PROCESSUS STOCHASTIQUES (ENS, 2016/17-2018/19)

1. Level: M1. Prerequisites: Measure theory, Probability-I.

2. Description/references. The course consists of three parts: conditional expectations and martingales in discrete time; Markov chains in discrete time; introduction to the Brownian motion. The standard (at the ENS) reference text is the (unpublished) lecture notes *Intégration*, *Probabilités et Processus Aléatoire* due to Jean–François Le Gall. We mostly follow these notes though give a different perspective on the Brownian motion, positioning this topic as a generalization of the usual central limit theorem. Traditionally for the ENS, the exposition is complemented by introducing several 'modern' topics on discrete Markov chains at the end of the course.

2. Contents. Part I. Intro to the Brownian motion.

- Reminders: random variables, charateristic function, convergence in distribution, law of large numbers, central limit theorem, Gaussian vectors.
- Continuous random processes with independent distributions.
- Gaussian vectors and Lévy-Ciesielski construction of the Brownian motion.
- Discussion of the continuity assumption and Poisson processes.
- Random variables in Polish spaces, Prokhorov's tightness criterion (w/o proof).
- Donsker's invariance principle aka the functional CLT.
- Discussion of regularity properties of the Brownian motion trajectories.
- (Optional: the proof of Prokhorov's tightness criterion.)

Part II. Conditional expectation and martingales in discrete time.

- Conditional expectation and conditional distribution.
- Discussion: discrete variables, densities, Guassian vectors.
- Filtrations, stopping times, martingales, sub-/super-martingales.
- Optional stopping theorem.
- Example: Dirichlet problem for discrete harmonic functions; exit probabilities on a grid.
- Doob's upcrossing inequality and the almost sure convergence.
- Example: dyadic filtration, decomposition of measures on [0, 1].
- Doob's maximal inequality and the L^p convergence.
- Uniform integrability and the L^1 convergence.
- Galton–Watson process.
- Backward martingales.
- De Finetti's theorem for exchangeable random variables in $\{0, 1\}$.

Part III. Discrete Markov chains.

- Definition, examples, spectral perspective for finite spaces of states.
- Recurrent and transient states; recurrent components.
- Invariant measures, uniqueness for irreducible recurrent chains.
- Positive and null recurrent chains, construction of the invariant measure.
- Asymptotic behavior of aperiodic recurrent chains for large times, ergodic theorem.
- Time reversal of a Markov chain. Doob's h-transform.
- Harmonic functions on infinite graphs, the notion of the Martin boundary.
- Monte-Carlo sampling. Example: Glauber dynamics, Metropolis' algorithm.
- Coupling from the past. Example: sampling the Ising model.
- Basics of mixing times. Example: bottom-to-top shuffling.