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1. Metric and topological spaces: basics

Definition 1.1. Let E be a set. A function d : E ×E → R+ = [0,+∞) is called a
metric (or a distance function) on E if

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ E;

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ E (triangle inequality).

The pair (E, d) (or just E for shortness, once d is fixed) is called a metric space.

Let us mention several examples of metric spaces:

(0) E = R or RN , the Euclidean distance: d(x, y) :=
(∑n

k=1 |yk − xk|2
)1/2

.

More generally, for each p ≥ 1 the function dp(x, y) :=
(∑n

k=1 |yk−xk|p)1/p

is a distance. (For p 6= 1, 2, the triangle inequality (iii) is not fully trivial;
it is called Minkowski’s inequality.) Also, for p = +∞ one can naturally
extend this definition by setting d∞(x, y) := maxk=1,...,n |yk − xk|.

(1) E = G, a connected (finite or infinite) graph; d(u, v) is the minimal number
of edges required to go from u to v. (A common illustration was to think
about points of G as cities and edges as flights linking them; then d(u, v)
is the minimal number of flights required to go from u to v. In the current
circumstances, this is not a useful model.)

(2) Without airplanes: E – a certain landscape, t(x, y) – time required to walk
from x to y, thus t(x, z) ≤ t(x, y) + t(y, z). Note that a priori t is not
symmetric (i.e., (ii) fails): to go uphill is typically longer than downhill;
one can fix this by declaring d(x, y) := max{t(x, y), t(y, x)} and the triangle
inequality is still there.

(3) E = 2R
N

, the set of all non-empty subsets of RN , the Hausdorff distance:

dH(X,Y ) := inf{ε > 0 : Y ⊂
⋃
x∈X B(x, ε) and X ⊂

⋃
y∈Y B(y, ε)},

where B(x, ε) := {y : d(x, y) < ε} is the open ball in RN . This is symmetric
by construction and (iii) is also easy to check. However, there is a problem
with (i): one can have dH(X,Y ) = 0 for X 6= Y : e.g., think about the open
ball X = B(x, r) and the closed ball B(x, r) := {y : d(x, y) ≤ r} of the
same radius. To avoid this problem, one can, e.g., replace E by the set of
all compact subsets of RN ; see TD.

What can one do with/in metric spaces?

(a) to speak about convergence of (sequences of) points xn ∈ E: by definition,
xn → x as n→∞ if and only if d(xn, x)→ 0 as n→∞;

(b) to speak about continuous mappings: f : E1 → E2 is continuous if and
only if, the convergence of points xn → x in E1 as n → ∞ implies the
convergence of their images f(xn)→ f(x) in E2 as n→∞;

(c) e.g., to generalize – under certain assumptions on E – standard theorems on
continuous functions f : [0, 1] → R. E.g., continuous functions f : E → R
attain their extremal values provided that E is compact; they also attain
all intermediate values provided that E is connected; etc.
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One of the important ideas behind such a generalization is to consider continu-
ous mappings defined on more complicated/interesting objects than numbers (e.g.,
functions on functions, which are traditionally called functionals) and to be able to
apply general theorems (extremal value, fixed point, etc)

Certainly, all these notions should be properly defined and the ‘standard’ proofs
re-developed/translated to the context of abstract metric spaces. This is one of
the things that we will be doing below. Actually, it turns out that there exists
even a (strictly) more general framework of topological spaces in which the notions
like compactness, connectedness etc make perfect sense. In order to motivate their
definition, we need more notation, which directly generalize the same notation for
subsets of R or RN :

• Let (E, d) be a metric space, x ∈ E and r ≥ 0. Denote

B(x, r) := {y ∈ E : d(x, y) < r}, B(x, r) := {y ∈ E : d(x, y) ≤ r}.
For shortness, sometimes we will also use the notation Br(x) = B(x, r) and
Br(x) = Br(x) for the same sets, which are called open and closed balls (of
radius r with the center at x), respectively.

• A set U ⊂ E is called open if for each x ∈ U there exists r = rx > 0 such
that B(x, rx) ⊂ U . (Note that in this case we have U =

⋃
x∈U B(x, rx).)

• A set F ⊂ E is called closed if for each x 6∈ F there exists r > 0 such that
B(x, r) ∩ F = ∅. (Trivially, F is closed if and only if E r F is open).

• For a subset X ⊂ E, we define its interior
◦
X :=

⋃
U⊂X; U − open U ;

its closure X :=
⋂
F⊃X; F − closed and the boundary ∂X := X r

◦
X. Note

that the interior of X is the maximal (under inclusion) open subset of X
while the closure of X is the minimal closed set containing X.

• Warning: it can be that Br(x) 6= Br(x) (only Br(x) ⊂ Br(x) is OK).

It is easy to see that the notion of continuous mappings between metric spaces
relies not upon the metric d but on the concept of open sets:

Lemma 1.2. Let (E1, d1) and (E2, d2) be metric spaces. A mapping f : E1 → E2

is continuous (as defined in (b) above: xn → x in E1 implies f(xn)→ f(x) in E2)
if and only if the following property holds:

• for each open set U ⊂ E2 its pre-image f−1(U) is an open set in E1.

Passing to complements f−1(E2 r U) = E1 r f−1(U)) one can also reformulate
the continuity of f : E1 → E2 by requiring that

• f−1(F ) ⊂ E1 is closed for each closed F ⊂ E2.

Proof. “⇓” Let f be continuous, U ⊂ E2 open, and x ∈ f−1(U). Since U is open, we
can find r > 0 such that B(f(x), r) ⊂ U . Assume that B(x, 2−n) 6⊂ f−1(U) for all
n ∈ N, which means that there exists xn 6∈ f−1(U) such that d1(x, xn) < 2−n. By
continuity, d2(f(xn), f(x)) → 0 as n → ∞. In particular, f(xn) ∈ B(f(x), r) ⊂ U
for large enough n and hence xn ∈ f−1(U), a contradiction.

“⇑” Let xn → x in E1 as n → ∞. For each ε > 0 the set f−1(B(f(x), ε) is
open and thus there exists δ = δ(x, ε) > 0 such that B(x, δ) ⊂ f−1(B(f(x), ε) or,
equivalently, f(B(x, δ)) ⊂ B(f(x), ε). Since d1(xn, x) → 0 as n → ∞, we have
xn ∈ B(x, δ) for all n ≥ N0, and hence d2(f(x), f(xn)) < ε for all n ≥ N0. �
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• Two metrics d′, d′′ defined on the same set E are called equivalent if for
each x ∈ E and r > 0 there exist r′, r′′ > 0 such that B′(x, r′) ⊂ B′′(x, r)
and B′′(x, r′′) ⊂ B′(x, r). In other words, two metrics are equivalent if
and only if they define the same collection of open subsets of E. In view
of Lemma 1.2, the notion of continuous mappings f : E1 → E2 remains
unchanged if one replaces a metric in E1 or in E2 by an equivalent one.

Definition 1.3. Let E be a set and O ⊂ 2E be a collection of subsets of E satisfying
the following assumptions:

(i) ∅ ∈ O and E ∈ O;
(ii) if {Uα}α∈A ⊂ O, then

⋃
α∈A Uα ∈ O (note that A can be infinite);

(iii) if U, V ∈ O, then U ∩ V ∈ O (by induction, the same holds for all finite
intersections of sets from O).

Then O is called a topology on E; the sets U ∈ O are called open sets; and the
pair (E,O) (or simply E for shortness if O is fixed) is called a topological space.

The interior
◦
X, closure X and the boundary ∂X of a set X ⊂ E are defined as

above; note that we relied only upon the notion of open sets there.

Definition 1.4. A mapping f : E1 → E2 between topological spaces is called con-
tinuous if for each open set U ⊂ E2 its pre-image f−1(U) is an open set in E1.

• The terminology is consistent: let (E, d) be a metric space and O denote
the collection of open sets in E as defined above. Then, the properties
(i)–(iii) are straightforward (to prove (iii), note that if x ∈ U ∩ V , then
B(x, r1) ⊂ U and B(x, r2) ⊂ V imply B(x,min{r1, r2} ⊂ U ∩ V ).

• Vice versa, given a topology O on E one says that O is metrizable if there
exists a metric d on E such that the collection of open sets constructed out
of d coincides with O.

• Not all topologies are metrizable! In particular, all metrizable topologies
satisfy the following property (called axiom T2 or Hausdorff space): if x 6= y,
then there exist Ux, Uy ∈ O such that x ∈ Ux, y ∈ Uy and Ux ∩ Uy = ∅.
(Indeed, we can take Ux = B(x, 1

2d(x, y)), Uy = B(y, 1
2d(x, y)).) However,

this property fails in the examples given below.

Non-metrizable topological spaces:

(4) Co-finite topology (a toy ‘model’ for the next example): E - infinite set;
U ∈ O if and only if E r U is finite or if U = ∅. Equivalently, a set F ⊂ E
is closed if and only if it is finite or F = E. One can easily see that the
Hausdorff property (T2 axiom) does not hold.

(5) Zariski’s topology: E = kn; k is a field (C or R or Fpn or ...) and n ∈ N. A
set F ⊂ kn is called closed if there exists a (possible infinite, no restriction)
family of polynomials in n variables {Pα}α∈A ⊂ k[x1, . . . , kn] such that F =
{x ∈ kn : Pα(x1, . . . , xn) = 0 for all α ∈ A}. The property (ii) is trivial, the
property (iii) follows by considering the family of products {PαQβ}α∈A,β∈B :

Pα(x)Qβ(y) = 0 for all α ∈ A and β ∈ B
⇔ (Pα(x) = 0 for all α ∈ A) or (Qβ(y) = 0 for all β ∈ B).

(In other words, if E r U is defined by {Pα}α∈A and E r V by {Qβ}β∈B ,
then E r (U ∩ V ) is defined by {PαQβ}α∈A,β∈B .)
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Reminder. We have the following (consistent!) definitions:

Metric spaces (d : E × E → R+):

• Convergent sequences in E:
xn → x iff dE(xn, x)→ 0.

• Continuous mappings f : E1 → E2:
xn → x ⇒ f(xn)→ f(x).

• U ⊂ E is open if for each x ∈ U
there exists rx > 0 s.t. B(x, rx) ⊂ U ;
note that U =

⋃
x∈U B(x, rx).

Topological spaces (O ⊂ 2E):

• Continuous mappings f : E1 → E2:
U ∈ OE2

⇒ f−1(U) ∈ OE1
.

It is easy to see that, if f : E1 → E2

and g : E2 → E3 are continuous, then
their composition f ◦ g : E1 → E3 is
also continuous.

(Indeed, (g◦f)−1(U) = f−1(g−1(U)).

Recall also the definitions of the interior and the closure of a set X ⊂ E:
◦
X =

⋃
U − open: U⊂X U = {x ∈ E : ∃Ux ∈ O such that x ∈ Ux ⊂ X};

X =
⋂
F − closed: X⊂F F = {x ∈ E : ∀Ux ∈ O (x ∈ Ux ⇒ Ux ∩X 6= ∅)}.

Moreover, in the metric setup it is enough to consider open balls B(x, r) instead of

generic neighborhoods Ux ∈ O in the second column.

2. Topological spaces: more notions

Definition 2.1. A bijection f : E1 → E2 between topological spaces is called a
homeomorphism if both f and f−1 are continuous. Topological spaces E1 and E2

are called homeomorphic if there exists a homeomorphism f : E1 → E2.

Note that

• ’to be homeomorphic’ is an equivalence relation on topological spaces;
• if a certain ‘topological’ (i.e., formulated only in terms of open sets and

notions derived out of O) property holds for E1, it also holds for E2;
• a topological space is metrizable if and only if it is homeomorphic to a

metric space. Below we sometimes (a bit inaccurately) say ‘E is metric
space’ instead of ‘E is a metrizable topological space’.

Further, note that the intersection O′ ∩ O′′ of two topologies on the same E is
again a topology on E. Let us introduce more terminology.

Definition 2.2. Let O1 and O2 be two topologies defined on the same E such that
O1 ⊂ O2, then one says that O2 is finer than O1 and that O1 is coarser than O2.
The extreme cases O = {∅, E} and O = 2E are called the trivial and the discrete
topologies, respectively.

(The intuition behind the names is that we ‘distinguish’ points in E from each other
using open sets: the larger O is, the ‘finer’ structure of E we can speak about.)

Definition 2.3. A subset B ⊂ O is called a base of the topology O if for each
U ∈ O there exists a subset {Bα}α∈A ⊂ B such that U =

⋃
α∈A Uα. Equivalently,

for each U ∈ O and x ∈ U there exists B ∈ B such that x ∈ B ⊂ U .
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An instructive example is the collection B := {B(x, r)}x∈E,r>0 in a metric space.
Instead of describing the full collection O of open sets it is often easier to prescribe
a base B of O. However, not all collections B ⊂ 2E can serve as a base of a topology.

Proposition 2.4. (i) Let B ⊂ O be a base of O. Then,
⋃
B⊂B B = E and

for each B′, B′′ ∈ B and x ∈ B′ ∩B′′ there exists B ∈ B s.t. x ∈ B ⊂ B′ ∩B′′.

(ii) Vice versa, assume that B ⊂ 2E satisfies the two conditions given above. Then,
O := {

⋃
B∈AB}A⊂B is a topology on E. This topology is called the topology gen-

erated (or defined) by B and is the minimal topology on E that contains B.

Proof. (i) Both properties directly follow from the definition of a base of a topology
(and since E ∈ O and B1 ∩B2 ∈ O).

(ii) It is clear that ∅, E ∈ O and that unions of sets from O also belong to O. To
prove that U ′ ∩ U ′′ ∈ O for U ′, U ′′ ∈ O, note that(⋃

B′∈A′ B
′) ∩ (⋃B′′∈A′′ B′′) =

⋃
B′∈A′,B′′∈A′′(B

′ ∩B′′).

For each x ∈ U ′ ∩ U ′′ one can find B′x ∈ A′ and B′′x ∈ A′′ such that x ∈ B′x ∩ B′′x ,
and then use the assumption on B to find Bx ∈ B such that x ∈ Bx ⊂ B′x ∩ B′′x .
Clearly, Bx ⊂ U ′ ∩ U ′′ and hence U ′ ∩ U ′′ =

⋃
x∈U ′∩U ′′ Bx ∈ O as required. �

Definition 2.5. Bx ⊂ O is called a local base of O at x ∈ E if x ∈ Bx for all
Bx ∈ Bx and for each U ∈ O s.t. x ∈ U there exists Bx ∈ Bx s.t. x ∈ Bx ∈ Bx.

Clearly, if {Bx}x∈E is a collection of local bases of O, then B := ∪x∈EBx is a
base of O. Also, if B′x, B

′′
x ∈ Bx then there exists Bx ∈ Bx such that Bx ⊂ B′x∩B′′x .

However, the latter property is not enough to guarantee that
⋃
x∈E Bx is a base of

a topology. (The actual condition to check is that for each B′x′ ∈ Bx′ , B′′x′′ ∈ Bx′′
and x ∈ B′x′ ∩B′′x′′ there exists Bx ∈ Bx such that Bx ⊂ B′x′ ∩B′′x′′ .)
Definition 2.6. A topological space (E,O) is called

• first-countable if O has an at most countable local base Bx at each x ∈ E;
• second-countable if O has an at most countable base O.

It is easy to see that all metric spaces (and so all metrizable topologies, this is
an example of a ‘formal’ inaccuracy mentioned above) are first-countable: indeed,
one can take a collection of open balls Bx := {B(x, 2−n)}n∈N as a local base at x.

Definition 2.7. A topological space E is called separable if there exist an at most
countable subset X ⊂ E s.t. X = E (such X are called everywhere dense in E).

Warning: There is also a totally different notion ‘separated space’ = Hausdorff
= T2 space; see above. A (personal) practical advice in order to avoid a confusion
is not to use the latter name, saying Hausdorff (or T2, depending whether you talk
with a ‘generic’ mathematician or with a topologist) instead.

Proposition 2.8. A metric space is second-countable if and only if it is separable.

Proof. “⇒” Let B = {Bk}k∈N be a (at most) countable base of the topology on
E. Choose a point xk ∈ Bk and let X := {xk}k∈N. If we had x 6∈ X, this would
imply the existence of an open set U s.t. x ∈ U ⊂ E r X and Bk ∈ B such that
x ∈ Bk ⊂ U , which is a contradiction since Bk ∩X 3 xk.

“⇐” Let X = {xk}k∈N be such that X = E and consider B := {B(xk, 2
−n)}k,n∈N.

For each open set U and a point x ∈ U there exists m ∈ N such that B(x, 2−m) ⊂ U
and k ∈ N such that d(x, xk) ≤ 2−(m+2). Then, x ∈ B(xk, 2

−(m+1)) ⊂ U . �
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Let us now reformulate several standard ‘metric’ notions (e.g., take E = R as a
motivating example) in a ‘topological’ way.

Definition 2.9. A set X ⊂ E is called

• everywhere dense (in E) if X = E;
• nowhere dense (in E) if IntX = ∅,

where Int(Y ) :=
◦
Y is the alternative notation for the interior of a set Y ⊂ E.

Note that the latter condition is much stronger than to require IntX = ∅: e.g.,
if X := Q ⊂ E := R, then IntX = ∅ but Q is actually everywhere dense in R. A
good example of a nowhere dense set is the (standard or ‘ 1

3 ’) Cantor set (see TD)

C := [0, 1]r
(
( 1

3 ,
2
3 )∪( 1

9 ,
2
9 )∪( 7

9 ,
8
9 )∪. . .

)
or similar sets (called Cantor-like nowadays;

actually Cantor introduced C as a particular example in a larger family). Note that
such sets can have (strictly) positive Lebesgue measure (=‘length’) provided that
the size of removed intervals decays fast enough. Equivalently,

• X is everywhere dense iff for each open non-empty set U one has U∩X 6= ∅.
• X is nowhere dense iff each open non-empty set U contains an open non-

empty subset V such that V ∩X = ∅.
(To prove the second statement: if X is nowhere dense and, for some U 6= ∅, such

V does not exist, then x ∈ X for all x ∈ U (i.e., U ⊂ X) and hence U ⊂ IntX. Vice
versa, if IntX 6= ∅, then there exists a non-empty open set U such that U ⊂ X. At
the same time, V ⊂ E rX implies that V ⊂ E rX, a contradiction.)

Definition 2.10. Given X ⊂ E and x ∈ E, one says that x is

• an interior point of X if x ∈
◦
X;

• an adherent point of X if x ∈ X. Further, such a point is
◦ an isolated point of X if x ∈ X and there exists a neighborhood Ux ∈ O

of x such that Ux ∩X = {x};
◦ an accumulation point of X if (Ux ∩X)r {x} 6= ∅ for all x ∈ Ux ∈ O.

Note that the set X ′ ⊂ X of accumulation points of X is closed (as there exists
an open set U =

⋃
Uxα such that U ∩X is the set of all isolated points xα of X).

Détour. Actually, Cantor(1845–1918) pointed out the importance of a point-
topology when studying (150 years ago, the paper is published in 1872) the following
question on Fourier(1768–1830) series:

assume that numbers an, bn, n ∈ N, satisfy the following condition:∑
n∈N(an cos(nx) + bn sin(nx)) = 0 (the convergence is understood

pointwise) for all x on [0, 2π] except a certain (‘small’) set X. Does
this assumption imply that all the coefficients an, bn vanish?

The result of Cantor provides the affirmative answer under the following condition:
there exists k ∈ N such that X(k) = ∅, where X(k+1) := (X(k))′ and X(0) := X.
In a certain sense, this can be considered as the starting point of the development
of the topology; it is worth noting that for 40-50 years not all mathematicians
were fascinated by such considerations and that Cantor himself felt unhappy, in
particular because of those controversies.

The word ’closed’ can be viewed as ‘closed under the operation of adding ac-
cumulation points to a given set’ and the word ‘open’ appeared later [? 1910s,
suggested by Carathéodory ?] as a conventional antonym.
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3. Normed vector spaces: definitions, examples

We now discuss a situation when E is a vector space.

Definition 3.1. A function ‖ · ‖ : V → R+ defined on a vector space E (over R or
C) is called a norm if it satisfies the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖αx‖ = |α| · ‖x‖ for all scalars α and all x ∈ E;

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ E.

A vector space equipped with a norm is called a normed vector space.

It is easy to see that normed vector spaces can be viewed as metric (and, further,
as topological) ones: the distance function can be introduced as d(x, y) := ‖x− y‖.
We already saw such an example when discussing the space RN equipped with
norms ‖ · ‖p, where p ∈ [1,+∞].

Definition 3.2. Let k be a field (or, more generally, an integral domain). A
function | · | : k → R+ is called an absolute value if it satisfies the same conditions
(i)–(iii) as above, where (ii) should be now read as

(ii’) |xy| = |x| · |y| for all x, y ∈ k.

Again, d(x, y) := |y−x| can be taken as a distance function of k, which provides
it a structure of a metric space. Given k, one can ask to describe the set of all
possible absolute values defined on k. If k = Q, Ostrowski’s theorem (see also TD)
claims that there are only two interesting options: if | · | : Q → R+ is an absolute
value, then it is

• either trivial, i.e., |r| = 1 for all r 6= 0;
• or equivalent to the Euclidean absolute value: there exists γ ≥ 1 such that
|r| = | − r| = rγ for all r ∈ Q+.

• or equivalent to the p-adic absolute value: there exist a prime integer p and

γ > 0 such that |r| = p−γmax{k∈Z: r=pk·n1/n2,n1∈Z,n2∈ZrpZ} for all r ∈ Q∗.
Note that the parameter γ is irrelevant from the topological perspective. Also, the
p-adic absolute value satisfies a stronger version of the triangle inequality (iii):

(iii’) |q + r| ≤ max{|q|, |r|}.
Such absolute values (satisfying the stronger condition (iii’)) are called ultrametric
or non-Archimedean. If (iii’) fails, then the absolute value is called Archimedean.

September 28, 2020

Examples of vector spaces:

(0) The spaces RN (or CN , one can similarly replace R by C in the forthcoming
examples). As already mentioned above,

• ‖x‖p :=
(∑N

k=1 |xk|p
)1/p

, where 1 ≤ p < +∞,
• and ‖x‖∞ := maxk=1,...,N |xk|,

are norms in this space (recall that the triangle inequality for p 6= 1, 2,∞
is not fully trivial and is called the Minkowski inequality). All these norms
are equivalent in the following sense: ‖x‖∞ ≤ ‖x‖p ≤ N‖x‖∞ for all p.
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We can consider sequences x = (xn)k∈N instead of finite-dimensional vectors.

(1) Denote

`p := {x = (xn)n∈N : ‖x‖p :=
(∑

n∈N |xn|p)1/p < +∞}
for 1 ≤ p ≤ ∞; with a usual modification ‖x‖∞ := supn∈N |xn|. This is a
normed vector space (where we again rely upon the Minkowski inequality,
now for sequences: e.g., it can be obtained from a finite-dimensional version
by passing to the limit N →∞).

◦ It is worth noting that, contrary to the finite-dimensional case, the
spaces `p are pairwise different even as sets (`p ( `q if p < q), not
speaking about the norms: the sequence xn = n−1/r with p < r < q
belongs to `q but does not belong to `p.

◦ Exercise: if p < +∞, then the space `p is separable.

Proof: Consider a countable set

X := {(r0, . . . , rN−1, 0, 0, . . .), N ∈ N, rk ∈ Q}
of finite sequences composed of rational numbers. We claim that X is
dense in `p. Indeed, for each x ∈ `p and each ε > 0 one can find N ∈ N
such that

∑
n≥N |xn|p <

1
2ε
p and, further, for each n = 0, . . . , N − 1,

find rn ∈ Q such that |xn − rn|p < 1
2N ε

p. We have constructed an
element r ∈ X such that ‖x− r‖p < ε. �

◦ However, the space `∞ is not separable. To show that, for each subset
S ⊂ N of indices, let the indicator sequence yS ∈ `∞ be defined as
(yS)n = 1 if n ∈ S and (yS)n = 0 if n 6∈ S. Note that

(a) ‖yS − yS′‖∞ = 1 provided that S 6= S′;
(b) the set Y := {yS , S ⊂ N} is uncountable (since the set 2N of all

subsets of N is uncountable).
If `∞ was separable and X = {xk}k∈N ⊂ `∞ was a countable dense
subset, then for each S ⊂ N there would exist k = k(S) ∈ N such that
‖yS − xk‖ < 1

2 . In such a situation, the mapping S 7→ k(S) would be
injective due to (i), which leads to a contradiction with (ii).

Even more conceptual is to consider vector spaces of functions.

(2) For instance, let

E = C([0, 1],R) := {f : [0, 1]→ R s.t. f is continuous},
equipped with the supremum norm: ‖f‖C := ‖f ||∞ = maxx∈[0,1] |f(z)|
(One can replace sup by max since we work with continuous functions on a
segment.) This space (better to say, its generalization C(K,E), where K is
a compact and E is a complete normed vector space) is both very natural
and important; we will often come back to its properties in what follows.

(2’) The space of k times differentiable functions on [0, 1] is defined in a similar
way:

Ck([0, 1],R) :=

{
f : [0, 1]→ R s.t.

f is k times differentiable,
f (k) is continuous on [0, 1]

}
,

equipped with the norm

‖f‖Ck := maxx∈[0,1], m=0,...,k |f (m)(x)|.
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As in all other metric spaces, a local base of the topology at f ∈ Ck is given
by the sets

U
(k,n)
f := {g : maxx∈[0,1] |g(m)(x)− f (m)(x)| < 2−n for all m ≤ k}, (3.1)

with n ∈ N (recall that k is fixed). As usual, instead of taking the maximum
over all m = 0, . . . , k, one could also take the sum (or, more generally, any
other ‖ ·‖p norm in Rk), this does not make any difference; cf. example (0).

(3) In principle, the space C([0, 1],R) could be viewed as something resembling
the space `∞ of bounded sequences (actually, this is not a good analogy: to
have a proper analogue of `∞ one should drop the continuity assumption;
thus obtained space is called L∞([0, 1]) and is much bigger than C([0, 1])).
It is also natural to introduce other norms, similar to those in `p:

‖f‖p :=
(∫ 1

0
|f(x)|pdx

)1/p
, 1 ≤ p < +∞.

At least on the same set of continuous functions the integrals are well-
defined and we obtain another normed vector spaces. Though we have not
defined the relevant terminology yet, let us nevertheless mention that

◦ The normed vector space (C([0, 1],R), ‖ · ‖p) is not complete. To have
a complete space one needs to enlarge the set C([0, 1],R) to ‘all’ func-

tions f on [0, 1] such that
∫ 1

0
|f(x)|pdx < +∞. This raises a deep

question: for which functions on [0, 1] there is a reasonable definition
of the integral? This is one of the subjects of the course ’Intégration
et probabilités’. Eventually, one defines an analogue of the space `p

which is called Lp([0, 1]). We will return to this discussion later.

Let us now discuss a somewhat similar example to (2) – the vector space C∞ of
infinitely differentiable functions. However, note that C∞ is not a normed space.

(4) Denote

C∞([0, 1],R) :=
{
f : [0, 1]→ R s.t. f ∈ Ck([0, 1],R) for all k ∈ N

}
,

equipped with a topology defined by the local bases {U (k,n)
f }k,n∈N (see

(3.1)), note that k is not fixed now and runs over N similarly to n. Certainly,

one should check that the collection
⋃
f∈C∞([0,1],R){U

(k,n)
f }k,n∈N can serve

as a (global) base of a certain topology (see Proposition 2.4). To this end,

assume that f ∈ U (k1,n1)
f1

∩ U (k2,n2)
f2

and let k := max{k1, k2}. Further, let

2−n < 2−n1 − ‖f − f1‖Ck1 and 2−n < 2−n2 − ‖f − f2‖Ck2 ,

which implies that U
(n,k)
f ⊂ U (n1,k)

f1
⊂ U (n1,k1)

f1
and similarly for U

(n2,k2)
f2

.

Note that the topology defined above, by construction, is first-countable.
The following lemma describes the convergent sequences in this topology:

Lemma 3.3. The convergence fm → f , m→∞, in the space C∞([0, 1],R)

is equivalent to say that f
(k)
m → f (k) in C([0, 1],R) for all k ∈ N.

Proof. ‘⇒’ This is a triviality since, for each k ∈ N, one can consider neigh-

borhoods U
(n,k)
f of f with this k, which are open both in Ck and C∞.

‘⇐’ This is also a triviality: to prove that fm → f in C∞, it is enough to
consider open neighborhoods Uf from the local base at f . By construction,
each such a neighborhood is an open set in Ck for some k ∈ N. �
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It is easy to see that the construction of the topology given in (4) is pretty general.
Let us mention one more example of the same kind (see also TD).

(4’) Schwartz’s space S(R) of rapidly decreasing smooth functions on R:

S(R) :=

{
f : R→ R s.t.

f ∈ Ck(R) for all k ∈ N and

supx∈R(|x|s+1)|f (k)(x)| < +∞ for all s, k ∈ N

}
.

(An example of such a function is P (x)e−x
2

, where P (x) is a polynomial.)
To define the topology one can, for instance, use local bases

V m,nf :=
{
g ∈ S(R) : max(s,k):s+k≤m supx∈R(|x|s + 1)|g(k)(x)− f (k)(x)| < 2−n

}
(The proof of the fact that these local bases can be used to define a topology
mimics the case of C∞([0, 1]).) Similarly to Lemma 3.3, the convergence
fm → f in the topology of the space S(R) is equivalent to the convergence

supx∈R(|x|s + 1)|f (k)
m − f (k)(x)| → 0 as m→∞ for all s, k ∈ N.

A similar construction can be done for all countable collections of norms ‖ · ‖(n)

defined on the same vector space E. (More generally, it is enough to require that
‖ · ‖(n) : E → R+ is a semi-norm – i.e. satisfies conditions (ii) and (iii) but not
necessarily (i) in Definition 3.1 – provided that ‖x‖(n) = 0 for all n implies x = 0.)

4. Sequential continuity and separation axioms

In examples (4) and (4’) given above we described both the (base of the) topology
and the convergent sequences in this topology. One can wonder whether to know
the latter (i.e., how the convergent sequences look like) is enough to know the
former (i.e., what are open/closed sets and what are continuous mappings).

Below we assume that E1, E2 are topological spaces and start with a few prelim-
inary comments/observations:

• Recall that xn → x iff for each open neighborhood Ux of x (i.e., each Ux ∈ O
such that x ∈ Ux) there exists N ∈ N such that xn ∈ Ux for all n ≥ N . This
can be understood as the continuity property of the mapping N∪{∗} → E,
where the set N ∪ {∗} can be viewed as a metric (and hence topological)
space if we define d(n,m) := | 1

n+1 −
1

m+1 | and d(n, ∗) := 1
n+1 (i.e., if we

‘represent’ this set as a subset { 1
n+1 , n ∈ N} ∪ {0} of the metric space R).

• In particular, if f : E1 → E2 is continuous, then the convergence xn → x∗
(in E1) implies the convergence f(xn)→ f(x∗) (in E2).

• However, requiring that xn → x ⇒ f(xn)→ f(x) does not imply that f is
a continuous mapping.
◦ A counterexample: E = R equipped with the co-countable topology

(F is closed iff it is finite or countable or F = E). In this topology,
xn → x∗ as n → ∞ if and only if the sequence xn stabilizes at x∗
(i.e., if xn = x∗ for all sufficiently large n). Therefore, all mappings
f : E → E are sequentially continuous: if xn stabilizes, so do f(xn).
However, there exist non-continuous mappings: e.g., x 7→ sign(x).

• Warning: In topological spaces, a limit of a sequence maybe not unique.

◦ Example: in the co-finite topology the convergence xn → x∗ means
the following: if xn = y for infinitely many indices n, then y = x∗. In
particular, a sequence with no repetitions converges to each x∗ ∈ E.
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(Proof: Let x∗ ∈ U , where U is open in the co-finite topology (i.e.,
equals to E without finitely many ‘exceptional’ points). The statement
‘there exists N such that xn ∈ U for all n ≥ N ’ is equivalent to say
that these exceptional points appear only finitely many times in (xn).)

◦ *Exercise*: give a similar description of convergent sequences in the
Zariski topology.

Definition 4.1. A mapping f : E1 → E2 is called sequentially continuous if

xn → x∗ as n→∞ (in E1) ⇒ f(xn)→ f(x∗) as n→∞ (in E2).

Recall that all continuous mappings are sequentially continuous but not vice versa.

Definition 4.2. A topological space E1 is called a Fréchet–Urysohn space if the
following property holds: for each X ⊂ E and each point x ∈ X there exists a
sequence of points xn ∈ X such that xn → x as n→∞.

Proposition 4.3. Assume that E1 is a Fréchet–Urysohn space. Then, a mapping
f : E1 → E2 is continuous if (and only if) it is sequentially continuous.

Proof. Given F ⊂ E2 closed and x ∈ f−1(F ), use the Fréchet–Urysohn property to
find a sequence xn → x with xn ∈ f−1(F ) (which is equivalent to f(xn) ∈ F ). Due
to the sequential continuity of f , we have f(xn)→ f(x) and hence f(x) ∈ F since
F is closed. Therefore, x ∈ f−1(F ), which means that the set f−1(F ) is closed. �

Lemma 4.4. All first-countable (and hence all metrizable) topological spaces are
Fréchet–Urysohn spaces.

Proof. Let x ∈ X and {U (n)
x }n∈N be a countable local base at x. Further, denote

V
(n)
x :=

⋂n
k=0 U

(n)
x , note that all these sets are open as they are finite intersections of

open sets. Since x ∈ X, for each n ∈ N we can find a point xn ∈ V (n)
x ∩X. It is easy

to see that xn → x as n→∞: indeed, each open neighborhood Ux of x contains a

local base element U
(N)
x and xn ∈ U (N)

x for all n ≥ N by construction. �

• To summarize, in first-countable spaces (a) the notion of convergent se-
quenced defines the topology and (b) the class of continuous mappings
coincides with sequentially continuous ones.

Let us now discuss properties of topological spaces known under the name

Separation axioms. The full list goes from (T0) to (T6) including a few half-
integers (with (Tk) being strictly weaker than (Tm) provided that k < m); we
mention only the most important ones.

(T0) (Kolmogorov’s axiom) For each x, y ∈ E s.t. x 6= y the following holds:
there exists an open neighborhood x ∈ Ux ∈ O of x such that y 6∈ Ux or
there exists an pone neighborhood y ∈ Uy ∈ O of y such that x 6∈ Uy.

Remark: this property allows to distinguish points in the space E: if x 6= y do not
satisfy this condition, then each open set U ∈ O either contains both x, y or none
of them. For instance, consider the topology O = {∅, {1}, {2, 3}, {1, 2, 3}} on the
three-element set E = {1, 2, 3}. The points 2 and 3 are not distinguishable: O can
be viewed as the discrete topology on the two-element set E/(2 ∼ 3).
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(T1) (Fréchet’s axiom) For each x, y ∈ E s.t. x 6= y there exists an open neigh-
borhood y ∈ Uy ∈ O such that x 6∈ Uy.

Remark: This is equivalent to say that {x} is a closed set for each x ∈ E. (Indeed,
the (T1) axiom implies that E r {x} =

⋃
y 6=x Uy is an open set and thus {x} is

closed. Vice versa, if {x} is closed, then one can take Uy := E r {x} for all y 6= x.)
Note that both co-finite and Zariski topologies satisfy this axiom (and do not

satisfy the next one, which has been already mentioned above).

(T2) (=Hausdorff=separated spaces) For each x, y ∈ E s.t. x 6= y there exists
open neighborhoods Ux, Uy ∈ O such that Ux ∩ Uy = ∅.

Remark: This property, in particular, guarantees the uniqueness of limits of se-
quences: if both xn → x and xn → y as n → ∞ for y 6= x, then finding neighbor-
hoods such that Ux ∩ Uy = ∅ leads to a contradiction.

(T4) (normal Hausdorff spaces) E satisfies (T1) and for each closed sets F0, F1

s.t. F0∩F1 = ∅ there exists open sets U0 ⊃ F0 and U1 ⊃ F1 s.t. U0∩U1 = ∅.
(T6) (perfectly normal Hausdorff spaces) E satisfies (T1) and for each closed sets

F0, F1 s.t. F0 ∩ F1 = ∅ there exists a continuous function f : E → [0, 1]
such that F0 = f−1({0}) and F1 = f−1({1}).

Remark: To see that (T6) ⇒ (T4), take U0 := f−1( [0, 1
2 [ ) and U1 := f−1( ] 1

2 , 1] ).
Vice versa, Urysohn’s lemma (see TD) ensures that, if a topological space E satis-
fies (T4) and closed sets F0, F1 ⊂ E are such that F0 ∩ F1 = ∅, then there exists a
continuous function f : E → [0, 1] such that f(x) = 0 for all x ∈ F0 and f(x) = 1
for all x ∈ F1. However, note that this statement is strictly weaker than (T6) as we
only know that F0 ⊂ f−1({0}) and not F0 = f−1({0}) (and similarly for F1).

We already mentioned above that metric spaces are Hausdorff. In fact, a stronger
statement holds:

Proposition 4.5. Metric (and hence metrizable topological) spaces are perfectly
normal Hausdorff, i.e., satisfy the separation axiom (T6).

We need a lemma. Provided E is a metric space and X,Y ⊂ E, define

d(x, Y ) := infy∈Y d(x, y), d(X,Y ) := infx∈X,y∈Y d(x, y).

Lemma 4.6. F ⊂ E is closed iff the following holds: (d(x, F ) = 0⇒ x ∈ F ).

(However, note that d(F0, F1) = 0 does not imply F0 ∩ F1 6= ∅: e.g., consider two
closed sets F0 := {(x, y) ∈ R2 : y ≤ 0} and F1 := {(x, y) ∈ R2 : y ≥ |x|−1} in R2.)

Proof of Lemma 4.6. ‘⇒’: Let F be closed and d(x, F ) = 0, which means that
there exist xn ∈ F such that d(xn, x) ≤ 2−n. This gives xn → x and x ∈ F = F .

‘⇐’: Since metric spaces are first countable and hence Fréchet–Urysohn, for each
x ∈ F there exists a sequence xn ∈ F such that xn → x (i.e., d(xn, x) → 0). This
implies d(x, F ) = 0 and hence x ∈ F due to the assumption. �

Proof of Proposition 4.5. The case F0 = F1 = ∅ is trivial: one can take f(x) := 1
2 .

If F0 6= ∅ but F1 = ∅, then the function f(x) := d(x, F0)/(1 + d(x, F0)) works.
Finally, if both F0, F1 6= ∅, then we can take f(x) := d(x, F0)/(d(x, F0) + d(x, F1));
note that the denominator never vanishes due to Lemma 4.6 and F0 ∩ F1 = ∅. �
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September 30, 2020

5. How to introduce a topological space? Subspaces, product spaces,
quotient spaces, ‘final’ and ‘initial’ topologies

In this section we discuss a few ‘standard’ ways to construct a topological space
starting from other topological spaces.

5.0. Détour: defining topologies via mappings. Before going to concrete defi-
nitions, let us briefly discuss a more general idea of describing topologies via classes
of mappings that we want to be continuous. (Let us emphasize that definitions given
in the preceding paragraphs as well as those given after this discussion go in the
opposite direction: given topologies in E1 and E2 one defines what are continuous
mappings from E1 to E2.)

Reminder: in metric spaces we have the following characterizing property of closed
sets: F is closed if and only if (x ∈ F ⇔ d(x, F ) = 0 ). In particular,

a subset F of a metric (or metrizable topological) space E is closed
iff there exists a continuous mapping f : E → R s.t. F = f−1({0}).

Indeed, the sets f−1({0}) are closed by definition of continuous mappings and for
each closed set F ⊂ E one can take f := d(·, F ). (Q: Btw, why is d(·, F ) continuous?
A: It follows from the triangle inequality that |d(x, F )−d(x′, F )| ≤ d(x, x′) by taking
the infimum over y ∈ F in d(x′, y) ≤ d(x, y) + d(x, x′).)

Note that this description is pretty similar to the definition of the Zariski topology
on kn, recall that the closed sets in this topology are characterized as follows:

F ⊂ kn is closed iff there exists a family {Pα}α∈A ⊂ k[x1, . . . , xn]
such that F = {x ∈ kn : Pα(x1, . . . , xn) = 0 for all α ∈ A}.

The only difference between the two situations is that we have a single mapping f
in the former (metric) setup and a family Pα of polynomials in the latter (Zariski).

• A priori, we do not require any restriction on the set of indices A: it could
be infinite (uncountable, etc): this is because we want the intersection of
closed sets P−1

α ({0}) to be closed, no matter what the set of indices A is.

• However (see the course Algébre 2 ), provided that k is a field (or, more
generally, a Noetherian ring : e.g., k = Z is OK), it is not that hard to show
that, for each family {Pα}α∈A of polynomials in n variables with coefficients
in k, there exists a finite subfamily {Pαs}s=1,...,m such that

Pα(x1, . . . , xn) = 0 for all α ∈ A ⇔ Pαs(x1, . . . , xn) = 0 for all s = 1, . . . ,m.

This statement (to be precise, the fact that the ring k[x1, . . . , xn] of poly-
nomials is Noetherian, see ‘Algébre 2’ ) allows to rewrite the definition of
closed sets in the Zarisky topology as follows:

a set F ⊂ kn is closed iff there exists a polynomial mapping P =
(Pαs)s=1,...,m : kn → km such that F = P−1({0}).

• Since compositions of polynomials are again polynomials, one easily see that
they are all continuous in this topology: if a closed set F ⊂ kn is defined
by P : kn → km (i.e., if F = P−1({0})) and Q : ks → kn is algebraic, then
Q−1(F ) = (P ◦Q)−1({0}) and hence Q−1(F ) is closed.
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To summarize the preceding discussion: if we start with the class of polynomial
mappings P : kn → km (which is closed under compositions) and want to introduce
topologies in these spaces so that all these mappings are continuous, then the
Zariski topology is very natural: it is the coarsest – i.e. having as less open (or,
equivalently, closed) sets – (T1) topology in which all P ’s are continuous.

The construction explained above (classes of ‘nice’ mappings between certain
sets  coarsest topologies that make these mappings continuous) is very general
but we will not develop it further.

Let us now move back to a more pedestrian level.

5.1. Subspaces of topological spaces.

Definition 5.1. Let (E,O) be a topological space and E′ ⊂ E be a subset of this
space (not necessarily open or closed). Denote

O′ := {U ′ ⊂ E′ : ∃U ∈ O s.t. U ′ = U ∩ E′}.
Then, O′ is a topology on E′, which is called the induced (from E to E′) topology.

(The check that O′ is a topology is straightforward: e.g., if U ′α= Uα∩ E′ ∈ O′,
then

⋃
α∈A U

′
α =

(⋃
α∈A Uα

)
∩ E′ ∈ O′; the other properties are even simple.)

• Note that the induced topology on E′ is the coarsest topology on E′ in
which the inclusion E′ ↪→ E (i.e., the mapping x 7→ x) is continuous.
Indeed, each set U ′ ∈ O′ is a pre-image of an open set U in E under this
inclusion and thus must be open if we want E′ ↪→ E to be continuous.

• This topological definition is consistent with the metric setup. Namely,
if E was a metric space, then one view E′ as a metric space simply by
restricting the distance function d : E × E → R+ to E′ × E′. To see that
thus obtained d′ = d|E×E defines the same topology as the induced one
from E, it is enough to check that open balls are in O′, which is trivial.

• If E′′ ⊂ E′ ⊂ E, then the topology induced on E′′ from E′ is the same as
the topology induced on E′′ directly from E.

As a very simple example, consider E = R (equipped with the standard topology)
and E′ = [0, 1] (or E′ = Q). Note that, e.g., [0, 1

2 ) is open in [0, 1]. Below we list
several properties of induced topologies. It is straightforward to see that:

• F ′ ⊂ E′ is closed iff there exists a closed set F ⊂ E s.t. F ′ = F ∩ E.
(Indeed, F ′ = F ∩ E′ is equivalent to E′ r F ′ = (E r F ) ∩ E′.)
• If X ⊂ E′, then XE′ = XE ∩ E′, where in the left-hand side the closure

of X is taken in the topology of E′ whilst in the right-hand side the closure
is taken in E. (Indeed,

⋂
X⊂F − closed in E F ∩E

′ =
⋂
X⊂F ′− closed in E′

F ′.)

◦ However, note that IntE′ X 6= E′ ∩ IntE X.
(E.g., consider E = R2 and X = E′ = R in the usual topology.)

• Let xn, x∗ ∈ E′. Then, the convergence xn → x in E′ is equivalent to
the same convergence in E. (Indeed, to say that xn ∈ U ′x = Ux ∩ E′ is
equivalent to saying that xn ∈ Ux.)

We now discuss which ‘nice’ properties of topological space survive when passing
from E to its subspace E′.
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(i) ◦ If E is first-countable, then so is E′.
◦ If E is second-countable, then so is E′.

(Indeed, a (local or global) countable base {U ′n}n∈N of the topology O′ in E′
is given by U ′n := Un ∩E′, where {Un}n∈N is a (local or global) base in E.)

(ii) ◦ If E is Hausdorff (=(T2)=separated), then E′ is also Hausdorff.
◦ The same property holds for the separation axiom (T1).

(Indeed, take U ′x := Ux ∩ E′ and U ′y ∩ E′.)
• Warning: However, this is not the case for (T4). (The catch is that,

given two closed sets F ′0,1 ⊂ E′ s.t. F ′0 ∩F ′1 = ∅, it can be not possible
to find closed F0,1 ⊂ E such that F ′0,1 = F0,1 ∩ E′ and F0 ∩ F1 = ∅.)

• Warning: The fact that E is separable does not imply that E′ is sepa-
rable (though this is OK for metric spaces since in the metric setup the
separability is equivalent to the second countability).

Useful reference: Steen, Lynn Arthur; Seebach, J. Arthur, Counterexamples in
topology. 2nd ed., New York-Heidelberg-Berlin: Springer-Verlag. XI, 244 p. (1978).

5.2. Products of topological spaces.

Definition 5.2. Let {Eα}α ∈ A be a family (possibly infinite, uncountable etc) of
topological spaces and denote

E :=
∏
α∈A

Eα = {x=(xα)α∈A s.t. xα ∈ Eα for all α ∈ A}.

The base of the product topology in E is given by the collection of sets{ ∏
α∈A

Uα :
Uα is open in Eα for all α ∈ A,
Uα = Eα unless α ∈ A0, where A0 ⊂ A is a finite set.

}
. (5.1)

Certainly, one should check that the collection (5.1) can serve as a base of a
topology in E, i.e. that the assumption of Proposition 2.4 holds. Indeed,(∏

α∈A U
′
α

)
∩
(∏

α∈A U
′′
α

)
=
∏
α∈A(U ′α ∩ U ′′α)

and, if we declare Uα := U ′α∩U ′′α , then Uα=Eα for all α except the finite set A′0∪A′′0 .
Still, there is a question: why do we impose this finiteness condition in (5.1) (note
that, if we drop it, then the result is again a base of a certain topology on E). The
answer to this question is given by the following statement:

• The product topology is the coarsest topology on E =
∏
α∈AEα such that

all the projections πα : E → Eα, x = (xα)α∈A 7→ xα, α ∈ A, are continuous.

(Indeed, the continuity of πα is equivalent to say that the sets (5.1) with A0 = {α}
are open and finite intersections (which have to be open too) lead to finite A0’s.)

Lemma 5.3. The convergence x(n) → x in the product space E is equivalent to the

coordinate-wise convergence, i.e., to saying that x
(n)
α → xα for each α ∈ A.

Proof. To deduce x
(n)
α → xα from x(n) → x, simply consider the open sets (5.1)

with A0 = {α}. Vice versa, assume that x
(n)
α → xα for all α ∈ A. For each base

set (5.1) containing x and each α ∈ A0 there exists nα such that x
(n)
α ∈ Uα for

all n ≥ nα (since x
(n)
α → xα ∈ Uα). Therefore, x(n) belongs to the set (5.1) for

all n ≥ maxα∈A0
nα; note that we take the maximum over a finite set A0 ⊂ A. �
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Example. Recall the space C∞([0, 1]) = C∞([0, 1],R) discussed in Section 3; a
similar consideration applies to the Schwartz space S(R) and to all other vectored
spaces with the topology defined by a countable family of semi-norms (see TD).
We have the inclusion

C∞([0, 1]) ↪→ C([0, 1])× C1([0, 1])× C2([0, 1])× ...,
f 7→ (f, f, f, . . .);

in other words, C∞([0, 1]) =
⋂
k∈N C

k([0, 1]) can be identified (as a set) with the

‘diagonal’ of the Cartesian product
∏
k∈N C

k([0, 1]). It is easy to see that the

topology induced on this set from the product topology in
∏
k∈N C

k([0, 1]) coincides
with that discussed in Section 3: compare Lemma 3.3 with Lemma 5.3 and use
the fact that a subspace of a countable product of first-countable spaces is first-
countable; see below. (The first-countability guarantees that describing convergent
sequences is equivalent to describing the topology.)

We will start the next lecture with discussing

• how to define the product of metric spaces (spoiler, see TD: if all Eα are
metrizable, then the product topology in E =

∏
α∈AEα is metrizable if A

is finite or countable and not metrizable otherwise, provided that all Eα
are non-trivial, i.e., contain at least two points);
• which ‘nice’ topological properties of Eα are inherited by their product E.

October 05, 2020

Let us discuss which ‘nice’ properties of topological spaces Eα are necessarily
inherited in their product E =

∏
α∈AEα.

• Separation axioms.

◦ If all Eα are Haudorff=(T2), then E is also Hausdorff; the same holds
for (T1). (Indeed, if x 6= y, then xα 6= yα for a certain α ∈ A and we can
separate these coordinates, i.e., find open (in Eα) sets Uxα ∩ Uyα = ∅
and then consider cylindric sets (5.1) with Uxβ = Uyβ = Eβ , β 6= α.)

◦ E is not necessarily (T4) if all Eα are (T4). To see a difficulty, note
that one cannot say almost anything about projections πα(F0,1) ⊂ Eα.

Exercise∗: the Sorgenfrey line (R equipped with the topology gener-
ated by the base B = {[a, b[,−∞ < a < b < +∞}) is a (T4) space.

However, the product of two Sorgenfrey lines – the so-called Sorgenfrey
plane – is not (T4): it is not hard to see that the anti-diagonal {(x,−x)}
is a closed set and ,moreover, all subsets of the anti-diagonal are
closed in the Sorgenfrey plane. Choosing F0 = {(x,−x), x ∈ Q} and
F1 = {(x,−x), x 6∈ Q} leads to a contradiction1 with (T4)

1This is not a triviality. If F0,1 ⊂ U0,1, where U0,1 are open disjoint sets in the Sorgenfrey

plane, then for each point (x,−x) ∈ F1, there exists εx > 0 such that [x, x+εx[×[−x,−x+εx[⊂ U1

and similarly for (x,−x) ∈ F0. However, it is easy to see that the assumption U0 ∩U1 = ∅ implies
that each of the sets {x 6∈ Q : εx > 2−n} is nowhere dense, a contradiction with the material that
we will discuss later (see Baire’s theorem).
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• Countability axioms.

◦ If A is at most countable and all Eα are first/second-countable, then E
is also first/second-countable. (Indeed, in this case the collection of
sets (5.1) with Uα being taken from a countable base (or a local base)
in Eα is a countable union (over A0 ⊂ A) of countable collections, each
of which is a finite Cartesian product of countable bases.)

◦ If A is uncountable (and provided that all Eα are nontrivial, i.e.,
contain a nontrivial open set xα ∈ Uα ( Eα), then E cannot be

even first-countable at x = (xα)α∈A. Indeed, let U (α) :=
∏
β∈A U

(α)
β ,

where U
(α)
β = Eβ if α 6= β and U

(α)
α = Uα. If the topology of E had a

countable base, then uncountably many of open sets U (α) ⊂ E would
contain the same base set V , which means that πα(V ) ⊂ Uα ( Eα for
infinitely (in fact, uncountably) many indices α ∈ A. This leads to a
contradiction with the definition of the topology on E as V – being
open in E – must contain one of the sets (5.1).

• Separability.

◦ Again, if A is at most countable and all Eα are separable, then E is also

separable. (Indeed, let {x(α)
m }α∈A be countable dense subsets of Eα.

If A = {1, . . . , N} is finite, then the set {(x(1)
m1 , . . . , x

(N)
mN )}m1,...,mN∈N is

still countable and dense in E. If A = N, then we can consider the set of

sequences x = (x
(n)
mn)n∈N ∈ E such that mn = 0 for all n ≥ N = N(x).

Clearly, each set (5.1) contains such a sequence since A0 ⊂ A is finite.)

◦ [!]2 A less trivial statement is that E is separable provided that A = R
(which has the same cardinality as 2N); see the footnote.

◦ If the cardinality of A exceeds that of 2N and each Eα contains two
non-empty open sets Uα, Vα s.t. Uα ∩Vα = ∅, then E is not separable.

• Metrizability. Let Eα be metric spaces with distance functions dEα .

◦ If A = {1, . . . , N} is finite, then dE(x, y) := max1≤k≤N dEk(xk, yk) is a
distance function on E, which defines the product topology on E. It is
worth noting that this can be also done for normed vector spaces Ek:
setting ‖x‖E := max1≤k≤N ‖xk‖Ek makes E a normed vector space.

◦ If A = N is countable, then E is still a metric space: for instance,
one can set d(x, y) := maxk∈N min{dEk(xk, yk), 2−k}. To see that dE
defines the product topology, one can, e.g., argue that the conver-
gence dE(x(n), x) → 0 as n → ∞ is equivalent to the fact that, for

2Let us show that the product of separable spaces Eα is separable if A = R. Let {x(n)α } denote
a dense countable set in Eα. Given a finite set Q = {q1, . . . , qm} of rational numbers (where

−∞ =: q0 < q1 < . . . < qm < qm+1 := +∞) and a multi-index N = (n1, . . . , nm+1) ∈ Nm+1, let

x
(Q,N)
α := x

(nk)
α if qk ≤ α < qk+1.

This is a countable collection of points in E and all sets (5.1) contain at least one point x
(Q,N)
α .

On the other hand, assume that each Eα contain two non-empty disjoint sets Uα, Vα and the

cardinality of A exceeds that of 2N. Given {x(n)}n∈N ⊂ E, let A(n) := {α ∈ A : x
(n)
α ∈ Uα}.

Since cardA > card 2N, one can find α 6= α′ such that for all n ∈ N either both α, α′ ∈ A(n) or
both α, α′ 6∈ A(n). Then, the open set Uα × Vα′ ×

∏
β 6=α,α′ Eβ does not contain points x(n).



TOPOLOGIE ET CALCUL DIFFÉRENTIEL. I. TOPOLOGIE 19

each k ∈ N one has dEk(x
(n)
k , xk) → 0. (This argument relies on the

first-countability of E; see above.) However, note that the countable
product of normed vector spaces is not a normed space.

◦ If A is uncountable (and all factors Eα are non-trivial, i.e., if each Eα
contains at least two distinct points), then the space E is not metriz-
able. Indeed, as discussed above, this space is not first-countable.

5.3. ‘Initial’ and ‘final’ topologies. Mostly for the completeness of the presen-
tation (recall also the digression made at the beginning of the previous lecture), let
us give two abstract definitions.

Definition 5.4. Let E be a set and assume that we are given a collection of map-
pings fα : E → Eα from E to topological spaces Eα, α ∈ A. The ‘initial’ topology
defined by {fα}α∈A is the coarsest topology on E such that all fα are continuous.

It easy to see that this definition makes sense (i.e., that the intersection of all
topologies on E such that all fα are continuous is again a topology on E). In fact,
above we already see two examples of this construction:

• The subspace topology on E′ ⊂ E is the coarsest topology in which the
mapping E′ ↪→ E is continuous.
• The product topology is the coarsest topology in which all the projec-

tions πα : E =
∏
α∈AEα → Eα are continuous.

As often in math, one can also consider a ‘dual’ definition:

Definition 5.5. Let E be a set and assume that we are given a collection of map-
pings fα : Eα → E from topological spaces Eα, α ∈ A, to E. The ‘final’ topology
defined by {fα}α∈A is the finest topology on E such that all fα are continuous.

Equivalently, U ⊂ E is open in the ‘final’ topology iff f−1
α (U) is open in Eα for

all α ∈ A; it is straightforward to check that this condition defines a topology.

Warning: While constructing the ’initial’ topology is a reasonably nice operation
as can be seen from the examples discussed above, passing to the ’final’ topology
can be potentially dangerous even if we work with a single mapping E1 → E and
pushforward a nice topology from E1 to E as we will see now.

5.4. Quotient topology. Let∼ be an equivalence relation on E; denote by [x] ⊂ E
the equivalence class of x and by E/∼ the set of all such equivalence classes.

Definition 5.6. The quotient topology on E/∼ is the finest topology in which the
mapping x 7→ [x] is continuous. In other words, a set U ⊂ E/∼ is open if and only
if the set {x ∈ E : [x] ∈ U} is open in E.

It is easy to see that the space E/∼ is separable provided that so is E. (Indeed,
if X ⊂ E is a dense set in E, then the set {[x] ∈ E/∼, x ∈ X} is dense in E/∼.)
However, both separation and countability properties can be lost under passing to
a quotient space. We illustrate this by the following examples.

• ‘Real line with two origins’. This is an example of a Hausdorff space E
and an equivalence relation ∼ on it leading to a non-Hausdorff space E/∼.

Let E := RtR be the disjoint union of two copies of R, each endowed with
the standard topology. Formally, E := {(x, 1), x ∈ R}∪{(x, 2), x ∈ R} and a
set U ⊂ E is open iff both sets {x ∈ R : (x, 1) ∈ U} and {x ∈ R : (x, 2) ∈ U}
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are open. (This is a general construction, the disjoint union of other topo-
logical spaces is defined in the same way.)

Now define an equivalence relation on E by declaring (x, 1) ∼ (x, 2)
for x 6= 0. In other words, most equivalence classes in E consist of two
points and can be identified with x ∈ R r {0} but there are also two one-
point equivalence classes 01 := [(0, 1)] and 02 := [(0, 2)].

The local bases of the quotient topology on E/∼ at x ∈ Rr {0} are the
same as that of R, while open neighborhoods of the point 01 (and similarly
for 02) are {x ∈ Rr {0} : |x| < r} ∪ {01}. In particular, the quotient space
E/∼ is not Hausdorff: 01 and 02 cannot be separated by open sets.

• ’Bouquet of infinitely many circles’. This is an illustration that a
quotient space of E = R can be not first-countable. For x, y ∈ R, let x ∼ y
if both x, y ∈ Z. In other words, most equivalence classes consist of a single
point x ∈ R r Z while there is a single infinite equivalence class Z, which
we will denote 0 ∈ E/∼. Again, the local bases of E/∼ at points x ∈ RrZ
are the usual ones while the condition 0 ∈ U – open in E/∼ means that for
each m ∈ Z there exists 0 < rm such that (m− rm,m)∪ (m,m+ rm) ⊂ U .

It is not hard to see that the point 0 does not admit a countable local

base in E/∼. Indeed, if this was the case and r
(n)
m > 0 were the radii

corresponding to a base set U (n) 3 0, n ∈ Z, then one could consider the
open neighborhood

{0} ∪
⋃
m∈Z

(
(m− 1

2r
(m)
m ,m) ∪ (m,m+ 1

2r
(m)
m )

)
(5.2)

of 0, which does not contain any of the sets U (n).

Though considering the quotient topology is potentially dangerous, this is what
people quite often do, as this is often the simplest way to define a topological space.

Examples. (Disclaimer: on a formal level, in each of these examples a certain
technical work should be done to verify the claims; we leave this work to the reader.
The primary goal of these examples is to understand the language used.)

• Consider the set E = R and the equivalence relation x ∼ y if x − y ∈ Z.
The quotient space R/∼, also known as R/Z, is homeomorphic to the one-
dimensional circle S1 := {(x, y) ∈ R2 : x2 + y2 = 1}; the homeomorphism
is given by x 7→ (cos(2πx), sin(2πx)). Note that another way to get S1 as a
quotient space is to consider the segment [0, 1] and to declare that 0 ∼ 1:

R/Z ∼= S1 ∼= [0, 1]/(0 ∼ 1).

• One can construct the two-dimensional torus in a similar way:

C/(Z + iZ) ∼= S1 × S1 ∼= [0, 1]2/((x, 0) ∼ (x, 1), (0, y) ∼ (1, y)).

(In the left-hand side, the equivalence relation is given by z ∼ w if both
Re(z − w), Im(z − w) ∈ Z. In the right-hand side all four corners of the
square lie in the same equivalence class: (0, 0) ∼ (0, 1) ∼ (1, 0) ∼ (1, 1).)

• In the same spirit, one obtains

◦ the cylinder [0, 1]2/((x, 0) ∼ (x, 1));
◦ the Möbius strip [0, 1]2/((0, y) ∼ (1, 1− y));
◦ the Klein bottle [0, 1]2/((x, 0) ∼ (x, 1), (0, y) ∼ (1, 1− y))).
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Remark: One can construct the quotient topology step by step: e.g., to
obtain the Klein bottle one can either start with the cylinder and glue two
its boundaries to each other in a twisted way or, equivalently, start with
the Möbius strip and glue a half of its boundary to the other half.

• Finally, playing with identifications of the opposite sides of the square, one
can also consider the space

[0, 1]2/((x, 0) ∼ (1− x, 1), (0, y) ∼ (1, 1− y)) ∼= RP2, (5.3)

the so-called real two-dimensional projective space. The right-hand side is
defined as follows:

RP2 := (R3 r {0})/((x, y, z) ∼ (λx, λy, λz))

= S2/((x, y, z) ∼ (−x,−y,−z)),

where S2 := {(x, y, z) ∈ R3 : x2+y2+z2 = 1} is the two-dimensional sphere.
The fact that the latter quotient space is homeomoprhic to (5.3) follows by

considering the mapping (x, y) 7→ (x, y,
√

1− x2 − y2) of the closed unit

disc D onto the upper hemisphere, noting that D is homeomorphic to the
square [0, 1]2, and checking that the identification (x, y) ∼ (−x,−y) on the
boundary of D matches the identification on the boundary of [0, 1]2 in (5.3).

Détour: topological manifolds and Lie groups. The torus, Klein bottle
and RP2, as well as the cylinder and the Möbius strip considered without their
boundaries (i.e., we take the space [0, 1]× (0, 1) and factorize it by the equivalence
relation (0, y) ∼ (1, y) or (0, y) ∼ (1, 1− y), respectively) are examples of:

Definition 5.7. A Hausdorff, second-countable topological space X is called a
Ck-smooth n-dimensional topological manifold if there exists a collection (called
an atlas) of open sets Uα ⊂ X (called charts) such that

(i) X =
⋃
α∈A Uα (i.e., the whole space is covered by charts);

(ii) each Uα is homeomorphic to Rn (or, equivalently, to an open ball in Rn),
let fα : Uα → Rn denote the corresponding homeomorphism;

(iii) if Uα ∩Uβ 6= ∅, then the mapping fβ ◦ f−1
α : fα(Uα ∩Uβ)→ fβ(Uα ∩Uβ) is

Ck-continuous (i.e., passing from one chart of X to another is continuous);
note that this condition is automatic if k = 0.

A manifold X is called smooth, if all fβ ◦ f−1
α are C∞ mappings.

Remarks: (i) At this point we do not (at least formally) know what Ck mappings
acting from Rn to Rn are. This will be discussed in the second part of the course.

(ii) At first sight, it is not clear why do we additionally require X to be Hausdorff
if we also ask that each point x is a neighborhood homeomorphic to Rn. However,
the latter holds for the real line with two origins, which is not Hausdorff.

A trivial example of a smooth manifold is an open setX = V in Rn: by definition,
it can be covered by open balls Uα and one can take fα(x) := x. Let us give a more
interesting example of a different nature:

Let X := {A ∈ R2×2 : detA = 1}, which can be equivalently written as
{(a, b, c, d) : ad − bc = 1} ⊂ R4, with the subspace topology. We will start the
next lecture by (re-)discussing this example.
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The manifold X = SL(2,R) = {A ∈ GL(2,R) : detA = 1} is an example of a
(matrix) Lie group (Sophus Lie, 1842–1899, Norwegian ⇒ pronounced as ‘Lee’).

Definition 5.8. A group G is called an (abstract) Lie group if G also carries the
structure of a smooth manifold and both mappings g1, g2 7→ g1g2, G × G → G,
and g → g−1, G → G, are continuous. G is called a matrix Lie group if it is a
subgroup of the group GL(N,R) (or GL(N,C)) of all invertible N ×N matrices.

Indeed, on X = SL(2,R) one can consider four open sets V ±a , V
±
b , V

±
c , V

±
d ⊂ X

defined by the conditions ±a > 0, ±b > 0 etc. Let f±a : V ±a → R3 be defined
as f±a (a, b, c, d) := (a, b, c), note that (f±a )−1(a, b, c) = (a, b, c, (bc + 1)/a). This
mapping is a homeomorphism of V ±a and R± × R × R ∼= R3. (Note that we are
in the metric setup, so one only needs to check that convergent sequences are
mapped to convergent sequences, which is trivial.) All composition mappings like
f±b ◦ (f±a )−1 are rational and thus C∞-smooth.

• Whitney’s embedding theorem. In the example discussed above, the three-
dimensional manifold X = SL(2,R) can be viewed as (more rigorously, is home-
omorphic and, moreover, diffeomorphic – see the second part of the course – to)
a subset of R4, which locally looks like a graph of a function ((d = (bc + 1)/a,
c = (ad − 1)/b etc). A natural question arises: whether this is always the case,
i.e., is it true that each smooth n-dimensional manifold X can be embedded into
Rm with large enough m in this way? The affirmative answer to this question for
m = 2n and C∞-smooth manifolds is given in 1930s by Hassler Whitney(1907–
1989). If (and only if) n = 2s, then the bound m = 2n is sharp: for such n, the
projective space RPn cannot be embedded into R2n−1 (note a highly nontrivial
interplay between ‘geometric’ and ‘arithmetic’ properties). In fact, one can replace
the C∞-smoothness assumption by C2 (see also the second part of this course).

6. Compact spaces and sets

We now move back to the pedestrian level and continue discussing how the
notions familiar from the real analysis are formulated for topological/metric spaces.

Definition 6.1. One says that a topological space E satisfies the Borel–Lebesgue
property if for each family of open sets {Uα}α∈A such that E =

⋃
α∈A Uα (such

families are called open covers of E) there exists a finite set {α1, . . . , αn} ⊂ A such
that E =

⋃n
k=1 Uαk (then, {Uαk}k=1,...,n is called a finite sub-cover of E).

Trivially (by passing to the complements), the Borel–Lebesgue property of E is
equivalent to say that for each family {Fα}α∈A of closed sets such that

⋂
α∈A Fα = ∅

there exists a finite subset {Fαk}k=1,...,n such that
⋂
k=1,...,n Fαk = ∅.

[!] It so happened that the following definition is country-dependent.

Definition 6.2. In France:

◦ A topological space E is called quasi-compact iff it satisfies the BL property.
◦ A quasi-compact space E is called compact if it is Hausdorff=(T2).

In the rest of the world:

• E is called compact iff it satisfies the Borel–Lebesgue property.
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Definition 6.3. A set K ⊂ E is called (quasi-)compact if K endowed with the
subspace topology is a (quasi-)compact topological space. This can be re-formulated
as follows: for each open cover of K (i.e., for each collection of open – in E – sets
Uα such that K ⊂

⋃
α∈A Uα) there exists a finite subcover: K ⊂

⋃
k=1,...,n Uαk .

In the metric setup there is no difference between the French/English
terminologies. However, this becomes relevant in algebraic geometry: open sets
in the Zariski topology satisfy the BL property (i.e., are quasi-compact) and it is
debatable whether the name compact is also appropriate for them or not.

Let us now discuss a few simple examples.

(1) The segment [0, 1] ⊂ R is compact.

(Proof. Let [0, 1] ⊂
⋃
α∈A Uα and denote

t∗ := sup{t ∈ [0, 1] : the segment [0, t] admits a finite sub-cover by Uα}
Note that t∗ > 0. Indeed, there exists α ∈ A such that 0 ∈ Uα and, since
Uα is open, there exists r > 0 such that [0, r) ⊂ Uα, which implies t∗ ≥ r.
Also, it cannot be that 0 < t∗ < 1: in this case one uses the fact that
there exists α ∈ A and r > 0 such that (t∗ − r, t∗ + r) ⊂ Uα and hence the
segment [0, t∗+ 1

2r] also admits a finite subcover since one can add this Uα
to a finite subcover of the segment [0, t∗ − 1

2r]. Finally, if t∗ = 1, then one
finds α ∈ A and r > 0 such that (1− r, 1] ⊂ Uα and adds this Uα to a finite
subcover of the segment [0, 1− 1

2r]. �)

(2) Compact sets in Rn. In fact, the following is fulfilled:

K ⊂ Rn is compact ⇐⇒ K is a bounded closed set in Rn.

(The proof relies upon several general facts, which we will discus next.)

Proof. ‘⇒’ The fact that K is bounded follows by considering the family
Um := B(0,m) in the Borel–Lebesgue property. Trivially, K ⊂

⋃
m∈NB(0,m)

and hence there exists a finite subcover of K, i.e., K is bounded. The fact
thatK is closed follows from a general fact that compact sets in Hausdorff(!)
spaces are closed; see Lemma 6.6 below.

‘⇐’ We rely upon a fact that a closed subset of a compact set is also compact
(see Lemma 6.5) and on the fact that the closed cubes [−m,m]n ⊂ Rn
are compact; the latter follows, e.g., from the compactness of the segment
[−m,m] ⊂ R and the Tykhonov theorem (see Theorem 6.11 or 6.14). �

(3) To illustrate why quasi-compact sets are not necessarily closed in non-
Hausdorff spaces, one can consider the co-finite topology on an infinite
set E. In fact, in this topology all sets K ⊂ E are compact: indeed, if
K ⊂

⋃
α∈A Uα, then already the first open set Uα0

covers all elements of
K except finitely many, and the remaining elements in K r Uα0

obviously
require only finitely many of remaining Uα’s to cover them.

We now discuss basic properties of quasi-compact sets. To begin with, a finite
union of quasi-compacts is quasi-compact:

Lemma 6.4. Let K1,K2 ⊂ E be quasi-compact. Then, K1 ∪K2 is quasi-compact.

Proof. This is a triviality: if K1∪K2 ⊂
⋃
α∈A Uα, then one can find a finite subcover

of K1 by Uα’s, a finite subcover of K2 by Uα’s, and consider the union of the two,
which is a finite subcover of K1 ∪K2. �
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Note that, if E is not Hausdorff, it can happen that both quasi-compacts K1,2

are Hausdorff while their union K1 ∪K2 is not: e.g., one can consider the subsets
K1,2 := [−1, 0) ∪ 01,2 ∪ (0, 1] of the line with two origins discussed above.

6.1. (Quasi-)compacts and closed sets.

Lemma 6.5. If K is quasi-compact and K ⊃ F is closed, then F is a quasi-
compact. (The same holds for compacts: if K is Hausdorff, then so is F .)

Proof. Indeed, if F ⊂
⋃
α∈A Uα, then K = (K r F ) ∪

⋃
α∈A. As K r F is an open

set in K, one can find a finite subcover of K by K r F and Uα’s, which gives a
finite sub-cover of F by Uα’s as required. �

Lemma 6.6. Let E be a Hausdorff topological space (see the discussion above: one
cannot remove this assumption) and K ⊂ E be compact. Then, K is closed in E.

Proof. Let y ∈ E r K. As E is Hausdorff, for each x ∈ K one can find open

neighborhoods x ∈ U
(y)
x and y ∈ U

(x)
y such that U

(y)
x ∩ U (x)

y = ∅. Clearly, we

have K ⊂
⋃
x∈K U

(y)
x and hence one can find a finite subcover K ⊂

⋃
k=1,...,n U

(y)
xk .

Therefore,

K ∩ Vy = ∅, where y ∈ Vy :=
⋂
k=1,...,n U

(xk)
y

is an open neighborhood of y. This proves that E rK is an open set. �

Definition 6.7. Let E be a Hausdorff space. A set X ⊂ E is called relatively
compact (in E) if there exists a compact set K ⊂ E such that X ⊂ K. Equivalently,
X is relatively compact if and only if X is compact.

(Indeed, if X ⊂ K and K is compact, then K must be closed due to Lemma 6.6,
which implies X ⊂ K, and hence X is compact due to Lemma 6.5.)

6.2. (Quasi-)compacts and continuous mappings. The next, straightforward
but important, proposition demonstrates that we work with a good definition.

Proposition 6.8. Let K be quasi-compact and f : K → E′ be a continuous map-
ping. Then f(K) is also quasi-compact.

Proof. This is a triviality: if f(K) ⊂
⋃
α∈A Uα, then K =

⋃
α∈A f

−1(Uα) and, since
K is compact, one can find a finite subcover in this open (since f is continuous)
cover: K =

⋃
k=1,...,n f

−1(Uα) and hence f(K) ⊂
⋃
k=1,...,n Uα. �

Corollary 6.9. Let K be quasi compact and f : K → R be a continuous function.
Then, there exists xmax ∈ K such that f(xmax) = supx∈K f(x) = maxx∈K f(x).

Proof. This follows form the fact that f(K) is a compact set in R and hence must
be bounded and closed. �

Again, if K is compact (i.e., quasi-compact and Hausdorff) but E′ is not Haus-
dorff, then there is no a priori reason why f(K) should be Hausdorff. However, if
we assume that E′ is Hausdorff, then the following useful statement holds:

Proposition 6.10. Let K be compact, E′ be Hausdorff, and f : K → f(K) ⊂ E′

be a continuous bijection. Then, f is a homeomorphism of K and f(K) (i.e., the
inverse mapping f−1 : f(K)→ K is also continuous).



TOPOLOGIE ET CALCUL DIFFÉRENTIEL. I. TOPOLOGIE 25

Proof. By definition, to check the continuity of f−1 it is enough to prove that
f(F ) = (f−1)−1(F ) is closed in E′ if F is closed in K. This is straightforward:
if F ⊂ K is closed, then it is compact by Lemma 6.5, hence f(F ) is compact
(Proposition 6.8) and thus closed (Lemma 6.6). �

• Note that Proposition 6.10 implies the following fact: if K is quasi-compact
and Hausdorff, then one cannot introduce a coarser topology on K so that
it remains Hausdorff. (Indeed, if such a Hausdorff topology O′ ( O on K
existed, then one could consider the continuous (since O′ ⊂ O) bijection
f : (K,O)→ (K,O′), x 7→ x, which has to be a homeomorphism.)

6.3. Products of (quasi-)compact spaces: Tykhonov’s theorem.

The following theorem, due to Tykhonov (or Tychonoff(1906–1993); he intro-
duced and studied the product topology – as defined above – in 1920s), is a funda-
mental result. Unfortunately, we have no time to prove it in this course unless in the
very special case when all the topological spaces in question are metrizable (which
also means that A will be restricted to be at most countable); see Theorem 6.14.

Theorem 6.11. Let (Kα)α∈A be a family of quasi-compact topological spaces. Then
(whatever the cardinality of A is), their product

∏
α∈AKα is also a quasi-compact.

◦ Recall that the product of Hausdorff spaces is always Hausdorff. Thus, in
the French terminology, the product of compact spaces is also compact.

◦ Note that even the product of two topological compacts K1 × K2 is not
that easy to handle as one should find a way to link open covers of K1×K2

by open sets U1 × U2 with covers of K1 and K2; see TD.

◦ In fact, Tykhonov’s theorem for quasi-compacts is equivalent to the axiom
of choice; in particular, the proof must rely upon this axiom.

◦ Curiosity-type remark: however, the particular case of this theorem – prod-
ucts of ‘French’ compacts are compact – is strictly weaker than the AC.

6.4. Compact sets in metric spaces. Let us now discuss compact sets in metric
spaces. To begin with, recall that (see TD), given r > 0, a subset X of a metric
space K is called a r-net iff for each y ∈ K there exists x ∈ K such that d(x, y) ≤ r.
Lemma 6.12. Let K be a metric compact and r > 0. Then, there exists a finite
r-net in K. In particular, K is separable.

Proof. Trivially, K ⊂
⋃
x∈K B(x, r) and hence K ⊂

⋃
k=1,...,nB(xk, r) for certain

x1, . . . , xn. By definition, the set X = {x1, . . . , xn} is a r-net. To see that K is
separable, take the union of all 2−n-nets with n ∈ N. �

The following theorem gives an equivalent definition of metric compacts.

Theorem 6.13. Let K be a metric space. The following properties are equivalent:

(i) K is compact (i.e., satisfies the Borel–Lebesgue property);
(ii) for each sequence (xn)n∈N, xn ∈ K, there exists a subsequence – i.e., an

infinite set J ⊂ N – and a point x ∈ K such that xn → x as J 3 n→∞.

Moreover, if K is a metric compact, then the following statement (known under the
name Lebesgue’s lemma) holds:

(iii) for each open cover K =
⋃
α∈A Uα there exists r > 0 (which does not depend

on x) such that for each x ∈ K there exists αx s.t. B(x, r) ⊂ Uαx .
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We start this lecture by proving Theorem 6.13 and, as a corollary, a particular
case of the Tykhonov theorem (see Theorem 6.11 and Theorem 6.14) for a (at most)
countable product of compact metric spaces.

Proof of Theorem 6.13. (i) ⇒ (ii). Assume that a sequence (xn)n∈N does not con-
tain a convergent subsequence. This means that each x ∈ K has an open neighbor-
hood Ux = B(x, 2−m), where m = m(x) ∈ N, such that the set

Jm = Jm(x) := {n ∈ N : xn ∈ B(x, 2−m)}

is finite. (If this is was not the case and all the sets J0 ⊃ J1 ⊃ J2 ⊃ . . . were infinite,
then one removes first k elements from Jk to guarantee that min Jk+1 > min Jk
and constructs an infinite set J∗ := {min Jk, k ∈ N}; this would imply xn → x
as J∗ 3 n → ∞, a contradiction). We can now use the compactness of K to
conclude that K ⊂

⋃
x∈K Ux is actually covered by finitely many Ux’s, each of them

containing only finitely many elements of the sequence (xn)n∈N, a contradiction.

(ii) ⇒ (iii). On the contrary, assume that for each n ∈ N there exists a point
xn ∈ K such that B(xn, 2

−n) 6⊂ Uα for all α ∈ A. Due to our assumption (ii), we
can then find a convergent subsequence xn → x as J 3 n → ∞. Since x ∈ Uαx
for some αx ∈ A, there exists m ∈ N such that B(x, 2−m) ⊂ Uαx and, therefore,
B(xn, 2

−m−1) ⊂ Uαx provided that n ∈ J is large enough, a contradiction.

(ii) ⇒ (i). Given an open cover K ⊂
⋃
α∈A Uα, find r > 0 as in (iii). If this open

cover did not admit a finite sub-cover, we could inductively construct a sequence
of points xn ∈ K and open sets Uαn such that xn 6∈

⋃n−1
k=0 Uαk and B(xn, r) ⊂ Uαn

(start with an arbitrary x0, find α0, then find x1, then find α1, etc). Clearly, the
sequence (xn)n∈N cannot contain a convergent subsequence since, by construction,
we have d(xn, xk) ≥ r > 0 for all n 6= k. �

Theorem 6.14. Let (Kn)n∈N be a countable family of compact metrizable topolog-
ical spaces. Then their product

∏
m∈NKm is also a compact metrizable space.

Proof. Recall that the topology on K :=
∏
m∈NKm is first-countable (and hence

Fréchet–Uryhson) and x(n) → x in K if and only if x
(n)
m → xm for each m ∈ N.

The proof is a standard application of the ‘Cantor diagonal process’ argument.
To prove that K is compact, we will check the property (ii) from Theorem 6.13.
Let (x(n))n∈N be a sequence in K. As K0 is compact, there exists an infinite set

(subsequence) J0 ⊂ N and a point x∗0 ∈ K0 such that x
(n)
0 → x∗0 as J0 3 n → ∞.

Similarly, there exists an infinite set J1 ⊂ J0 and a point x∗1 ∈ K1 such that

x
(n)
1 → x∗1 as J1 3 n → ∞. Repeating this argument, we obtain infinite sets

J0 ⊃ J1 ⊃ . . . and points x∗m ∈ Km such that x
(n)
m → x∗m as Jm 3 m→∞.

Denote by J
(m)
m the set Jm without its first m elements and let

J∗ := {min J
(m)
m , m ∈ N}. Similarly, denote by J

(m)
∗ the set J∗

without its first m elements. By construction, for all m ∈ N, we

have J
(m)
∗ ⊂ J (m)

m and hence x
(n)
m → x∗m as J∗ 3 n→∞.

We have found a subsequence such that x(n) → x∗ := (x∗m)m∈N as J∗ 3 n→∞. �
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6.5. Locally compact and σ-compact spaces. Let us now discuss a small ex-
tension of the notion of compact spaces; a typical example is an open subset of
a compact metric space (see Lemma 6.17). Below we use English terminology:
compactness=Borel-Hausdorff property (=quasi-compactness in French).

Definition 6.15. A topological space E is called locally compact if for each x ∈ E
there exists an open neighborhood Ux and a compact set Kx such that x ∈ Ux ⊂ Kx.

For Hausdorff (and, in particular, for metric) spaces, this is the same as to re-
quire the existence of an open neighborhood Ux such that its closure Ux is compact.
(Indeed, if Kx is compact, then it is closed; here we rely upon the Hausdorff prop-
erty. Therefore, Ux ⊂ Kx, which implies that Ux is also compact.) Moreover, it is
enough to consider open balls Ux = B(x, r).

Warning: Spaces like `p or C([0, 1],R) are not locally compact. To see that,
recall that (e.g., see Lemma 6.12) compact sets in metric spaces must admit finite
r-nets. This is not the case for closed balls B(0, ρ) if r < 1

2ρ, as these balls contain
countably many points xn such that ‖xn − xm‖ ≥ ρ for all n 6= m.

Definition 6.16. A topological space is called σ-compact (in French, one says
dénobrable à l’infini) if there exist E ⊃ Kn – compact such that E =

⋃
n∈NKn. In

other words, E is called σ-compact if it can be covered by countably many compacts.

A simple example of a locally and σ- compact space is R or RN .

Lemma 6.17. Let K be a metric compact and K ⊃ U be an open subset of K.
Then, U is a locally compact and σ-compact metric space.

Proof. Denote φ(x) := (.x,K r U); note that x ∈ U ⇔ φ(x) > 0 (since K r U

is a closed set). To prove the local compactness, note that for each x ∈ U there
exists m ∈ N such that 2−m < φ(x) and hence B(x, 2−m) ⊂ U ; the closed ball
B(x, 2−m) ⊂ K is compact since K is compact. To prove the σ-compactness of U ,
consider the closed – and thus compact – sets Kn := φ−1([2−m,∞)). �

Certainly, one can always additionally require that K0 ⊂ K1 ⊂ K2 ⊂ in Defini-
tion 6.16 simply by replacing the sequence Kn by the unions K ′n :=

⋃n
k=0Kk. If

we also require the local compactness of E, then the following stronger property is
fulfilled; see also the discussion after Definition 6.20.

Lemma 6.18. If E is both locally compact and σ-compact, then there exists a
sequence of compacts K0 ⊂ K1 ⊂ K2 ⊂ . . . ⊂ E such that E =

⋃
n∈NKn and that

the following holds: for each E ⊃ K - compact, there exists n such that K ⊂ Kn.

Proof. Let E =
⋃
n∈NKn and K ′0 := K0. We now inductively construct the se-

quence K ′n as follows: consider the compact(!) set Ln := K ′n ∪ Kn+1; for each

point x ∈ Ln find an open neighborhood Ux and a compact set K
(x)
n+1 such that

x ∈ U (x)
n ⊂ K(x)

n+1; using the compactness of Ln find a finite(!) subcover

Ln ⊂ Un :=
⋃m
k=1 U

(xk)
n ; denote K ′n+1 :=

⋃m
k=1K

(xk)
n+1 .

By construction, K ′0 ⊂ U0 ⊂ K ′1 ⊂ U1 ⊂ K ′2 ⊂ . . . and E =
⋃
n∈NK

′
n =

⋃
n∈N Un.

Since each compact set K ⊂ E admits a finite subcover by open sets Un, there
exists n = n(K) ∈ N such that K ⊂ Un ⊂ K ′n+1. �
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6.6. Spaces of continuous functions on (locally and σ-) compact sets.
Let us conclude this section by introducing the spaces of continuous functions on
compacts (as well as those on locally and σ-compact sets – see Lemma 6.17 for the
basic example), which will play a central role in what follows.

Definition 6.19. Let K be a (topological) compact and E be a metric space. Then,

C(K,E) := {f : K → E, f is continuous}, dC(K,E)(f, g) := max
x∈K

dE(f(x), g(x)),

is a metric space. Moreover, if E is a normed vector space, then so is C(K,E).

[!] Note that we put maxx∈K instead of supx∈K : the reason is that the function
x 7→ (f(x), g(x)) 7→ dE(f(x), g(x)) is continuous on K and thus attains its maximal
value since k is compact; in particular dC(K,E)(f, g) < +∞.

Definition 6.20. Let U be a (topological) locally and σ-compact space and E be a
metric space. Denote

C(U,E) := {f : U → E, f is continuous}.
To endow C(U,E) with a metrizable(!) topology, consider a sequence of compacts
K0 ⊂ K1 ⊂ . . . ⊂ U from Lemma 6.18 and set

dC(U,E)(f, g) := maxm∈N min{dC(Km,E)(f, g), 2−m}.
Though the definition of the metric on C(U,E) depends on the choice of the

exhausting sequence of compacts Km, the (first-countable) topology on C(U,E)
does not rely upon this choice and can be described as follows (see Lemma 6.18):

fn → f in C(U,E) ⇐⇒ ∀ m ∈ N fn → f in C(Km, E),

⇐⇒ ∀ K ⊂ U - compact fn → f in C(K,E).

7. Complete metric spaces

The following definition mimics the one from the real analysis.

Definition 7.1. Let E be a metric space. A sequence (xn)n∈N, xn ∈ E, is called
a Cauchy sequence if for each ε > 0 there exists N ∈ N such that for all n,m ≥ N
one has d(xm, xm) < ε.

It follows from the triangle inequality that all convergence sequences are Cauchy
but not vice versa (e.g., think about E := Q ∩ [0, 1].)

Definition 7.2. A metric space E is called complete if for each Cauchy sequence
(xn)n∈N there exists x ∈ E such that xn → x as n→∞.

Warning: The completeness is not a topological notion: e.g., the metric spaces
(0, 1) and R are homeomorphic, the latter is complete but the former is not.

Let us introduce more terminology: two metrics d1 and d2 on E are called

◦ topologic equivalent if they define the same topology on E;
◦ metric equivalent if ∀ε > 0 ∃δ > 0 such that d1,2(x, y) < δ ⇒ d2,1(x, y) < ε.
◦ Lipschitz equivalent if ∃c, C > 0 such that cd1(x, y) ≤ d2(x, y) ≤ Cd1(x, y).

The notions of Cauchy sequences and of completeness are stable under metric equiv-
alence. In particular, note that (a) all metrics dp(x, y) := ‖x− y‖p, p ∈ [1,+∞], on
RN are Lipschitz equivalent (with c = 1/N , C = N) and that (b) e.g., the metrics
maxn∈N min{dn(xn, yn), 2−n} and

∑
n∈N min{dn(xn, yn), 2−n} on

∏
n∈NEn are not

only topologically but also metric (though not Lipschitz) equivalent.
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We now discuss basic properties of complete metric spaces. It is easy to see that

• If E is a complete metric space and F ⊂ E is a closed set, then F is also
a complete metric space. (Indeed, each Cauchy sequence of elements of F
has a limit in E and this limit has to belong to F since F is closed.)

• Vice versa, let F ⊂ E (we do not make any assumption in E) and F –
equipped with the subspace topology – is a complete metric space. Then,
F is closed in E. (Indeed, if F 3 xn → x ∈ E as n→∞, then the sequence
(xn)n∈N is Cauchy and thus has a limit in F , i.e., x ∈ F .)

Lemma 7.3. Let E be a complete metric space and F0 ⊃ F1 ⊃ F2 ⊃ . . . be a nested
sequence of non-empty closed subsets of E s.t. diamFn := supx,y∈Fn d(x, y)→ 0 as
n→∞. Then,

⋂
n∈N Fn = {x}, for a certain point x ∈ E.

Proof. Denote F :=
⋂
n∈N Fn. Clearly, diamF ≤ diamFn for all n ∈ N and hence

diamF = 0. Therefore, F cannot contain more than one point and we only need
to prove that F 6= ∅. To this end, choose a point xn ∈ Fn. For all m ≥ n we
have d(xn, xm) ≤ diamFn → 0, hence the sequence (xn)n∈N is Cauchy and thus
has a limit: xn → x as n → ∞. Since, for each n ∈ N, the set Fn is closed and
xm ∈ Fm ⊂ Fn for all m ≥ n, we have x ∈ Fn. Therefore, x ∈ F . �

Warning: At first sight, it seems that the assumption diamFn → 0 is made only
in order to guarantee that the intersection F :=

⋂
n∈N Fn consists of a single point.

However, without this assumption it can also happen that F = ∅: for instance, one
can consider the closed sets Fn = [n,+∞) ⊂ R = E. In general, if F0 is compact –
e.g., if F0 is a bounded closed set in Rn – then F 6= ∅, essentially due to the same
argument. However, without the compactness one can have F = ∅ even if F0 is
bounded: e.g., the sets Fn = {en, en+1, en+2, . . .} ⊂ `2 are closed (e.g., since they
do not contain nontrivial convergent sequences) and bounded but F = ∅.
Proposition 7.4. A metric space E is compact if and only if 3 E is complete and
for each r > 0 there exists a finite r-net in E.

Proof. ‘⇒’. The fact that E admits finite r-nets was discussed in Lemma 6.12, let
us prove that E is complete. If (xn)n∈N is a Cauchy sequence, then – due to the
compactness of E – it contains a convergent subsequence: xn → x as J 3 xn → x.
This implies the convergence of the whole sequence since (xn)n∈N is Cauchy.

‘⇐’ Consider a sequence (xn)n∈N. Our goal is to find a Cauchy subsequence of
this sequence. Since E admits a finite 1-net X1, there exists an infinite set J0 ⊂ N
such that d(xn, xm) < 2 for all n,m ∈ J1: one simply assigns to each xn the point
from X1 to which xn is 1-close and uses the fact that to a certain point from X an
infinite number of xn’s is assigned. Similarly – since E has a finite 1

2 − net – there
exists an infinite set J1 ⊂ J0 such that d(xn, xm) < 1 for all n,m ∈ J1; and so on.
Thus, we obtain infinite sets J0 ⊃ J1 ⊃ J2 ⊃ . . . such that d(xn, xm) < 2−k+1 for all
n,m ∈ Jk. Applying the diagonal process argument as above we obtain a Cauchy
subsequence (xn)n∈J∗ . Since E is complete, this subsequence has a limit. �

3This proposition also implies that the Lebesgue condition (iii) in Theorem 6.13 is equivalent

to the compactness provided that E contains only finitely many r-isolated points for each r > 0.

E.g., if X := (xn)n∈N is a Cauchy sequence that does not have a limit, then one can consider an
open cover E = (E r X) ∪

⋃
n∈NB(xn, rn) where rn → 0 can be chosen so that these balls are

disjoint and that for each k ∈ N one has B(xn, rn) ( B(xn, 2−k) for large enough n ≥ N(k).
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• The metric spaces [0, 1] and [0, 1]n are complete as they are compact. More-
over, R and Rn are also complete since each Cauchy sequence in Rn is
bounded and thus belongs to a cube [−R,R]n, which is a complete space.

• The normed vector spaces `p, 1 ≤ p ≤ +∞, are also complete (below we
assume that p < +∞, the case p = +∞ is simpler). To see this, consider a

Cauchy sequence x(n) ∈ `p, x(n) = (x
(n)
m )m∈N and note that for each m ∈ N

there exists a limit x
(n)
m → x∗m as n → ∞ since (x

(n)
m )n∈N is a Cauchy

sequence in R. Moreover, for each N ∈ N we have∑N
k=0 |x∗k|p ≤ lim supn→∞

∑N
k=0 |x

(n)
k |p ≤ lim supn→∞ ‖x(n)‖pp < +∞,

which implies (by passing to the limit N →∞) that x∗ ∈ `p and∑N
k=0 |x

(n)
k − x∗k|p ≤ lim supm→∞

∑N
k=0 |x

(n)
k − x(m)

k |p (7.1)

≤ lim supm→∞ ‖x(n) − x(m)‖pp, (7.2)

which implies (by sending N →∞ and then n→∞) that x(n) → x∗ in `p.

Another example is given the spaces C(K,E) and C(U,E) of E-valued contin-
uous functions on a topological compact K or a locally and σ-compact space U ,
which were introduced in the previous lecture. Recall that fn → f in C(K,E) if
and only if fn(x)→ f(x) uniformly in x ∈ K, while fn → f in C(U,E) if and only
if fn → f in C(K,E) for each compact K ⊂ U .

Theorem 7.5. (i) Let K be a (topological) compact and E be a complete metric
space. Then, the metric space C(K,E) is complete.

(ii) Let U be locally compact and σ-compact, and E be a complete metric space.
Then, the metrizable space C(U,E) is complete.

Proof. (i) Let (fn)n∈N be a Cauchy sequence in C(K,E). For each x ∈ K, we have
dE(fn(x), fm(x)) ≤ dC(E,K)(fn, fm), so the sequence (fn(x))n∈N is Cauchy in E
and thus has a limit, which we denote by f(x). Clearly,

supx∈K dE(fn(x), f(x)) ≤ lim supm→∞ dC(E,K)(fn, fm)→ 0 as n→∞.
However, it remains(!) to check that f : K → E is a continuous function. This fol-
lows from the continuity of fn and the uniform convergence fn → f . Indeed, given
x ∈ K and ε > 0 one can find n ∈ N such that dC(E,K)(fn, f) < 1

3ε and then – using

the continuity of fn – an open neighborhood Ux 3 x such that dE(f(y), f(x)) < 1
3ε

for y ∈ Ux. By the triangle inequality, this implies dE(f(y), f(x)) < ε for y ∈ Ux.

(ii) The same reasoning applies: the pointwise limits f(x) exist and the limit func-
tion f is continuous on U . Moreover, by (i), for each compact set K ⊂ U the
functions fn converge to f in C(K,E), which implies that fn → f in C(U,E). �

Quasi-détour. Let be a bounded4 metric space. Denote by F(E) the set of all its
non-empty closed subsets and by K(E) ⊂ F(E) the set of all non-empty compact
subsets; both equipped with the Hausdorff distance dH(F1, F2), defined as follows:

dH(F1, F2) < r ⇔ for each x ∈ F1,2 there exist y ∈ F2,1 such that d(x, y) < r.

Note that F(E) = K(E) if E is compact.

4In other words, we assume that diamE < +∞. This restriction is irrelevant: if needed, one
can always replace a given metric d(x, y) by min{d(x, y), 1}, which is metrically equivalent to d.
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Theorem 7.6. (i) Let E be a complete metric space. Then, both F(E) and K(E)
are complete metric spaces. (ii) Moreover, if E is compact, then so is K(E).

Proof.5 Let us first prove the implication (i) ⇒ (ii). According to Proposition 7.4,
it is enough to check that, if E has a finite r-net for each r > 0, then so does K(E).
This is straightforward: if X = {x1, . . . , xn} is a r-net for E, then the set 2X r {∅}
of all non-empty subsets of X is a r-net for K(E).

(i). Let E be complete and (Fn)n∈N be a Cauchy sequence in F(E); our goal is to
find a subsequence (i.e., an infinite set J∗ ⊂ N in our notation) and a closed set
F∗ ⊂ E such that Fn → F∗ as J∗ 3 n → ∞. In addition, if all Fn are compact,
then we should also prove that F∗ is compact too. By passing to a subsequence,
we can assume that dH(Fn, Fm) < 2−n for all m ≥ n. Denote

F∗ := {x∗ ∈ E : there exist xm ∈ Fm such that xm → x∗ as m→∞}.
It is not hard to see that:

• For each x∗ ∈ F∗ and n ∈ N there exists xn ∈ Fn s.t. d(xn, x∗) < 2−n+1.
Indeed, if x∗ = limm→∞ xm with xm ∈ Fm, then one can choose m large
enough so that d(xm, x∗) < 2−n and then find a point xn ∈ Fn such that
d(xn, xm) < 2−n using the fact that dH(Fn, Fm) < 2−n.
• For each xn ∈ Fn there exists x∗ ∈ F∗ such that d(xn, x∗) < 2−n+1.

Indeed, given xn ∈ Fn one can find xn+1 ∈ Fn+1 s.t. d(xn, xn+1) < 2−n,
then xn+2 ∈ Fn+2 such that d(xn+1, xn+2) < 2−n−1 and so on. It follows
from the triangle inequality that the sequence (xn+m)m∈N is Cauchy and
therefore there exists a limit xn+m → x∗ as m→∞. By definition, x∗ ∈ F∗
and we have d(xn, x∗) < 2−n + 2−n−1 + 2−n−2 + . . . = 2−n+1.

Therefore, dH(Fn, F∗) ≤ 2−n+1 → 0 and we are almost done: e.g., to prove that
F(E) is complete it remains to check that F∗ is closed. This is straightforward: let

x
(n)
∗ ∈ F∗ and x

(n)
∗ → x∗ as n → ∞. As explained above, for each n ∈ N we can

find x
(n)
n ∈ Fn such that d(x

(n)
∗ , x

(n)
n ) ≤ 2−n. Then, x

(n)
n → x∗ and hence x∗ ∈ F∗.

• Finally, let us prove that F∗ is compact if all Fn are compact.

This is done as follows:

◦ Given a sequence x
(n)
∗ ∈ F∗, consider x

(n)
m ∈ Fm s.t. d(x

(n)
m , x

(n)
∗ ) ≤ 2−m;

the existence of such approximations follows from the preceding discussion.
◦ Use the compactness of each of Fm and the diagonal process to find J∗ ⊂ N

and x∗m ∈ Fm such that, for each m ∈ N, x
(n)
m → x∗m as J∗ 3 n→∞.

◦ Note that the sequence (x∗m)m∈N is Cauchy: for all k ≥ m we have

d(x(n)
m , x

(n)
k ) ≤ 2−m + 2−k ≤ 2−m+1 ⇒ d(x∗m, x

∗
k) ≤ 2−m+1.

◦ Since E is a complete space, there exists a limit x∗m → x∗∗ as m→∞. Note
that d(x∗m, x

∗
∗) ≤ 2−m+1. In particular, x∗∗ ∈ F∗.

◦ Thus, it remains to check that x
(n)
∗ → x∗∗ as J∗ 3 n → ∞, i.e., that we

can exchange the limits in m and in n. This follows from the fact that the

convergence x
(n)
m → x

(n)
∗ is uniform in n. (Given ε > 0, find m ∈ N such

that 2−m+2 < ε and note that d(x
(n)
∗ , x∗∗) ≤ d(x

(n)
m , x∗m) + 2−m + 2−m+1;

then use the fact that d(x
(n)
m , x∗m) ≤ 2−m if n ∈ J∗ is large enough.) �

5This proof was skipped during the lecture in order to save time. Also, note that the theorem
is extended: for non-compact E, two metric spaces K(E) ( F(E) are considered.
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The next standard fact to discuss is the Banach–Caccioppoli fixed point theorem.

Theorem 7.7. Let E be a complete metric space, q < 1, and f : E → E be a
q-contraction, i.e., d(f(x), f(y)) ≤ q · d(x, y) for all x, y ∈ E. Then, there exists a
unique point x∗ ∈ E such that f(x∗) = x∗. Moreover, for each x0 ∈ E the following
holds: if we define inductively xn+1 := f(xn) for n ∈ N, then xn → x∗ as n→∞.

Proof. The uniqueness of x∗ is trivial (otherwise, we would have d(x′∗, x
′′
∗) ≤ q ·

d(x′∗, x
′′
∗), a contradiction). To prove the existence, note that, for each starting

point x0 ∈ E, the sequence (xn)n∈N is Cauchy since

d(xn, xm) ≤ (qn + qn+1 + . . .+ qm−1) · d(x0, x1) ≤ qn(1− q)−1 · d(x0, x1)

for all m ≥ n. As E is complete, it has a limit x∗ and one easily sees that x∗ = f(x∗)
by passing to the limit n→∞ in the equation xn+1 = f(xn). �

Example. Consider the metric space K([0, 1]) of all non-empty compact subsets
of [0, 1]; due to Theorem 7.6, this space is compact and hence complete. Let the
mapping f : K([0, 1]) → K([0, 1]) be defined as follows: K 7→ 1

3K ∪ ( 1
3K + 2

3 ); one

can easily see that f is a 1
3 -contraction. Then, the ‘ 1

3 -Cantor’ set C can be defined
as the unique non-empty compact subset of [0, 1] such that f(C) = C.

This construction of C admits a straightforward generalization: given a fam-
ily f1, . . . , fn of q-contractions of a complete metric space E, one can define a
q-contraction f : K 7→ f1(K) ∪ f2(K) ∪ . . . fn(K) on the complete metric space
K(E) and define a compact Cf1,...,fn as the unique fixed point of f .

E.g., the Koch snowflake and similar fractal sets can be defined in this manner.

Détour. Fixed point theorems – there are dozens of them – provide a useful
tool of proving the existence of an object satisfying certain conditions. Note that
Theorem 7.7 is a metric statement relying upon very strong assumptions on the
mapping f : this is why its proof is so straightforward. There are also (much deeper)
purely topological statements of that kind, the simplest of them is the following:

Theorem 7.8 (Brouwer, ∼1910). Let Bn denote the closed ball B(0, 1) ⊂ Rn. Each
continuous mapping f : Bn → Bn has a fixed point (i.e., ∃x ∈ Bn : f(x) = x).

This theorem first appeared in the beginning of the 20th century – the early
time of the development of the topology as a subject – and can be proven by
several techniques, including the combinatorial proof via the Sperner lemma. A
conceptual generalization of this result is the Lefschetz fixed point theorem, in which
the space Bn is replaced by a compact (triangulable) manifold X with boundary.
(Clearly, not all X and f work: e.g., there are continuous mappings from a n-
dimensional sphere or a torus to itself that do not have fixed points.) It turns
out that there exists a numerical characteristics Λf , called the Lefschetz number
of a continuous mapping f : X → X, such that the condition Λf 6= 0 implies the

existence of a fixed point of f . If X = Bn, then Λf = 1 for all f .

Unfortunately, this material goes far beyond the scope of these lectures.
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7.1. Completion of a metric space. If a given metric space E is not complete,
then there is a canonical procedure to embed it into a complete metric space E′ ⊃ E
such that E is dense in E’, the latter space is called the completion of E.

This procedure works as follows:

◦ To start with, consider the (huge) set Ẽ of all Cauchy sequences in E.

◦ Introduce an equivalence relation on this set: (xn)n∈N ∼ (yn)n∈N if for each
ε > 0 there exists N ∈ N such that d(xn, yn) < ε for all n ≥ N . (Exercise:
provided that both sequences (xn)n∈N and (yn)n∈N are Cauchy – this is
equivalent to saying that the sequence (x0, y0, x1, y1, x2, y2, . . .) is Cauchy.)

◦ Denote E′ := Ẽ/∼ and introduce a metric on E′ by

d′((xn)n∈N, (yn)n∈N) := limn→∞ d(xn, yn).

(Exercise: (a) if both (xn)n∈N and (yn)n∈N are Cauchy, then the sequence
d(xn, yn) is also Cauchy; (b) d′ is a well defined metric on E′.)

◦ To each point x ∈ E one can associate a trivial Cauchy sequence xn = x
for all n, this is why E can be viewed as a dense subspace of E′.

◦ Finally, to see that E′ is complete, assume that (x(n))n∈N, x(n) = (x
(n)
m )m∈N

is a Cauchy sequence of (equivalence classes of) Cauchy sequences in E.
Our goal is to find a convergent (in E′) subsequence in x(n). Passing to a
subsequence, we can assume that d′(x(n), x(n+1)) < 2−n for all n ∈ N. Using

the definition of d′ and the fact that each sequence (x
(n)
m )m∈N is Cauchy in

E, we can find an increasing sequence m−1 := 0 < m0 < m1 < m2 < . . .
such that

d(x(n)
p , x(n+1)

p ) ≤ 2−n and d(x(n)
p , x(n)

q ) ≤ 2−n for all q ≥ p ≥ mn.

Now define the sequence (x∗m)m∈N as follows: x∗p := x
(n)
p if mn−1 ≤ p < mn.

It is easy to see that

d(x∗p, x
(n)
p ) ≤ 2−n+1 and d(x∗p, x

∗
q) ≤ 5 · 2−n for all q ≥ p ≥ mn.

Therefore, (x∗m)m∈N is a Cauchy sequence in E and x(n) → x∗ in E′.

Remark: Let E ⊂ E′′ be a complete metric space such that E is dense in E′′.
Then, E′′ is isometric to the completion E′ of E constructed above.

Proof. Indeed, each Cauchy sequence in E must have a limit in E′′; it is straight-
forward to check that this defines an isometric inclusion ι : E′ → E′′. On the other
hand, since E is dense in E′′, each point of E′′ should appear as a limit (in E′′) of
points from E. Thus, ι(E′) = E′′. �

Lemma 7.9. Let E1 be a complete metric space and f : E → E1 be a uniformly
continuous function. Then, there exists a unique continuous function f ′ : E′ → E1

such that f ′|E = f , where E′ denotes the completion of E.

Proof. This is straightforward: if x = (xn)n∈N ∈ Ẽ is a Cauchy sequence in E,
then the uniform continuity of f implies that the sequence (f(xn))n∈N is Cauchy

in E1 and thus has a limit f̃(x). This allows to correctly(!) define f ′ on E′ = Ẽ/∼
by f ′([x]) := f(x); the continuity of f ′ follows from the uniform continuity of f . �
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Let us now discuss several examples of this construction:

• The basic example of the completion of a metric space is E = (Q, | · |) and
E′ = R. One can also consider other metrics on Q, notably those provided
by p-adic absolute values |·|p. The completion of the space (Q, |·|p) is known
under the name p-adic numbers Qp; the elements of Qp can be identified

with formal series
∑+∞
n=n0

anp
n, where n0 ∈ Z and an ∈ {0, . . . , p− 1}.

• Another example is the set `0 of all finite sequences equipped with one of
the norms ‖ · ‖p, 1 ≤ p < ∞. Completing it with respect to ‖ · ‖p one
gets pairwise different complete spaces E′ = `p. (Indeed, each sequence
(xn)n∈N ∈ `p can be approximated by finite sequences (x0, . . . , xN , 0, 0, . . .)
in the metric ‖ · ‖p. Therefore, `0 is dense in `p for each p ∈ [1,+∞).)

• However, note that the completion of `0 with respect to the metric ‖ · ‖∞
is not `∞ since `0 is not dense in `∞. In fact, this completion is

`∞0 := {(xn)n∈N : xn → 0 as n→∞} ( `∞;

(Exercise: check that the normed vector space (`∞0 , ‖ · ‖∞) is complete.)

• Similarly, if one starts with the set C([0, 1],R) and complete it with re-
spect to the norms ‖ · ‖p, 1 ≤ p < +∞, then the family of complete(!)
Lp([0, 1]) spaces arise; see ‘Intégration et proba’. (Also, note that the space
C([0, 1],R) equipped with the norm ‖ · ‖∞ is already complete ‘as is’.)

• Finally, consider a complete metric space E and the set of its finite non-
empty subsets K0(E). Exercise: the completion of (K0(E); dH) is K(E) –
the set of all non-empty compact subsets of E; see Theorem 7.6.

7.2. Baire’s theorem. Recall that a subset X of a topological space E is called

◦ nowhere dense if IntX = ∅ or, equivalently, U 6⊂ X for each open set U 6= ∅.
This property can be further reformulated as follows: for each open set
U 6= ∅ there exists an open subset U ⊃ V 6= ∅ such that V ∩ X = ∅.
(Indeed, if X is nowhere dense, then one can take V := U ∩ (E rX). Vice
versa, the condition V ⊂ ErX implies that V ⊂ ErX and thus U 6⊂ X.)

◦ (everywhere) dense if X = E, i.e., if U ∩X 6= ∅ for each open set U 6= ∅.

It is easy to see that the following conditions are equivalent:

U = E r F is open everywhere dense ⇐⇒ F = E r U is closed nowhere dense.

Definition 7.10. A set X ⊂ E is called maigre if there exists a (at most) countable
collection of nowhere dense sets (Fn)n∈N such that X ⊂

⋃
n∈N Fn. (The traditional

English terminology is ‘first category set’. However, the name ‘meagre’ also exists.)

Clearly, since the closure of a nowhere dense set is also nowhere dense, in the
above definition one can assume that all Fn are closed, without loss of generality.

Theorem 7.11 (Baire). Let E be a complete metric space and X ⊂ E be a maigre
set. Then, the complement ErX is everywhere dense in E. In particular, X 6= E.

Proof. Let X ⊂
⋃
n∈N Fn, where Fn are nowhere dense sets. It is enough to prove

that the set E r
⋃
n∈N Fn is everywhere dense.

Let U ⊂ E be an open set. Since F0 is nowhere dense we can find an open ball
B0 := B(x0, r0) ⊂ U such that B0 ∩ F0 = ∅. Similarly, since F1 is nowhere dense
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we can find an open ball B1 := B(x1, r1) ⊂ B(x0,
1
2r0) such that B1 ∩ F1 = ∅.

Iterating this construction, we obtain a sequence of open balls

Bn = B(xn, rn) ⊂ B(xn−1,
1
2rn−1) such that Bn ∩ Fn = ∅.

Since Bn ⊂ B(xn−1,
1
2rn−1) ⊂ Bn−1 and rn → 0 as n → ∞, it is easy to see that

there exists a point x ∈ E such that
⋂
n∈NBn = {x} 6= ∅; see Lemma 7.3. By

construction, x 6∈ Fn for all n ∈ N and hence V ∩ (E r
⋃
n∈N Fn) 6= ∅. �

It is tempting to say, at least informally, that a ‘typical’ element of a complete
metric space cannot belong to a maigre set. However, as it is shown by the following
example, one should be extremely careful when using such an informal terminology.

Illustration: Liouville numbers. Denote

L :=
⋂

m∈N, n∈N
U (m)
n , U (m)

n :=
⋃

q>n, p∈Z

((
p

q
− 1

qm
,
p

q
+

1

qm

)
r
{
p

q

})
.

In other words, x is a Liouville number (i.e., x ∈ L) iff for each m ∈ N there exists
infinitely many denominators q ∈ N such that |x− p

q | <
1
qm for a certain p = p(q).

• It is easy to see that Rr L =
⋃
m∈N

⋃
n∈N F

(m)
n , where F

(m)
n := Rr U

(m)
n ,

is maigre: indeed, each U
(m)
n is an open everywhere dense set.

• On the other hand, L is a set of Lebesgue measure 0: if m ≥ 3, we have

Leb(U
(m)
n ∩ [0, 1]) ≤ 2

∑
q>n q

1−m = O(n2−m) → 0 as n→∞.
To summarize, R = L∪ (RrL) is a splitting of R to a set of Lebesgue measure zero
and a maigre set. Each of them is ‘untypical’ but from very different viewpoints.

Détour6. The name ‘Liouville numbers’ originates from the following observation:

if x ∈ R is a non-rational algebraic number (i.e., if there exists a
polynomial P ∈ Z[x] such that P (x) = 0), then∣∣∣∣x− p

q

∣∣∣∣ ≥ c(x)

qm
, for all

p

q
∈ Q, where c(x) > 0 and m = degP.

For a proof, note that |P (pq )| ≥ 1
qm , this gives c(x) ≈ |P ′(x)|−1.

(Replacing P by P ′ or P (k), one can always assume that P ′(x) 6= 0.)

In particular, the set L does not contain algebraic numbers; this allowed Joseph
Liouville to give a first explicit example

∑
n∈N 10−n! ∈ L of such a number in 1844.

In fact, a much deeper statement holds true:

Theorem 7.12 (Klaus Roth, 1955). For each non-rational algebraic number x ∈ R
and each ε > 0 there exists a constant c(x, ε) > 0 such that∣∣∣∣x− p

q

∣∣∣∣ ≥ c(x, ε)

q2+ε
for all

p

q
∈ Q.

(Theorem 7.12 is also referred to as the Thue–Siegel–Roth theorem to acknowledge
the preceding work of Axel Thue and that of Carl Ludwig Siegel.) Note that for
each x ∈ R r Q there are infinitely many p

q ∈ Q such that |x − p
q | <

1
q2 : such

approximations are given by truncations of the continued fraction expansion of x.

6This material was not mentioned during the lecture.
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A typical use of the Baire theorem is to give a ‘cheap’ prove of the existence of
certain objects. Let us illustrate this by the following claim:

• The set
{
f ∈ C([0, 1],R) : ∃x ∈ [0, 1] s.t. f is differentiable at x

}
is maigre.

Therefore, the set of nowhere differentiable functions is dense in C([0, 1],R).

Proof.7 Let us consider the sets

Fm := {f ∈ C([0, 1],R) : ∃x ∈ [0, 1] s.t. ∀y ∈ [0, 1] |f(y)− f(x)| ≤ m|x− y|}.

If f is differentiable at a point x, then the function y 7→ |f(y) − f(x)|/|y − x| is
continuous and thus f ∈ Fm provided that m ≥ maxy∈[0,1] |f(y)− f(x)|/|y − x|.

It is not hard to see that Fm is nowhere dense. Indeed, let us first prove that
Fm is a closed set. Given a sequence f (n) ∈ Fn such that f (n) → f in C([0, 1],R),
let x(n) ∈ [0, 1] be the corresponding points from the definition of the set Fm. By
compactness, we can find a subsequence such that x(n) → x∗ ∈ [0, 1] as J 3 n→∞.
Now note that

|f (n)(y)− f (n)(x∗)| ≤ |f (n)(y)− f (n)(x(n))|+ |f (n)(x∗)− f (n)(x(n))|

≤ m · (|y − x(n)|+ |x∗ − x(n)|) → m|y − x∗|

as J 3 n→∞. Therefore, |f(y)− f(x∗)| ≤ m|y − x∗| and hence f ∈ Fm.

To prove that Fm is nowhere dense, it remains to note that each open set U ⊂
C([0, 1],R) contains a piece-wise linear function g. Let B(g, ρ) ⊂ U and denote by
M < +∞ the maximal gradient of g. Further, let φ : R→ [− 1

2 ,
1
2 ] be defined as

φ(x) =
∫ x

0
sign(t− btc − 1

2 )dt.

Then, the piece-wise linear function g̃(x) := g(x) + ρφ((M +m+ 1)x/ρ) cannot
belong to Fm since, at each point on [0, 1], its gradient is at least m+ 1 (or at most
−m− 1). Still, we have g̃ ∈ B(g, ρ) ⊂ U ; hence, U 6⊂ Fm = Fm. �

October 21, 2020

8. Connected and path-connected topological spaces

Definition 8.1. A topological space E is called

◦ connected if there exists no non-trivial pair of open sets ∅ 6= U0, U1 ⊂ E
such that U0 ∩ U1 = ∅ and U0 ∪ U1 = E;

◦ path-connected if for each pair of points x0, x1 ∈ E theere exists a continu-
ous mapping γ : [0, 1]→ E such that γ(0) = x0 and γ(1) = x1. (Informally,
one says that x0 and x1 can be joined by a continuous path γ.)

As usual, a subset X ⊂ E is called connected/path-connected iff it is a connected/path-
connected topological space (with the subspace topology inherited from E).

Lemma 8.2. Let f : E → E1 be a continuous mapping. (i) If E is connected, then
f(E) is connected. (ii) If E is path-connected, then f(E) is path-connected.

7The proof was skipped during the lecture due to the lack of time.
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Proof. Assume that there exists two open (in the subspace topology of f(E) ⊂ E1)
sets ∅ 6= V0,1 = f(E) r V1,0. Since the mapping f is continuous, their preimages
U0,1 := f−1(V0,1) are open in E and satisfy the same conditions ∅ 6= U0,1 = ErU1,0,
a contradiction with the connectedness of E.

(ii) Let y0, y1 ∈ f(E) and choose x0,1 ∈ E such that y0,1 = f(x0,1). Since E is path-
connected, there exists a continuous mapping γ : [0, 1] → E such that γ(0) = x0

and γ(1) = x1. Then, the mapping f ◦ γ : [0, 1] → f(E) is also continuous and
satisfies (f ◦ γ)(0) = y0 and (f ◦ γ)(1) = y1. �

Lemma 8.3. (i) The segment [0, 1] is a connected topological space.
(ii) If a topological space E is path-connected, then it is connected.

Proof. (i) Let U0 ⊂ [0, 1] be an open and closed set such that 0 ∈ U and let
x∗ := sup{x ∈ [0, 1] : [0, x] ⊂ U0}. Since [0, 1] r U0 is open, we must have x∗ ∈ U0.
If x∗ < 1, one easily obtains a contradiction with the fact that U0 is open.

(ii) On the contrary, assume that ∅ 6= U0,1 = ErU1,0 are both open and closed sets.
Let x0,1 ∈ U0,1 and γ : [0, 1] → E be a continuous mapping such that γ(0) = x0

and γ(1) = x1. It is easy to see that γ([0, 1]) is also not connected (indeed, consider
the sets U0,1 ∩ γ([0, 1])), which contradicts to (i) and Lemma 8.2(i). �

Lemma 8.4. (i) Let Eα ⊂ E be a connected set, for each α ∈ A. If
⋂
α∈AEα 6= ∅,

then
⋃
α∈AEα is connected. (ii) The same claim holds for path-connected sets.

Proof. (i) Let x ∈
⋂
α∈AEα and assume that non-empty disjoint open sets U0,1 ⊂ E

are such that
⋃
α∈AEα ⊂ U0 ∪U1. Without loss of generality, assume that x ∈ U0.

Since each Eα is connected, we should have Eα ⊂ U0. Hence,
⋃
α∈AEα ⊂ U0.

(ii) Let x0,1 ∈ Eα0,1 and x ∈ Eα0 ∩ Eα1 . Concatenating the paths from x0 to x
(running in Eα0

) and from x to x1 (running in Eα1
) one obtains a required path

from x0 to x1. More pedantically, given continuous mappings γ0,1 : [0, 1] → Eα0,1

such that γ0,1(0) = x0,1 and γ0,1(1) = x, one defines

γ(t) := γ0(2t) if t ≤ 1
2 and γ(t) := γ1(2− 2t) if t ≥ 1

2 . �

Lemma 8.5. (i) Let Eα be a connected topological space, for each α ∈ A. Then, the
space

∏
α∈AEα is connected. (ii) The same claim holds for path-connected spaces.

Proof. (i) Consider first the case of a two-element set A, e.g., A = {x, y}. For each
x0 ∈ Ex and y0 ∈ Ey the ‘cross-like’ set C(x0,y0) := {(x, y) : x = x0 or y = y0}
is connected due to Lemma 8.5(i). Therefore, Ex × Ey =

⋃
y∈Ey C(x0,y) is also

connected due to the same lemma.
The case of a finite set A easily follows by induction. Assume now that A is

infinite and that E :=
∏
α∈AEα = U0∪U1, where U0,1 are non-empty disjoint open

sets. By definition of the product topology, each of the sets U0,1 contains a base
set of the form (5.1). Therefore, one can find points x0,1 ∈ U0,1 such that the set
A0 := {α : (x0)α 6= (x1)α} is finite. From the above consideration it follows that
the ‘hyperplane’ set H := {x ∈ E : xα = (x0)α for all α 6∈ A0} is connected: indeed,
it is homeomorphic to a product of connected spaces over the finite set of indices
A0. On the other hand, both sets U0,1 ∩H 6= ∅ are open in H, a contradiction.

(ii) This part is straightforward. Let x(0,1) ∈ E. Since each of the spaces Eα is

path-connected, there exist continuous mappings γα : [0, 1]→ Eα with γα(0) = x
(0)
α

and γα(1) = x
(1)
α . It is easy to see that the mapping γ = (γα)α∈A : [0, 1] → E is
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also continuous: this follows from the continuity of all mappings πα ◦ γ = γα and
from the definition of the product topology in E; e.g., see (5.1). �

Let us now discuss two examples:

• E = R. A subset X ⊂ R is connected if and only if it is an (open, closed
or half-closed; finite or infinite) interval; i.e. iff the condition x0, x1 ∈ X
implies that x ∈ X for all x ∈ R such that x0 < x < x1. In particular, in
this case all connected sets are also path-connected; cf. Lemma 8.3.

Proof. Assume that x0,1 ∈ X but x 6∈ X for a certain x ∈ (x0, x1). By
choosing U0 := (−∞, x) ∩X and U1 := (x,+∞) ∩X, it is easy to see that
X is not connected. Vice verse, if X is an interval, then it is obviously
path-connected and hence connected due to Lemma 8.3. �

In particular, one immediately concludes that:

◦ if E is a connected topological space and f : E → R is continuous,
then f(E) is an (open or closed or half-open; finite or infinite) interval;

◦ moreover, if E is a compact connected space, then f(E) = [fmin, fmax]
for some −∞ < fmin ≤ fmax < +∞.

• Topologist’s sine curve. Let E = R2 and consider

X := {(x, sin 1
x ), x > 0} ∪ {(0, y), y ∈ [−1, 1]}.

This set is(!) connected but not path-connected. (The former claim follows
from Lemma 8.7, the latter – from the fact that each continuous mapping
γ : [0, 1] → R2 s.t. γ(0) = (0, 0) and γ(1) = (π, 0) is uniformly continuous
and hence cannot oscillate between the lines y = ±1 infinitely many times.)

Definition 8.6. A metric space E is called chain-connected (bien enchâıné in
French) if for each ε > 0 and each pair of points x0, x1 ∈ E there exists a finite
sequence of points x0 = y0, y1, . . . , yN+1 = x1 such that d(yk, yk+1) < ε.

Lemma 8.7. (i) If E is a connected metric space, then it is chain-connected.
(ii) If E is a compact chain-connected metric space, then it is connected.

It is worth noting that one cannot withdraw the compactness assumption in (ii):
e.g., the metric space R r {0} is chain-connected but not connected. Another
example of the same kind is the closed set X := {(x, y) : |y| · x ≥ 1} ⊂ R2.

Proof of Lemma 8.7. (i) Let x0,1 ∈ E and ε > 0. Denote

U0 := {y : y is ε-chain connected to x0}, U1 := E r U0.

It is easy to see than both sets U0 and U1 are open in E. (Indeed, if y ∈ U0,
then B(y, ε) ⊂ U0 as we can add one more step to the ε-chain going from x to
y. Similarly, if y ∈ U1, then B(y, ε) ⊂ U1: otherwise, there would exist a point
z ∈ B(y, ε) such that z is ε-connected to x and we could add one more step from z
to y to this chain.) Since E is connected and U0 6= ∅, we must have U0 = E.

(ii) Assume that E is not connected, i.e., that exist open sets ∅ 6= U0,1 ⊂ E such
that U0,1 = E r U1,0. In particular, both U0,1 are also closed in E and hence
compact since E is compact (see Lemma 6.5). This implies that

d(U0, U1) = infx0∈U0,x1∈U1 d(x0, x1) = minx0∈U0,x1∈U1 d(x0, x1) > 0.

and hence x0,1 ∈ U0,1 cannot be ε-chain connected provided that ε < d(U0, U1). �



TOPOLOGIE ET CALCUL DIFFÉRENTIEL. I. TOPOLOGIE 39

Definition 8.8. Let E be a topological space. The connected component of a point
x ∈ E is the maximal (under inclusion) connected set Cx ⊂ E such that x ∈ Cx.

Note that

◦ such a maximal set exists due to Lemma 8.5(i);

◦ the connected component Cx is a closed set. Indeed, it is easy to see that,
if a set C ⊂ E is connected, then its closure C is also connected.
(Let C ⊂ U0 ∪U1, where U0 and U1 are disjoint open sets in E. Since C is
connected we should have either C ∩ U0 = ∅ or C ∩ U1 = ∅, which implies
that either C ∩ U0 = ∅ or C ∩ U1 = ∅.)
◦ Thus, E is the union of disjoint (see Lemma 8.5) closed connected sets Cx.

◦ Trivially, if x ∈ U ⊂ E is a both open and closed set, then Cx ⊂ U .
However, note that Cx is in general not open.

Definition 8.9. E is called totally disconnected if Cx = {x} for all x ∈ E.

A trivial example of a totally disconnected space is provided by the discrete
topology on E. A less trivial example is the Cantor set C or any other nowhere
dense subset of R (indeed, connected subsets of R are intervals and nowhere dense
sets do not contain any nontrivial interval).
Exercise: prove that the space Qp of p-adic numbers is also totally disconnected.
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9. The space C(K,E) of continuous functions on compacts

9.1. Arzelà–Ascoli theorem. Let K be a metric compact and E be a complete
metric space. Recall the characterization of compact metric spaces provided by
Proposition 7.4: K is compact if and only if it is complete and, for each r > 0,
admits finite r-nets.

Recall also that we denote by C(K,E) the vector space of all continuous function
f : K → E, equipped with the distance

dC(K,E)(f, g) := sup
x∈K

dE(f(x), g(x)) = max
x∈K

dE(f(x), g(x)).

As discussed above (see Theorem 7.5), C(K,E) is a complete metric space.

• If E is a complete normed space – such spaces are called Banach spaces
(due to Stefan Banach, 1892–1945) – then C(K,E) is also a Banach space
as the definition of the distance dC(K,E) can be transformed into the norm
‖f‖C(K,E)(f, g) := maxx∈K ‖f(x)‖E .

• Moreover, if E = R or E = C (or other field, which is complete with respect
to a certain absolute value), then C(E,K) becomes a Banach algebra: one
can also multiply the functions and this operation satisfies ‖fg‖ ≤ ‖f‖·‖g‖.

Given a sequence of functions fn ∈ C(K,E), n ∈ N, and f ∈ C(K,E) one says that

• fn(x)→ f(x) pointwise if this convergence holds for each x ∈ K;
• fn → f uniformly for x ∈ K if fn → f in C(K,E); we will also use the

notation fn ⇒ f in order to avoid a confusion.
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Clearly, the uniform convergence implies the pointwise one but not vice versa (unless
K is a finite set: note that in this case C(K,E) ∼= E#K , the pointwise convergence
is the coordinate-wise while the metric in C(K,E) is the `1-type metric on E#K).
Indeed, if x0 ∈ K is a non-isolated point, then one, e.g., can consider functions
fn(x) := φ0(n · d(x, x0)), where φ0(t) := te−t. (If x0, x1, x2, . . . ∈ K are isolated
points, then one can take fn(x) := 1 if x = xk, k ≥ n, and fn(x) := 0 otherwise.)

The following two facts are essentially known from the real analysis:

• Dini’s theorem. Let E = R and assume that the sequence fn ∈ C(K,R)
is monotone, e.g., f0(x) ≤ f1(x) ≤ . . .. Let fn(x) → f(x) pointwise (i.e.,
for each x ∈ K), where f ∈ C(K,R). Then, this convergence is uniform.

Proof. Given ε > 0, denote Un := {x ∈ K : fn(x) > f(x) − ε} ⊂ Un+1.
These sets are open (as fn, f are continuous) and cover K. Since K is
compact, there exists n ∈ N such that K = Un. �

• Heine’s theorem: Provided that K is compact, each continuous function
f : K → E is uniformly continuous: for each ε > 0 there exists δ > 0 such
that the following holds: dK(x′, x′′) < δ implies dE(f(x′), f(x′′)) < ε.

Proof. For each x ∈ K one can find an open neighborhood Ux = B(x, 2δx)
such that dE(f(x′), f(x)) < 1

2ε for all x′ ∈ Ux). By compactness, K is
covered by finitely many twice smaller open balls B(x, δx); let δ > 0 be
the minimum of their radii. Now, if x′ ∈ B(x, δx) and dK(x′, x′′) < δ, then
both x′, x′′ ∈ Ux = B(x, 2δx) and hence dE(f(x′), f(x′′)) < 2 · 1

2ε = ε. �

The first of the two main statements in this section is an ‘if and only if’ charac-
terization of (pre)compact sets in C(K,E).

Exercise: closed balls are not compact in C(K,E) (provided that K is not finite).

Theorem 9.1 (Arzelá–Ascoli). A set F ⊂ C(K,E) is precompact (i.e., its clo-
sure F is compact) if and only if the following two conditions hold:

(a) for each x ∈ K the set F(x) := {f(x), f ∈ F} is precompact in E;
(b) the family of functions f ∈ F is uniformly equicontinuous: for each ε > 0

there exists δ > 0 such that for all f∈ F the following holds: dK(x′, x′′) < δ
implies dE(f(x′), f(x′′)) < ε.

Proof. ‘⇒’ Assume that F is compact in C(K,E). The condition (a) is trivial since,
for each x ∈ K, the application f 7→ f(x) is continuous and thus {f(x), f ∈ F} is
compact in E. Thus, it remains to prove (b). Let ε > 0, x ∈ K and r > 0. Denote

U (ε)
x,r := {f ∈ C(K,E) : supx′∈B(x,r) dE(f(x′), f(x)) < ε}.

It is easy to see that the set Uεx,r is open in C(K,E): indeed, if

supx′∈B(x,r) dE(f(x′), f(x)) = ε− ρ, ρ > 0,

and dC(K,E)(f, g) < 1
2ρ, then supx′∈B(x,r) dE(g(x′), g(x)) < ε (i.e, B(f, 1

2ρ) ∈ U (ε)
x,r).

Clearly, for each x ∈ K we have F ⊂
⋃
r>0 U

(ε)
x,r = C(K,E). Since F is precom-

pact, for each x ∈ K there exists rx > 0 such that F ⊂ U (ε)
x,rx . Similarly to the

proof of Heine’s theorem, we now note that K =
⋃
x∈K B(x, 1

2rx) and hence – by
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compactness – K is covered by finitely many such balls, let r be the minimum of
the corresponding radii rx. As in Heine’s theorem, it is easy to see that

for all f ∈ F , if dK(x′, x′′) < 1
2r, then dE(f(x′), f(x′′)) < 2ε.

(Indeed, if x′ ∈ B(x, 1
2rx) and dK(x′, x′′) < 1

2r, then both x′, x′′ ∈ B(x, rx) and the

claim follows since F ⊂ U (ε)
x,rx .)

‘⇐’ Consider a sequence (fn)n∈N ⊂ F , our goal is to find a subsequence that
converges to a continuous function f uniformly on K. Recall that a metric compact

K admits finite 2−k-nets X(k) := {x(k)
1 , . . . , x

(k)
mk} for all k ∈ N and, in particular,

is separable: the set X :=
⋃
k∈NX

(k) is dense in K. Using the assumption (a) for

each of the (countably many) points x
(k)
m ∈ X and the Cantor diagonal process,

we can find a subsequence J 3 n → ∞ such that the sequences fn(x
(k)
m ) converge

(in E) for all k ∈ N and m ≤ mk. Denote

f(x(k)
m ) := limJ3n→∞ fn(x(k)

m ).

At the moment, the function f is defined on the dense subset X ⊂ K only. How-
ever, since the functions fn are uniformly equi -continuous (see (b)), the following
holds:

if x′, x′′ ∈ X and dK(x′, x′′) < δ, then dE(f(x′), f(x′′)) ≤ ε, (9.1)

with the same δ = δ(ε) > 0 as in (b). Note that K can be viewed as a completion
of X. Therefore, f can be extended from X to E as in Lemma 7.9: given a point
x ∈ K r X, find a convergent sequence X 3 xn → x and note that (9.1) implies
that the limit f(x) := limn→∞ f(xn) exists and does not depend on the choice of
the approximating sequence. Moreover, thus constructed function f satisfies the
same condition (9.1) for all x′, x′′ ∈ K. In particular, f ∈ C(K,E).

We are almost done: it only remains to check that fn → f in C(K,E) (as
J 3 n → ∞). Given ε, δ from the equicontinuity condition (b) and let 2−k < δ.
Due to the pointwise convergence fn(x)→ f(x) at each of the (finitely many) points
x(k) ∈ X(k) in the 2−k-net, there exists N ∈ N such that dE(fn(x(k)), f(x(k))) < ε
for all x(k) ∈ X(k) and for all J 3 n ≥ N . Together with (9.1), this implies that

dE(fn(x), f(x)) ≤ dE(fn(x), fn(x(k)))+d(fn(x(k)), f(x(k)))+d(f(x(k)), f(x)) < 3ε

for all x ∈ K and J 3 n ≥ N , provided that dK(x, x(k)) < 2−k < δ(ε). �

Example. Certainly, the key condition in Theorem 9.1 is the equicontinuity. E.g.,
the closed(!) set of 1-Lipshitz functions

{f : [0, 1]→ R : |f(x)− f(y)| ≤ |x− y| and |f(0)| ≤M}
is compact in C([0, 1],R); note that, though the second condition |f(0)| ≤ M is
indispensable, it can be replaced by any other bound on the the values of f .

9.2. Stone–Weierstrass theorem. Consider now the Banach algebra C(K,R).
The next theorem essentially says that a subalgebra of this algebra is always dense
unless it is not due to a trivial reason (see condition (b) below). Note that (see
a discussion before Corollary 9.3) that a similar result for the algebra C(K,C) of
complex-valued functions does not hold ‘as is’: one should also require that the
subalgebra in question is closed under the conjugation.

Theorem 9.2 (Stone–Weierstrass). Let A be a subalgebra of C(K,R) (in other
words, αf + βg ∈ A and fg ∈ A for all f, g ∈ A and α, β ∈ R). Assume that
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(a) R ⊂ A, i.e., that constant functions belong to A;
(b) A distinguishes points of K, i.e., for each x, y ∈ K such that x 6= y there

exists f ∈ A such that f(x) 6= f(y).

Then, A is dense in C(K,R).

Before given the proof of this theorem, let us first discuss a few examples:

• The model case to have in mind is the algebra of polynomials R[x] (or,
similarly, trigonometric polynomials), which is dense in C(K;R) for all
compact subsets K ⊂ R.

• Clearly, the same holds for the algebra R[x1, . . . , xn] of polynomials in n
variables, on each compact set K ⊂ Rn.

• However, if we replace R by C, the conditions (a) and (b) are not anymore
sufficient. To see this, consider the closed unit disc D := {z : |z| ≤ 1}
and the algebra of polynomials C[z] with complex coefficients. For each

P ∈ C[z] we have
∮
|z|=1

P (z)dz = i
∫ 2π

0
P (eiθ)eiθdθ = 0. If C[z] were dense

in C(D;C), then the same identity would hold for all continuous functions
f : D → C since f 7→

∮
|z|=1

f(z)dz is a continuous mapping C(D;C) → C.

However, this is not the case: e.g.,
∮
|z|=1

zdz = 2πi.

• A usual modification of the Stone–Weierstrass theorem for complex-values
functions is the following

Corollary 9.3. Let A be a subalgebra of C(K,C) such that, as in Theo-
rem 9.2, (a) A contains constants, (b) A distinguish points of K and
(c) A is closed under the conjugation: if f ∈ A, then f ∈ A.

Then, A is dense in C(K,C).

We will discuss an (almost trivial) proof of Corollary 9.3 after Theorem 9.2.

Proof of Theorem 9.2. We start with two preliminary steps:

• Lemma. There exists polynomials Pn ∈ R[x] such that Pn(x)→ |x| as
n→∞ uniformly for x ∈ [−1, 1].

Proof. For instance, let P0(x) := 0, Pn+1(x) := Pn(x) + 1
2 (x2 − (Pn(x))2).

By induction, Pn(x) ≤ Pn+1(x) ≤ |x| and hence Pn(x)→ |x| as n→∞ for
all x ∈ [−1, 1]. The convergence is uniform due to the Dini theorem. �

• Denote L := A, the completion of A in C(K,R). Then, L is a lattice, i.e.
f, g ∈ L implies that max{f, g} ∈ L and min{f, g} ∈ L.

Proof. Since max{f, g} = 1
2 (f+g+|f−g|), it is enough to prove that f ∈ A

implies that |f | ∈ A. Note that A is an algebra: if f, g ∈ A and fn, gn ∈ A
are such that fn → f , gn → g in C(K,R), then αfn + βgn → αf + βg ∈ A
and fngn → fg ∈ A. (Note that in the latter implication we use the fact
that continuous functions on K are bounded.) Now let f ∈ A and M ∈ R
be such that |f | ≤ M . For polynomials Pn provided by the above lemma,
we have A 3MPn(f)→ |f | in C(K,R). Therefore, |f | ∈ A. �

Theorem 9.2 now follows from
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Proposition 9.4. Let L ⊂ C(K,R) be a lattice such that for each x, y ∈ K, x 6= y,
and each a, b ∈ R and ε > 0 there exists a function f ∈ L such that |f(x)− a| < ε
and |f(y)− b| < ε. Then, L is dense in C(K,R).

Indeed, if a = b, then one can take f(x) := a using assumption (a) and, if a 6= b,
then one can find a function f that distinguishes points x and y (see (b)) and
consider the function b · (f(·)−f(x))/(f(y)−f(x)) +a · (f(y)−f(·))/(f(y)−f(x)).
In both cases, we find a function f ∈ A such that f(x) = a and f(y) = b.

Thus, the proof of Theorem 9.2 is complete modulo key Proposition 9.4, which
is sometimes viewed as another version of the Stone–Weierstrass theorem. �

We begin the next lecture with the proof of Proposition 9.4.
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Recall that in the previous lecture we deduced the Stone–Weierstrass theorem
from the following proposition, we now give its proof.

Proposition 9.4. Let L ⊂ C(K,R) be a lattice such that for each x, y ∈ K, x 6= y,
and each a, b ∈ R and ε > 0 there exists a function f ∈ L such that |f(x)− a| < ε
and |f(y)− b| < ε. Then, L is dense in C(K,R).

Proof. Let f ∈ C(K,R) be a continuous function on K that we want to approximate
(in C(K,R), i.e., uniformly on K) by a function from fL ∈ L with a precision ε > 0.

Given x, y ∈ K, let us find a function f
(y)
x ∈ L such that

|f (y)
x (x)− f(x)| < ε and |f (y)

x (y)− f(y)| < ε.

(Note that such a function exists due to the assumption if x 6= y but also if x = y:
take an arbitrary other point as the second point in the assumption.) Let, for a
while, y ∈ K be fixed and consider the open (in K) sets

x ∈ U (y)
x := {x′ ∈ K : f (y)

x (x′)− f(x′) < ε}.

Since K is compact, it is covered by finitely many sets U
(y)
xk , k = 1, . . . ,m = m(y).

Let

f (y) := min{f (y)
x1
, . . . , f (y)

xm} ∈ L.
By construction,

f (y)(y)− f(y) > −ε and f (y)(x)− f(x) < ε for all x ∈ K.

We now use the same trick as above: for each y ∈ K, consider an open neighborhood

y ∈ V (y) := {y′ ∈ K : f (y)(y′)− f(y′) > −ε}.

Since K is compact, it is covered by finitely many sets V (yk), k = 1, . . . ,m. Denote

fL := max{f (y1), . . . , f (ym)} ∈ L.

By construction, we have −ε < fL(x)− f(x) < ε for all x ∈ K. �

Let us also prove of a version of the Stone–Weierstrass theorem for C(K,C); re-
call that in this case we additionally assume that A is closed under the conjugation.
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Proof of Corollary 9.3. Note that Im f = Re(−if) and let

AR := {Re f, f ∈ A} ⊂ C(K,R) = {Im f, f ∈ A}.

It easily follows from assumption (c) that AR = A∩C(K,R): indeed, if f ∈ A, then
Re f = 1

2 (f + f) ∈ A. Therefore, AR is an algebra and thus, given f ∈ C(K,C),
one can apply Theorem 9.2 to construct approximations fRe, fIm ∈ AR of Re f, Im f
in C(K,R). Then, the function fRe + ifIm ∈ A approximates f in C(K,C). �

10. Bounded linear operators in Banach spaces

Definition 10.1. A vector space E over R or C is called

◦ a Banach space if it is a complete normed space.

Two related definitions are:

◦ E is called a Fréchet space if there is a countable family of (semi-)norms
‖ · ‖k : E → R+ such that E is complete wrt to the metric constructed out
of these norms: if a sequence (xn)n∈N is Cauchy wrt to each of ‖ · ‖k, then
there exists x ∈ E such that ‖xn − x‖k → 0 as n→∞ for each k. Clearly,
Fréchet spaces are more general than Banach ones.

◦ A very particular case of Banach spaces is Hilbert spaces: E is called
Hilbert if it carries a structure of a scalar product (i.e., a function 〈·, ·〉 on
E×E, which is linear with respect to one of the arguments, anti-linear with
respect to the other, and satisfies 〈y, x〉 = 〈y, x〉) such that 〈x, x〉 = ‖x‖2.

(Rhetoric question.) Why at all should one wonder about linear operators between
Banach spaces? This is because we often want to study ‘nice’ functions f : E → F
and to say that this function is differentiable at a point x ∈ E is to say that there
exists a linear mapping A : E → F such that f can be approximated by this linear
mapping near x (i.e., ‖f(x′) − f(x) − A(x′ − x)‖F = o(‖x′ − x‖E) as x′ → x).
Comparing with the most trivial case E = F = R, the linear mapping A now plays
the role of λ = f ′(x) ∈ R, which can be understood as a mapping t 7→ λt, R→ R.

Definition 10.2. Let E,F be two Banach (or just normed) vector spaces.

◦ A mapping A : E → F is called a bounded linear operator if A is a linear
mapping (i.e., A(αx+βy) = αAx+βAy) and there exists M > 0 such that
‖Ax‖F ≤M‖x‖E for all x ∈ E.

◦ Let L(E,F ) be the vector-space of all bounded linear operators A : E → F .

◦ In fact, it is easy to see that L(E,F ) is a normed vector space if we set

‖A‖L(E,F ) := inf{M > 0 : we have ‖Ax‖F ≤M‖x‖E for all x ∈ E}
= supx∈E:‖x‖=1 ‖Ax‖F /‖x‖E .

(The last equality is a simple exercise.) Let us start with a list of simple comments:

• If A : E → F is a linear mapping, then

A ∈ L(E,F ) ⇔ A is a Lipschitz mapping ⇔ A is continuous

⇔ A is continuous at the point 0 ∈ E.

(Indeed, all ‘⇒’ are trivial and, if A is continuous at 0 ∈ E, then there exists
δ > 0 such that ‖x‖E < δ implies ‖Ax‖F < 1, so one can take M := δ−1.)
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• In particular, a natural generalization of the notion of bounded linear op-
erators from Banach to Fréchet spaces is continuous linear mappings.

• If F is a Banach space, then L(E,F ) is also a Banach space.

Proof. We need to check that L(E,F ) is complete. Let (An)n∈N be a
Cauchy sequence. Then, for each x ∈ E the sequence (Anx)n∈N is a Cauchy
sequence in F : indeed, ‖Anx − Amx‖F ≤ ‖An − Am‖L(E,F ) · ‖x‖. As we
assumed that F is complete, we can define Ax := limn→∞Anx. It is
straightforward to check that A is a linear operator, that it is bounded and
that ‖An −A‖L(E,F ) ≤ lim supm→∞ ‖An −Am‖L(E,F ) → 0 as n→∞. �

• In the finite-dimensional case, the space L(Rn,Rm) is just the space of
Rn×m matrices. In particular, in this case all linear operators are bounded.
However, note that the definition of the norm on Rn×m depends on the
choice of the norms in Rn and Rm.

• It is easy to see that all norms on Rn are equivalent: if ‖ · ‖′ is a certain
norm on Rn, ek are the standard basis vectors, and x =

∑n
k=1 xkek, then

‖x‖′ ≤M · ‖x‖1, where M := maxk=1,...,n ‖ek‖′ and ‖x‖1 =
∑n
k=1 |xk|.

From here, it follows that the mapping x 7→ ‖x‖′, (R, ‖ · ‖1) → R+), is
continuous and thus has a strictly positive minimum on the unit sphere,
which implies the inverse inequality ‖x‖′ ≥ m‖x‖1 for a certain m > 0.

• Thus, if E is finite-dimensional, then all norms on E are equivalent and one
easily sees that all linear operators A : E → F are bounded:

‖Ax‖F ≤ maxk=1,...,n ‖Aek‖ · ‖x‖1 ≤M · ‖x‖E ,

where M := maxk=1,...,n ‖Aek‖ · (min ‖x‖E/‖x‖1)−1.

• However, if E is infinite-dimensional, then there always exist linear map-
pings A : E → R which are not bounded. To see this

◦ choose linearly independent vectors (en)n∈N in E with ‖en‖ = 1;

◦ find an algebraic basis (fβ)β∈B in E that contains vectors f0 = e0,
f1 = e1 − 2e0, . . . , fn = en − 2en−1, . . . (recall that the fact that
(fβ)β∈B is an algebraic basis means that each element of E equals to a
finite linear combination of fβ ’s; one needs the axiom of choice here);

◦ Define the mapping A : x→ λ0(x), where λ0(x) denotes the coefficient
in front of f0 = e0 in the representation of x in the basis (fβ)β∈B .
Then, Aen = A(fn + 2fn−1 + . . .+ 2nf0) = 2n, so A is not bounded.

Definition 10.3. Let E be a Banach space. The space L(E,R) (or L(E,C) for
Banach spaces over C) is called the (continuous) dual to E and is denoted by E′

(or E∗ in certain places other than France).

Let us discuss several concrete examples:

(1) Let E = `p with 1 ≤ p < +∞. Then, E′ ∼= `q, where 1
p

+ 1
q

= 1

and the isomorphism works as follows:

y = (yn)n∈N ∈ `q 7→ (Y : x ∈ `p 7→ Y (x) :=
∑
n∈N xnyn).
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Proof. Due to the Hölder inequality, this mapping defines an inclusion of
`q into (`p)′; moreover, we have ‖Y ‖(`p)′ ≤ ‖y‖`q . Thus, we need to prove
two things: the first is that actually ‖Y ‖ = ‖y‖ and the second is that the
dual space (`p)′ does not any contain other elements.

Assume that p 6= 1. Given y ∈ `q, define xn := |yn|q−1 · sign(yn). Since
p(q − 1) = q, we have x ∈ `p and

‖x‖p = (
∑
n∈N |yn|q)1/p = ‖y‖q−1

q and Y (x) =
∑
n∈N xnyn = ‖y‖qq.

This implies that, for y ∈ `q, we have ‖Y ‖L(`p,R) ≥ ‖y‖`q (and hence ‘=’).
Now let Y ∈ (`p)′ be an arbitrary element of the dual space and define

yn := Y (en), where en stands for the n-th standard basis vector in `p.

Assume that y 6∈ `q and, as above, denote x
(N)
n := |y(N)

n |q−1 · sign(yn),
where y(N) = (y0, . . . , yN , 0, 0, . . .). Then,

Y (x(N))/‖x(N)‖p = ‖y(N)‖q → ∞ as N →∞
provided that y 6∈ `q, a contradiction.
Exercise: give a proof in the remaining (simpler) case p = 1. �

(2) However, (`∞)′ ))) `1. It is always true that one can identify E with a
subspace of the second dual (E′)′ by mapping E 3 x 7→ X ∈ (E′)′, where
X is defined as E′ 3 A 7→ X(A) := Ax. Since `∞ = (`1)′, this means that
(`∞)′ ⊃ `1. However, not all continuous functionals on `∞ can be obtained
in this way, we will return to this question during the next lecture.

(3) The same statements hold for Lp-spaces but we do not discuss it here.

(4) Riesz(–Markov–Kakutani)’s theorem:

Let E = C(K,R), where K is a metric compact. Then, E′ can be identified
with the space M(K) of all signed Borel measures on K: to a measure
µ ∈M(K), one associates a functional C(K,R) 3 f 7→

∫
K
fdµ.

This is a rather deep result which goes beyond the scope of these lectures.

Proposition 10.4. Let E be a Banach space and A : E → R be a linear mapping.
Then, A ∈ L(E,R) if and only if KerA is a closed subspace of E.

Proof. ‘⇒’: this is a triviality since KerA = A−1({0}) and A is continuous.

‘⇐’: denote F := KerA and let x0 6∈ F (if F = E, then there is nothing to prove).
Let x1 := x0/(Ax0); note that Ax1 = 1 and that d := dist(x1, F ) > 0, this is where
we use the fact that F is closed. Since x/(Ax)− x1 ∈ F for each x ∈ E such that
Ax 6= 0, we have ‖x/(Ax)‖ ≥ d and hence |Ax| ≤ d−1‖x‖ for all x ∈ E. �

As we have seen above, in infinite dimensional Banach spaces there are (plenty
of) unbounded linear functionals A : E → R and hence plenty of non-closed linear
subspaces. However, it is worth noting that to construct an example of a non-closed
subspaces one should not do anything exotic: for instance, let

F := {x = (xn)n∈Z :
∑
n∈Z n

2|xn|2 < +∞} ⊂ E = `2(Z).

Clearly, F cannot be closed as it contains finite sequences, which are dense in `2.

(Quasi-détour: Applying the Fourier transform (xn)n∈Z 7→
∑
n∈Z xne

iπnt – see
TD=DM Toussaint – this example can be reformulated as follows: the Sobolev
space H1 on the circle is not closed in L2.)
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Let us now discuss linear operators acting from a Banach space E to itself. Recall
that ‖A‖L(E,E1) = supx∈E:x 6=0 ‖Ax‖/‖x‖. It is easy to see that

A ∈ L(E,E1),
B ∈ L(E1, E2)

⇒ BA ∈ L(E,E2)
‖BA‖L(E,E2) ≤ ‖A‖L(E,E1) · ‖B‖L(E1,E2) ,

where we write BA instead of B ◦A (similarly to Ax instead of A(x)).

Definition 10.5. Given a Banach space E, denote L(E) := L(E,E).

Clearly, L(E,E) is a Banach algebra: if An → A and Bn → B in L(E), then
BnAn → BA in L(E) since ‖BnAn −BA‖ ≤ ‖B‖ · ‖An −A‖+ ‖An‖ · ‖Bn −B‖.

Definition 10.6. The spectral radius ρ(A) of a bounded linear operator A ∈ L(E)
is defined as

ρ(A) := lim
n→∞

‖An‖1/n ≤ ‖A‖. (10.1)

• The limit in (10.1) exists as ‖An+m‖ ≤ ‖An‖ · ‖Am‖. (This is a standard
lemma: if a sequence an ≥ 0 is sub-additive, i.e., an+m ≤ an + am, then
the sequence an/n has a limit; in our case one takes an := log ‖An‖.)
• The spectral radius of A ∈ L(E) does not change if the norm on E is

replaced by an equivalent norm. Indeed, the corresponding operator norms
on L(E) are also equivalent, hence (‖An‖′)1/n ≤ (C‖An‖)1/n ∼ ‖An‖1/n
and vice versa. In particular, in order to speak about the spectral radius of
N ×N matrices (which are elements of RN×N , there is no need to fix the
choice of a norm on RN (as all of them are equivalent).

• If E = RN (more accurately, if E is finite-dimensional and thus isometric
to RN with a certain norm), then linear operators A ∈ L(E) ∼= RN×N can
be understood via the Jordan normal form. It is easy to see that in this
case ρ(A) is the maximum of absolute values of the eigenvalues of A.

• However, in infinite-dimensional spaces there is no analogue of such a (Jor-
dan) decomposition; bounded linear operators can have very complicated
structure. To understand complications compared to the finite-dimensional
case, consider the (backward) shift operator S : `2 → `2 (which is even a
Hilbert(!) space) defined by (xn)n∈N 7→ (xn+1)n∈N. This operator looks
like a (transposed) ‘infinite Jordan cell’ corresponding to λ = 0. However,
it is easy to see that for each λ ∈ C such that |λ| < 1 there exists a vector
fλ = (λn)n∈N ∈ `2 such that Sfλ = λfλ.

Détour.8 It is easy to see that the ‘transposed’ operator (xn)n∈N 7→ (0, x0, x1, . . .)
does not have any eigenvalue except λ = 0. In particular, this observation means
that (even in Hilbert spaces, not speaking about Banach ones) the notion of the
spectrum of an operator A ∈ L(E) should be defined not as the set of eigenvalues
but in a certain other way. The ‘proper’ definition is the following:

spec(A) := {λ ∈ C : the operator A− λI is not invertible in L(E)}.
In fact, ρ(A) = sup{|λ| : λ ∈ spec(A)}; note that the inequality ‘≥’ follows from
the next proposition while the inverse one is less trivial.

8This was skipped during the lecture



48 DMITRY CHELKAK, DMA ENS 2020

Denote by I the identity operator in L(E).

Proposition 10.7. Let E be a Banach space and A ∈ L(E).

(i) If ρ(A) < 1, then the operator I − A is invertible in L(E). Moreover, the
following identity holds (where the series converges in L(E)):

(I−A)−1 = I +A+A2 + . . . .

(ii) If A is invertible in L(E) and ‖B‖ ≤ ‖A−1‖−1, then the operator A−B is
also invertible in L(E) and

(A−B)−1 = (I−A−1B)−1A−1 = I +A−1BA−1 +A−1BA−1BA−1 + . . .

(iii) The set of invertible operators is an open set in L(E).

Proof. (i) The series I + A + A2 + . . . is Cauchy in E and hence converges since,
for each ε > 0, we have ‖An‖ ≤ (ρ(A) + ε)n for large enough n. The identity
(I−A)(I +A+A2 + . . .) = I is a triviality.

(ii) We have ρ(A−1B) ≤ ‖A−1B‖ ≤ ‖A−1‖ · ‖B‖ < 1; the claim follows from (i).

(iii) This is straightforward from (ii): if A is invertible in L(E), then so are all
operators in the open ball BL(E)(A, ‖A−1‖−1). �

11. Hahn–Banach theorem

Theorem 11.1 (Hahn–Banach). Let E be a subspace of a normed (R or C)-vector
space E1. Assume that a linear functional A ∈ E′ = L(E,R or C) defined on E
is such that ‖A‖E = 1. Then, there exists a linear functional A1 ∈ E′1 such that
A1|E = A and ‖A1‖ = ‖A‖ = 1.

(Note that, if A1

∣∣
E

= A, then one always has ‖A1‖ ≥ ‖A‖ = 1. The Hahn–Banach
theorem claims that one can construct an extension of A on a bigger space E1 such
that the norm of A does not increase.)

Proof. The R and C case are not fully similar. We start with considering

Banach spaces over R. The proof relies upon the axiom of choice, which we will
in its equivalent form provided by

Zorn’s lemma: if F is a partially ordered set such that each totally
ordered subset of F has a majorant, then there exists at least one
maximal (i.e., not majorated by any other element) element in F .

Let

F := {(F,AF ) : E ⊂ F ⊂ E1, AF |E = A, ‖AF ‖F ′ = 1},
where F is a linear subspace of E1 and AF a bounded linear functional on F ; and

(F1, AF1) ≺ (F2, AF2) if F1 ⊂ F2 and AF2 |F1 = AF1 .

It is easy to see that each totally ordered set {(Fβ , AFβ}β∈B admits a majorant
(F,AF ) ∈ F , where F :=

⋃
β∈B Fβ and AF |Fβ := AFβ (the latter definition is

consistent provided that the set under consideration is totally ordered). Therefore,
there are maximal elements in F and our goal is to prove that,

if (F,AF ) is a maximal element in F , then F = E1.

Assume that F ( E1 and find x1 ∈ E1 r F . To get a contradiction, it remains
to prove that we can extend the operator AF from F further to the subspace
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F1 := {x + λx1, x ∈ F, λ ∈ R}. In order words, the preceding discussion reduces
the Hahn–Banach theorem to its particular case when

E1 = {x+ λx1, x ∈ E, λ ∈ R}, x1 6∈ E, ‖x1‖ = 1.

(the last assertion can be added for free by scaling the vector x1).
To prove that such a ‘one-dimensional’ extension is possible, we need to assign

a value Ax1 := a1 ∈ R such that |Ax+ λa1| ≤ ‖x+ λx1‖ for all x ∈ E and λ ∈ R.
By scaling (and since this holds for λ = 0 by the assumption ‖A‖E′ = 1), it is
equivalent to say that |Ax+ a1| ≤ ‖x+ x1‖ for all x ∈ E or, equivalently to

−a1 ∈
⋂
x∈E [Ax− ‖x+x1‖ , Ax+ ‖x+x1‖ ] .

The intersection of close segments in the right-hand side is non-empty if and only
if there segments intersect pairwise. (Indeed, we only need to prove that the supre-
mum of the left-ends of these segments is less or equal than the infimum of their
right-ends, which follows from the fact that each of these left-ends is less or equal
to each of the right-ends.) Therefore, it is enough to prove that

Ax− ‖x+ x1‖ ≤ Ay + ‖y + x1‖ for all x, y ∈ E,
which follows from the triangle inequality: A(x−y) ≤ ‖x−y‖ ≤ ‖y+x1‖−‖x+x1‖.
The proof of the Hahn–Banach theorem for Banach spaces over R is complete.

Banach spaces over C. The ‘standard’ proof uses a reduction to the R case,
which has already been treated above. To this end, for a while consider both E
and E1 as real -linear spaces and denote

Rx := Re(Ax) for x ∈ E.
Clearly, R is a real -linear functional on E and ‖R‖ ≤ ‖A‖ ≤ 1. Let R1 : E1 → R
be a real -linear functional on E1 such that R1|E = R and ‖R1‖ = ‖R‖ ≤ 1. Denote

A1x := R1(x)− iR1(ix), x ∈ E1.

Then,

◦ For x ∈ E we have A1x = Re(Ax)− iRe(A(ix)) = Ax (where we used the
fact that A is complex-linear on E).

◦ A1 is actually a complex -linear functional on E1:

A1(ix) = R1(ix)− iR1(−x) = i(R1(x)− iR1(ix)) = iA1(x).

◦ In fact, ‖A1‖ ≤ ‖R1‖ ≤ 1: indeed, for each x ∈ E1 there exists θ ∈ R such
that A1x ∈ e−iθR+. Therefore,

|A1x| = A1(eiθx) = R1(eiθx) ≤ ‖eiθx‖ = ‖x‖.
The proof is complete. �

Quasi-détour: another (‘geometric’) proof for Banach spaces over C.
In fact, using the same strategy as in the real case, one can reduce the general
statement to constructing a ‘one-complex-dimensional’ extension of a functional A :
E → C, which is possible if and only if⋂

x∈E BC(Ax, ‖x+ x1‖) 6= ∅.
Recall that in the ‘real’ case, a similar intersection is non-empty if and only if the
corresponding segments intersect pairwise. There exists a (much deeper) analogue
of this statement for C ∼= R2 (and, more generally, Rd), known under the name
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• Helly’s theorem: Let {Kα}α∈A be a family of convex compacts in Rd.
Assume that each d+ 1 compacts taken from this family have a non-empty
intersection. Then,

⋂
α∈AKα 6= ∅.

Applying this theorem to the family of closed discs {BC(Ax, ‖x+x1‖)}x∈E , we see
that it is enough to prove that, for all x, y, z ∈ E,

BC(Ax, ‖x+ x1‖) ∩BC(Ay, ‖y + x1‖) ∩BC(Az, ‖z + x1‖) 6= ∅.
This can be done via the following

• Lemma: Let a1, a2, a3 ∈ C and r1, r2, r3 ∈ R+. Then, the intersection of
three discs BC(a1, r1)∩BC(a2, r2)∩BC(a3, r3) is non-empty if and only if the
following condition holds: for all λ1, λ2, λ3 ∈ C such that λ1 + λ2 + λ3 = 0
one has |λ1a1 + λ2a2 + λ3a3| ≤ |λ1|r1 + |λ2|r2 + |λ3|r3.

Finally, to see that the required condition holds, it remains to note that

|λ1Ax+ λ2Ay + λ3Az| ≤ ‖λ1x+ λ2y + λ3z‖
= ‖λ1(x+ x1) + λ2(y + x1) + λ3(z + x1)‖
≤ |λ1| · ‖x+ x1‖+ |λ2| · ‖y + x1‖+ |λ3| · ‖z + x1‖. �

Let us now discuss two corollaries of the Hahn–Banach theorem.

(1) Recall that we have an embedding of a Banach space into its second dual:

ι : E ↪→ (E′)′, x 7→ X : (E′ 3 A 7→ Ax ∈ R or C).

Clearly, ‖X‖ = supA∈E′ ‖X(A)‖/‖A‖ = supA∈E′ ‖Ax‖/‖A‖ ≤ ‖x‖. The
Hahn–Banach theorem implies that ι is an isometry: ‖X‖ = ‖x‖.
Indeed, consider a linear functional λx 7→ λ‖x‖ defined on the one-dimensional
subspace {λx, λ ∈ R or C} of E and denote by Ax its lift onto E such that
‖Ax‖ = 1. Then, ‖X‖ ≥ ‖X(Ax)‖/‖Ax‖ = ‖Axx‖ = ‖x‖.

(2) Consider the following subspace of `∞:

C := {x = (xn)n∈N : there exists a limit x∗ = limn→∞ xn} ⊂ `∞.
The linear functional x 7→ x∗ is bounded (and has norm 1) on C. There-
fore, applying the Hahn–Banach theorem, one can lift this functional to a
functional L : `∞ → R (or C) such that Lx ≤ ‖x‖∞ = supn∈N |xn| and
that Lx = limn→∞ xn provided that the sequence (xn)n∈N converges. In
other words, we obtain a construction of a ‘limit’ of all bounded sequences
that respects the linear structure (i.e., L(αx + βy) = αL(x) + βL(y)) and
coincides the usual limit on convergent sequences.

In particular, this proves that ((`1)′)′ = (`∞)′ ) `1.
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We start with a couple of further remarks on a linear functional L ∈ (`∞)′ such
that Lx = limn→∞ xn for convergent sequences x ∈ C ⊂ `∞ (and ‖L‖(`∞)′ = 1).

• The subspace C ⊂ `1 of convergent sequences can be equivalently viewed as
the space of continuous functions on the set N = N∪ {∞}, the Alexandrov
compactification of N. Note that the topology on N is metrizable, so – by
general theory (Riesz’s theorem) – all linear functionals on C can be viewed
as signed measures on N. Clearly, the functional L corresponds to the Dirac
measure at the point ∞ ∈ N (and `1 ⊂ C ′ – to measures on N).
• Functionals L obtained as above respect the additive structure but – in

general – we do not have L(xy) = (Lx)(Ly) or L(f(x)) = f(L(x)) for
continuous functions f (where (xy)n := xnyn and (f(x))n := f(xn)). It is
worth noting that one can construct such functionals (certainly, taking for
granted the axiom of choice), they are known under the name ultra-filters.

[!] See the partiel problems for related concepts/questions. [!]

12. Open mapping (Banach–Schauder) theorem

Let us now discuss one more important theorem on linear operators in Banach
spaces, the so-called open mapping theorem.

Theorem 12.1 (Banach–Schauder). Let both E and E1 be Banach spaces and
a bounded linear operator A ∈ L(E,E1) be surjective. Then, A is an open mapping
(i.e., A(U) ⊂ E1 is open for each open set U ∈ E).

Proof. It is enough (due to linearity) to prove that BE1(0, r) ⊂ A(BE(0, 1)) for a

certain r > 0. Denote F := A(BE(0, 1)), the closure of the latter set in E1. Since
A is surjective, we have E1 =

⋃
n∈N(nF ). Baire’s theorem implies that at least one

of the closed sets nF has a non-empty interior. By linearity, this means IntF 6= ∅.
It is now easy to see that there exists r > 0 such that BE1

(0, r) ⊂ F . Indeed,
if BE1

(y, r) ⊂ F , then BE1
(−y, r) ⊂ F and hence BE1

(0, r) ⊂ F by linearity.
However, this is not enough: we now need to replace F back by BE(0, 1). To this
end, apply the following iterative construction:

• Let ‖y‖ < r and q < 1 be such that ‖y‖ ≤ (1−q)2r; denote y0 := y/(1−q)2.

Since y0 ∈ BE1(0, r) ⊂ F , it can be approximated by points Ax0, x0 ∈ BE(0, 1),
with an arbitrary precision. In particular, we can find x0 ∈ E such that

• ‖x0‖ < 1 and ‖y0 −Ax0‖ < qr; denote y1 := q−1(y0 −Ax0).

Since y1 ∈ BE1
(0, r) ⊂ F , it can be approximated by points Ax1, x1 ∈ BE(0, 1),

with an arbitrary precision. Repeating this procedure, we can inductively construct
a sequence of points yn ∈ E1, xn ∈ E such that

• ‖xn‖ < 1, ‖yn −Axn‖ < qr, and yn+1 = q−1(yn −Axn).

By construction, we have

y0 = Ax0 + qy1 = Ax0 + qAx1 + q2y2 = . . . = A(x0 + qx1 + . . .+ qnxn) + qn+1yn.

Denote x∗ :=
∑
n∈N q

nxn (this is where we use that E is a Banach space) and note
that ‖yn‖ ≤ qr + ‖A‖. Therefore, passing to the limit n → ∞ we arrive at the
equality y0 = Ax∗ and hence y = Ax, where x := (1 − q)2x∗. Finally, note that
‖x‖ = (1− q)2‖x∗‖ ≤ (1− q)2 · (1− q)−1 < 1. The proof is complete. �
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The open mapping theorem has a number of corollaries:

(1) Let A ∈ L(E,E1) be a bijection of Banach spaces. Then, A−1 ∈ L(E1, E).

Proof. This trivially follows from Theorem 12.1.

(2) Let two norms ‖·‖, ‖·‖1 be defined on the same vector space E so that it is
complete with respect to each of them. If ‖x‖1≤C‖x‖ for some C>0 and
all x ∈ E, then there exists C1 > 0 such that ‖x‖ ≤ C1‖x‖1 for all x ∈ E.

Proof. Consider E = (E, ‖ · ‖) and E1 = (E, ‖ · ‖1). �

(3) Let E,E1 be Banach spaces and A : E → E1 be a linear mapping. Then,
A ∈ L(E,E1) if and only if its graph GA := {(x,Ax), x ∈ E} is a closed
linear subspace of the Banach space E × E1.

Proof. If A is continuous, then GA is closed in E ×E1. Vice versa, assume
that GA is closed and define ‖x‖A := ‖x‖+‖Ax‖ for x ∈ E. As ‖x‖A ≥ ‖x‖,
in order to prove that ‖x‖A ≤ CA‖x‖ for some CA > 0, it remains to prove
that E is a complete with respect to ‖ · ‖A. Let a sequence (xn)n∈N be
Cauchy with respect to ‖·‖A. Then, both sequences (xn)n∈N and (Axn)n∈N
are Cauchy (in E and E1, resp.) and hence converge: xn → x ∈ E,
Axn → y ∈ E1. Since GA is closed, we have y = Ax, so ‖xn−x‖A → 0. �

12.1. Détour. Self-adjoint operators in Hilbert spaces. Though this mate-
rial goes far beyond the scope of our course, we include a very brief discussion of
this topic, mostly because of its relevance for the mathematical formalism of the
quantum mechanics.

In what follows, H is assumed to be a separable complex Hilbert space. In fact,
all such infinite-dimensional spaces are unitary equivalent to each other: e.g., by
choosing an orthonormal basis in H one can isometrically map it onto `2. However,
it is useful not to reduce the discussion to a concrete space (like `2) since the
definition of operators usually comes from a certain physical context.

• A ∈ L(H) is called a bounded self-adjoint operator in H iff it is symmetric:

〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ H.

(A finite-dimensional analogue of this notion is Hermitian matrices in CN .)

The simplest possible example of a bounded self-adjoint operator is the following:

• Let µ be a (σ-finite) Borel measure on R with a bounded support. Consider
the space H = Hµ := L2(R, µ) = {f : R → C s.t.

∫
R |f(λ)2|µ(dλ) < +∞}

and an operator Λµ : f 7→ λf . This operator is defined on the whole space
L2(R, µ) (this is where we use the fact that µ is supported on a bounded
set), is bounded and symmetric:

〈Λµf, g〉 =
∫
R λf(λ)g(λ)µ(dλ) = 〈f,Λµg〉.

(Note that the space L2(R, µ) is finite-dimensional if and only if µ is sup-
ported on a finite set, i.e., iff µ is a finite sum of Dirac measures. This is
an example of Hermitian matrices with pairwise distinct eigenvalues.)

Clearly, one can also consider (finite or countable) products H :=
∏
Hµk of such

L2(R, µk) spaces and define the linear operator Λ acting on functions f = (fk) ∈ H
by (Λf)k := λfk. Then, Λ ∈ L(H) provided that the supports of measures µk are
uniformly (in k) bounded. (Note that in the finite-dimensional case this allows to
include multiple eigenvalues into the consideration.)



TOPOLOGIE ET CALCUL DIFFÉRENTIEL. I. TOPOLOGIE 53

The following – remarkable and important result – says that this construction
in fact represents all bounded self-adjoint operators.

• Spectral theorem: Let A ∈ L(H) be a bounded self-adjoint operator
in a separable Hilbert space H. Then, there exists a (at most countable)
collection of Borel measures µk on R, with uniformly bounded supports,
such that A is unitary equivalent to the operator Λ discussed above (i.e.,
A = U−1ΛU , where U : H →

∏
Hµk is an isomorphism of Hilbert spaces).

However, to consider bounded self-adjoint is not enough, e.g., for the mathematical
formulation of the quantum mechanics (but also for many other applications). As
a motivation for a general notion of self-adjoint operators, let us formulate

• Stone’s theorem Let U : R → L(H) be a (weakly-)continuous one-
dimensional group (i.e., U(t + s) = U(t)U(s) and U(0) = I) of unitary
(〈U(t)x, U(t)y〉 = 〈x, y〉) operators in a separable Hilbert space. Then,
there exists a (not necessarily bounded!) self-adjoint operator A in H such
that U(t) = eitA for all t ∈ R.

We now give an intrinsic definition of (possibly unbounded) self-adjoint operators:

• A linear operator A : D(A) → H defined on a dense subspace D(A) ⊂ H
is called self-adjoint if
◦ A is symmetric on D(A), i.e., 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ D(A);
◦ the graph GA = {(x,Ax), x ∈ D(A)} is a closed subspace of H ×H;
◦ both operators A ± iI : D(A) → H are surjective (a posteriori, this

also implies that there exist bounded inverses (A± iI)−1∈ L(H)).

The spectral theorem generalizes in the most natural way:

• Spectral theorem (general case): Each self-adjoint operator A in a
separable Hilbert space is unitary equivalent to an operator Λ = (Λµk)
discussed above where one drops the assumption that the measures µk
have bounded support and set

D(A) :=

{
f = (fk) ∈

∏
Hµk :

∑
k

∫
R(1 + |λ|2)|fk(λ)|2 < +∞

}
.

In particular, the spectral theorem allows to define unitary operators eitA ∈ L(H):
their images under the equivalence of H and

∏
Hµk act as f = (fk) 7→ (eitλfk).

(Note that a priori it is not clear even that there exists x ∈ D(A) such that
Ax ∈ D(A), not speaking about the convergence of the series

∑
n∈N

1
n! (itA)n;

however a posteriori it turns out that this can be done on a dense subset of H, which
corresponds to functions fk ∈ L2(R, dµk) having bounded support.) Similarly, one
can use the spectral theorem to define operators g(A) for other functions g : R→ C.

• Let us emphasize that, contrary to the finite-dimensional case, the spectral
measure(s) µk are not necessarily discrete. Properties of the spectral mea-
sure(s) of a Hamiltonian (viewed as self-adjoint operators in a Hilbert space)
of a given physical system are very important in the quantum mechanics.

Obviously, all that is a subject of another course.

13. Additional material: partiél homework

Because of the lockdown, this year the partiél is not an intermediate test but a
week-long homework (dead-line: November 22). It will be corrected but not graded.
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13.1. Weak topology on `1.

0. Recaps: (`1)′ ∼= `∞. For v ∈ `∞, denote by φ(v) the linear functional acting
on u ∈ `1 as φ(v)u :=

∑
n∈N vkuk.

(i) Prove that φ(v) ∈ (`1)′ for all v ∈ `∞ and that ‖φ(v)‖(`1)′ = ‖v‖`∞ .

(ii) Prove that φ : `∞ → (`1)′ is a bijection and hence an isometry.

1. Weak topology on `1: definition, weak closure of the unit sphere. Let
F ⊂ (`1)′ be a finite set. For u ∈ `1 and r > 0, denote

BF (u, r) := {u′ ∈ `1 : |f(u′ − u)| < r for all f ∈ F}.

(i) Check that the collection of sets {BF (u, r) : u ∈ `1, r > 0, F - finite subset of (`1)′}
can serve as a base of a topology. This topology is called the weak topology on `1.

(ii) Prove that this topology is indeed weaker=coarser that the standard (also
called strong) topology in the space `1, which is defined by the norm ‖ · ‖1.

Let S := {u ∈ `1 : ‖u‖1 = 1} be the unit sphere in `1 and denote by Sw its closure
in the weak topology. We want to show that

Sw = B := B`1(0, 1) = {u ∈ `1 : ‖u‖`1 ≤ 1}.

(Note that, trivially, S is a closed set in the strong topology, i.e., S = S.)

(iii) Let u ∈ B. Prove that each open – in the weak(!) topology – neighborhood of
u contains an affine line passing through u (i.e., for each u ∈ U - open in the weak
topology, there exists v ∈ `1 such that u+ vR ⊂ U). Conclude that B ⊂ Sw.

(iv) Let u ∈ `1 be such that ‖u‖1 > 1. Prove that there exists v ∈ `∞ such that
‖v‖∞ = 1 and φ(v)u > 1. Conclude that Sw ⊂ B.

2. Convergent sequences: Schur’s property of `1. Let u(n), u ∈ `1. We write
u(n) ⇀ u as n → ∞ if the sequence u(n) converges to u in the weak topology, and
keep the notation u(n) → u for the usual convergence ‖u(n) − u‖1 → 0. Clearly,
u(n) → u implies that u(n) ⇀ u. We now prove that these notions are equivalent.
(By linearity, we can assume that u = 0 without loss of generality.)

(i) Prove that u(n) ⇀ u as n→∞ if and only if f(u(n))→ f(u) for all f ∈ (`1)′.

(ii) Recall that (`1)′ ∼= `∞ and define d(v, w) :=
∑
k∈N 2−k|vk − wk| for v, w ∈ `∞.

Prove that the set B∗ := {v ∈ `∞ : ‖v‖∞≤ 1} is compact in the metric space (`∞, d).

(iii) Let v(m)∈ B∗, m→∞. Prove that the following statements are equivalent:

(a) d(0, v(m))→ 0; (b) v
(m)
k → 0 for all k ∈ N; (c) φ(v(m))u→ 0 for all u ∈ `1.

(iv) Let `1 3 u(n) ⇀ 0 be a weakly convergent sequence. Given ε > 0, denote

FN := {v ∈ B∗ : |φ(v)u(n)| ≤ ε for all n ≥ N}.

Check that FN is a closed subset of the complete metric space (B∗, d). Prove that
there exists N ∈ N and ρ > 0 such that FN ⊃ {v ∈ B∗ : d(0, v) < ρ}.
(v) Conclude that the weak convergence u(n) ⇀ 0 implies that ‖u(n)‖1 → 0.

Remark. Note that though – in the space `1 – the notions of convergent sequences
u(n) ⇀ u and u(n) → u are equivalent, the two topologies are very different: e.g.,
as discussed above Sw = B ) S = S. In particular, the weak topology on `1 is not
metrizable and, moreover, not first-countable: otherwise, we would have Sw = S.
One can also prove this directly relying upon the fact that `∞ is not separable.
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13.2. Stone–Čech compactification. Let X be a Tychonoff space, this means
that X satisfies the separation axioms (T1) and

(T3 1
2
) :

for each x ∈ X and a closed set F ⊂ X s.t. x 6∈ F
there exists a continuous function f : X → [0, 1]
such that x ∈ f−1({0}) and F ⊂ f−1({1}).

0. Recaps, basics.

(i) Quote (T1), (T2), (T4), and Urysohn’s lemma; argue that normal Hausdorff
spaces (i.e., topological spaces satisfying (T1) and (T4)) are Tychonoff spaces.

(ii) Prove that compact Hausdorff spaces (=‘compacts en français’ = compact topo-
logical spaces satisfying (T2)) are normal Hausdorff (i.e., satisfy (T4)).

Definition. A Stone–Čech compactification of a topological space X is a compact
Hausdorff space βX and a continous mapping ι = ιX : X → βX such that the
following universal property holds:

for each continuous mapping f : X → K of the space X to a com-
pact Hausdorff space K there exists a unique continuous mapping
βf : βX → K such that βf ◦ ιX = f .

(iii) Prove that the space βX, if exists, is unique up to a homeomorphism.

(iv) Provided X is a Tychonoff space, prove that ι : X → ι(X) has to be a bijection
and, moreover, a homeomorphism (the topology on ι(X) is induced from βX).
[ Hint: For the latter, prove that ι(F ) is closed in ι(X) if F is closed in X.]

Informally speaking, we aim to homeomorphically embed a Tychonoff space X
into a (huge) compact Hausdorff space such that all continuous functions f : X → K
admit(!) a unique(!) continuation onto this bigger space.

Our first goal is to prove that, for Tychonoff spaces X, the Stone–Çech continua-
tion βX exists by giving an explicit construction based upon Tychonoff’s theorem.

1. Construction. Denote CX := C(X; [0, 1]), the space of all continuous functions
from X to [0, 1], and consider a Tychonoff cube

K(CX) := [0, 1]CX =
∏
g∈CX [0, 1] = {Φ : CX 3 g 7→ Φ(g) ∈ [0, 1] }

(where one does not assume any property of Φ), equipped with the usual product
topology. Recall that K(CX) is a compact space due to the Tychonoff theorem.

Now consider the mapping I : X → K(CX), x 7→ I(x), where the evaluation
functional I(x) ∈ K(CX) is defined as follows: [I(x)](g) := g(x).

(i) Prove that I : X → I(X) is a bijection. Recall the definition of the topology
on I(X) ⊂ K(CX) and prove that I is continuous.

(ii) Using the fact that X is a Tychonoff space, prove that I : X → I(X) ⊂ K(CX)
is a homeomorphism.

Let us define βX := I(X)K(CX), the closure of I(X) in the topology of K(CX).

(iii) Argue that thus defined βX is a compact Hausdorff space.
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2. Universal property. Assume now that f : X → K is a continuous function,
where K is a compact Hausdorff space. We aim to prove that there exists a unique
continuous function βf : βX → K s.t. f = βf ◦ I, where βX is constructed above.

(i) Argue that such a function βf : βX → K, if exists, is unique.

(ii) Consider first the case K = [0, 1]. Given a continuous function f : X → [0, 1],
prove that the function βf : K(CX)→ [0, 1], Φ 7→ Φ(f), is continuous and that its
restriction onto βX ⊂ K(CX) satisfies the required property f = βf ◦ I.

(iii) Now consider the case when K = K(A) = [0, 1]A is also a Tychonoff cube
(we do not make any assumption on A here). Again, prove that each continuous
function f : X → K(A), x 7→ f(x) : A → [0, 1], admits a continuous(!) extension
βf : K(CX)→ K(A) defined as follows: [(βf)(Φ)](α) = Φ(f(·)(α)).

(iv) Finally, argue that each compact Hausdorff space K can be homeomorphically
embedded into a Tychonoff cube K(A) with A = CK and conclude the proof.

3∗. Bonus: ultrafilters on N. It is easy to see that βX ∼= X if X is a finite set.
Let us consider the simplest nontrivial example: X = N (equipped with the discrete
topology). Recall that U ⊂ 2N r {∅} is called a (proper) ultra-filter if

◦ for each Y ⊂ N either Y ∈ U or Nr Y ∈ U (but not both);
◦ if Y ∈ U , then Y ′ ∈ U for all larger sets Y ⊂ Y ′ ⊂ N;
◦ if Y1, Y2 ∈ U , then Y1 ∩ Y2 ∈ U .

Prove that the Stone–Čech compactification βN of N is homeomorphic to the set
of all proper ultra-filters on N equipped with the Stone topology, i.e., the topology
generated by the base sets WY := {U : Y ∈ U}, where Y runs over all subsets of N.

The inclusion ι : N ↪→ βN is defined as n 7→ Un := {Y ⊂ N : n ∈ Y }.
(i) Check that the Stone topology is correctly defined (i.e., that one can use the
family {WY }Y⊂N as a base set to define a topology) and that it is Hausdorff.

(ii) Prove that thus defined topological space is compact. [ Hint: This is equivalent
to the following statement: given a family of sets Yα such that no finite sub-family
covers N, one can define an ultrafilter on N that does not contain any of Yα. ]

(iii) Ultra-limits:

let U ⊂ 2Nr{∅} be a proper ultra-filter and (xn)n∈N be a sequence
of elements of K. We say that U-limxn = x if for each open
neighborhood Vx ⊂ K, the following holds: {n ∈ N : xn ∈ Vx} ∈ U .

Prove that U-limxn is unique provided that the topological space K is Hausdorff
and that U-limxn exists (for all sequences xn) provided that K is compact.

(iv) Let K be a compact Hausdorff space, f : N→ K, and U be a proper ultrafilter
on N. Define (βf)(U) := U-lim f(n) and prove that βf : βN → K is a continuous
extension of f from N to the topological space βN of all proper ultra-filters on N.


