lambda_1, \dots, \lambda_d) \in \mathbb{R}^d$ except $\lambda = 0$.
- (c) Let $\xi = (\xi_1, \dots, \xi_d)$ be a Gaussian vector with mean $\mu \in \mathbb{R}^d$ and covariance matrix $G \in \mathbb{R}^{d \times d}$. Compute the characteristic function $\varphi(z) = \mathbb{E}[\exp(iz^{\top}\xi)], z \in \mathbb{R}^d$. *Hint:* write $G = U^{\top} \Lambda U$, where U is an orthogonal matrix and Λ is diagonal.
- (d) Check that if ξ_1, \ldots, ξ_d are independent Gaussian variables, then $\xi = (\xi_1, \ldots, \xi_d)$ is a Gaussian vector. For any matrix $U \in \mathbb{R}^{d \times d}$ check that $U\xi$ is also a Gaussian vector. What can be said about their covariance matrices?
- (e) Let $\xi = (\xi_1, \dots, \xi_d)$ be a Gaussian vector. Prove that its components ξ_1, \dots, ξ_d are independent if and only if the covariance matrix G is diagonal. Is it true that two Gaussian variables are independent if and only if their covariance is zero?

2. Fourier series

- (a) Prove that both families $(\sqrt{2}\cos(\pi nt))_{n\geq 0}$ and $(\sqrt{2}\sin(\pi nt))_{n\geq 1}$ are orthonormal bases in $L^2[0,1]$. *Hint:* Use the fact that $(e^{i\pi nt})_{n\in\mathbb{Z}}$ is an orthogonal basis in $L^2[-1,1]$.
- (b) For all $s, t \in [0, 1]$, prove the following identity:

$$\sum_{n=1}^{+\infty} \frac{2\sin(\pi ns)\sin(\pi nt)}{\pi^2 n^2} = \min\{s,t\} - st.$$

(c) (*) Note that the identity given above can be also derived from the identity

$$\sum_{n=1}^{+\infty} \frac{\cos(\pi nt)}{\pi^2 n^2} = \frac{t^2}{4} - \frac{|t|}{2} + \frac{1}{6}, \quad |t| \le 1,$$

which follows (by integration) from the Poisson summation formula

$$\sum_{n=-\infty}^{+\infty} e^{i\pi nt} = 2\sum_{m=-\infty}^{+\infty} \delta_{2m}(t)$$

(this should be understood in terms of Schwartz distributions).

3. Green's function of the Laplacian on [0, 1].

(a) Prove that the eigenfunctions and eigenvalues of the Dirichlet boundary value problem

$$-f'' = \lambda f, \qquad f(0) = f(1) = 0.$$

are given by $f_n(t) = \sqrt{2}\sin(\pi nt)$ and $\lambda_n = \pi^2 n^2$ with $n \ge 1$. Find eigenfunctions of the similar problem with Neumann boundary conditions f'(0) = f'(1) = 0.

(b) Green's function G(s,t) of the Laplacian $f \mapsto -f''$ with Dirichlet boundary conditions is defined to be the kernel of the inverse operator, i.e. the unique function G such that -f'' = g and f(0) = f(1) = 0 imply $f(t) = \int_0^1 G(s,t)g(s)ds$. Prove that

$$G(s,t) = \min\{s,t\} - st, \qquad s,t \in [0,1].$$

(c) Prove that

$$G(s,t) = \sum_{n=1}^{+\infty} \frac{2\sin(\pi ns)\sin(\pi nt)}{\pi^2 n^2}, \qquad s,t \in [0,1].$$

4. Poisson process

Recall that we defined the Poisson process $(N_t)_{t \in [0,+\infty)}$ of intensity $\lambda > 0$ by

$$N_t := \min\{n : \xi_0 + \dots + \xi_n \ge t\},\$$

where ξ_0, ξ_1, \ldots is a sequence of i.i.d. exponential variables with density $\lambda e^{-\lambda x}$, $x \in [0, +\infty)$. (Also recall that $(N_t)_{t \in [0, +\infty)}$ is a process with independent increments due to the memoryless property of the exponential variable.)

- (a) Prove that the increments $N_{t+s} N_t$ are stationary and have Poisson distribution with parameter λs , i.e. $\mathbb{P}[N_{t+s} N_t = n] = e^{-\lambda s} \cdot (\lambda s)^n / n!$, $n \ge 0$.
- (b) Assume that $\lambda^{(1)}, \lambda^{(2)} > 0$ and $\lambda = \lambda^{(1)} + \lambda^{(2)}$. Let $N_t^{(1)}$ and $N_t^{(2)}$ be two independent Poisson processes of intensities $\lambda^{(1)}$ and $\lambda^{(2)}$. Prove that the process $N_t := N_t^{(1)} + N_t^{(2)}$ is a Poisson processes of intensity λ .
- (c) Let $(N_t)_{t\geq 0}$ be a Poisson processes of intensity $\lambda > 0$, and let $p \in (0, 1)$. Let us color every jump point of N_t white or blue independently with probabilities p and 1 - p, respectively. Prove that the collections of white and blue points define jumps of two Poisson processes of intensities λp and $\lambda(1-p)$, respectively.
- (d) (*) Prove that a counting process $(N_t)_{t \in [0,+\infty)}$ (i.e., a non-decreasing integer-valued right-continuous process with $N_0 = 0$) is a Poisson process of intensity $\lambda > 0$ if and only if for all $0 < t_1 < \ldots < t_k$ and $0 \le n_1 \le \ldots \le n_k$, one has

$$\begin{aligned} & \mathbb{P}_{\lambda}(N_{t_{k}+\delta} - N_{t_{k}} = 0 \mid N_{t_{j}} = n_{j}, \ 1 \leq j \leq k) = 1 - \lambda\delta + o(\delta), \\ & \mathbb{P}_{\lambda}(N_{t_{k}+\delta} - N_{t_{k}} = 1 \mid N_{t_{j}} = n_{j}, \ 1 \leq j \leq k) = \lambda\delta + o(\delta), \\ & \mathbb{P}_{\lambda}(N_{t_{k}+\delta} - N_{t_{k}} \geq 2 \mid N_{t_{j}} = n_{j}, \ 1 \leq j \leq k) = o(\delta), \end{aligned}$$
 as $\delta \to 0.$

5. Miscellaneous

- (a) Let B_t be the standard Brownian motion on $[0, \infty)$. Check that the process $(1-t)B_{\frac{t}{1-t}}$ is a Brownian bridge on [0, 1].
- (b) Let \widetilde{B}_t be the standard Brownian bridge on [0, 1]. Check that the process $(1+t)\widetilde{B}_{\frac{t}{1+t}}$ is a standard Brownian motion on $[0, \infty)$.
- (c) Prove that

$$(a+\frac{1}{a})^{-1} \cdot e^{-\frac{a^2}{2}} < \int_a^{+\infty} e^{-\frac{x^2}{2}} \, dx < a^{-1} \cdot e^{-\frac{a^2}{2}}.$$

(d) Prove that for any dyadic rationals $s = p2^{-m}$ and $t = q2^{-s}$ one has

$$\sum_{n=1}^{+\infty} \sum_{k=1, k \text{ odd}}^{2^n-1} g_{k,n}(s)g_{k,n}(t) = \min\{s,t\} - st,$$

where the functions $g_{k,n}(x) = \int_0^x f_{k,n}(y) dy$ are the primitives of the Haar functions

$$f_{k,n} = 2^{-\frac{n+1}{2}} \cdot \left(\chi_{[(k-1)2^{-n}, k2^{-n})} - \chi_{[k2^{-n}, (k+1)2^{-n})} \right).$$

(e) (*) Prove that the Haar functions $f_{k,n}(t)$ form a complete family in $L^2([0,1])$.

6. Measurability

Let \mathcal{A} be a σ -algebra on a space Ω and $(X_t)_{t \in [0,T]}$ be a family of mappings $X_t : \Omega \to \mathbb{R}$. Let $X : \Omega \times [0,T] \to \mathbb{R}$ denote the mapping $(\omega, t) \mapsto X_t$. By $\mathcal{B}(M)$ we will denote the Borel σ -algebra on a metric space M. Prove that the following statements are equivalent:

- (a1) for each $t \in [0,T]$ the mapping $X_t : (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is measurable;
- (a2) the mapping $X : (\Omega, \mathcal{A}) \to (\mathbb{R}^{[0,T]}, \mathcal{B}(\mathbb{R})^{\otimes [0,T]})$ is measurable.

Assume that for all $\omega \in \Omega$ the function $\mathcal{X} = \mathcal{X}(\omega) : t \mapsto X_t$ is continuous on [0, T] and let $\mathcal{C}([0, T])$ denote the (Banach) space of real-valued continuous functions on [0, T]. Prove that the following statements are equivalent:

(a) the mapping $X : (\Omega, \mathcal{A}) \to (\mathbb{R}^{[0,T]}, \mathcal{B}(\mathbb{R})^{\otimes [0,T]})$ is measurable;

- (b) the mapping $X : (\Omega \times [0,T], \mathcal{A} \otimes \mathcal{B}([0,T])) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is measurable;
- (c) the mapping $\mathcal{X} : (\Omega, \mathcal{A}) \to (\mathcal{C}([0, T]), \mathcal{B}(\mathcal{C}([0, T])))$ is measurable.

Without the continuity assumption, check that (\mathbf{b}) implies (\mathbf{a}) but not vice versa.

7. MAXIMUM PROCESS

Theorem (Bachelier). Let $(B_t)_{t\geq 0}$ be a standard Brownian motion and $M_t := \max_{s\in[0,t]} B_s$. Then for each (fixed) $t \geq 0$ one has

$$M_t \stackrel{(d)}{=} M_t - B_t \stackrel{(d)}{=} |B_t|$$

- (a) Could it be true that, say, $(M_t)_{t \in [0,1]} \stackrel{(d)}{=} (|B_t|)_{t \in [0,1]}$?
- (b) Let $x \ge 0$, $y \le x$ and $\tau = \inf\{t : B_t = x\}$. Using reflection principle show that $\mathbb{P}[M_1 \ge x, B_1 \le y] = \mathbb{P}[B_{\min\{1,\tau\}} - (B_1 - B_{\min\{1,\tau\}}) \ge 2x - y].$
- (c) Show that the joint distribution of the pair (M_1, B_1) is given by the measure $-2p'(2x-y)dxdy, \quad x \ge 0, \ y \le x,$

where $p(t) = (2\pi)^{-1/2} \exp(-t^2/2)$ is the standard normal density.

(d) Deduce the theorem for t = 1 and use the scaling invariance to treat the general case.

8. LAW OF THE ITERATED LOGARITHM

Theorem (Khinchin). Let $(B_t)_{t\geq 0}$ be a Brownian motion. Then we have a.s.

$$\limsup_{t \to 0} \frac{B_t}{\sqrt{2t \log \log(1/t)}} = 1$$

- (a) Show that $\limsup_{t\to 0} (2t \log \log(1/t))^{-1/2} B_t \stackrel{(d)}{=} \limsup_{t\to\infty} (2t \log \log t)^{-1/2} B_t$.
- (b) Let $M_t = \sup_{s \in [0,t]} B_s$. Use Bachelier's theorem to show that

$$\mathbb{P}[M_t > ut^{1/2}] \sim (2/\pi)^{1/2} u^{-1} e^{-u^2/2} \text{ as } u \to \infty.$$

- (c) Show that $\limsup_{t\to\infty} (2t \log \log t)^{-1/2} B_t \leq 1$ almost surely.
- (d) Show that for r > 1

$$\limsup_{t \to \infty} \frac{B_t - B_{t/r}}{\sqrt{2t \log \log t}} \ge (1 - r^{-1})^{1/2} \quad \text{a.s}$$

(e) Show that for r > 1

$$\limsup_{t \to \infty} \frac{B_t}{\sqrt{2t \log \log t}} \ge (1 - r^{-1})^{1/2} - r^{-1/2} \quad \text{a.s.}$$

(f) Show that $\limsup_{t\to\infty} (2t \log \log t)^{-1/2} B_t \ge 1$ almost surely.

9. Identities for random walks. Last return to 0 and running maximum.

Theorem (last return to 0, Feller). Let $(S_m)_{m\geq 0}$ be a simple symmetric random walk in \mathbb{Z} and $\sigma_n := \max\{k \leq n : S_{2k} = 0\}$. Then

$$\mathbb{P}(\sigma_n = k) = u_k u_{n-k}, \quad k = 0, \dots, n,$$

where $u_k = \mathbb{P}(S_{2k} = 0) = 2^{-2k} \binom{2k}{k}$.

- (a) Formulate a discrete version of the reflection principle for the Brownian motion.
- (b) Show that $\mathbb{P}(\sigma_n = k) = u_k \cdot \mathbb{P}(M_{2(n-k)-1} = 0)$, where $M_m = \max_{k \le m} S_k$.
- (c) Note that $1 \mathbb{P}(M_{2m-1} = 0) = \mathbb{P}(M_{2m-1} \ge 1, S_{2m-1} \ge 1) + \mathbb{P}(M_{2m-1} \ge 1, S_{2m-1} \le -1).$
- (d) Using the reflection principle for the simple random walk, prove that

$$\mathbb{P}(M_{2m-1}=0) = \mathbb{P}(S_{2m-1}=1) = u_m$$

Theorem (running maximum times, Sparre-Andersen). Let $(S_m)_{m\geq 0}$ be a random walk in \mathbb{R} based on a symmetric diffuse (i.e. absolutely continuous w.r.t. Lebesgue measure) distribution, put $M_n := \max_{k\leq n} S_k$, and write $\tau_n := \min\{k \geq 0 : S_k = M_n\}$. Then

$$\mathbb{P}(\tau_n = k) = u_k u_{n-k}, \quad k = 0, \dots, n,$$

where u_k are the same as in the previous theorem.

- (a) Show that $\mathbb{P}[\tau_k = 0] = \mathbb{P}[\tau_k = k]$ for all $k \ge 0$.
- (b) Show that $\mathbb{P}[\tau_n = k] = v_k v_{n-k}$ for all $0 \le k \le n$, where $v_k = \mathbb{P}[\tau_k = k]$.
- (c) By induction show that $v_k = u_k$.
- (d) (*) Is it true that the processes $(\tau_n)_{n\geq 0}$ and $(\sigma_n)_{n\geq 0}$ are identically distributed?

10. Identities for random walks. Sojourns and maxima.

Theorem (sojourns and maxima, Sparre-Andersen). Let ξ_1, \ldots, ξ_n be i.i.d. (more generally, exchangeable) random variables and $S_m = \sum_{k=1}^m \xi_k$ for $0 \le m \le n$. Then,

$$\#\{1 \le m \le n : S_m > 0\} \stackrel{(d)}{=} \min\{k : S_k = \max_{0 \le m \le n} S_m\}.$$

- (a) This is a deterministic statement. Given some values $\xi_1, \ldots, \xi_n \in \mathbb{R}$, let us construct a permutation $\beta : \{1, \ldots, n\} \to \{1, \ldots, n\}$ by the following algorithm applied consecutively to $k = n, k = n 1, \ldots, k = 1$:
 - if $S_k \leq 0$, denote by $\beta(k)$ the maximal available index in $\{1, \ldots, n\}$;
 - if $S_k > 0$, denote by $\beta(k)$ the minimal available index in $\{1, \ldots, n\}$.

Let $S_m^{(\beta)} = \sum_{k=1}^m \xi_{\beta(k)}$ for $0 \le m \le n$. Prove that

$$\#\{1 \le m \le n : S_m > 0\} = \min\{k : S_k^{(\beta)} = \max_{0 \le m \le n} S_m^{(\beta)}\}.$$

(b) Prove that $(\xi_{\beta(1)}, \ldots, \xi_{\beta(n)}) \stackrel{(d)}{=} (\xi_1, \ldots, \xi_n)$ and deduce the theorem. *Hint:* re-write the condition $S_k \leq 0$ as $\xi_{k+1} + \cdots + \xi_n \geq S_n = S_n^{(\beta)}$.

- 11. Reflected Brownian motion. The processes $(M_t B_t)_{t\geq 0}$ and $(|B_t|)_{t\geq 0}$.
- (a) Let $(S_m)_{m\geq 0}$, $(S'_m)_{m\geq 0}$ be two independent simple symmetric random walks in \mathbb{Z} started at the origin and $\widetilde{S}'_m := S'_m + \frac{1}{2}$ for $m \geq 0$. Let $M_m := \max_{k\leq m} S_k$ and

$$L'_m := \# \left\{ 1 \le k \le m : \widetilde{S}'_k = -\widetilde{S}'_{k-1} \in \{\pm \frac{1}{2}\} \right\}$$

denote the number of steps before time m when the trajectory $(\hat{S}'_m)_{m\geq 0}$ crosses the horizontal line. Prove that the processes

$$(M_m - S_m, M_m)_{m \ge 0}$$
 and $(|S'_m| - \frac{1}{2}, L'_m)_{m \ge 0}$

are identically distributed. *Hint:* note that both processes can be described as the (identically distributed) random walks in $\mathbb{Z}_+ \times \mathbb{Z}_+$.

(b) Let $(B_t)_{t\geq 0}$ be a standard Brownian motion and $M_t := \max_{s\in[0,t]} B_s$. Using Donsker's theorem, prove that

$$(M_{t_1} - B_{t_1}, \dots, M_{t_p} - B_{t_p}) \stackrel{(d)}{=} (|B_{t_1}|, \dots, |B_{t_p}|)$$

for all $0 \leq t_1 \leq \ldots \leq t_p$.

- (c) Conclude that the processes $(M_t B_t)_{t \ge 0}$ and $(|B_t|)_{t \ge 0}$ are identically distributed. *Hint:* The mapping $f(t) \mapsto \max_{s \in [0,t]} f(s)$ is continuous in C([0,T]) for each T > 0.
- (d) (*) Denote by $(\mathcal{F}_t^{(1)})_{t\geq 0}$ and $(\mathcal{F}_t^{(2)})_{t\geq 0}$ the filtrations generated by these two processes. Is it true that $\mathcal{F}_t^{(1)} = \mathcal{F}_t$, where the filtration $(\mathcal{F}_t)_{t\geq 0}$ is generated by $(B_t)_{t\geq 0}$ itself? (In other words, can one reconstruct B_t from $M_t - B_t$?) Is it true that $\mathcal{F}_t^{(2)} = \mathcal{F}_t$?

12. Uniform laws for the Brownian bridge

Theorem. Let $(B_t)_{t \in [0,1]}$ be a Brownian bridge on [0,1] and $M := \max_{s \in [0,1]} B_s$. Then the following random variables are both U(0,1), i.e. uniformly distributed on [0,1]:

$$\tau_1 = \lambda \{ t \in [0, 1] : B_t > 0 \}, \quad \tau_2 = \inf \{ t : B_t = M \}.$$

- (a) Given $u \in [0, 1]$, define $B_t^u := B_{(u+t)} B_u$, where $(x) := x \lfloor x \rfloor$. Show that the process $(B_t^u)_{t \in [0, 1]}$ is distributed as a Brownian bridge.
- (b) Let $\tau_2^u := \inf\{t : B_t^u = M B_u\}$ and let u be uniformly distributed over [0, 1]. Apply Fubini's theorem to show that $\mathbb{P}(\tau_2 \le t) = \int_0^1 \mathbb{P}(\tau_2^u \le t) du$ is also U(0, 1).
- (c) Using Donsker's theorem and Exercise 10, show that τ_1 and τ_2 have the same law.
- (d) (*) Let $(B_t)_{t\geq 0}$ be a standard Brownian motion, $(\widetilde{B_t})_{t\in[0,1]}$ be a Brownian bridge. For each T < 1 prove that the distributions of the processes $(B_t)_{t\in[0,T]}$ and $(\widetilde{B}_t)_{t\in[0,T]}$ are mutually absolutely continuous. *Hint:* prove that the processes $(B_t - tT^{-1}B_T)_{t\in[0,T]}$ and $(\widetilde{B}_t - tT^{-1}\widetilde{B}_T)_{t\in[0,T]}$ are identically distributed (as a re-scaled Brownian bridge).

- 13. EXIT TIME FROM [-a, a] and time spent in [0, -a] during a downcrossing
- (a) Let a > 0 and $\tau_{\pm a} := \inf\{t \ge 0 : |B_t| = a\}$, where $(B_t)_{t\ge 0}$ is a standard Brownian motion (started from 0). Show that

$$\mathbb{E}[\exp(-\mu\tau_{\pm a})] = 1/\cosh(a\sqrt{2\mu}), \quad \mu \ge 0.$$

Compute the expectations $\mathbb{E}[\tau_a]$ and $\mathbb{E}[\tau_a^2]$. Is is true that $\mathbb{E}[\exp(\theta \tau_{\pm a})] < +\infty$ for some $\theta > 0$? What is the optimal upper bound for such θ 's?

Proposition (removing of negative excursions). Let $(B_t)_{t\geq 0}$ be a standard Brownian motion, $s(t) := \lambda(\{s' \in [0, t] : B_{s'} \geq 0\})$ and $t(s) := \inf\{t \geq 0 : s(t) \geq s\}$. Then

$$(B_{t(s)})_{s\geq 0} \stackrel{(d)}{=} (|B_s|)_{s\geq 0}$$

- (b) Check a similar statement for simple random walks (this is trivial).
- (c) Prove that for each T > 0 one has $\lim_{\varepsilon \downarrow 0} \lambda(t \in [0, T] : |B_t| \le \varepsilon) = 0$ almost surely.
- (d) Let $s_f(t)$ and $t_f(s)$ be defined as in the proposition via a continuous function f = f(t)instead of B_t . Check that the mapping $(f(t))_{t \in [0,T]} \mapsto (f(t(s \land s(T))))_{s \in [0,T]}$ is continuous (in the C([0,T]) metric) at almost every Brownian motion trajectory $(B_t)_{t \in [0,T]}$.
- (e) Prove the proposition using (b) and Donsker's invariance principle.
- (f) Let $\tau_{-a} := \inf\{t \ge 0 : B_t = -a\}$. Prove that $\lambda(s \in [0, \tau_{-a}] : 0 \ge B_s \ge -a) \stackrel{(d)}{=} \tau_{\pm a}$.

14. Recurrence/transience of the D-dimensional Brownian motion

Let $d \geq 2$ and $A(r, R) := \{x \in \mathbb{R}^d : r < ||x|| < R\}$. Let $(B_t^x)_{t\geq 0}$ denote a standard *d*-dimensional Brownian motion started from x and $\tau_{r,R} = \tau_{r,R}^x := \inf\{t > 0 : B_t^x \notin A(r,R)\}$.

(a) For $x \in A(r, R)$, prove that

$$\mathbb{P}^{x}[|B_{\tau_{r,R}}^{x}|=r] = \begin{cases} (\log R/\|x\|) \cdot (\log R/r)^{-1} & \text{if } d=2, \\ (\|x\|^{2-d}-R^{2-d}) \cdot (\|r\|^{2-d}-R^{2-d})^{-1} & \text{if } d\geq 3. \end{cases}$$

- (b) Prove that $\mathbb{P}[\exists t > 0 : B_t^x = 0] = 0$ for all $x \in \mathbb{R}^d$.
- (c) Let d = 2 and ||x|| > r > 0. Prove that $\mathbb{P}[\exists t \ge 0 : |B_t^x| = r] = 1$ and deduce that $\mathbb{P}[\exists 0 < t_1 < t_2 < \ldots : t_k \to \infty \text{ and } |B_{t_k}^x| = r] = 1$

for any $x \in \mathbb{R}^d$ and r > 0 (in other words, the Brownian motion in 2D is *recurrent*).

- (d) Let $d \ge 3$. Prove that $B_t \to \infty$ as $t \to \infty$ almost surely (in other words, the Brownian motion in 3+D is *transient*). *Hint:* consider events $A_n := \{\exists s < t : B_s \ge n^3, B_t \le n\}$.
- (e) (*) Let $d \ge 2$, $U \in \mathbb{R}^d$ is a bounded open set, $x \in \partial U$ and there exist an open cone C (with the vertex at x) such that $B(x,r) \cap C \subset \mathbb{R}^d \setminus U$ for some r > 0. Prove that x is a regular boundary point of U, i.e. $\inf\{t > 0 : B_t^x \notin U\} = 0$ almost surely.

15. N-DIMENSIONAL BROWNIAN MOTION: ITÔ'S CALCULUS, LOCAL MARTINGALES AND BESSEL PROCESSES

- (a) Let $\alpha \in \mathbb{R}$ and B_t be a N-dimensional Brownian motion started at $x \neq 0$. Consider (local) semi-martingale $X_t := |B_t|^{\alpha}$. Compute dX_t using Itô's calculus.
- (b) Note that X_t is a local martingale if $\alpha = 2 N$, which agrees with the fact that the function $H(x) = |x|^{2-N}$ is harmonic in \mathbb{R}^N (one should consider $\log |B_t|$ for N = 2). Let N = 3, $\alpha = -1$ and $X_t = |B_t|^{-1}$ so that X_t is a local martingale. Note that, almost surely, the process $(X_t)_{t\geq 0}$ is well-defined for all $t \geq 0$ and $\lim_{t\to\infty} X_t = 0$.
- (c) Give an example of a sequence $(\tau_n)_{n\in\mathbb{N}}$ of localizing stopping times for $(X_t)_{t\geq 0}$.
- (d) Check that $\mathbb{E}[X_t^2] \leq \text{const} < +\infty$ for some constant independent of $t \geq 0$.
- (e) What is the law of the random variable $\max_{t \in [0,+\infty)} X_t$? Does it belong to $L^1(\Omega)$?
- (f) Using the explicit formula for the Gaussian density, prove that $\mathbb{E}[X_T] < X_0 = x^{-1}$. *Hint:* Use the identity $|S_r|^{-1} \int_{S_r} |y+x|^{-1} d\lambda_{S_r}(x) = \min\{x^{-1}, r^{-1}\}$, where λ_{S_r} denotes the Lebesgue measure on the sphere $S_r = \{y \in \mathbb{R}^3 : |y| = r\}$ and $|S_r|$ is the area of S_r . **Remark.** Thus, X_t is a local martingale but not a (true) martingale.

Let $(B_t)_{t\geq 0}$ be a N-dimensional Brownian motion started at $x\neq 0$. Denote

$$\beta_t := \sum_{k=1}^N \int_0^t \frac{B_t^k}{|B_t|} \, dB_t^k,$$

(we set $B_t^k/|B_t| = 0$ if $|B_t| = 0$). Check that this stochastic integral is well-defined.

- (g) Prove that the process $(\beta_t)_{t\geq 0}$ is a 1-dimensional Brownian motion started at 0. Hint: Check that $(\beta_t)_{t\geq 0}$ and $(\beta_t^2 - t)_{t\geq 0}$ are local martingales, and use Lévy's theorem.
- (h) Using (a), show that

$$|B_t| = |x| + \beta_t + \frac{N-1}{2} \int_0^t \frac{ds}{|B_s|},$$

$$|B_t|^2 = |x|^2 + 2 \int_0^t |B_s| d\beta_s + Nt.$$

Definition. Let $(\beta_t)_{t\geq 0}$ be a standard 1-dimensional Brownian motion started at 0 and $m \geq 0$. A process $(X_t)_{t\geq 0}$ satisfying the stochastic differential equation

$$dX_t = 2\sqrt{X_t} \, d\beta_t + m dt$$

is called a squared Bessel process of dimension m. The process $Y_t := \sqrt{X_t}$ (if m < 2, there is an issue with signs of Y_t) is called an m-dimensional Bessel process.

Remark. If $m = N \ge 2$ is integer, then $(Y_t)_{t\ge 0} \stackrel{(d)}{=} (|B_t|)_{t\ge 0}$. Note that, almost surely, $|B_t| \ne 0$ for all $t \ge 0$. Thus in this case there exists a unique continuous choice of the square root of the squared process $(X_t)_{t\ge 0} \stackrel{(d)}{=} (|B_t|^2)_{t\ge 0}$.

16. Local time at zero for 1D Brownian motion

Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion. For every $\varepsilon > 0$, we define a function

$$g_{\varepsilon} : \mathbb{R} \to \mathbb{R}_+, \qquad g_{\varepsilon}(x) := \sqrt{x^2 + \varepsilon^2}.$$

Note that $g'_{\varepsilon}(x) \to \operatorname{sign}(x)$ as $\varepsilon \to 0$ uniformly on each of the sets $\{x \in \mathbb{R} : |x| \ge \delta\}, \delta > 0$.

- (a) Apply Itô's formula to compute a decomposition $g_{\varepsilon}(B_t) = g_{\varepsilon}(B_0) + M_t^{\varepsilon} + A_t^{\varepsilon}$, where M_t^{ε} is a local martingale and A_t^{ε} is a bounded variation process. Observe that M_t^{ε} is a square integrable martingale and A_t^{ε} is increasing.
- (b) Show that, for each T > 0,

$$(M_t^{\varepsilon})_{t \in [0,T]} \xrightarrow[\varepsilon \to 0]{} (\beta_t)_{t \in [0,T]}$$
 in $L^2(\Omega)$, where $\beta_t := \int_0^t \operatorname{sign}(B_s) dB_s$

and the convergence is understood in the metric of C([0,T]).

Remark. Recall that Lévy's theorem implies that the process $(\beta_t)_{t\geq 0}$ is another onedimensional Brownian motion defined on the same filtration as $(B_t)_{t\geq 0}$.

(c) Infer that there exists an increasing process $(L_t^0)_{t\geq 0}$ such that

$$|B_t| = \int_0^t \operatorname{sign}(B_s) dB_s + L_t^0 \quad \text{for all } t \ge 0.$$

Observing that $(A_t^{\varepsilon})_{t \in [0,T]} \to (L_t^0)_{t \in [0,T]}$ as $\varepsilon \to 0$ show that, for every choice of the segment $[u, v] \subset \mathbb{R}_+$ and $\delta > 0$, the following is true:

 $|B_t| \ge \delta$ for all $t \in [u, v] \implies L_u^0 = L_v^0$.

Infer that L_t^0 is constant on each of the intervals $(u, v) \subset \mathbb{R}_+$ such that $B_t \neq 0$ on (u, v).

Definition. The process L_t^0 is called a local time of the Brownian motion B_t at 0.

(d) Given $\varepsilon > 0$, define two sequences of stopping times $(\sigma_n^{\varepsilon})_{n \ge 1}$ and $(\tau_n^{\varepsilon})_{n \ge 1}$ inductively by setting $\sigma_1^{\varepsilon} := 0$,

 $\tau_n^\varepsilon := \inf\{t > \sigma_n^\varepsilon: \ |B_t| = \varepsilon\} \quad \text{and} \quad \sigma_{n+1}^\varepsilon := \inf\{t > \tau_n^\varepsilon: \ B_t = 0\}.$

Further, let $N_t^{\varepsilon} := \max\{n \ge 1 : \tau_n^{\varepsilon} \le t\}$ with the convention $\max \emptyset := 0$. Show that $\varepsilon N_t^{\varepsilon} \xrightarrow[\varepsilon \to 0]{} L_t^0$ in $L^2(\Omega)$.

Hint: Observe that

$$\left| L_t^0 + \int_0^t \left(\sum_{n \ge 1} \mathbf{1}_{[\sigma_n^\varepsilon, \tau_n^\varepsilon]}(s) \right) \operatorname{sign}(B_s) dB_s - \varepsilon N_t^\varepsilon \right| \le \varepsilon.$$

Remark. Note that L_t^0 can be reconstructed from the absolute value $|B_t|$ of the Brownian motion B_t . In particular, this means that the filtration generated by the Brownian motion $\beta_t = |B_t| - L_t^0$ is strictly smaller than the one generated by B_t itself.