BROWNIAN MOTION AND STOCHASTIC CALCULUS

Master class 2015-2016

1. Gaussian vectors

(a) Let ξ be a (real-valued) Gaussian variable with mean μ and variance σ^{2}. Compute the characteristic function $\varphi(z)=\mathbb{E}[\exp (i z \xi)], z \in \mathbb{R}$.
(b) Let $\xi=\left(\xi_{1}, \ldots, \xi_{d}\right)$ be a Gaussian vector with mean $\mu=\left(\mu_{1}, \ldots, \mu_{d}\right) \in \mathbb{R}^{d}$ and covariance matrix $G=\left(G_{j k}\right)_{j, k=1}^{d} \in \mathbb{R}^{d \times d}$. Prove that the matrix G is positive definite, i.e. $\lambda^{\top} G \lambda=\sum_{j, k=1}^{d} \lambda_{j} G_{j k} \lambda_{k}>0$ for all $\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \mathbb{R}^{d}$ except $\lambda=0$.
(c) Let $\xi=\left(\xi_{1}, \ldots, \xi_{d}\right)$ be a Gaussian vector with mean $\mu \in \mathbb{R}^{d}$ and covariance matrix $G \in \mathbb{R}^{d \times d}$. Compute the characteristic function $\varphi(z)=\mathbb{E}\left[\exp \left(i z^{\top} \xi\right)\right]$, $z \in \mathbb{R}^{d}$. Hint: write $G=U^{\top} \Lambda U$, where U is an orthogonal matrix and Λ is diagonal.
(d) Check that if ξ_{1}, \ldots, ξ_{d} are independent Gaussian variables, then $\xi=\left(\xi_{1}, \ldots, \xi_{d}\right)$ is a Gaussian vector. For any matrix $U \in \mathbb{R}^{d \times d}$ check that $U \xi$ is also a Gaussian vector. What can be said about their covariance matrices?
(e) Let $\xi=\left(\xi_{1}, \ldots, \xi_{d}\right)$ be a Gaussian vector. Prove that its components ξ_{1}, \ldots, ξ_{d} are independent if and only if the covariance matrix G is diagonal. Is it true that two Gaussian variables are independent if and only if their covariance is zero?

2. Fourier series

(a) Prove that both families $(\sqrt{2} \cos (\pi n t))_{n \geq 0}$ and $(\sqrt{2} \sin (\pi n t))_{n \geq 1}$ are orthonormal bases in $L^{2}[0,1]$. Hint: Use the fact that $\left(e^{i \pi n t}\right)_{n \in \mathbb{Z}}$ is an orthogonal basis in $L^{2}[-1,1]$.
(b) For all $s, t \in[0,1]$, prove the following identity:

$$
\sum_{n=1}^{+\infty} \frac{2 \sin (\pi n s) \sin (\pi n t)}{\pi^{2} n^{2}}=\min \{s, t\}-s t .
$$

(c) $\left(^{*}\right)$ Note that the identity given above can be also derived from the identity

$$
\sum_{n=1}^{+\infty} \frac{\cos (\pi n t)}{\pi^{2} n^{2}}=\frac{t^{2}}{4}-\frac{|t|}{2}+\frac{1}{6}, \quad|t| \leq 1
$$

which follows (by integration) from the Poisson summation formula

$$
\sum_{n=-\infty}^{+\infty} e^{i \pi n t}=2 \sum_{m=-\infty}^{+\infty} \delta_{2 m}(t)
$$

(this should be understood in terms of Schwartz distributions).

BROWNIAN MOTION AND STOCHASTIC CALCULUS

Master class 2015-2016

3. Green's function of the Laplacian on $[0,1]$.

(a) Prove that the eigenfunctions and eigenvalues of the Dirichlet boundary value problem

$$
-f^{\prime \prime}=\lambda f, \quad f(0)=f(1)=0
$$

are given by $f_{n}(t)=\sqrt{2} \sin (\pi n t)$ and $\lambda_{n}=\pi^{2} n^{2}$ with $n \geq 1$. Find eigenfunctions of the similar problem with Neumann boundary conditions $f^{\prime}(0)=f^{\prime}(1)=0$.
(b) Green's function $G(s, t)$ of the Laplacian $f \mapsto-f^{\prime \prime}$ with Dirichlet boundary conditions is defined to be the kernel of the inverse operator, i.e. the unique function G such that $-f^{\prime \prime}=g$ and $f(0)=f(1)=0$ imply $f(t)=\int_{0}^{1} G(s, t) g(s) d s$. Prove that

$$
G(s, t)=\min \{s, t\}-s t, \quad s, t \in[0,1] .
$$

(c) Prove that

$$
G(s, t)=\sum_{n=1}^{+\infty} \frac{2 \sin (\pi n s) \sin (\pi n t)}{\pi^{2} n^{2}}, \quad s, t \in[0,1]
$$

4. Poisson process

Recall that we defined the Poisson process $\left(N_{t}\right)_{t \in[0,+\infty)}$ of intensity $\lambda>0$ by

$$
N_{t}:=\min \left\{n: \xi_{0}+\cdots+\xi_{n} \geq t\right\}
$$

where ξ_{0}, ξ_{1}, \ldots is a sequence of i.i.d. exponential variables with density $\lambda e^{-\lambda x}, x \in[0,+\infty)$. (Also recall that $\left(N_{t}\right)_{t \in[0,+\infty)}$ is a process with independent increments due to the memoryless property of the exponential variable.)
(a) Prove that the increments $N_{t+s}-N_{t}$ are stationary and have Poisson distribution with parameter λs, i.e. $\mathbb{P}\left[N_{t+s}-N_{t}=n\right]=e^{-\lambda s} \cdot(\lambda s)^{n} / n!, n \geq 0$.
(b) Assume that $\lambda^{(1)}, \lambda^{(2)}>0$ and $\lambda=\lambda^{(1)}+\lambda^{(2)}$. Let $N_{t}^{(1)}$ and $N_{t}^{(2)}$ be two independent Poisson processes of intensities $\lambda^{(1)}$ and $\lambda^{(2)}$. Prove that the process $N_{t}:=N_{t}^{(1)}+N_{t}^{(2)}$ is a Poisson processes of intensity λ.
(c) Let $\left(N_{t}\right)_{t \geq 0}$ be a Poisson processes of intensity $\lambda>0$, and let $p \in(0,1)$. Let us color every jump point of N_{t} white or blue independently with probabilities p and $1-p$, respectively. Prove that the collections of white and blue points define jumps of two Poisson processes of intensities λp and $\lambda(1-p)$, respectively.
(d) $\left(^{*}\right)$ Prove that a counting process $\left(N_{t}\right)_{t \in[0,+\infty)}$ (i.e., a non-decreasing integer-valued right-continuous process with $N_{0}=0$) is a Poisson process of intensity $\lambda>0$ if and only if for all $0<t_{1}<\ldots<t_{k}$ and $0 \leq n_{1} \leq \ldots \leq n_{k}$, one has

$$
\begin{array}{ll}
\mathbb{P}_{\lambda}\left(N_{t_{k}+\delta}-N_{t_{k}}=0 \mid N_{t_{j}}=n_{j}, 1 \leq j \leq k\right)=1-\lambda \delta+o(\delta), & \\
\mathbb{P}_{\lambda}\left(N_{t_{k}+\delta}-N_{t_{k}}=1 \mid N_{t_{j}}=n_{j}, 1 \leq j \leq k\right)=\lambda \delta+o(\delta), & \text { as } \delta \rightarrow 0 . \\
\mathbb{P}_{\lambda}\left(N_{t_{k}+\delta}-N_{t_{k}} \geq 2 \mid N_{t_{j}}=n_{j}, 1 \leq j \leq k\right)=o(\delta),
\end{array}
$$

BROWNIAN MOTION AND STOCHASTIC CALCULUS

Master class 2015-2016

5. Miscellaneous

(a) Let B_{t} be the standard Brownian motion on $[0, \infty)$. Check that the process $(1-t) B_{\frac{t}{1-t}}$ is a Brownian bridge on $[0,1]$.
(b) Let \widetilde{B}_{t} be the standard Brownian bridge on $[0,1]$. Check that the process $(1+t) \widetilde{B}_{\frac{t}{1+t}}$ is a standard Brownian motion on $[0, \infty)$.
(c) Prove that

$$
\left(a+\frac{1}{a}\right)^{-1} \cdot e^{-\frac{a^{2}}{2}}<\int_{a}^{+\infty} e^{-\frac{x^{2}}{2}} d x<a^{-1} \cdot e^{-\frac{a^{2}}{2}} .
$$

(d) Prove that for any dyadic rationals $s=p 2^{-m}$ and $t=q 2^{-s}$ one has

$$
\sum_{n=1}^{+\infty} \sum_{k=1, k \text { odd }}^{2^{n}-1} g_{k, n}(s) g_{k, n}(t)=\min \{s, t\}-s t,
$$

where the functions $g_{k, n}(x)=\int_{0}^{x} f_{k, n}(y) d y$ are the primitives of the Haar functions

$$
f_{k, n}=2^{-\frac{n+1}{2}} \cdot\left(\chi_{\left[(k-1) 2^{-n}, k 2^{-n}\right)}-\chi_{\left[k 2^{-n},(k+1) 2^{-n}\right)}\right) .
$$

(e) $\left(^{*}\right)$ Prove that the Haar functions $f_{k, n}(t)$ form a complete family in $L^{2}([0,1])$.

6. Measurability

Let \mathcal{A} be a σ-algebra on a space Ω and $\left(X_{t}\right)_{t \in[0, T]}$ be a family of mappings $X_{t}: \Omega \rightarrow \mathbb{R}$. Let $X: \Omega \times[0, T] \rightarrow \mathbb{R}$ denote the mapping $(\omega, t) \mapsto X_{t}$. By $\mathcal{B}(\mathrm{M})$ we will denote the Borel σ-algebra on a metric space M. Prove that the following statements are equivalent:
(a1) for each $t \in[0, T]$ the mapping $X_{t}:(\Omega, \mathcal{A}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is measurable;
(a2) the mapping $X:(\Omega, \mathcal{A}) \rightarrow\left(\mathbb{R}^{[0, T]}, \mathcal{B}(\mathbb{R})^{\otimes[0, T]}\right)$ is measurable.
Assume that for all $\omega \in \Omega$ the function $\mathcal{X}=\mathcal{X}(\omega): t \mapsto X_{t}$ is continuous on $[0, T]$ and let $\mathcal{C}([0, T])$ denote the (Banach) space of real-valued continuous functions on $[0, T]$. Prove that the following statements are equivalent:
(a) the mapping $X:(\Omega, \mathcal{A}) \rightarrow\left(\mathbb{R}^{[0, T]}, \mathcal{B}(\mathbb{R})^{\otimes[0, T]}\right)$ is measurable;
(b) the mapping $X:(\Omega \times[0, T], \mathcal{A} \otimes \mathcal{B}([0, T])) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is measurable;
(c) the mapping $\mathcal{X}:(\Omega, \mathcal{A}) \rightarrow(\mathcal{C}([0, T]), \mathcal{B}(\mathcal{C}([0, T]))$ is measurable.

Without the continuity assumption, check that (b) implies (a) but not vice versa.

BROWNIAN MOTION AND STOCHASTIC CALCULUS

7. Maximum process

Theorem (Bachelier). Let $\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion and $M_{t}:=\max _{s \in[0, t]} B_{s}$. Then for each (fixed) $t \geq 0$ one has

$$
M_{t} \stackrel{(d)}{=} M_{t}-B_{t} \stackrel{(d)}{=}\left|B_{t}\right| .
$$

(a) Could it be true that, say, $\left(M_{t}\right)_{t \in[0,1]} \stackrel{(d)}{=}\left(\left|B_{t}\right|\right)_{t \in[0,1]}$?
(b) Let $x \geq 0, y \leq x$ and $\tau=\inf \left\{t: B_{t}=x\right\}$. Using reflection principle show that

$$
\mathbb{P}\left[M_{1} \geq x, B_{1} \leq y\right]=\mathbb{P}\left[B_{\min \{1, \tau\}}-\left(B_{1}-B_{\min \{1, \tau\}}\right) \geq 2 x-y\right] .
$$

(c) Show that the joint distribution of the pair $\left(M_{1}, B_{1}\right)$ is given by the measure

$$
-2 p^{\prime}(2 x-y) d x d y, \quad x \geq 0, y \leq x,
$$

where $p(t)=(2 \pi)^{-1 / 2} \exp \left(-t^{2} / 2\right)$ is the standard normal density.
(d) Deduce the theorem for $t=1$ and use the scaling invariance to treat the general case.

8. LAW OF THE ITERATED LOGARITHM

Theorem (Khinchin). Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion. Then we have a.s.

$$
\limsup _{t \rightarrow 0} \frac{B_{t}}{\sqrt{2 t \log \log (1 / t)}}=1
$$

(a) Show that $\lim \sup _{t \rightarrow 0}(2 t \log \log (1 / t))^{-1 / 2} B_{t} \stackrel{(d)}{=} \lim \sup _{t \rightarrow \infty}(2 t \log \log t)^{-1 / 2} B_{t}$.
(b) Let $M_{t}=\sup _{s \in[0, t]} B_{s}$. Use Bachelier's theorem to show that

$$
\mathbb{P}\left[M_{t}>u t^{1 / 2}\right] \sim(2 / \pi)^{1 / 2} u^{-1} e^{-u^{2} / 2} \quad \text { as } \quad u \rightarrow \infty .
$$

(c) Show that $\lim \sup _{t \rightarrow \infty}(2 t \log \log t)^{-1 / 2} B_{t} \leq 1$ almost surely.
(d) Show that for $r>1$

$$
\limsup _{t \rightarrow \infty} \frac{B_{t}-B_{t / r}}{\sqrt{2 t \log \log t}} \geq\left(1-r^{-1}\right)^{1 / 2} \quad \text { a.s. }
$$

(e) Show that for $r>1$

$$
\limsup _{t \rightarrow \infty} \frac{B_{t}}{\sqrt{2 t \log \log t}} \geq\left(1-r^{-1}\right)^{1 / 2}-r^{-1 / 2} \quad \text { a.s. }
$$

(f) Show that $\lim \sup _{t \rightarrow \infty}(2 t \log \log t)^{-1 / 2} B_{t} \geq 1$ almost surely.

9. Identities for random walks. Last return to 0 and running maximum.

Theorem (last return to 0, Feller). Let $\left(S_{m}\right)_{m \geq 0}$ be a simple symmetric random walk in \mathbb{Z} and $\sigma_{n}:=\max \left\{k \leq n: S_{2 k}=0\right\}$. Then

$$
\mathbb{P}\left(\sigma_{n}=k\right)=u_{k} u_{n-k}, \quad k=0, \ldots, n,
$$

where $u_{k}=\mathbb{P}\left(S_{2 k}=0\right)=2^{-2 k}\binom{2 k}{k}$.
(a) Formulate a discrete version of the reflection principle for the Brownian motion.
(b) Show that $\mathbb{P}\left(\sigma_{n}=k\right)=u_{k} \cdot \mathbb{P}\left(M_{2(n-k)-1}=0\right)$, where $M_{m}=\max _{k \leq m} S_{k}$.
(c) Note that $1-\mathbb{P}\left(M_{2 m-1}=0\right)=\mathbb{P}\left(M_{2 m-1} \geq 1, S_{2 m-1} \geq 1\right)+\mathbb{P}\left(M_{2 m-1} \geq 1, S_{2 m-1} \leq-1\right)$.
(d) Using the reflection principle for the simple random walk, prove that

$$
\mathbb{P}\left(M_{2 m-1}=0\right)=\mathbb{P}\left(S_{2 m-1}=1\right)=u_{m} .
$$

Theorem (running maximum times, Sparre-Andersen). Let $\left(S_{m}\right)_{m \geq 0}$ be a random walk in \mathbb{R} based on a symmetric diffuse (i.e. absolutely continuous w.r.t. Lebesgue measure) distribution, put $M_{n}:=\max _{k \leq n} S_{k}$, and write $\tau_{n}:=\min \left\{k \geq 0: S_{k}=M_{n}\right\}$. Then

$$
\mathbb{P}\left(\tau_{n}=k\right)=u_{k} u_{n-k}, \quad k=0, \ldots, n,
$$

where u_{k} are the same as in the previous theorem.
(a) Show that $\mathbb{P}\left[\tau_{k}=0\right]=\mathbb{P}\left[\tau_{k}=k\right]$ for all $k \geq 0$.
(b) Show that $\mathbb{P}\left[\tau_{n}=k\right]=v_{k} v_{n-k}$ for all $0 \leq k \leq n$, where $v_{k}=\mathbb{P}\left[\tau_{k}=k\right]$.
(c) By induction show that $v_{k}=u_{k}$.
(d) $\left(^{*}\right)$ Is it true that the processes $\left(\tau_{n}\right)_{n \geq 0}$ and $\left(\sigma_{n}\right)_{n \geq 0}$ are identically distributed?

10. Identities for random walks. Sojourns and maxima.

Theorem (sojourns and maxima, Sparre-Andersen). Let ξ_{1}, \ldots, ξ_{n} be i.i.d. (more generally, exchangeable) random variables and $S_{m}=\sum_{k=1}^{m} \xi_{k}$ for $0 \leq m \leq n$. Then,

$$
\#\left\{1 \leq m \leq n: S_{m}>0\right\} \stackrel{(d)}{=} \min \left\{k: S_{k}=\max _{0 \leq m \leq n} S_{m}\right\} .
$$

(a) This is a deterministic statement. Given some values $\xi_{1}, \ldots, \xi_{n} \in \mathbb{R}$, let us construct a permutation $\beta:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ by the following algorithm applied consecutively to $k=n, k=n-1, \ldots, k=1$:

- if $S_{k} \leq 0$, denote by $\beta(k)$ the maximal available index in $\{1, \ldots, n\}$;
- if $S_{k}>0$, denote by $\beta(k)$ the minimal available index in $\{1, \ldots, n\}$.

Let $S_{m}^{(\beta)}=\sum_{k=1}^{m} \xi_{\beta(k)}$ for $0 \leq m \leq n$. Prove that

$$
\#\left\{1 \leq m \leq n: S_{m}>0\right\}=\min \left\{k: S_{k}^{(\beta)}=\max _{0 \leq m \leq n} S_{m}^{(\beta)}\right\}
$$

(b) Prove that $\left(\xi_{\beta(1)}, \ldots, \xi_{\beta(n)}\right) \stackrel{(d)}{=}\left(\xi_{1}, \ldots, \xi_{n}\right)$ and deduce the theorem.

Hint: re-write the condition $S_{k} \leq 0$ as $\xi_{k+1}+\cdots+\xi_{n} \geq S_{n}=S_{n}^{(\beta)}$.

BROWNIAN MOTION AND STOCHASTIC CALCULUS

Master class 2015-2016
11. Reflected Brownian motion. The processes $\left(M_{t}-B_{t}\right)_{t \geq 0}$ and $\left(\left|B_{t}\right|\right)_{t \geq 0}$.
(a) Let $\left(S_{m}\right)_{m \geq 0},\left(S_{m}^{\prime}\right)_{m \geq 0}$ be two independent simple symmetric random walks in \mathbb{Z} started at the origin and $\widetilde{S}_{m}^{\prime}:=S_{m}^{\prime}+\frac{1}{2}$ for $m \geq 0$. Let $M_{m}:=\max _{k \leq m} S_{k}$ and

$$
L_{m}^{\prime}:=\#\left\{1 \leq k \leq m: \widetilde{S}_{k}^{\prime}=-\widetilde{S}_{k-1}^{\prime} \in\left\{ \pm \frac{1}{2}\right\}\right\}
$$

denote the number of steps before time m when the trajectory $\left(\widetilde{S}_{m}^{\prime}\right)_{m \geq 0}$ crosses the horizontal line. Prove that the processes

$$
\left(M_{m}-S_{m}, M_{m}\right)_{m \geq 0} \quad \text { and } \quad\left(\left|S_{m}^{\prime}\right|-\frac{1}{2}, L_{m}^{\prime}\right)_{m \geq 0}
$$

are identically distributed. Hint: note that both processes can be described as the (identically distributed) random walks in $\mathbb{Z}_{+} \times \mathbb{Z}_{+}$.
(b) Let $\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion and $M_{t}:=\max _{s \in[0, t]} B_{s}$. Using Donsker's theorem, prove that

$$
\left(M_{t_{1}}-B_{t_{1}}, \ldots, M_{t_{p}}-B_{t_{p}}\right) \stackrel{(d)}{=}\left(\left|B_{t_{1}}\right|, \ldots,\left|B_{t_{p}}\right|\right)
$$

for all $0 \leq t_{1} \leq \ldots \leq t_{p}$.
(c) Conclude that the processes $\left(M_{t}-B_{t}\right)_{t \geq 0}$ and $\left(\left|B_{t}\right|\right)_{t \geq 0}$ are identically distributed. Hint: The mapping $f(t) \mapsto \max _{s \in[0, t]} f(s)$ is continuous in $C([0, T])$ for each $T>0$.
(d) $\left(^{*}\right)$ Denote by $\left(\mathcal{F}_{t}^{(1)}\right)_{t \geq 0}$ and $\left(\mathcal{F}_{t}^{(2)}\right)_{t \geq 0}$ the filtrations generated by these two processes. Is it true that $\mathcal{F}_{t}^{(1)}=\mathcal{F}_{t}$, where the filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is generated by $\left(B_{t}\right)_{t \geq 0}$ itself? (In other words, can one reconstruct B_{t} from $M_{t}-B_{t}$?) Is it true that $\mathcal{F}_{t}^{(2)}=\mathcal{F}_{t}$?

12. Uniform laws for the Brownian bridge

Theorem. Let $\left(B_{t}\right)_{t \in[0,1]}$ be a Brownian bridge on $[0,1]$ and $M:=\max _{s \in[0,1]} B_{s}$. Then the following random variables are both $U(0,1)$, i.e. uniformly distributed on $[0,1]$:

$$
\tau_{1}=\lambda\left\{t \in[0,1]: B_{t}>0\right\}, \quad \tau_{2}=\inf \left\{t: B_{t}=M\right\} .
$$

(a) Given $u \in[0,1]$, define $B_{t}^{u}:=B_{(u+t)}-B_{u}$, where $(x):=x-\lfloor x\rfloor$. Show that the process $\left(B_{t}^{u}\right)_{t \in[0,1]}$ is distributed as a Brownian bridge.
(b) Let $\tau_{2}^{u}:=\inf \left\{t: B_{t}^{u}=M-B_{u}\right\}$ and let u be uniformly distributed over [0, 1]. Apply Fubini's theorem to show that $\mathbb{P}\left(\tau_{2} \leq t\right)=\int_{0}^{1} \mathbb{P}\left(\tau_{2}^{u} \leq t\right) d u$ is also $U(0,1)$.
(c) Using Donsker's theorem and Exercise 10, show that τ_{1} and τ_{2} have the same law.
(d) $\left(^{*}\right)$ Let $\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion, $\left(\widetilde{B_{t}}\right)_{t \in[0,1]}$ be a Brownian bridge. For each $T<1$ prove that the distributions of the processes $\left(B_{t}\right)_{t \in[0, T]}$ and $\left(\widetilde{B}_{t}\right)_{t \in[0, T]}$ are mutually absolutely continuous. Hint: prove that the processes $\left(B_{t}-t T^{-1} B_{T}\right)_{t \in[0, T]}$ and $\left(\widetilde{B}_{t}-t T^{-1} \widetilde{B}_{T}\right)_{t \in[0, T]}$ are identically distributed (as a re-scaled Brownian bridge).

BROWNIAN MOTION AND STOCHASTIC CALCULUS

Master class 2015-2016
13. Exit time from $[-a, a]$ And time Spent in $[0,-a]$ DURing A downcrossing
(a) Let $a>0$ and $\tau_{ \pm a}:=\inf \left\{t \geq 0:\left|B_{t}\right|=a\right\}$, where $\left(B_{t}\right)_{t \geq 0}$ is a standard Brownian motion (started from 0). Show that

$$
\mathbb{E}\left[\exp \left(-\mu \tau_{ \pm a}\right)\right]=1 / \cosh (a \sqrt{2 \mu}), \quad \mu \geq 0
$$

Compute the expectations $\mathbb{E}\left[\tau_{a}\right]$ and $\mathbb{E}\left[\tau_{a}^{2}\right]$. Is is true that $\mathbb{E}\left[\exp \left(\theta \tau_{ \pm a}\right)\right]<+\infty$ for some $\theta>0$? What is the optimal upper bound for such θ 's?

Proposition (removing of negative excursions). Let $\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion, $s(t):=\lambda\left(\left\{s^{\prime} \in[0, t]: B_{s^{\prime}} \geq 0\right\}\right)$ and $t(s):=\inf \{t \geq 0: s(t) \geq s\}$. Then

$$
\left(B_{t(s)}\right)_{s \geq 0} \stackrel{(d)}{=}\left(\left|B_{s}\right|\right)_{s \geq 0} .
$$

(b) Check a similar statement for simple random walks (this is trivial).
(c) Prove that for each $T>0$ one has $\lim _{\varepsilon \downarrow 0} \lambda\left(t \in[0, T]:\left|B_{t}\right| \leq \varepsilon\right)=0$ almost surely.
(d) Let $s_{f}(t)$ and $t_{f}(s)$ be defined as in the proposition via a continuous function $f=f(t)$ instead of B_{t}. Check that the mapping $(f(t))_{t \in[0, T]} \mapsto(f(t(s \wedge s(T))))_{s \in[0, T]}$ is continuous (in the $C([0, T])$ metric) at almost every Brownian motion trajectory $\left(B_{t}\right)_{t \in[0, T]}$.
(e) Prove the proposition using (b) and Donsker's invariance principle.
(f) Let $\tau_{-a}:=\inf \left\{t \geq 0: B_{t}=-a\right\}$. Prove that $\lambda\left(s \in\left[0, \tau_{-a}\right]: 0 \geq B_{s} \geq-a\right) \stackrel{(d)}{=} \tau_{ \pm a}$.

14. Recurrence/transience of the d-dimensional Brownian motion

Let $d \geq 2$ and $A(r, R):=\left\{x \in \mathbb{R}^{d}: r<\|x\|<R\right\}$. Let $\left(B_{t}^{x}\right)_{t \geq 0}$ denote a standard d-dimensional Brownian motion started from x and $\tau_{r, R}=\tau_{r, R}^{x}:=\inf \left\{t>0: B_{t}^{x} \notin A(r, R)\right\}$.
(a) For $x \in A(r, R)$, prove that

$$
\mathbb{P}^{x}\left[\left|B_{\tau_{r, R}}^{x}\right|=r\right]= \begin{cases}(\log R /\|x\|) \cdot(\log R / r)^{-1} & \text { if } d=2, \\ \left(\|x\|^{2-d}-R^{2-d}\right) \cdot\left(\|r\|^{2-d}-R^{2-d}\right)^{-1} & \text { if } d \geq 3\end{cases}
$$

(b) Prove that $\mathbb{P}\left[\exists t>0: B_{t}^{x}=0\right]=0$ for all $x \in \mathbb{R}^{d}$.
(c) Let $d=2$ and $\|x\|>r>0$. Prove that $\mathbb{P}\left[\exists t \geq 0:\left|B_{t}^{x}\right|=r\right]=1$ and deduce that

$$
\mathbb{P}\left[\exists 0<t_{1}<t_{2}<\ldots: t_{k} \rightarrow \infty \text { and }\left|B_{t_{k}}^{x}\right|=r\right]=1
$$

for any $x \in \mathbb{R}^{d}$ and $r>0$ (in other words, the Brownian motion in 2D is recurrent).
(d) Let $d \geq 3$. Prove that $B_{t} \rightarrow \infty$ as $t \rightarrow \infty$ almost surely (in other words, the Brownian motion in 3+D is transient). Hint: consider events $A_{n}:=\left\{\exists s<t: B_{s} \geq n^{3}, B_{t} \leq n\right\}$.
(e) $\left(^{*}\right)$ Let $d \geq 2, U \in \mathbb{R}^{d}$ is a bounded open set, $x \in \partial U$ and there exist an open cone C (with the vertex at x) such that $B(x, r) \cap C \subset \mathbb{R}^{d} \backslash U$ for some $r>0$. Prove that x is a regular boundary point of U, i.e. $\inf \left\{t>0: B_{t}^{x} \notin U\right\}=0$ almost surely.

BROWNIAN MOTION AND STOCHASTIC CALCULUS

Master class 2015-2016

15. N-dimensional Brownian motion: Ito's calculus, local martingales and Bessel processes

(a) Let $\alpha \in \mathbb{R}$ and B_{t} be a N-dimensional Brownian motion started at $x \neq 0$. Consider (local) semi-martingale $X_{t}:=\left|B_{t}\right|^{\alpha}$. Compute $d X_{t}$ using Itô's calculus.
(b) Note that X_{t} is a local martingale if $\alpha=2-N$, which agrees with the fact that the function $H(x)=|x|^{2-N}$ is harmonic in \mathbb{R}^{N} (one should consider $\log \left|B_{t}\right|$ for $N=2$).

Let $N=3, \alpha=-1$ and $X_{t}=\left|B_{t}\right|^{-1}$ so that X_{t} is a local martingale. Note that, almost surely, the process $\left(X_{t}\right)_{t \geq 0}$ is well-defined for all $t \geq 0$ and $\lim _{t \rightarrow \infty} X_{t}=0$.
(c) Give an example of a sequence $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ of localizing stopping times for $\left(X_{t}\right)_{t \geq 0}$.
(d) Check that $\mathbb{E}\left[X_{t}^{2}\right] \leq$ const $<+\infty$ for some constant independent of $t \geq 0$.
(e) What is the law of the random variable $\max _{t \in[0,+\infty)} X_{t}$? Does it belong to $L^{1}(\Omega)$?
(f) Using the explicit formula for the Gaussian density, prove that $\mathbb{E}\left[X_{T}\right]<X_{0}=x^{-1}$.

Hint: Use the identity $\left|S_{r}\right|^{-1} \int_{S_{r}}|y+x|^{-1} d \lambda_{S_{r}}(x)=\min \left\{x^{-1}, r^{-1}\right\}$, where $\lambda_{S_{r}}$ denotes the Lebesgue measure on the sphere $S_{r}=\left\{y \in \mathbb{R}^{3}:|y|=r\right\}$ and $\left|S_{r}\right|$ is the area of S_{r}.
Remark. Thus, X_{t} is a local martingale but not a (true) martingale.
Let $\left(B_{t}\right)_{t \geq 0}$ be a N-dimensional Brownian motion started at $x \neq 0$. Denote

$$
\beta_{t}:=\sum_{k=1}^{N} \int_{0}^{t} \frac{B_{t}^{k}}{\left|B_{t}\right|} d B_{t}^{k}
$$

(we set $B_{t}^{k} /\left|B_{t}\right|=0$ if $\left|B_{t}\right|=0$). Check that this stochastic integral is well-defined.
(g) Prove that the process $\left(\beta_{t}\right)_{t \geq 0}$ is a 1-dimensional Brownian motion started at 0 .

Hint: Check that $\left(\beta_{t}\right)_{t \geq 0}$ and $\left(\beta_{t}^{2}-t\right)_{t \geq 0}$ are local martingales, and use Lévy's theorem.
(h) Using (a), show that

$$
\begin{aligned}
\left|B_{t}\right| & =|x|+\beta_{t}+\frac{N-1}{2} \int_{0}^{t} \frac{d s}{\left|B_{s}\right|} \\
\left|B_{t}\right|^{2} & =|x|^{2}+2 \int_{0}^{t}\left|B_{s}\right| d \beta_{s}+N t
\end{aligned}
$$

Definition. Let $\left(\beta_{t}\right)_{t \geq 0}$ be a standard 1-dimensional Brownian motion started at 0 and $m \geq 0$. A process $\left(X_{t}\right)_{t \geq 0}$ satisfying the stochastic differential equation

$$
d X_{t}=2 \sqrt{X_{t}} d \beta_{t}+m d t
$$

is called a squared Bessel process of dimension m. The process $Y_{t}:=\sqrt{X_{t}}$ (if $m<2$, there is an issue with signs of Y_{t}) is called an m-dimensional Bessel process.
Remark. If $m=N \geq 2$ is integer, then $\left(Y_{t}\right)_{t \geq 0} \stackrel{(d)}{=}\left(\left|B_{t}\right|\right)_{t \geq 0}$. Note that, almost surely, $\left|B_{t}\right| \neq 0$ for all $t \geq 0$. Thus in this case there exists a unique continuous choice of the square root of the squared process $\left(X_{t}\right)_{t \geq 0} \stackrel{(d)}{=}\left(\left|B_{t}\right|^{2}\right)_{t \geq 0}$.

BROWNIAN MOTION AND STOCHASTIC CALCULUS

Master class 2015-2016

16. Local time at zero for 1D Brownian motion

Let $\left(B_{t}\right)_{t \geq 0}$ be a one-dimensional Brownian motion. For every $\varepsilon>0$, we define a function

$$
g_{\varepsilon}: \mathbb{R} \rightarrow \mathbb{R}_{+}, \quad g_{\varepsilon}(x):=\sqrt{x^{2}+\varepsilon^{2}}
$$

Note that $g_{\varepsilon}^{\prime}(x) \rightarrow \operatorname{sign}(x)$ as $\varepsilon \rightarrow 0$ uniformly on each of the sets $\{x \in \mathbb{R}:|x| \geq \delta\}, \delta>0$.
(a) Apply Itô's formula to compute a decomposition $g_{\varepsilon}\left(B_{t}\right)=g_{\varepsilon}\left(B_{0}\right)+M_{t}^{\varepsilon}+A_{t}^{\varepsilon}$, where M_{t}^{ε} is a local martingale and A_{t}^{ε} is a bounded variation process. Observe that M_{t}^{ε} is a square integrable martingale and A_{t}^{ε} is increasing.
(b) Show that, for each $T>0$,

$$
\left(M_{t}^{\varepsilon}\right)_{t \in[0, T]} \underset{\varepsilon \rightarrow 0}{\rightarrow}\left(\beta_{t}\right)_{t \in[0, T]} \quad \text { in } \quad L^{2}(\Omega), \quad \text { where } \quad \beta_{t}:=\int_{0}^{t} \operatorname{sign}\left(B_{s}\right) d B_{s}
$$

and the convergence is understood in the metric of $C([0, T])$.
Remark. Recall that Lévy's theorem implies that the process $\left(\beta_{t}\right)_{t \geq 0}$ is another onedimensional Brownian motion defined on the same filtration as $\left(B_{t}\right)_{t \geq 0}$.
(c) Infer that there exists an increasing process $\left(L_{t}^{0}\right)_{t \geq 0}$ such that

$$
\left|B_{t}\right|=\int_{0}^{t} \operatorname{sign}\left(B_{s}\right) d B_{s}+L_{t}^{0} \quad \text { for all } t \geq 0
$$

Observing that $\left(A_{t}^{\varepsilon}\right)_{t \in[0, T]} \rightarrow\left(L_{t}^{0}\right)_{t \in[0, T]}$ as $\varepsilon \rightarrow 0$ show that, for every choice of the segment $[u, v] \subset \mathbb{R}_{+}$and $\delta>0$, the following is true:

$$
\left|B_{t}\right| \geq \delta \text { for all } t \in[u, v] \quad \Rightarrow \quad L_{u}^{0}=L_{v}^{0} .
$$

Infer that L_{t}^{0} is constant on each of the intervals $(u, v) \subset \mathbb{R}_{+}$such that $B_{t} \neq 0$ on (u, v).
Definition. The process L_{t}^{0} is called a local time of the Brownian motion B_{t} at 0 .
(d) Given $\varepsilon>0$, define two sequences of stopping times $\left(\sigma_{n}^{\varepsilon}\right)_{n \geq 1}$ and $\left(\tau_{n}^{\varepsilon}\right)_{n \geq 1}$ inductively by setting $\sigma_{1}^{\varepsilon}:=0$,

$$
\tau_{n}^{\varepsilon}:=\inf \left\{t>\sigma_{n}^{\varepsilon}:\left|B_{t}\right|=\varepsilon\right\} \quad \text { and } \quad \sigma_{n+1}^{\varepsilon}:=\inf \left\{t>\tau_{n}^{\varepsilon}: B_{t}=0\right\} .
$$

Further, let $N_{t}^{\varepsilon}:=\max \left\{n \geq 1: \tau_{n}^{\varepsilon} \leq t\right\}$ with the convention $\max \emptyset:=0$. Show that

$$
\varepsilon N_{t}^{\varepsilon} \underset{\varepsilon \rightarrow 0}{\rightarrow} L_{t}^{0} \quad \text { in } L^{2}(\Omega) .
$$

Hint: Observe that

$$
\left|L_{t}^{0}+\int_{0}^{t}\left(\sum_{n \geq 1} \mathbf{1}_{\left[\sigma_{n}^{\varepsilon}, \tau_{n}^{\varepsilon}\right]}(s)\right) \operatorname{sign}\left(B_{s}\right) d B_{s}-\varepsilon N_{t}^{\varepsilon}\right| \leq \varepsilon .
$$

Remark. Note that L_{t}^{0} can be reconstructed from the absolute value $\left|B_{t}\right|$ of the Brownian motion B_{t}. In particular, this means that the filtration generated by the Brownian motion $\beta_{t}=\left|B_{t}\right|-L_{t}^{0}$ is strictly smaller than the one generated by B_{t} itself.

