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1. Differentiable functions in Banach spaces: basics

Recall that a function f : R ⊃ U → R is called differentiable at a point a ∈ U if
there exists f ′(a) ∈ R such that f(x) = f(a) + f ′(a)(x− a) + o(|x− a|) as x→ a.
To generalize this definition to the context of mappings between Banach spaces we
can view the second term as a linear operator h 7→ f ′(a)h acting from R to R.

Definition 1.1. Let E,F be Banach spaces and U ⊂ E is an open set. A mapping
f : U → F is called differentiable at a point a ∈ U (in the Fréchet sense) if there
exists a bounded linear operator (Df)(a) ∈ L(E;F ) such that

f(x) = f(a) + [(Df)(a)](x− a) + o(‖x− a‖) as x→ a.

One says that f is continuously differentiable on U (and writes f ∈ C1(U,F )) if is
differentiable at all points of U and the mapping Df : U → L(E;F ) is continuous.

Let us briefly discuss this definition.

• Clearly, nothing changes if one replaces the norm in E (or in F ) by an
equivalent. However, let us emphasize that one needs to require that E
is a normed space to be able to write the error term o(‖x − a‖), which is
uniform in the direction of the increment x− a.

• There exists a weaker notion, called the differentiability in the Gateaux
sense. Namely, one requires that for each h ∈ E there exists a vector
(Df)(a, h) ∈ F such that f(a + th) = f(a) + t(Df)(a, h) + o(t) as t → 0.
Compared to Definition 1.1, there are two important differences: we do not
require neither linearity nor continuity of (Df)(a, h) in h. In particular, if
we consider the the mapping

f : R2 → R, f(x1, x2) :=
x3

1

x2
1 + x2

2

,

near a = (0, 0), then (Df)(a, h) exists for all h ∈ R2 but is not linear
in h. In what follows, all the derivatives are understood in the sense of
Definition 1.1 (= Fréchet) and not in this weaker (= Gateaux) sense.

One can now iterate Definition 1.1 in order to define the second (and higher) order
derivatives of a continuous mapping. Let us first discuss the types of objects arising
along this way. We should have D2f = DDf ∈ L(E;L(E;F )) and similar for higher
order derivatives. However, instead of considering bounded linear operators acting
to the spaces of bounded linear operators, it is much more transparent to speak
about bounded multi-linear mappings.

Definition 1.2. Let E1, . . . , Em and F be Banach spaces. A multi-linear (i.e.,
linear in each of its arguments) mapping L : E1 × . . . Em → F is called bounded if

‖L‖L(E1,...,Em;F ) := sup
h1 6=0,...,hm 6=0

‖L(h1, . . . , hm)‖F
‖h1‖E1 · . . . · ‖hm‖Em

< +∞.

Similarly to bounded linear operators, it is easy to see that the vector-space
L(E1, . . . , Em) of bounded multi-linear mappings is complete with respect to the
norm introduced above. Also, note that a multi-linear mapping L is bounded if
and only if it is continuous at 0. (Indeed, due to the multi-linearity it is enough to
consider ‖h1‖E1

= . . . = ‖hm‖Em = 1 in the definition of ‖L‖L(E1,...,Em;F ).)
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Lemma 1.3. There exists a canonical isomorphism of Banach spaces

L(E;L(E;F )) ∼= L2(E;F ) := L(E,E;F ), L(h1)h2 = L(h1, h2),

where L ∈ L(E;L(E;F )) and L ∈ L2(E;F ). The same holds true for higher orders:

L(E;L(E;L(E;F ))) ∼= L3(E;F ) := L(E,E,E;F ) etc.

Proof. This is almost a tautology: the linearity is trivial and

‖L‖L(E;L(E;F )) = sup
h1 6=0

‖L(h1)‖L(E;F )

‖h1‖E
= sup
h1 6=0

sup
h2 6=0

‖L(h1)h2‖F
‖h1‖E‖h2‖E

= ‖L‖L2(E;F ). �

The higher derivatives Dmf of f : E → F and classes Cm(U ;F ) of m times
continuously differentiable mappings are defined inductively using Definition 1.1.

Definition 1.4. A mapping f : E ⊃ U → F has an m-th derivative at a ∈ U if
f ∈ Cm−1(U ′;F ), where a ∈ U ′ ⊂ U , and the mapping Dm−1f : U ′ → Lm−1(E;F )
is differentiable at a. Note that

(Dmf)(a) := (DDm−1f)(a) ∈ L(E;Lm−1(E;F )) ∼= Lm(E;F ).

We say that f ∈ Cm(U ;F ) if the mapping Dmf : U → Lm(E;F ) is continuous.

Let us now give more comments on this definition:

• A crucial property of higher order derivatives is that they are symmetric
multi-linear mappings: (at least) if f ∈ Cm(U ;F ), then

(Dmf)(a) ∈ Lsym
m (E;F )

:= {L ∈ Lm(E;F ) : L(h1, . . . , hm) = L(hσ(1), . . . hσ(m)) ∀σ ∈ Sm}.
This is not fully straightforward; the proof is given in Theorem 2.3 below.

• If L ∈ Lsym
2 (E;F ), then

L(h1, h2) = 1
4 (L(h1 + h2, h1 + h2)− L(h1 − h2, h1 − h2)).

In other words, a symmetric bi-linear mapping L can be reconstructed from
its values L(h, h) on the diagonal; sometimes, one calls such restrictions
E 3 h 7→ L(h, h) ∈ F quadratic mappings. The same holds true for higher
orders: if L ∈ Lsym

m (E;F ), then

L(h1, . . . hm) =
1

2mm!

∑
ε1=±1,...,εm=±1

ε1 . . . εmL
(∑m

j=1εjhj , . . . ,
∑m
j=1εjhj

)
.

(For the proof, expand the right-hand side by multi-linearity and note that
only the terms L(hσ(1), . . . , hσ(m)) survive under the summation over εj .)

Example. Let E := L(E) and E ⊃ U := {A ∈ L(E) : ∃A−1 ∈ L(E)} be the open
set of invertible operators. Consider the mapping Inv : U → E , A 7→ A−1. For each
A ∈ U we have a ‘geometric series’ expansion (see part I)

Inv(A+H) = A−A−1HA−1 +A−1HA−1HA−1 − . . . , (1.1)

which converges for ‖H‖ < ‖A−1‖−1. In this example,

(D Inv)(A) : H 7→ −A−1HA−1,

(D2 Inv)(A) : (H1, H2) 7→ A−1H1A
−1H2A

−1 +A−1H2A
−1H1A

−1

and (1.1) is the Taylor expansion of the mapping Inv at A as we will discuss below.
Let us now discuss a several straightforward properties of the operation of taking

the derivative of a mapping F : E → F .
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• Linearity: D(αf + βg) = αDf + βDg, where α, β ∈ R and f, g : U → F .

• Chain rule: D(g ◦ f)(a) = (Dg)(f(a)) ◦ Df(a), where the sign ◦ in the
right-hand side means the composition of linear operators. Indeed, exactly
as in the one-real-variable setup, we see that

g(f(x)) = g
(
f(a) + [(Df)(a)](x−a) + o(‖x−a‖)

)
= g(f(a)) + [(Dg)(f(a))]

(
[(Df)(a)](x−a) + o(‖x−a‖)

)
+ o(‖f(x)−f(a)‖)

= g(f(a)) + (Dg)(f(a))(Df)(a)(x−a) + o(‖x−a‖),

where we use the boundedness of the linear operator (Dg)(f(a)) (and that
of (Df)(a)) to control the error terms via ‖x− a‖.

• If L ∈ L(F1, . . . , Fm;F ) is a bounded multi-linear mapping, fj : E ⊃ U → Fj
are differentiable at a ∈ U , and F = L(f1, . . . , fm), then f : U → F is also
differentiable at a and

[Df(a)]h =

n∑
j=1

L(f1(a), . . . , fj−1(a), (Dfj)(a)h, fj+1(a), . . . , fm(a)).

Again, the proof simply repeats the computation of the derivative of a
product of two real-valued functions: one expands the expression

f(a+ h) = L
(
f1(a) + [Df1(a)]h+ o(‖h‖), . . . , fm(a) + [Dfm(a)]h+ o(‖h‖)

)
by multi-linearity of L and collect all the linear (in h) terms, all the others
lead to o(‖h‖), h→ 0, errors since L is bounded.

Example: Let β : E ⊃ U → R and f : E ⊂ U → F . Then,

D(βf)(a) = Dβ(a)⊗ f(a) + β(a)Df(a),

where we use the notation (e′ ⊗ f)h := e′(h) · f for e′ ∈ E′ and f ∈ F .
In other words, the first term acts on vectors h ∈ F as follows: we should
first apply the functional Dβ(a) ∈ L(E;R) = E′ to h and then multiply
the (scalar) result by the vector f(a) ∈ F .

We conclude this lecture by introducing the notion of partial derivatives. Assume
that E = E1 × . . . Em; an instructive particular case is E1 = . . . = Em = R. Given
a point E ⊃ U 3 a, denote

U âj := {xj ∈ Ej : (a1, . . . , aj−1, xj , aj+1, . . . , am) ∈ U},

this set can be also identified with the set of all points x ∈ U whose all but the j-th
coordinates coincide with those of a. Let

f âj : U âj → F, f âj (xj) := f(a1, . . . , aj−1, xj , aj+1, . . . , am),

be the restriction of f onto this set.

Definition 1.5. One says that a mapping f : E = E1 × . . . Em ⊃ U → F admits
partial derivatives at a point a ∈ U if each of the mappings f âj : U âj → F is
differentiable at aj. A general notation is as follows:

(Dxjf)(a) := (Df âj )(aj) ∈ L(Ej ;F )

but one also often writes ∂f/∂xj instead of Dxjf , especially if Ej = R.



TOPOLOGIE ET CALCUL DIFF. II. CALCUL ET ÉQUATIONS DIFFÉRENTIELLES 5

Trivially, if f is differentiable at a ∈ U ⊂ E (in the sense of Definition 1.1),
then all partial derivatives exist and (Dxjf)(a)h = (Df)(a)(0, . . . , 0, h, 0, . . . , 0).
However, the converse is not true as can be seen from the following example (where
E1 = E2 = F = R): the partial derivatives ∂f/∂x1 and ∂f/∂x2 of a function

f(x1, x2) :=
x1x2

x2
1 + x2

2

, f(0, 0) := 0,

exist at all points, including x1 = x2 = 0 (since f(x1, 0) = f(0, x2) = 0 for all
x1, x2 ∈ R) but the function is not even continuous at (0, 0).

Détour. Though this goes far beyond the scope of this class, it is worth mentioning
that the discussion of partial derivatives changes drastically if we consider differen-
tiable (= holomorphic = analytic) functions of several complex variables. In this
case, the existence (in an open neighborhood of a) of partial derivatives ∂/∂zj for all
j = 1, . . . ,m implies the continuity of f and the existence of the ‘full’ derivative Df
near a. This statement is known under the name Hartog’s theorem and provides
another illustration of the fact that the differentiability with respect to a complex
variable (i.e., the existence of a local expansion f(z) = f(a)+f ′(a)(z−a)+o(|z−a|)
as z → a) is a drastically more rigid assumption than the real-differentiability; see
the course Analyse Complexe in the spring term.

November 25, 2020

1.1. ‘Technical lemmas’. Let us now briefly discuss standard ‘technical’ facts
on differentiable mappings between Banach spaces, which typically can be easily
reduced to similar statements for functions of one real variable. The first lemma is
almost trivial and serves as an illustration of how such a reduction works.

Lemma 1.6. Let [a, b] be a straight segment in U ⊂ E. If f ∈ C1(U ;F ), then

f(b)− f(a) =
[ ∫ 1

0
(Df)(a+ t(b− a))dt

]
(b− a), (1.2)

where the integral of a continuous mapping t 7→ (Df)(a + t(b−a)) ∈ L(E;F ) is
understood in the Riemann sense.

Proof. If we set g(t) := f(a+ t(b− a)), then f ′(t) = [(Df)(a+ t(b− a))](b− a) by
the chain rule. Now we can

• either say that the standard proof for functions of one real variable works
in the same way for all target Banach spaces F ;
• or to use another reduction to a one-dimensional situation – now for the

target space F – based upon the Hahn–Banach theorem: for each bounded
linear functionals A ∈ F ′, the function t 7→ Ag(t) is a real-valued continu-

ously differentiable function on [0, 1] and hence Ag(1)−Ag(0) =
∫ 1

0
Ag′(t)dt.

This implies that

A(f(b)− f(a)) = A
[ ∫ 1

0
(Df)(a+ t(b− a))dt

]
(b− a).

Since this holds for all A ∈ F ′, we conclude that (1.2) also holds: indeed,
if Af = 0 for all A ∈ F ′, then f = 0 due to Hahn–Banach. �
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It is trivial that a linear combination of finitely many C1 mappings is again a
C1 mapping. The following technical statement extends this property to integrals
with respect to a (real) parameter.

Lemma 1.7. Let U ⊂ E be an open set, [τ0, τ1] ⊂ R and f : U × [τ0, τ1] → F be
such that f(·, τ) ∈ C1(U ;F ) for all τ ∈ [τ0, τ1] and, moreover, Dxf is continuous
as a function of both x ∈ E and τ ∈ [τ0, τ1], i.e., Dxf ∈ C(U × [τ0, τ1];L(E;F )).
Then, the function

F (x) :=
∫ τ1
τ0
f(x, τ)dt

is continuously differentiable on U and, for all x ∈ U ,

[DF ](x) =
∫ τ1
τ0
Dxf(x, τ) dτ,

where both integrals are understood in the Riemann sense.

Proof. For shortness, denote ϕ(x, τ) := Dxf(x, τ) and Φ(x) :=
∫ τ1
τ0
ϕ(x, τ)dτ . Let

us first check that Φ is continuous on U . Given ε > 0 and a ∈ U , for each τ ∈ [τ0, τ1]
there exists δ(τ, ε) > 0 such that

‖ϕ(x, τ ′)− ϕ(a, τ)‖ < ε provided that |τ ′ − τ |+ ‖x− a‖ < δ(τ, ε)

and hence

‖ϕ(x, τ ′)− ϕ(a, τ ′)‖ < 2ε provided that |τ ′ − τ |+ ‖x− a‖ < δ(τ, ε).

By compactness, we can find a finite sub-cover of the segment [τ0, τ1] by intervals
(τ− 1

2δ(τ, ε), τ+ 1
2δ(τ, ε)) and denote by δ0 = δ0(ε) the minimum of the correspond-

ing (finitely many) values δ(τ, ε). Then,

‖ϕ(x, τ)− ϕ(a, τ)‖ < 2ε for all τ ∈ [τ0, τ1] provided that ‖x− a‖ < 1
2δ0(ε)

and hence

‖Φ(x)− Φ(a)‖ < 2ε · |τ1 − τ0| provided that ‖x− a‖ < 1
2δ0(ε).

Let us now simplify the consideration and, given a ∈ U , replace f(x, τ) by the
function

g(x, τ) := f(x, τ)− f(a, τ)− ϕ(a, τ)(x− a).

Note that Dxg(a, τ) = Dxf(a, τ) − ϕ(a, τ) = 0 and our goal is to prove that
DG(a) = 0, where G(x) :=

∫ τ1
τ0
g(x, τ)dτ . This is a variation of the compactness

argument used above to prove the continuity of Φ: since Dxg(a, τ) = 0 (and because
of the fact that Dxg(x, τ) = Dxf(x, τ) − ϕ(a, τ) is a continuous function of both
arguments), for each ε > 0 there exists δ > 0 such that

‖Dxg(x, τ)‖ ≤ ε for all τ ∈ [τ0, τ1] provided that ‖x− a‖ < δ

and hence, using Lemma 1.6 applied to a function f(·, τ) and b = x,

‖g(x, τ)‖ ≤ ε‖x− a‖ for all τ ∈ [τ0, τ1] provided that ‖x− a‖ < δ.

Integrating this in τ , we get the estimate ‖G(x)‖ ≤ ε|τ1− τ0| · ‖x−a‖ for all x such
that ‖x− a‖ < δ = δ(ε). This means that ‖G(x)‖ = o(‖x− a‖) as x→ a. �

In the proof given above we relied upon Lemma 1.6 when saying that a uniform
estimate on the derivative of a mapping implies the natural uniform estimate on
the increments of this mapping. Similarly to the one-real-variable context, for such
a claim there is no need to assume that f is continuously differentiable:
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Lemma 1.8. Let [a, b] be a straight segment in U ⊂ E and a mapping f : U → F
be differentiable at all points on [a, b]. Then,

‖f(b)− f(a)‖F ≤ supx∈[a,b] ‖Df(x)‖L(E;F ) · ‖b− a‖E .

Proof. As in Lemma 1.6, the claim can be easily reduced to the one-real-variable
context by considering a functional A ∈ F ′ and a function g(t) := Af(a+ t(b− a)),
g : [0, 1]→ R. Since g′(t) = A(Df)(a+ t(b− a))(b− a), we have

‖A(f(b)− f(a))‖ ≤ sup
x∈[a,b]

‖A(Df)(x)(b− a)‖ ≤ ‖A‖ · sup
x∈[a,b]

‖Df(x)‖ · ‖b− a‖.

Due to Hahn–Banach, one can choose a functional A ∈ F ′ so that ‖A‖ = 1 and
‖A(f(b)− f(a))‖ = ‖f(b)− f(a)‖, which implies the desired claim. �

Remark. Let us also briefly recall/discuss the proof of the one-real-variable result:

• Given a function g : [0, 1] → R, the most standard way to estimate the
increment g(1) − g(0) by supt∈[0,1] |g′(t)| is to find an extremum of the

function g(t)− t(g(1)− g(0)) (which has the same values g(0) at both t = 0
and t = 1) and to say that g′(t) = g(1)− g(0) at this extremal point.

This proof does not directly apply to the multi-dimensional setup: even for
smooth curves g : [0, 1]→ R2 there is no guarantee that there exists t ∈ [0, 1]
such that g′(t) = g(1)− g(0): e.g., consider g(t) := cos(2πt, sin 2πt).

• However, there is another standard one-dimensional proof which can be
directly generalized to the setup of Lemma 1.8 in order to avoid using the
axiom of choice: denote M := supx∈[a,b] ‖Df(x)‖ and consider the set

{x ∈ [a, b] : ‖f(x)− f(a)‖ ≤ (M + ε) · ‖x− a‖}.
For each ε > 0 this set is simultaneously closed (trivially by continuity)
and open (if x ∈ [a, b] belongs to this set, then a certain open neighborhood
of x does since ‖f(x′) − f(x)‖ ≤ ‖Df(x)‖ · ‖x′ − x‖ + o(‖x′ − x‖)), thus
‖f(b)− f(a)‖ ≤ (M + ε)‖b− a‖ for all ε > 0 and we can send ε→ 0.

The last ’technical’ lemma concerns limits of differentiable functions.

Lemma 1.9. Let fn : E ⊃ U → F be everywhere differentiable in U . Assume that
fn → f (pointwise) and Dfn =: ϕn ⇒ ϕ uniformly on U . Then, f is everywhere
differentiable in U and Df = ϕ. Moreover, if f ∈ C1(U ;F ), then f ∈ C1(U ;F ).

Proof. The proof mimics the one-real-variable case. Given a ∈ U and ε > 0, we
can find N = N(ε) such that ‖Dfn − ϕ‖ ≤ ε and hence ‖Dfn −DfN‖ ≤ 2ε for all
n ≥ N = N(ε), uniformly in U . Applying Lemma 1.8 in a vicinity of a, we see that

‖(fn(x)− fN (x))− (fn(a)− fN (a))‖ ≤ 2ε · ‖x− a‖.
Since the function fN is differentiable at a, we know that

‖fN (x)− fN (a)−DfN (a)(x− a)‖ ≤ ε · ‖x− a‖ if ‖x− a‖ ≤ δ = δ(ε,N).

Finally, ‖DfN (a) − ϕ(a)‖ ≤ ε provided that N(ε) is chosen large enough. All
together, we have

‖fn(x)− fn(a)− ϕ(a)(x− a)‖ ≤ 4ε‖x− a‖ if ‖x− a‖ ≤ δ(ε,N(ε))

for all n ≥ N(ε) and hence the same for the limit f of functions fn. This means
that f is differentiable at a and Df(a) = ϕ(a). If, in addition, fn ∈ C1(U ;F ), then
Df = ϕ ∈ C(U ;F ) as the uniform limit of continuous mappings ϕn ∈ C(U ;F ). �
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2. The symmetry of partial derivatives and the Taylor formula

Let us now come back to the setup when E = E1 × . . . Em. As discussed in the
previous lecture, the existence of all partial derivatives Dxjf : U → L(Ej ;F ) is
not enough even to guarantee the continuity of a mapping f : E ⊃ U → F , letting
alone the differentiability. However, if we require that all these partial derivatives
are continuous, the situation becomes much nicer.

Theorem 2.1. Let a ∈ U and all the partial derivatives Dxjf , j = 1, . . . ,m, of a
mapping f : U → F exist in an open neighborhood of the point a and are continuous
at this point. Then, the mapping f is differentiable at a and

[Df(a)]h =
∑m
j=1[Dxjf(a)]hj , where h = (h1, . . . , hm) ∈ E = E1 × . . .× Em.

In particular, if Dxjf ∈ C(U ;L(Ej ;F )) for all j = 1, . . . ,m, then f ∈ C1(U ;F ).

Proof. This is a simple corollary of Lemma 1.8. Let

g(x) := f(x)−
∑m
j=1[Dxjf(a)](xj − aj).

Note that Dxjg = 0 for all j = 1, . . . ,m and that we aim to prove that Dg = 0. For

x close enough to a, denote a sequence of points x(j) ∈ U , j = 0, . . . ,m, as follows:

x(j) := (x1, . . . , xj , aj+1, . . . , am);

note that x(0) = a and x(m) = x. Applying Lemma 1.8 on each of the segments
[x(j−1), x(j)] ⊂ U we see that

‖g(x(j))− g(x(j−1))‖ ≤ sup[x(j−1),x(j)] ‖Dxjg‖ · ‖xj − aj‖ .
Since Dxjg is continuous at the point a and (Dxjg)(a) = 0, for each ε there exists

δ > 0 such that all ‖Dxjg‖ ≤ ε provided that ‖x − a‖ =
∑m
j=1 ‖xj − aj‖ ≤ δ.

Therefore,

‖g(x)− g(a)‖ ≤
∑m
j=1 ‖g(x(j) − g(x(j−1)))‖ ≤ mε · ‖x− a‖

provided that ‖x− a‖ ≤ δ = δ(ε), i.e., g(x) = g(a) + o(‖x− a‖) as x→ a. �

The next important fact (which is also a corollary of Lemma 1.8) to discuss is
the symmetry of partial derivatives under the assumption of their continuity. It is
convenient to start the consideration with a particular case E = R2.

Proposition 2.2. Let (0, 0) ∈ U ⊂ R2 and f ∈ C1(U ;F ). Assume that the partial
derivative of the function ∂f/∂x1 with respect to x2 exists in an open neighborhood
of the point (0, 0) and is continuous at this point. Then, the partial derivative of
the function ∂f/∂x2 with respect to x1 at the point (0, 0) also exists and

∂

∂x1

∂f

∂x2
(0, 0) =

∂

∂x2

∂f

∂x1
(0, 0).

Proof. Note that we can assume that ∂/∂x2(∂f/∂x1)(0, 0) = 0 without loss of
generality: indeed, replacing f(x1, x2) by f(x1, x2) − ∂/∂x2(∂f/∂x1)(0, 0) · x1x2

neither change the differentiability assumptions nor the claim to be proved.
For (x1, x2) close enough to (0, 0), let

g(x1, x2) :=f(x1, x2)− f(x1, 0);

h(x1, x2) :=g(x1, x2)− g(0, x2)

=f(x1, x2)− f(x1, 0)− f(0, x2) + f(0, 0);
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note that the latter expression is symmetric in x1, x2 and that we aim to prove that

lim
x1→0

(∂f/∂x2)(x1, 0)− (∂f/∂x2)(0, 0)

x1
= lim
x1→0

lim
x2→0

h(x1, x2)

x1x2

[?]
= 0 . (2.1)

On the other hand, it directly follows from Lemma 1.8 that

‖h(x1, x2)‖ ≤ supt1∈[0,x1] ‖(∂g/∂x1)(t1, x2)‖ · |x1|

and

‖(∂g/∂x1)(t1, x2)‖ = ‖(∂f/∂x1)(t1, x2)− (∂f/∂x1)(t1, 0)‖
≤ supt2∈[0,x2] ‖∂/∂x2(∂f/∂x1)(t1, t2)‖ · |x2|.

As the latter second partial derivative is assumed to be continuous at the point
(0, 0) and vanishes at this point, the proof is in fact complete: for each ε > 0 one
can find δ > 0 such that

‖∂/∂x2(∂f/∂x1)(t1, t2)‖ ≤ ε and hence ‖h(x1, x2)‖ ≤ ε · |x1||x2|.

for all (t1, t2) ∈ [0, x1]× [0, x2], provided that |x1|+ |x2| < δ = δ(ε). In particular,
this uniform bound implies that | limx2→0 h(x1, x2)/x2| ≤ ε · |x1| if |x1| < δ(ε).
Thus, the limit as x1 → 0 in (2.1) exists and equals to 0. �

We will start the next lecture by discussing why Proposition 2.2 implies that the
m-th derivative of a mapping f ∈ Cm(E;F ) is a symmetric multi-linear mapping.

November 30, 2020

In the previous lecture we proved Proposition 2.2, which says – under a certain
continuity assumption – that the second partial derivatives of a function f : R2 → F
are symmetric with respect to the order of the derivations. The next theorem is a
straightforward corollary of this proposition.

Theorem 2.3. Let E,F be Banach spaces and f ∈ Cm(U ;F ) be a m times con-
tinuously differentiable function defined on an open set U ⊂ E. Then, its m-th
derivative is a symmetric multi-linear mapping: Dmf ∈ C(U ;Lsym

m (E;F )).

Proof. Let a ∈ U and h1, . . . , hm ∈ E. Consider a function g : Rm ⊃ V → F
defined by

g(t1, . . . , tm) := f(a+ t1h1 + . . .+ tmhm),

where V := {(t1, . . . , tm) ∈ Rm : a+ t1h1 + . . .+ tmhm ∈ U}. It is easy to see (e.g.,
by induction in m) that

[Dmf(a+ t1h1 + . . .+ tmhm)](h1, . . . , hm) =
∂

∂t1
. . .

∂g

∂tm
(t1, . . . , tm).

As we assume the continuity of (Dmf)(a) in a, Proposition 2.2 yields that the
right-hand side is symmetric with respect to the order of derivations. Therefore,
the multi-linear mapping [(Dmf)(a)](h1, . . . , hm) is symmetric in h1, . . . , hm. �

Before going further to the Taylor formula, let us discuss two more exercises on
how usual formulas for second derivatives read in the multi-dimensional situation.
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(1) What happens with the standard formula (f1f2)′′ = f ′′1 f2 + 2f ′1f
′
2 + f1f

′′
2 ?

Let L ∈ L(F1, F2;F ) and f1,2 : E ⊃ U → F1,2 be twice differentiable
mappings. Recall that, if f = L(f1, f2), then

[(Df)(a)]h = L((Df1)(a)h, f2(a)) + L(f1(a), (Df2)(a)h).

Differentiating this one more time in the direction k, we get

[(Df)(a)](k, h) = L((D2f1)(a)(k, h), f2(a)) + L((Df1)(a)h, (Df2)(a)k)

+ L((Df1)(a)k, (Df2)(a)h) + L(f1(a), (D2f2)(a)(k, h)).

(2) What happens with the standard formula (g◦f)′′=(g′′◦f)·(f ′)2+(g′◦f)·f ′′?

Recall that

[D(g ◦ f)(a)]h = [Dg(f(a))](Df)(a)h.

Differentiating this once more in the direction k, we get

[D2(g ◦ f)(a)](k, h) = [D2g(f(a))]((Df)(a)k, (Df)(a)h)

+ (Dg)(f(a)) [(D2f)(a)](k, h).

Let us now discuss the Taylor formula for mappings between Banach spaces.

Theorem 2.4 (Taylor’s formula). Let f ∈ Cm−1(U ;F ) and, moreover, there
exists the m-th derivative (Dmf)(a) of f at a point a ∈ U . Then,

f(x) =

m∑
k=0

1

k!
[(Dkf)(a)](x− a) + o(‖x− a‖m) as x→ a.

Moreover, if f ∈ Cm(U ;F ) and Dm+1f exists at all points of the segment [a, x],
then the remainder is bounded by 1

(m+1)! supy∈[a,x] ‖(Dm+1f)(y)‖ · ‖x− a‖m+1.

Proof. Denote g(x) := f(x) −
∑m
k=0

1
k! [(D

kf)(a)](x − a). It is easy to see that

(Dkg)(a) = 0 for all k = 0, . . . ,m. Indeed, if L ∈ Lk(E;F ) is a multi-linear
mapping and `(x) := L(x− a) = L(x− a, . . . , x− a), then

◦ (Ds`)(a) = 0 if s < k since at least one of x− a survive in Ds`;
◦ [(Ds`)(x)]h = k!L(h) if s = k for all x, the factor k! appears since each

time – when differentiating – we should replace x− a by h and there are k!
ways to obtain all arguments h from all arguments x− a.
◦ (Ds`)(x) = 0 for all x if s > k.

We need to prove that ‖g(x)‖ = o(‖x−a‖m). This can be easily done by induction:
(Dmg)(a) = 0 means that ‖(Dm−1g)(x)‖ = o(‖x − a‖) as x → a; then it follows
from Lemma 1.8 and (Dm−1g)(a) = 0 that ‖(Dm−2g)(x)‖ = o(‖x− a‖2) etc.

The quantitative control of the remainder term through supy∈[a,x] ‖(Dm+1f)(y)‖
can be obtained in the same way (i.e., by inductively applying Lemma 1.8). �

Let us now discuss how the Taylor formula reads in terms of the partial deriva-
tives when E = Rn. It is easy to see by induction that

[(Dkf)(a)](h(1), . . . , h(k)) =

n∑
j1,...,jk=1

∂

∂xj1
. . .

∂f

∂xjk
(a) · h(1)

j1
. . . h

(k)
jk
.
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If h(1) = . . . = h(k) = h, then we can use the symmetry of partial derivatives and
collect similar terms. Let s = (s1, . . . , sn) ∈ Nn be a mutli-index, where sj denotes
the number of instances of ∂/∂xj in the k-th partial derivative of f . In particular,

|s| := s1 + . . .+ sn = k.

Then, [(Dkf)(a)](h) = [(Dkf)(a)](h, . . . , h) contains

k!

s!
:=

k!

s1! . . . sn!
=

(
k

s1 s2 . . . sn

)
=:

(
k
s

)
terms

∂kf

∂xs
(a) · hs :=

∂kf

∂xs11 . . . ∂xsnn
(a) · hs11 . . . hsnn .

To summarize,

[(Dkf)(a)](h) =
∑

s∈Nn: |s|=k

(
k
s

)
∂kf

∂xs
(a) · hs

and the Taylor formula can be rewritten as

f(x) =
∑

s∈Nn: |s|≤m

1

s!

∂|s|f

∂xs
(a) · (x− a)s + o(‖x− a‖m) as x→ a,

where we use the same notation (x− a)s := (x1 − a1)s1 · . . . · (xn − an)sn as above.

Let us now briefly discuss a traditional terminology used in finite-dimensional
situations.

• Let E = Rn and F = R. Then, the vector ∇f := (∂f/∂x1 . . . ∂f/∂xn) is
called the gradient of f . In what follows we view Rn as the space of column
vectors so that the real number [(Df)(a)](h) = (∇f)(a) · h can be simply
viewed as a product of a 1×n and n× 1 matrices; in other words, we view
the (row) vector ∇f(a) as an element of the dual space. However, in many
situations it is convenient to use the self-duality of Rn and to define the
gradient as a column vector too so that [(Df)(a)](h) = 〈(∇f)(a), h〉.
• Let E = F = Rn. The Jacobian (determinant) of f : Rn ⊃ U → Rn is

det J(f), J(f) :=

[
∂fp
∂xq

]n
p,q=1

;

the n×n matrix J(f) of partial derivatives (which is nothing but the matrix
representation of (Df)(a) ∈ L(Rn)) is called a Jacobian matrix.

• Let E = Rn and F = R. The Hessian (matrix) of f : Rn ⊃ U → R is

H(f) :=

[
∂2f

∂xp∂xq

]n
p,q=1

The symmetric(!) matrix H(f) represents the second derivative of f as
follows: [(D2f)(a)](k, h) = k> ·H(f)(a) · h.

Finally, let us formulate the usual criterion for extremal points of a mapping
f : E ⊃ U → R at a point a ∈ U .

Proposition 2.5. Let f ∈ C1(U ;R) and there exists (D2f)(a) ∈ Lsym
2 (E;R).

Then,
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◦ if a is an extremal point of f , then (Df)(a) = 0 and (D2f)(a) ≥ 0 (mini-
mum) or (D2f)(a) ≤ 0 (maximum), in the sense of quadratic forms (i.e.,
[(D2f)(a)](h) ≥ 0 for all h ∈ E at a minimum and similarly for maxima);

◦ vice versa, if (Df)(a) = 0 and [(D2f)(a)](h) ≥ c · ‖h‖2 for all h ∈ E and
some c > 0, then a is a local minimum of f ; and similarly for maxima.

Proof. This is a trivial corollary of the Taylor formula with m = 2. �

We conclude this lecture by a few simple remarks on this standard ‘second de-
rivative’ criterion of extremal points.

• The sufficient condition [(D2f)(a)](h) ≥ c‖h‖2 actually makes sense only
when we work in Hilbert spaces or, more precisely, with norms that are
equivalent to Hilbert ones: since we also have [(D2f)(a)](h) ≤ C‖h‖2, the
quadratic form [(D2f)(a)](h) can be used to introduce the scalar product
structure, which gives rise to a norm ([(D2f)(a)](h))1/2 � ‖h‖.
• In the one-dimensional situation, the roots of the derivative f ′(a) = 0 are

typically extrema of f , unless the second derivative at a degenerates. This
is not the case in the multi-dimensional situation: if (Df)(a) = 0 and the
second derivative (D2f)(a) is non-degenerate, it is typically neither positive
nor negative definite. (Indeed, the Hessian matrix (Hf)(a) typically has
eigenvalues of both signs.) Such points a are called saddle points of f .
• A possible way to check whether a n×nmatrix (Hf)(a) is strictly(!) positive

definite is to consider its minors det[∂2/∂xp∂xq ]
k
p,q=1 for k = 1, . . . , n. The

Sylvester criterion says that the quadratic form (Hf)(a) is strictly positive
definite if and only if all these n determinants are positive.

December 02, 2020

3. Inverse and implicit function theorems

Today we discuss two important ‘technical’ statements on smooth functions,
which can be loosely formulated as follows:

• a local inverse f−1 to a smooth mapping f exists and is smooth provided
that the derivative of f is non-degenerate (‘inverse function theorem’);
• the zero set {(x, y) : f(x, y) = 0} of a smooth mapping f can be locally

viewed as a graph {(x, g(x))} of a smooth mapping g provided that the
partial derivative Dyf is non-degenerate (’implicit function theorem’).

Theorem 3.1. Let f ∈ Cm(U ;F ), m ≥ 1, and a ∈ U . Assume that the linear oper-
ator (Df)(a) ∈ L(E;F ) has a bounded inverse [(Df)(a)]−1 ∈ L(F ;E). Then, there
exists an open neighborhood a ∈ V ⊂ U such that f is a homeomorphism of V onto
an open set W ⊂ F and, moreover, a Cm-diffeomorphism (i.e., f−1 ∈ Cm(W ;E)).
In particular, f−1 is differentiable in W and (Df−1)(f(x)) = [(Df)(x)]−1, x ∈ V .

Let us mention from the very beginning that – without loss of generality – one
can assume that F = E and [(Df)(a)] = IdE if we consider the composition

[(Df)(a)]−1 ◦ f : E → E

instead of the mapping f : E → F itself; note that the boundedness of opera-
tors (Df)(a) and [(Df)(a)]−1 essentially says that E and F are isomorphic: more
precisely, E and F are isomorphic up to a change of the norms by equivalent ones.
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Proposition 3.2. Let g : E ⊂ V → E be a q-Lipschitz mapping, where q < 1.
Then, the mapping f : x 7→ x+ g(x) is a homeomorphism between V and an open
set f(V ) ⊂ E. Moreover, the inverse mapping f−1 is (1−q)−1-Lipschitz.

Proof. It directly follows from the q-Lipschitzness of the mapping g that

‖f(x′)− f(x)‖ ≥ (1− q)‖x′ − x‖, x, x′ ∈ V.

Thus f is a bi-Lipschitz bijection of V and f(V ), so essentially we only need to
prove that f(V ) is an open set in E. This follows from the fixed point theorem for
q-Lipschitz mappings, as follows.

Let b = f(a) ∈ f(V ) and r > 0 be such that B(a, r) ⊂ V . We aim to prove
that B(b, (1− q)r) ⊂ f(V ). To this end, given a point y ∈ B(b, (1− q)r), consider
a mapping x 7→ y − g(x). This mapping (a) is q-Lipschitz (since so is g) and (b)
maps the closed ball B(a, r) into itself: if ‖x− a‖ ≤ r, then

‖(y − g(x))− a‖ ≤ ‖y − b‖+ ‖g(x) + (a− b)‖
= ‖y − b‖+ ‖g(x)− g(a)‖ ≤ (1−q)r + q‖x− a‖ ≤ r.

Since B(a, r) is a complete metric space, there exists a point x ∈ B(a, r) such that
x = y − g(x), i.e., y = f(x). Thus, B(f(a), (1−qr)) ⊂ f(B(a, r)). �

Proof of Theorem 3.1. As discussed above, for simplicity let us assume (without
loss of generality) that E = F and (Df)(a) = IdE . Let ρ = ρ1/2 > 0 be such that

V = V1/2 := B(a, ρ1/2) ⊂ {x ∈ U : ‖(Df)(x)− Id‖ < 1
2}.

If we denote g(x) := f(x) − x, then the mapping g is 1
2 -Lipschitz in V due to

Lemma 1.8. Therefore, it follows from Proposition 3.2 that W := f(V ) is an open
set in E and that f : V →W is a homeomorphism.

Let us now prove that the inverse mapping f−1 : W → V is differentiable at
the point b := f(a) and that (Df−1)(b) = Id. To this end, define open balls
Vε = B(a, ρε) similarly to V1/2 and let Wε := f(Vε). Then, for all y ∈Wε we have

‖(f−1(y)− a)− (y − b)‖ = ‖g(f−1(y))− g(f−1(b))‖
≤ ε · ‖f−1(y)− f−1(b)‖ ≤ ε(1− ε)−1 · ‖y − b‖,

where we consecutively used the Lipshitzness of g and the Lipshitzness of f−1.
Thus,

f−1(y) = a+ (y − b) + o(‖y − b‖) as y → b,

i.e., (Df−1)(b) = Id = [(Df)(a)]−1.
We can apply the same argument for all points x ∈ V1/2 since (Df)(x) is invert-

ible for all x ∈ V1/2. Therefore, the derivative (Df−1)(y) = [(Df)(x)]−1, where
y = f(x), is defined pointwise in W = W1/2 and it only remains to prove that this
derivative depends on y continuously. Note that

Df−1 = Inv ◦Df ◦ f−1, W
f−1

→ V
Df→ L(E;F )

Inv→ L(F ;E),

is a composition of continuous mappings, i.e., Df−1 ∈ C(W ;L(F ;E)).
Finally, for f ∈ Cm(U ;F ) with m ≥ 2 one can use an inductive argument: if we

already know that f−1 ∈ Cm−1(W ;E), then the explicit formula for Df−1 implies
that Df−1 is m− 1 times continuously differentiable, i.e., f−1 ∈ Cm(W ;E). �
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Theorem 3.3. Let (x0, y0) ∈ U ⊂ E × F and f ∈ Cm(U ;F ), where m ≥ 1.
Assume that f(x0, y0) = 0 and that the linear operator (Dyf)(x0, y0) is invertible
in L(F ). Then, there exist open neighborhoods x0 ∈ V ⊂ E and y0 ∈ W ⊂ F and
a Cm-smooth function g : V →W such that V ×W ⊂ U and

f(x, y) = 0 ⇔ y = g(x) for (x, y) ∈ V ×W.

Proof. Let

ψ(x, y) := (x, f(x, y)), ψ : E × F ⊃ U → E × F,
and note that

[(Dψ)(x0, y0)](hx, hy) = (hx, [(Dxf)(x0, y0)]hx + [(Dyf)(x0, y0)]hy)

is an invertible operator in L(E × F ): its inverse can be explicitly written as

(kx, ky) 7→ (kx, [(Dyf)(x0, y0)]−1(ky − [(Dxf)(x0, y0)]kx)).

Therefore, we can apply Theorem 3.1 to the mapping ψ and find a neighborhood
U = V0 ×W 3 (x0, y0) such that ψ is a Cm-diffeomorphism of U onto an open
set ψ(U) ⊂ E × F . By definition, for (x, y) ∈ V0 ×W , the equation f(x, y) = 0 is
equivalent to ψ(x, y) = (x, 0). Now let

V := {x ∈ V0 : (x, 0) ∈ ψ(U)}

(V 3 x0 is an open set in E since ψ(U) is open in E × F ) and

g(x) := (πF ◦ ψ−1)(x, 0) for x ∈ V.

The proof is complete (the Cm-smoothness of g follows from that of ψ−1). �

4. (Compact) smooth manifolds

We conclude this lecture by briefly discussing a notion of a compact smooth
manifold (embedded) in RN and will continue next time by discussing its link with
an ‘abstract’ definition of compact smooth manifolds that was mentioned in the
first part of the course.

Definition 4.1. A compact set Mn ⊂ RN (where N > n) is called a Ck-smooth
manifold of dimension n if

(1) for each point a ∈ Mn there exists an open neighborhood a ∈ U ⊂ RN and
a smooth mapping f ∈ Ck(U ;RN−n) such that rank(Df)(a) = N − n and
Mn ∩ U = {x ∈ U : f(x) = 0}.

or, equivalently,

(2) for each point a ∈Mn there exist a subset J = {j1, . . . , jn} ⊂ [1, N ] ⊂ N of
coordinates, an open neighborhood a ∈ U = V ×W ⊂ RJ ×R[1,N ]rJ and a
smooth mapping g ∈ Ck(V ;W ) such that Mn ∩U = {(xJ , g(xJ)), xJ ∈ V }.

The equivalence (1)⇔(2) is a corollary of the implicit function theorem:

• ‘(1)⇒(2)’: since rank(Df)(a) = N − n, we can find a (N − n) × (N − n)
minor in the matrix (Df)(a) that admits a bounded inverse and denote by
J the set of remaining coordinates;

• ‘(2)⇒(1)’: one can simply take f(x) := x[1,N ]rJ − g(xJ).

We will continue discussing smooth manifolds in the next lecture.
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December 07, 2020

We concluded the last lecture by discussing two equivalent descriptions of (com-

pact) smooth n-dimensional manifold embedded into RN (the word ‘smooth’ – here
and below – means either Ck or C∞): M = Mn is a compact subset of RN such
that for each point a ∈M the following holds

(1) there exists an open neighborhood a ∈ Ua ⊂ RN and a smooth function
fa : Ua → RN−n such that rank(Dfa)(a) = N − n and

M ∩ Ua = {x ∈ Ua : fa(x) = 0}

(in other words, M ∩U is – locally – the zero set of a smooth function fa);

(2) there exists J ⊂ [1, N ], #J = n, an open neighborhood a ∈ Ua = Va×Wa ⊂
RJ × R[1,N ]rJ and a smooth function ga : Va →Wa such that

M ∩ Ua = {(xJ , ga(xJ)); xJ ∈ Va}

(i.e., M is – locally – a graph of a smooth function RJ → R[1,N ]rJ).

The equivalence (1)⇔(2) easily follows from the implicit function theorem.

Recall also that in the first part of the course we also briefly discussed an ‘ab-
stract’ definition of smooth n-dimensional topological manifolds, which does not
require considering an ambient space RN :

(0) M = Mn is called a (compact) smooth topological manifold of dimension n
if M is a compact Hausdorff topological space and there exists a (finite, by
compactness) open covering M =

⋃
α∈A Uα such that

• each Uα ⊂ M is homeomoprhic (by a mapping ϕα : Uα → Bn) to the
unit open ball Bn ⊂ Rn and

• all compositions ϕβ ◦ ϕ−1
α are (Ck or C∞) smooth on their natural

domains of definition ϕα(Uα ∩ Uβ) ⊂ Bn.

Recall that Uα are called charts and the collection (Uα)α∈A – an atlas.
Also, note that one can speak about smooth (up to Ck) functions between
topological manifolds:

• for s ≤ k, a mapping f : M ⊃ U → M ′ is called Cs-smooth if all the
compositions ϕ′α′ ◦f ◦ϕ−1

α are Cs-smooth on their domains of definition
(where ϕ′α′ denote the chart mappings on the manifold M ′).

Clearly, this definition does not depend on the choice of a chart of M at
a point a ∈ U neither on the chart of M ′ at f(a) as we require that all
compositions ϕβ ◦ ϕ−1

α and ϕ′β′ ◦ ϕ′
−1
α′ are Ck-smooth and k ≥ s.

It is easy to see that smooth manifolds embedded into RN can be viewed as a
particular case of the definition (0) of smooth topological manifolds:

• Indeed, in (2) one can choose Va ∈ RJ to be an open ball and define
ϕa : Ua ∩M → Va to be the projection onto the coordinates RJ . This is a
homeomorphism of since ϕ−1

a = (id, ga).

• The compositions ϕb ◦ ϕ−1
a are smooth on their domains of definitions is a

triviality since ϕb is a projection of ga on a (different) subset of coordinates.

In particular, one can speak about smooth functions defined on smooth manifolds
embedded into RN . It is also not hard (though less trivial) to prove that (0)⇒(2)
in the following sense:
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Proposition 4.2. Let M = Mn be a compact Ck- or C∞-smooth n-dimensional
topological manifold. Then there exists N ≥ n (a priori, depending on M) and a
compact smooth manifold MN ⊂ RN embedded into RN such that M is homeomor-
phic and, moreover, Ck- or C∞-, respectively, diffeomorphic to MN .

The latter means that both the mapping M → MN and its inverse MN →M
are (Ck- or C∞-, respectively) smooth as mappings between topological manifolds;
recall that (2) can be viewed as a particular case of (0).

Proof. For a point a ∈ M , let ϕa : M ⊃ Ua → Bn be a homeomorphism such
that ϕa(a) = 0. (To find ϕa, consider a chart (U,ϕ) on M such that a ∈ U , an
open ball Bn(ϕ(a), r) ⊂ Bn = Bn(0, 1) and denote φa(·) := ρ−1 · (ϕ(·) − ϕ(a));
Ua := ϕ−1

α (Bn(ϕ(a), r))). By compactness, one can find a finite subcover of M by
open sets ϕ−1

a (B(0, 1
2 )), let a1, . . . , am be the corresponding points in M . We now

construct the mapping

Φ = (Φk)k=1,...,m : Mn → R(n+1)m

as follows1:

Φk(x) := (η(‖ϕak‖) · ϕak(x) ; θ(‖ϕak(x)‖)) ∈ Rn × R,
where we declare Φk(x) := 0 for x 6∈ Uak and η, θ ∈ C∞0 (R+; [0, 1]) are such that

• η(t) = 1 if t ≤ 1
2 ; η is strictly decreasing on [ 1

2 ; 3
4 ]; η(t) = 0 if t ≥ 3

4 ;

• θ(t) = 1 if t ≤ 1
4 ; θ is strictly decreasing on [ 1

4 ; 3
4 ]; θ(t) = 0 if t ≥ 3

4 .

Let us first check that Φ is a bijection fromM onto Φ(M). Denote Vk := ϕ−1
ak

(B(0, 1
2 )),

recall that the open sets Vk, k = 1, . . . ,m, cover M .

• If x, y ∈ Vk, then Φk(x) = Φk(y) implies x = y since the first (n-dimensional)
component of Φk equals ϕak on Vk.
• If x ∈ Vk but y 6∈ Vk, then the second component of Φk(x) is strictly greater

than θ( 1
2 ) whilst the first component of Φk(y) is smaller or equal than θ( 1

2 ).

For simplicity (and without loss of generality) assume that k = 1 and note that

Φ(V1) = Φ(M) ∩ {y ∈ R(n+1)m : yn+1 > θ( 1
2 )}

= Φ(M) ∩ {y ∈ R(n+1)m : y2
1 + . . .+ y2

n <
1
4 , yn+1 > θ( 1

2 ) }
and, moreover, on the set Φ(V1) all the remaining coordinates are smooth functions
of φak(x), k = 2, . . . ,m, and hence smooth functions of φa1(x) = (y1, . . . , yn) since
all the compositions φak ◦φ−1

a1 are smooth (and yn+1 = θ(‖ϕa1(x)‖) is also a smooth

function of y2
1 + . . .+ y2

n = ‖ϕa1(x)‖2 on Φ(V1)).
Thus, there exists a smooth function g : B(0, 1

2 )→ R(n+1)m−n such that

Φ(V1) = Φ(M) ∩
[
B(0, 1

2 )×
(
(θ( 1

2 ),+∞)× R(n+1)(m−1)
)]

= {(y1, . . . , yn , g(y1, . . . , yn)), (y1, . . . , yn) ∈ B(0, 1
2 ) }.

In particular, Φ(M) is a smooth (and compact as a continuous image of a compact
topological space M) manifold embedded into RN .

The fact that smooth manifolds M and Φ(M) are diffeomorphic is a triviality
since (y1, . . . , yn) = ϕa1(x) on V1, thus there is nothing to prove if we consider the
chart (V1, ϕ(a1)) on M and the corresponding chart (Φ(V1);πRn) on Φ(M). �

1Compared to the mess which appeared during the lecture with the bijection property, let
us simply keep the information about all ‖ϕak (x)‖ as additional coordinates and embed the

topological manifold M into R(n+1)m instead of Rnm.
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We start by a general remark on the definitions of a (compact) smooth manifold.
In the last lecture we discussed the equivalence of the three viewpoints:

(0) ‘abstract’ definition (charts ϕα : M ⊃ U → Rn in a topological space M);

(1) M ⊂ RN is (locally) the zero set of a smooth function f : RN → RN−n;

(2) M ⊂ RN is locally the graph of a smooth function g : Rn → RN−n.

The viewpoint (2) is probably the most intuitive one but it is worth noting that
(0)–(2) are not equivalent in the other contexts due to the additional ‘rigidity’
present in other classes of functions (by which one can replace R-smooth ones) and
that (2) is actually the least appropriate for such generalizations. E.g., one uses

(0) with f being a polynomial mapping in order to define algebraic manifolds
(and, further, algebraic varieties);

(1) to define C-manifolds (aka Riemann surfaces if n = 1).

In both cases, one cannot reformulate the definition via (2): in the former case the
(local) solution of polynomial equations is not polynomial; in the latter there is no
way to embed an abstract C-manifold into CN (as in Proposition 4.2) because of
the rigidity of complex-differentiable (=holomorphic=analytic) mappings.

4.1. Tangent space and tangent bundle of a smooth manifold. Let Mn be
a smooth R-manifold and first assume that we view it in the sense of (1) or (2) (i.e.,
as a smooth manifold ‘embedded into RN ; we emphasize this viewpoint by using
the notation MN = Mn

N instead of M = Mn). In this case we can speak about a
tangent space to Mn

N at a point a ∈Mn
N by defining

TaM
n
N := Ker[(Df)(a)] = {(v, [(Dg)(aJ)]v), v ∈ RJ},

where the first definition relies upon (1) and the second upon (2); in this approach
TaM

n
N is understood as an n-dimensional subspace of RN .

It is easy to see that TaMN depends on MN only and not on the choice of f or
the set of coordinates J ⊂ [1, N ], #J = n (clearly, the choice of J (locally) defines
g uniquely). Indeed, for all pairs f and g one has f(xJ , g(xJ)) = 0 and hence the
chain rule gives

[(Df)(a)](v; [(Dg)(aJ)]v) = 0 for all v ∈ RJ ,

i.e., Ker[(Df)(a)] ⊃ {(v, [(Dg)(aJ)]v), v ∈ RJ}. However, the non-degeneracy con-
dition rank[(Df)(a)] = N − n can be written as dim Ker[(Df)(a)] = n. Therefore,
these two spaces are equal since dim{(v, [(Dg)(aJ)]v), v ∈ RJ} = dimRJ = n too.

Let us now give the definition of the tangent space TaM for smooth topological
manifolds, using the preceding discussion as the motivation.

• Let M = Mn be a smooth topological manifold of dimension n and let
a ∈M . Consider the set Γa of all smooth curves γ : [−1, 1]→M such that
γ(0) = a and introduce the equivalence relation

γ ∼ γ1 if (ϕa ◦ γ)′(0) = (ϕa ◦ γ1)′(0)

in a certain (and then in all, by the chain rule) chart Ua 3 a.

Definition 4.3. The tangent space TaM at a ∈M is the set of equivalence classes
Γa/ ∼ equipped with the vector and topological structures of Rn by [γ]↔ (ϕa◦γ)′(0).
(These structures do not depend on the choice of the chart ϕa due to the chain rule.)
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Assume now that f : Mn ⊃ U → Mn1
1 is a C1-mapping between smooth mani-

folds (in general, of different dimensions n 6= n1). The simplest way to define the
derivative of f at a point a ∈ U is to consider a local chart (Ua, ϕa) of M at a, a
local chart (Vb, ψb) of M1 at b := f(a) and to think about the mapping

ψb ◦ f ◦ ϕ−1
a : Rn ⊃ ϕa(Ua)→ ϕb(Vb) ⊂ Rn1

and about its derivative at the point ϕa(a).

• However, one can do better and define (Df)(a) in a chart-invariant way as
a linear operator

(Df)(a) : TaM → Tf(a)M1, Γa 3 γ 7→ f ◦ γ ∈ Γf(a). (4.1)

Indeed, the mapping γ 7→ f ◦ γ can be re-written in local charts as

ϕa ◦ γ 7→ (ψb ◦ f ◦ ϕ−1
a ) ◦ (ϕa ◦ γ) = ψb ◦ f ◦ γ

and hence the derivative D(ψb ◦ f ◦ ϕ−1
a )(ϕ(a)) : Rn → Rn1 can be written as the

linear operator

(ϕa ◦ γ)′(0) 7→ [D(ψb ◦ f ◦ ϕ−1
a )(ϕ(a))](ϕa ◦ γ)′(0) = (ψb ◦ f ◦ γ)′(0),

which also proves that (4.1) is correctly defined as a linear mapping acting from
TaM = Γa/ ∼ to TbM1 = Γb/ ∼ (and not only as a mapping from Γa to Γb).

Remark 4.1. Let us emphasize that the tangent spaces TaM and Tf(a)M1 depend
on the point a. This does not allow one to define higher derivatives of smooth
mappings f : M → M1 in a chart-invariant way: replacing f by ψb ◦ f ◦ ϕ−1

a we
identify all tangent spaces TxM , x ∈ Ua, with each other (and similarly for tangent
spaces TyM1, y ∈ Vb) and this identification is chart-dependent. This discussion
naturally leads to the course ‘Géométrie Différentielle’ so we stop it here.

Instead of identifying the tangent spaces TaM , a ∈M , with each other, one can
view the disjoint union of them as a smooth manifold of the twice larger dimension.

Definition 4.4. Let M be a Ck-smooth topological manifold of dimension n. The
tangent bundle TM of M is a Ck−1-smooth topological manifold of dimension 2n
defined as follows:

◦ as a set, TM :=
⊔
a∈M TaM = {(a, v) : a ∈M, v ∈ TaM};

◦ each chart (Uα;ϕα) of M defines a chart (Uα; Φα) of TM , where
Uα :=

⊔
a∈Uα TaM and the mapping Φα : Uα → Bn × Rn is defined as

Φα : (a, [γa]) 7→ (ϕα(a), (ϕα ◦ γ)′(0)), γa ∈ Γa

(and the topology in TM is induced by the mappings Φα).

It is easy to see that thus defined TM is a Hausdorff topological space (though
never compact – because of the second ‘vector’ component – even if M was compact)
and that the charts Φα are Ck−1-compatible:

Φβ ◦ Φ−1
α : (x , v) 7→

(
(ϕβ ◦ ϕ−1

α )(x) , [D(ϕβ ◦ ϕ−1
α )(x)](v)

)
.

Remark 4.2. It directly follows from the definition that each Ck-smooth mapping
f : Mn⊃ U →Mn1

1 gives rise to a Ck−1-smooth mappingDf : TMn⊃ TU → TMn1
1

defined as (Df)(a, v) := (f(a), [(Df)(a)](v)). However, let us emphasize once again
that the tangent bundles TMn and TMn1

1 are smooth manifolds of dimensions 2n
and 2n1, respectively, thus the ‘second derivative’DDf : TTMn⊃ TTU → TTMn1

1

is a much more complicated object than D2f for f : Rn⊃ U → Rn1 ; cf. Remark 4.1
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Quasi-détour. We conclude this section by sketching a proof of (a weak form of)
the Whitney embedding theorem that says that one can always replace an unknown
(depending on the manifold under consideration) dimension N in Proposition 4.2
by N = 2n + 1. (In fact, one can always take N = 2n and actually this can be
further slightly improved – using very deep techniques – unless n is a power of 2 in
which case the projective space Mn = RPn cannot be embedded into R2n−1.)

Theorem 4.5. Let M = Mn be a compact Ck-smooth topological manifold of di-
mension n with k ≥ 2. Then, there exists a smooth topological manifold M2n+1 em-
bedded into R2n+1 such that M is homeomorphic and Ck-diffeomorphic to M2n+1.

Sketch of the proof. We already know from Proposition 4.2 that it is enough to con-
sider smooth manifolds embedded into a certain space RN (where N � n depends
on a manifold). Thus, it remains to explain how one can decrease this dimension to
2n+ 1. (Decreasing it to 2n is less trivial, letting alone the further improvements.)
The key idea of the proof can be formulated as follows:

• If Mn
N ⊂ RN is a smooth manifold of dimension n embedded into RN with

N ≥ 2n + 2, then there exists a direction h ∈ SN−1 ⊂ RN such that
the orthogonal projection πh⊥ : RN → RN−1 along the direction h is a
diffeomorphism of Mn

N ⊂ RN and Mn
N−1 := πh⊥(Mn

N ) ⊂ RN−1.

Given a direction h ∈ SN−1 (i.e., h ∈ RN such that ‖h‖ = 1), let us discuss what
can go wrong when we replace MN by its orthogonal projection πh⊥MN . The first
(less conceptual) problem is that a pair of distinct points x, y ∈ MN can have the
same projections, which means that

±h = H(x, y) :=
x− y
‖x− y‖

, (x, y)∈(MN×MN )′ := (MN×MN )r{(x, x) : x∈MN}.

To rule out this scenario, note that (MN ×MN )′ is a smooth (non-compact) man-
ifold of dimension 2n and that H is a C1 (even Ck with k ≥ 2) function on this
manifold. Then a simple lemma shows that the Hausdorff dimension of the image
of H cannot be greater than 2n. Provided that 2n < N − 1, this means that there
remains plenty of directions h ∈ SN−1 such that the projection along h leads to
a bijective correspondence of MN and MN−1 := πh⊥(MN ). Since MN is compact,
the continuous bijection πh⊥ : MN →MN−1 is (automatically) a homeomorphism.

A more conceptual obstacle is that, even if MN and MN−1 are homeomorphic
as subsets of RN and RN−1, respectively, the projection MN−1 is not necessary a
smooth manifold embedded in RN−1 if h ∈ TaMN ⊂ RN for a certain a ∈MN .

Exercise: Prove that if h 6∈ TaMN then there exists an open neighborhood of the
point πh⊥a ∈ U ⊂ RN−1 such that MN−1 ∩ U is the graph of a smooth function
and the projection πh⊥ : MN →MN−1 is a local Ck-diffeomorphism near a.

It remains to find h ∈ SN−1 r
⋃
a∈MN

TaMN ⊂ RN . To this end, assume that

MN is locally the graph of a smooth function Va 3 xJ 7→ g(xJ) ∈ R[1,N ]rJ . Then,⋃
xJ∈Va T(xJ ,g(xJ ))MN =

{(
v, [(Dg)(xJ)]v

)
: xJ ∈ Va, v ∈ RJ

}
⊂ RN

is a C1-smooth (actually, Ck−1-smooth, this is where we use the fact that k ≥ 2 and
not just k ≥ 1) image of a 2n-dimensional open set Va ×RJ and thus its Hausdorff
dimension does not exceed 2n. Taking a union over (finitely many) charts we see
that it remains plenty of directions h which can be used to pass from MN to MN−1.

Note that the second part of the proof works for all N ≥ 2n+1. Thus, to improve
R2n+1 to R2n one needs to remove possible ‘non-local’ intersections in M2n. �
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5. Ordinary differential equations: basics

Let E be a Banach space (later on, we will concentrate on the case E = RN ),
O ⊂ R × E be an open set, and f : O → E be a continuous function2. Given a
point (t0, x0) ∈ O, consider the Cauchy problem

u′(t) = f(t, u(t)), u(t0) = x0. (5.1)

A particular case when f does not depend on the time variable t and O = R× U ,
where U is an open set in E, is called autonomous differential equations/systems.
In this case, the mapping f : E ⊃ U → E is called a vector-field on U .

Definition 5.1. A function u ∈ C1(I;E) is called a local solution of (5.1) if I 3 t0
is an open interval (or an open ray or R), u(I) ⊂ O and (5.1) holds for all t ∈ I.

It is worth emphasizing that

• we do not specify in advance the interval I on which u is defined.

Also, note that

• higher-order differential equations u(k)(t) = f(t, u(t), . . . , u(k−1)(t)) can be
re-written as U ′(t) = F (t, U(t)), where U(t) := (u(t), . . . , u(k−1)(t)) ∈ Ek
and F (t, v0, . . . , vk−1) := (v1, v2, . . . , vk−1, f(t, v0, . . . , vk−1));

• the setup is invariant under the time-reversal: if f−(t, x) = −f(2t0 − t, x),
then u−(t) := u(2t0 − t) is a local solution of a similar Cauchy problem
with f replaced by f− and vice versa.

Lemma 5.2. A function u is a local solution of the Cauchy problem (5.1) if and
only if u ∈ C0(I;E), u(I) ⊂ O and the following integral equation is fulfilled:

u(t) = x0 +

∫ t

t0

f(s, u(s))ds for all t ∈ I. (5.2)

In particular, if (5.2) holds, then u ∈ C1(I;E).

Proof. This is a direct corollary of the fundamental theorem of calculus. �

Remark 5.1. One can also consider differential equations on smooth manifolds. In
this case, f should be thought of as a function f : R × M ⊃ O → TM (or as
f : M ⊃ U → TM for autonomous equations) such that f(t, x) ∈ TxM and the
equation (5.1) should be, as usual, understood via local charts ϕα of M as

(ϕα ◦ u)′(t) = (ϕα ◦ γ(u(t)))′(0), where [γ(u(t))] = f(t, u(t))

is an equivalence class of smooth curves γ(u(t)) : (−1, 1)→M passing through the
point u(t) = γ(u(t))(0). Clearly, this differential equation is chart-independent: as
usual, if one replaces a local chart ϕα by another one ϕβ , this simply results in
applying the invertible linear operator D(ϕβ ◦ ϕ−1

α )(ϕα(u(t))) to both sides.

There are several basic questions on the Cauchy problem (5.1):

2It is worth noting that a continuous function is always locally bounded: for each (t0, x0) ∈ O
there exist small enough τ, ρ > 0 such that sup(t,x)∈B(t0,τ)×B(x0,ρ)

‖f(t, x)‖ < +∞. However, if

E is infinite-dimensional, then f can be unbounded on larger sets B(t0, T )×B(x0, R) ⊂ O as the
closed unit ball in E is not compact.
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(1) Local existence: under which conditions on f can one guarantee that a
local solution exists? We do not discuss this in detail, still let us mention
the following results:

• Peano’s theorem for E = RN . For finite-dimensional spaces E,
the continuity assumption f ∈ C(O;E) is already sufficient for the
existence of local solutions.

• However, this is not true for infinite-dimensional Banach spaces E: it
can3 happen that no local solution of (5.1) exists. The reason is that all
the proof of the classical Peano theorem relies on a certain compactness
argument, which fails in infinite-dimensional spaces unless additional
assumptions on f are imposed (e.g., Peano theorem holds provided
that f is a compact mapping, i.e., that it sends closed balls in O into
pre-compact subsets of E); see a détour after Theorem 5.3.

(2) Local uniqueness: under which assumptions on f can one guarantee that
a solution of the Cauchy problem (5.1) is locally unique? (More precisely,
the local uniqueness means that if u1,2 are two solutions of (5.1) defined on
intervals I1,2, respectively, then there exists an open interval t0 ∈ I ⊂ I1∩I2
such that u1(t) = u2(t) for all t ∈ I).

A classical theorem (which is usually attributed to Picard (and Lindelöf)
in the English-German-Polish-Russian tradition, and to Cauchy and Lips-
chitz in the French one) is that the local Lipschitness of f in x:

‖f(t, x)− f(t, y)‖ ≤ Cτ,ρ · ‖x− y‖ for all t ∈ B(t0, τ), x, y ∈ B(x0, ρ) (5.3)

(together with the continuity of f) is sufficient for both the local existence
and uniqueness; see Theorem 5.3 below.

(3) Maximal solutions, more precisely their behavior near the endpoints of
the maximal existence interval. To give a definition, assume that the local
uniqueness property holds at all points of O. Then, it is easy to see that

• if u1,2 are two local solutions of the same Cauchy problem (5.1), then
u1(t) = u2(t) for all t ∈ I1 ∩ I2 (and not only for t ∈ I ⊂ I1 ∩ I2).

[ Proof. the set {t ∈ I1∩I2 : u1(t) = u2(t)} is obviously closed in I1∩I2
but is also open as we can apply the local uniqueness property for the
Cauchy problem with the initial data (t, x), x := u1(t) = u2(t). ]

This observation (provided that the local uniqueness holds everywhere inO)
allows one to define

• the maximal existence interval Imax = Imax(t0, x0) of a local solution
of (5.1) simply as the union of all intervals Iβ on which all possible
local solutions uβ of (5.1) are defined;

• and the maximal solution umax ∈ C1(Imax;E) of (5.1) by setting
u(t) := uβ(t) for t ∈ Iβ ; recall that all these local solutions agree
with each other provided we have the local uniqueness property.

If O = I × U and especially for autonomous equations (in which case
O = R × U), it is natural to ask what can prevent a maximal solution to
be defined on the whole I; e.g., how u(t) behaves if t→ sup Imax < sup I.

3The first example of such a differential equation was given in 1949 by Jean Dieudonné in his
short note Deux exemples singuliers d’equations différetielles (available online).
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Before discussing general theorems, it is instructive to consider the following toy
example: an autonomous differential equation in the one-dimensional space E = R

u′ = |u|α, (5.4)

where α 6= 0 is a fixed parameter. Note that u(t) ≡ 0 is always a solution of this
equation provided that α > 0.

(a) Let α = 1. Then the solutions of (5.4) are Cet and −Ce−t, where C > 0
(the sign appears due to the absolute value in the right-hand side of (5.4)).
This is the best possible situation: we have the local existence and unique-
ness at all points, and Imax = R for all solutions.

(b) Let α > 1. Then the non-zero solution of (5.4) read as

u(t) = |(α− 1)(T − t)|−1/(α−1) · sign(T − t), where T = T (t0, x0) ∈ R.

In this case we still have the local existence and uniqueness at all points
but Imax = (−∞, T ) for solutions started at x0 > 0 and Imax = (T,+∞)
for those with x0 < 0.

(c) Let 0 < α < 1. Similarly to the previous case, local solutions of (5.4) with
x0 6= 0 are

u(t) = |(1− α)(t− T )|1/(1−α) · sign(t− T ), where T = T (t0, x0) ∈ R.

However, now there is no local uniqueness property if x0 = 0. In this case
each local solution can be extended to a solution defined on I = R but we
prefer not to speak about Imax as this extension is not unique4.

Remark 5.2. Note that the right-hand side f(x) = |x|α of (5.4) is not Lipschitz at
the point x0 = 0 but is still α-Hölder, where α can be arbitrary close to 1. This
example illustrates the fact that the Lipschitzness of f (in the space variable x) is
really crucial for the local uniqueness.

(d) Finally, let α < 0, in this case the right-hand side f : U → R of (5.4) is
defined only on U = R+∪R−, the solutions are as in (c) and Imax = (T,+∞)
or Imax = (−∞, T ) depending on the sign of x0. This situation is very
similar to (b) except that instead of the ‘blow-up’ u(t)→ ±∞ as t→ T we
now have u(t)→ 0 6∈ U as t→ T .

We now move back to a general setup. Assume that (t0, x0) ∈ O and that f is
continuous (and hence locally bounded) and locally Lipschitz in x near the point
(t0, x0), namely that for certain τ, ρ > 0 such that B(t0, τ)×B(x0, ρ) ⊂ O we have

‖f(t, x)‖ ≤Mτ,ρ for all (t, x) ∈ B(t0, τ)×B(x0, ρ);

‖f(t, x)− f(t, y)‖ ≤ Cτ,ρ‖x− y‖ for all t ∈ B(t0, τ) and x, y ∈ B(x0, ρ).

Theorem 5.3 (Picard(–Lindelöf)/Cauchy–Lipschitz). Under the above as-
sumptions, there exists ε = ε(τ, ρ,Mτ,ρ, Cτ,ρ) > 0 such that the Cauchy prob-
lem (5.1) has(!) a unique(!) solution on an interval I = Iε(t0) := (t0 − ε, t0 + ε).

4Even without the local uniqueness one can define maximal solutions umax of (5.1) by requiring

that there is no other solution u of (5.1) defined on a strictly larger interval I ) IImax such that
u(t) = umax(t) for all t ∈ Imax. However, if a local solution can be extended to a maximal one in

a non-unique way, then the corresponding intervals Imax can depend on the choice of umax.
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Proof. Assume that ε ≤ τ is chosen so that ε ·Mτ,ρ ≤ 1
2ρ and ε · Cτ,ρ ≤ 1

2 , and
consider a (non-linear) mapping

A : C(I;B(x0,
1
2ρ)) 3 u 7→ Au ∈ C(I;E), (Au)(t) := x0 +

∫ t

t0

f(s, u(s))ds.

Note that A maps C(I;B(x0,
1
2ρ)) into itself since

‖(Au)(t)‖ ≤ |t− t0| ·Mτ,ρ ≤ 1
2ρ for all t ∈ I.

Moreover, A is a 1
2 -Lipschitz contraction since

‖(Au)(t)− (Av)(t)‖ ≤ (t− t0) ·
∫ t

t0

‖f(t, u(s))− f(t, v(s))‖dt

≤ |t− t0|Cτ,ρ · sups∈I ‖u(s)− v(s)‖ ≤ 1
2‖u− v‖ for all t ∈ I.

Therefore, the fixed point principle applies and there exists a unique function
u0 ∈ C(I;B(x0,

1
2ρ)) such that Au0 = u0, which is nothing but the integral re-

formulation (5.2) of the Cauchy problem (5.1).
Concerning the uniqueness, the fixed point argument given above, a priori, does

not forbid the existence of another solution with ‖u(t)‖ > 1
2ρ for a certain t ∈ Iε(t0).

However, it implies the local uniqueness: for each such a solution there exists an
interval I 3 t0 such that u(t) = u0(t) for all t ∈ I (since ‖u(t)−x0‖ ≤ 1

2ρ for t close
enough to t0). Then, the uniqueness of the solution on the whole interval Iε(t0)
follows by the same argument as in the discussion of maximal solutions: the set
{t ∈ Iε(t0) : u(t) = u0(t)} is both closed an open. �

Détour5. If the Lipschitness assumption on f is dropped, then one can still use
the same idea in order to prove the existence of a local solution of the Cauchy
problem (5.1) relying upon another fixed point theorem, e.g., upon

Schauder’s fixed point theorem. If B ⊂ E is a convex closed subset of a Banach
space and A : B → B is a continuous mapping such that A(B) is pre-compact in E,
then A has a fixed point, i.e., there exists u ∈ B such that A(u) = u.

Note that the Schauder fixed point theorem, in particular, generalizes the Brouwer
fixed point theorem in which B = Bn ⊂ Rn is a closed finite-dimensional ball and
thus no additional compactness assumption is required.

To apply this theorem to the existence of solutions of the Cauchy problem (5.1)
with continuous f acting in a finite-dimensional space (this is the classical Peano
theorem mentioned at the beginning of this section), one should prove that the
image of the mapping A is compact in the space C(I;B(x0,

1
2ρ)). This is a more-

or-less straightforward corollary of the Arzelá-Ascoli theorem since the functions
Au are actually, by the definition of A, uniformly Lipschitz in the time variable t.

However, in infinite-dimensional Banach spaces E such a proof (and the lo-
cal existence of solutions of the Cauchy problem (5.1) itself) fails. The reason
is that, though the functions Au are still uniformly Lipschitz, the set of values
{(Au)(t) |u ∈ C(I;B(x0,

1
2ρ))} at a fixed point t 6= t0 is not necessarily compact

in E (in the finite-dimensional setup, this is a triviality since these values are uni-
formly bounded). Therefore, the Arzelá–Ascoli theorem cannot be applied without
additional assumptions on f besides its continuity.

5This was only very briefly mentioned during the lecture. Note that this type of ideas is
extremely important when proving the existence of solutions of équations aux dérivées partielles.
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6. Global solutions and Gronwall’s lemma

We now move to the discussion of the behavior of maximal solutions near the
end-points of their maximal existence intervals. For simplicity, let O = I × U ,
where U ⊂ E is an open set and I ⊂ R is an open interval (recall that we have,
trivially, I = R for autonomous equations as f does not depend on t). In this case,
a maximal solution u ∈ C1(Imax;U) of the differential equation u′(t) = f(t, u(t)) is
called global if Imax = I.

Proposition 6.1. Let f : I × U → E be continuous and locally Lipschitz in x.
Assume that u is a maximal solution and Tmax := sup Imax < sup I. Then, for each
compact K ⊂ U there exists TK < Tmax such that u(t) 6∈ K for all t > TK . In other
words, a maximal solution with Tmax < sup I has to leave all compact subsets of U
as t→ Tmax. (By time-reversal, the same holds if Tmin := inf Imax > inf I.)

Proof. On the contrary, assume that there exists a sequence of times tn ↑ Tmax such
that xn := u(tn) ∈ K. Using the compactness of K and taking a subsequence, we
can assume that xn → x∗ ∈ K ⊂ U as n → ∞. The function f is continuous and
locally Lipschitz in x in a vicinity of the point (Tmax, x∗) ∈ I × U . It follows from
Theorem 5.3 that there exists τ, ρ, ε > 0 such that the Cauchy problem (5.1) admits
a local solution for each initial data (tn, xn) ∈ B(Tmax,

1
2τ)×B(x∗,

1
2ρ) and that this

solution exists for at least time ε > 0 which does not depend on (tn, xn). This leads
to a contradiction provided that n is chosen large enough so that Tmax−tn < ε. �

Let us now assume that U = E. If E is finite-dimensional and Tmax < sup I,
then the fact that a maximal solution u exists from all compacts K ⊂ E simply
means that ‖u(t)‖ → ∞ as t → Tmax. However, if E is infinite-dimensional, then
the behavior can be more complicated unless we impose more assumptions on f .
In particular, it can6 happen that ‖u(t)‖ remains bounded as t → Tmax. Loosely
speaking, this is related to the fact that the continuity and local Lipschitzness (in x)
of the function f does not imply that this function is uniformly Lipschitz (or even
bounded) on bounded closed subsets of I ⊂ E, which are not compact anymore.

The following theorem gives a simple sufficient condition under which all solu-
tions of (5.1) are global. Actually, the idea of its proof and ‘technical’ Lemma 6.3
are more important than the result itself.

Theorem 6.2. Let f : I × E → E be a globally Lipschitz function, i.e. assume
that ‖f(t, x)−f(t, y)‖ ≤ C‖x−y‖ for all t ∈ I and all x, y ∈ E. Then, all maximal
solutions of the differential equation u′(t) = f(t, u(t)) are global.

Trivially, one can generalize this result to the case when the Lipschitz con-
stant C = C(t) depends on t in, e.g., a continuous way so that maxt∈J C(t) < +∞
for all closed segments J ⊂ I. Indeed, in this case Theorem 6.2 implies that
Imax ⊃ J for all closed segments J and hence Imax = I.

The proof of Theorem 6.2 is based upon Lemma 6.3, known as Gronwall’s lemma.
Before giving, a (stronger) ’integral’ version that we use below, let us first formulate
its (weaker) ‘differential’ variant.

6E.g., see the note Deux exemples singuliers d’equations différetielles, Jean Dieudonné (1949).
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• Let a function w ∈ C1([0, T ]) and constants a > 0 and b ∈ R be such that
the differential inequality w′(s) ≤ aw(s) + b holds for all s ∈ [0, T ]. Then,
w(t) ≤ w0(t) for all t ∈ [0, T ], where

w0(t) := eat · (w(0) + b
a )− b

a

solves the equation w′0(s) = aw0(s) + b with the initial data w0(0) = w(0).

By integrating the assumption w′(s) ≤ aw(s) + b we see that

w(t) ≤ w(0) +

∫ t

0

(aw(s)+ b)ds for all t ∈ [0, T ]. (6.1)

It turns out that this (weaker) inequality is sufficient for the same conclusion.

Lemma 6.3 (Gronwall). Let a > 0, b ∈ R, and w ∈ C([0, T ];R) be such that the
inequality (6.1) holds on [0, T ]. Then, w(t) + b

a ≤ e
at · (w(0) + b

a ) for all t ∈ [0, T ].

Proof. For t ∈ [0, T ], denote

v(t) := e−at ·
(
w(0) +

b

a
+

∫ t

0

(aw(s)+b)ds

)
.

It is easy to see that the condition (6.1) can be written as

eat · v′(t) = −a ·
(
w(0) +

b

a
+

∫ t

0

(aw(s)+b)ds

)
+ (aw(t) + b)

= a ·
(
w(t)− w(0)−

∫ t

0

(aw(s)+b)ds

)
≤ 0.

Therefore, we have

w(t) + b
a

(6.1)

≤ eat · v(t) ≤ eat · v(0) = eat · (w(0) + b
a ),

as claimed. �

Proof of Theorem 6.2. Let u ∈ C(Imax;E) be the maximal solution of the Cauchy
problem (5.1) with the initial data u(t0) = x0. Assume, by contradiction, that
Tmax := sup Imax < sup I and denote (see also Remark 6.1 below)

w(t) := ‖u(t)− x0‖ for t ∈ [t0, Tmax).

Due to the global Lipschitzness of the function f we have

‖u′(t)‖ = ‖f(t, u(t))‖ ≤ ‖f(t, u(t))− f(t, x0)‖+ ‖f(t, x0)‖
≤ C · ‖u(t)− x0‖+ ‖f(t, x0)‖
≤ Cw(t) +M, where M := maxt∈[t0,Tmax] ‖f(t, x0)‖,

note that M < +∞ due to the continuity of f since the second argument of f(t, x0)
does not change. It is not hard to deduce from this inequality that

w(t)− w(t0) ≤
∫ t

t0

(Cw(s) +M)ds for all t ∈ [t0, Tmax). (6.2)

Loosely speaking, this corresponds to saying that w′(t) ≤ ‖u′(t)‖; however a tech-
nical problem is that the function w(t) is not necessarily differentiable. To be on a
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safe side, one can do the following: for each partition t0 = s0 < s1 < . . . < sN = t
of the segment [t0, t] note that

w(sk+1)− w(sk) = ‖u(sk+1)− x0‖ − ‖u(sk)− x0‖
≤ ‖u(sk+1)− u(sk)‖ ≤ maxs∈[sk,sk+1] ‖u′(s)‖ · (sk+1 − sk)

≤ maxs∈[sk,sk+1](Cw(s)+M) · (sk+1 − sk),

where we use the ‘bounded increments’ Lemma 1.8 in the second line. Therefore,

w(t)− w(t0) ≤
∑N−1
k=0 maxs∈[sk,sk+1](Cw(s)+M) · (sk+1 − sk)

and refining the partition sk one gets the Riemann integral in the right-hand side.
Gronwall’s lemma applied to the inequality (6.2) gives the estimate

w(t) ≤ (M/C) ·
(
eC(t−t0) − 1

)
for all t ∈ [t0, Tmax).

In particular, the norm ‖u(t)‖ remains bounded as t → Tmax. This already con-
cludes the proof in the finite-dimensional case E = RN as in this case we should
have ‖u(t)‖ → ∞ as t→ Tmax < sup Imax due to Proposition 6.1.

Even if E is infinite-dimensional, the global Lipschitzness of f implies that the
function

‖f(t, x)‖ ≤ C(‖x− u(t)‖+ w(t)) +M

also remains uniformly bounded in a (fixed size) vicinity of the trajectory (t, u(t))
as t→ Tmax and thus we have a contradiction with Theorem 5.3: for each t < Tmax

the maximal solution u(t) admits a continuation on the interval Iε(t) = (t−ε, t+ε),
where ε does not depend on t→ Tmax. �

Remark 6.1. In the case E = Rn (or in a Hilbert space), there is a standard
trick to avoid the technical discussion related to a possible non-smoothness of the
function ‖u(t)− x0‖ and to simplify the proof. To this end, consider the function

w(t) := ‖u(t)− x0‖2, t ∈ [t0, Tmax)

instead of ‖u(t)− x0‖. Note that this function is differentiable and that

w′(t) = 2〈u′(t), u(t)− x0〉 ≤ 2‖u′(t)‖ · ‖u(t)− x0‖ = 2‖u′(t)‖ · w(t).

and hence

w′(t) ≤ 2(C‖u(t)− x0‖+M) · ‖u(t)− x0‖ ≤ (2C + 1) · w(t) +M2

(because of the Cauchy–Schwarz inequality applied to the term 2M‖u(t) − x0‖).
The rest of the proof goes as above by applying the Gronwall lemma to the last
inequality instead of (6.2).

We now come back to a general situation f : R × E ⊃ O → E. Another
useful corollary of Lemma 6.3 is the following lemma, which claims the stability of
solutions with respect to the initial data.

Lemma 6.4. Let (t0, x1), (t0, x2) ∈ O and u1,2 : I1,2 → E be solutions of the
Cauchy problem (5.1) with initial data u1,2(t0) = x1,2. If

‖f(s, u2(s))− f(s, u1(s))‖ ≤ C‖u2(s)− u1(s)‖ (6.3)

for all s ∈ I1 ∩ I2, then ‖u2(t)− u1(t)‖ ≤ eC|t−t0| · ‖x2 − x1‖ for all t ∈ I1 ∩ I2.
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Proof. Denote w(t) := ‖u2(t) − u1(t)‖. As in the proof of Theorem 6.2 in what
concerns technical details, we have

w(t)− w(0) ≤
∫ t

t0

‖u′2(s)− u′1(s)‖ds ≤
∫ t

t0

Cw(s)ds for t > t0 .

Therefore, w(t) ≤ eC(t−t0) · w(0) due to the Gronwall lemma. A similar estimate
for t < t0 follows by the time-reversal. �

We will continue discussing differential equations on January 04, 06, 11 and 13.
Merry Christmas, Happy New Year and stay safe!

January 04, 2021

7. Dependence on the initial data

From now onwards assume that

a continuous function f : R× E ⊃ O → E is bounded and
uniformly Lipschitz in x on all bounded closed sets F ⊂ O.

(7.1)

In particular, this holds7 true provided that E is finite-dimensional and f is con-
tinuous and locally Lipschitz in x (i.e., under usual assumptions required for the
local existence and uniqueness of solutions). However, if E is infinite-dimensional,
then bounded closed sets are not compact and one can view (7.1) as an additional
‘regularity-type’ assumption on the right-hand side of the differential equation (5.1).

Given t0 ∈ I, let

• Imax(t0, x0) denote the maximal existence interval of the solution of (5.1);

• Dt0 :=
⋃
x∈E:(t0,x)∈O(Imax(t0, x)× {x}) ⊂ R× E;

• a mapping ϕt0 : Dt0 → E, sometimes called the flow of the differential
equation u′(t) = f(t, u(t)), be defined as ϕt0(t, x) := u(t0,x)(t), where u(t0,x)

is the solution of the Cauchy problem with the initial data u(t0,x)(t0) = x.
For shortness, we will also use the notation ϕtt0(x) := ϕt0(t, x).

For autonomous differential equations u′(t) = f(u(t)) the dependence of the flow
ϕt0 on t0 is marginal: ϕt0(t, x) = ϕt−t0(x), where ϕs(x) := ϕs0(x) = ϕ0(s, x).

Example. Consider an autonomous equation u′(t) = (u(t))2 − 1 in E = R. Then,

◦ u(t) ≡ ±1 are constant solutions;
◦ if x0 ∈ [−1, 1], then, due to the local uniqueness, the solution cannot cross

the lines ±1, thus it is global, i.e., exists for all t ∈ R;
◦ if x0 > 1 (similarly, if x0 < −1), then the solution blows up in a finite time;
◦ in fact, all solutions of this equation can be written explicitly (exercise) as
u(t) = (1 + ce2t)/(1 − ce2t), where c = (u(0) − 1)/(u(0) + 1) ∈ R ∪ {∞}.
This means that

ϕt(x) =
x− tanh t

1− x tanh t
, D0 = {(t, x) ∈ R2 : x tanh t < 1}.

7Indeed, if f is not Lipschitz in x on a compact set F ⊂ O, then one can find two sequences

of points (tn, xn), (tn, yn) ∈ F such that ‖f(tn, xn) − f(tn, yn)‖/‖xn − yn‖ → ∞ as n → ∞.

Passing to a subsequence we can assume that tn → t∗, xn → x∗ and yn → y∗ as n → ∞, which
directly leads to a contradiction in both cases x∗ 6= y∗ (trivially) and x∗ = y∗ (because of the

local Lipschitzness of f in x near the point (t∗, x∗) ∈ F ⊂ O).



28 DMITRY CHELKAK, DMA ENS 2020

Proposition 7.1. Under the ‘usual’ assumptions (7.1), the following is fulfilled:
(i) the set Dt0 ⊂ R×E is open and (ii) the mapping ϕt0 is locally Lipschitz on Dt0 .

Proof. (i) Let (t0, x0) ∈ O and [t0, t1] ⊂ Imax(t0, x0); the case t1 < t0 is similar.
We need to prove that [t0, t1] ∈ Imax(t0, x) for all x sufficiently close to x0.

Let u0(s) := ϕt0(s, x0) be the solution of the Cauchy problem with u0(t0) = x0.
For each t ∈ [t0, t1] there exists ρ(t) > 0 such that B((t, u0(t)); 4ρ(t)) ⊂ O, where
B stands for the closed ball in the Cartesian product R × E equipped with the
norm ‖(s, w) − (t, u)‖ := |s − t| + ‖w − u‖. The trajectory {(s, u0(s))}s∈[t0,t1] is a
continuous image of a compact and so is compact. Hence, we can find a finite cover

{(s, u0(s))}s∈[t0,t1] ⊂
⋃
k=1,...,N B((sk, u0(sk)); ρ(sk)), where sk ∈ [t0, t1].

Define a closed set T ⊂ O (a ‘tube’ around the trajectory (s, u0(s))) by

T := {(s, w) : s ∈ [t0, t1], ‖w − u0(s)‖ ≤ r}, r := mink=1,...,N ρ(sk).

Since ‖(s, w)− (sk, u0(sk))‖ ≤ ‖w − u(s)‖+ ‖(s, u(s))− (sk, u(sk))‖ we have

T ⊂
⋃
k=1...,N B((sk, u0(sk)); 2ρ(sk)).

Assume now that ‖x − x0‖ ≤ r is such that t1 < Tmax(t0, x) := sup Imax(t0, x).
Since the function f is bounded and uniformly Lipschitz in x on a bigger set

F :=
⋃

k=1...,N
B((sk, u0(sk)); 4ρ(sk)) ⊃

⋃
(s,w)∈T

B((s, w); 2r),

the solution should exit the tube T strictly before then it stops existing:

(s, u(s)) 6∈ T for a certain s ∈ (t0, Tmax(t0, x)). (7.2)

(Otherwise, there is a contradiction with the local existence: if (s, u(s)) ∈ T, then
Imax(t0, x) ⊃ [s, s+ δ), where δ > 0 does no depend on s→ Tmax(x).)

Finally, let ‖f(s, w2)− f(s, w1)‖ ≤ C‖w2 − w1‖ for (s, w1), (s, w2) ∈ T and

‖x− x0‖ ≤ ε := re−C(t1−t0).

We now claim that t1 < Tmax(t0, x), i.e., that the solution u(t) := ϕt0(t, x) of the
Cauchy problem with the initial data u(t0) = x exists for all s ∈ [t0, t1]. Indeed, if

inf{s ∈ [t0, Tmax(t0, x)) : (7.2) holds} =: texit < t1,

then Lemma 6.4 implies that

‖u(texit)− u0(texit)‖ < eC(t1−t0) · ‖u(t0)− u0(t0)‖ ≤ eC(t1−t0) · ε = r,

which contradict to the definition of texit. Therefore, we have t1 ≤ texit < Tmax(t0, x).

(ii) Consider a point (t, x) ∈ Dt0 and let t < t1 < sup Imax(t0, x). Repeating
the arguments given above, we see that ‖ϕt0(t, y) − ϕt0(t, x)‖ ≤ eC(t1−t0)‖y − x‖
provided that ‖y−x‖ ≤ ε(x); in other words the flow ϕt0 is Lipschitz in x near the
point (t, x). The uniform Lipschitzness of ϕt0(t, y) in t trivially follows from the
local boundedness of f , which gives ‖ϕt0(t′, y)−ϕt0(t, y)‖ ≤M‖t′−t‖ for all t′ close
enough to t and all y such that ‖y − x‖ ≤ ε(x), where M denotes the maximum
of f on an appropriate closed bounded subset of O. �

Assume now that f(t, x) is differentiable in x and, similarly to (7.1), that

both mappings f : R× E ⊃ O → E and Dxf : O → L(E) are
continuous and bounded on all bounded closed sets F ⊂ O.

(7.3)

(trivially, if E is finite-dimensional, then the continuity of f and Dxf is enough).
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Theorem 7.2. Under assumption (7.3) we have ϕt0 ∈ C1(Dt0 ;E). The derivative
Φ(t0,x0)(t) := Dxϕt0(t, x0) ∈ L(E) solves the linear differential equation

Φ′(t) = [Dxf ](t, ϕt0(t, x0)) ◦ Φ(t) (7.4)

with initial data Φ(t0) = Id (recall that ∂
∂tϕt0(t, x) = f(t, ϕt0(t, x)) by definition).

To prove this theorem we need first to discuss basics of linear differential equa-
tions, this is done in Section 8. However, let us first make two comments:

Remark 7.1. (i) The equation (7.4) can be formally derived as follows:

∂
∂t [Dxϕt0(t, x0)]

[???]
= Dx[ ∂∂tϕt0(t, x0)]

= Dx[f(t, ϕt0(t, x0))] = [Dxf ](t, ϕt0(t, x0)) ◦Dxϕt0(t, x0).

(Note that, by definition, ϕt0(t0, x) = x and hence Dxϕt0(t0, x) = Id.) Justifying
this formal computation is not straightforward. In fact, the proof of Theorem 7.2
given below goes in a different way and gives (7.4) directly.

(ii) Similarly, if the function f is n times continuously differentiable in x, then so is
the flow ϕt0 . One can prove this statement by iteratively applying Theorem 7.2 to
the derivatives Dk

xϕt0(t, x); we will not discuss technical details in these lectures.

8. Linear differential equations and Duhamel’s principle

Let us consider a linear differential equation

u′(t) = A(t)u(t) + b(t), t ∈ I ⊂ R, (8.1)

where A ∈ C(I;L(E)) and b ∈ C(I;E). The right-hand side is a globally Lipschitz
function of u(t). Therefore, all maximal solutions of the equation (8.1) are global
(i.e., exist on the whole interval I) due to Theorem 6.2.

Homogeneous case (b(t) ≡ 0): resolvent. Consider the following L(E)-valued
(we now look for a function Rt0 : I → L(E) instead of u : I → E) Cauchy problem

R′t0(t) = A(t)Rt0(t), Rt0(t0) = Id; (8.2)

note that the right-hand side is still globally Lipschitz in R and hence this Cauchy
problem has a global solution Rt0 ∈ C1(I;L(E)). The operator-valued solution
Rt0(t) (or Rtt0 or R(t, t0)) of the Cauchy problem (5.1) is called the resolvent of the
homogeneous linear differential equation u′(t) = A(t)u(t). It is easy to see that

• if u′(t) = A(t)u(t), then u(t) = R(t, t0)u(t0) (indeed, the right-hand side
satisfies the same differential equation and has the same value at t = t0);

• the identity R(t3, t1) = R(t3, t2)R(t2, t1) holds for all t1, t2, t3 ∈ I (in-
deed, as operator-valued functions of t3 both sides solve the same equation
R′(t) = A(t)R(t) with the same initial data at t = t2);

• in particular, R(s, t)R(t, s) = Id for all s, t ∈ I.

Inhomogeneous case: Duhamel’s principle.

Proposition 8.1. Let u(t) solves the differential equation (8.1) and t0 ∈ I. Then,

u(t) = R(t, t0)u(t0) +
∫ t
t0
R(t, s)b(s)ds, (8.3)

where the resolvent R(t, t0) := Rt0(t) is defined by (8.2).

We will start the next lecture with a proof of Proposition 8.1 and then will derive
Theorem 7.2 from this formula.
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We begin this lecture with the proofs of Proposition 8.1 (Duhamel’s principle)
and Theorem 7.2 (differentiability of the flow ϕt0(t, x) defined by a differential
equation with a differentiable right-hand side f(t, x)). We will continue discussing
linear differential equations after the latter proof.

Proof of Proposition 8.1 (Duhamel’s principle). Let v(t) := R(t0, t)u(t) or, equiv-
alently, u(t) = R(t, t0)v(t) (this definition can be understood as follows: if we
solve the homogeneous differential equation w′(s) = A(s)w(s) with the initial data
w(t) = u(t), then w(t0) = v(t)). Then,

u′(s) = A(s)R(s, t0)v(s) +R(s, t0)v′(s) = A(s)u(s) +R(s, t0)v′(s),

which means that v′(s) = R(t0, s)b(s) and hence v(t) = v(t0) +
∫ t
t0
R(t0, s)b(s)ds.

This directly implies (8.3) since v(t0) = u(t0) and R(t, t0)R(t0, s) = R(t, s). �

Proof of Theorem 7.2 (differentiability of the flow ϕt0(t, x)). For shortness, assume
that t0 = 0 and let t > 0 = t0 (the case t < t0 is similar). Denote ϕt(x) := ϕt0(t, x)
and A(t) := [Dxf ](t, ϕt(x0)).

Let 0 < t < Tmax := sup Imax(0, x0), the case t < 0 is similar. It follows from
Lemma 6.4 and Proposition 7.1 that there exist ε, C > 0 such that

‖ϕs(x)− ϕs(x0)‖ ≤ eCs · ‖x− x0‖ uniformly in x ∈ B(x0, ε) and s ∈ [0, t].

Note that we have (see Lemma 1.8)

‖f(s, ϕs(x))− f(s, ϕs(x0))− [A(s)](ϕs(x)− ϕs(x0))‖
≤ supy∈[ϕs(x0),ϕs(x)] ‖[Dxf ](s, y)−A(s)‖ · ‖ϕs(x)− ϕs(x0)‖.

Moreover, it easily follows from the continuity of Dxf and the compactness of the
trajectory {ϕs(x0), s ∈ [0, t]} ⊂ E that, as ‖x− x0‖ → 0,

supy∈[ϕs(x0),ϕs(x)] ‖[Dxf ](s, y)−A(s)‖ → 0 uniformly in s ∈ [0, t].

Denote u(s, x) := ϕs(x)− ϕs(x0). It follows from the preceding discussion that

u′(s, x) = f(s, ϕs(x))− f(s, ϕs(x0)) = A(s)u(s, x) + b(s, x)

where b(s, x) = o(‖x−x0‖) uniformly in s ∈ [0, t]. We now apply Duhamel’s formula
(see Proposition 8.1) and conclude that

u(t, x) = R(t, 0)u(0, x) +
∫ t

0
R(t, s)b(s, x)ds

= [Φ(t0,x0)(t)](x− x0) + o(‖x− x0‖),

where R(t, s) denotes the resolvent of the linear equation Φ′(t) = A(t)Φ(t). Note
that this equation is nothing but (7.4), which we use to define Φ(t0,x0)(t) := R(t, 0).
The proof is complete. �

Example. Before going further, let us consider a toy example of a linear equa-
tion coming from everybody’s childhood (as at first (quadratic) approximation this
example describes the response of a swing to a periodic force sin t):

u′′(t) = −u(t) + ε sin t, u(0) = u′(0) = 0
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(where ε ∈ R can be thought of as a (small) parameter), which can be rewritten as(
u′1(t)
u′2(t)

)
=

(
0 1
−1 0

)(
u′1(t)
u′2(t)

)
+

(
0

ε sin t

)
, u1(0) = u2(0) = 0.

It is easy to see that

R(t, s) = exp

[
(t−s)

(
0 1
−1 0

)]
=

(
cos(t−s) sin(t−s)
− sin(t−s) cos(t−s)

)
and hence the solution is given by

u(t) = ε
∫ t

0
sin(t−s) sin s ds = 1

2ε(−t cos t+ sin t).

Note a resonance effect: the solution grows linearly in t but if we replace the
external force by 1 or by sinωt with ω 6= ±1, then u(t) remains bounded for all t.

Proposition 8.2. The following identity holds: detR(t, t0) = exp
[ ∫ t
t0

Tr(A(s))ds
]
.

Remark 8.1. If A(s) = A does not depend on s, then R(t, t0) = exp[(t−t0)A] and
the identity is trivial since det(expM) = exp(TrM) for all matrices M ∈ Cn×n
(this is straightforward by considering the Jordan normal form of M). However,
let us emphasize that, in general,

R(t, t0) 6= exp
[ ∫ t
t0
A(s)ds

]
since (exp[M(t)])′ 6= M ′(t) exp[M(t)].

Proof. Let R(t, t0) = [r1(t), . . . , rn(t)], where rk : I → Rn solves the equation
u′(t) = A(t)u(t) with the initial data rk(t0) = ek, the k-th basis vector of Rn. Since
detR(t, t0) is a multi-linear function of r(t), . . . , rn(t), we have

(detR(t, t0))′/ detR(t, t0)

=
∑n
k=1 det[r1(t), . . . , rk−1(t), A(t)rk(t), rk+1(t), . . . , rn(t)] /detR(t, t0)

=
∑n
k=1 det

(
R(t0, t) · [r1(t), . . . , rk−1(t), A(t)rk(t), rk+1(t), . . . , rn(t)]

)
=
∑n
k=1 det[e1, . . . , ek−1, R(t0, t)A(t)R(t, t0)ek, ek+1, . . . , en]

= Tr[R(t0, t)A(t)R(t, t0)] = Tr[R(t, t0)R(t0, t)A(t)] = Tr[A(t)].

The claim is now trivial since detR(t0, t0) = det Id = 1. �

Quasi-détour. Hamiltonian systems. This is an important class of autonomous
differential equations (or systems of equations in a phase space u = u(t) ∈ E = R2n)
which originated in the work of Hamilton (1805–1865) on the classical mechanics.

• Let u = (q, p), where q = q(t) ∈ Rn is called (generalized) positions and
p = p(t) ∈ Rn are called (generalized) momenta of a system.

• Let H : R2n+1 → R be a smooth function called Hamiltonian, in classical
mechanics H(t, q, p) = H(q, p) is the energy of a system in a state (q, p).

• A Hamiltonian system of differential equations in R2n is

q′k(t) = [∂H/∂pk](t, q(t), p(t)),

p′k(t) = −[∂H/∂qk](t, q(t), p(t)),
(8.4)

or, equivalently,

u′(t) = Ω · t∇uH(t, u(t)), Ω :=

(
0 Id
− Id 0

)
(8.5)

(recall that in these notes we view the gradient ∇uH as a ‘row’ vector).
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Example. Consider a function H(q, p) :=
∑n
k=1

1
2mk

p2
k + V (q1, . . . , qk); the two

terms are the kinetic and the potential energy of a system. Equations (8.4) are
nothing but the Newton’s laws of motion. It is worth noting that the homogeneous
equation u′′(t) = −u(t) mentioned above can be obtained in this way (with n = 1)
if we set q(t) := u(t), p(t) := u′(t) and H(q, p) := 1

2 (p2 + q2). (For a ‘real’ circular

pendulum, the potential is V (q) = 1 − cos q = 1
2q

2 + O(q4), this is why above we
said that u′′(t) = −u(t) should be viewed as a first (quadratic) approximation.)

Simple fact. If the Hamiltonian H(t, q, p) = H(q, p) does not depend on time,
then the value H(q(t), p(t)) does not change along the trajectories: indeed,

d

dt
H(q(t), p(t)) = ∇H(q(t), p(t)) · Ω t∇H(q(t), p(t)) = 0

(recall that, from a physics perspective, H(q, p) is nothing but the energy of a
system in the state (q, p), so this fact corresponds to the conservation of energy).

A much deeper fact (which is also true for time-dependent Hamiltonians) is

Theorem 8.3 (Liouville). The flow ϕtt0 of a Hamiltonian system conserves the
volume in the phase space: the determinant of the Jacobian J[ϕtt0 ] = 1.

We cannot discuss the proof of Liouville’s theorem in these notes except in the
trivial case of quadratic Hamiltonians:

Proposition 8.4. Liouville’s theorem holds provided that H(t, u) = 〈u,H(t)u〉,
where H = tH ∈ C(I,R2n×2n).

Proof. Note that we have t∇uH(t, u) = 2H(t)u, thus equation (8.5) reads as u′(t) =
2ΩH(t)u(t). It remains to apply Proposition 8.2 since

Tr[ΩM ] = Tr[t(ΩM)] = Tr[−MΩ] = 0 if M = tM. �

Détour8. Heat equation in Rn. Formally(!!), one can view the classical (inho-
mogeneous) heat equation

∂u

∂t
(t, x) = ∆u(t, x) + b(t, x), u(0, x) = u0(x).

(where u : R+ × Rn → R is an unknown function) as a linear differential equation
u′(t) = ∆u(t) + b(t) for a function u ∈ C1(R+;E), e.g., with E = L2(Rn). An
obvious problem of this approach is that the Laplacian u 7→ ∆u is not a bounded
linear operator: it is not even defined on the whole space E = L2(Rn). However,
this can be eventually overcome due to the following observation:

the resolvent R(t, 0) = exp(t∆) (defined, e.g., via the spectral the-
ory of self-adjoint operators) belongs to L(E) for t ≥ 0 and satisfies
‖R(t, 0)‖L(E) ≤ 1 (this follows from the fact that spec(−∆) = R+).

(In fact, the resolvent exp(t∆) has even much nicer properties:
for each t > 0 it maps L2(Rn) into C∞(Rn) ∩ L2(Rn).)

In particular, Duhamel’s principle applies to the heat equation as well as to other
equations (e.g., to the classical wave equation). This discussion naturally leads
towards basics of the course ‘Equations aux Dérivées Partielles’.

8This discussion was totally omitted during the lecture.
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9. Lyapunov stability of stationary points

Let E = Rn be a finite-dimensional space and consider an autonomous differen-
tial equation (system)

u′(t) = f(u(t)), where f ∈ C1(U ;E) (9.1)

is a C1-smooth vector-field on U ⊂ E. Two important9 cases of such systems are

◦ Hamiltonian equations (see last lecture), for which f = Ω t∇H;
◦ gradient-descent equations for which f = − t∇E , where E ∈ C2(U ;R)

(which are often used to find a (local) minimum of a given function Ψ).

Let ϕt(x) = ϕt0(t0 + t, x), x ∈ U , t ∈ Imax(x) := Imax(0, x) be the flow defined
by the equation (9.1); recall that ϕt ∈ C1(U ;U).

• The curves (ϕt(x))t∈Imax(x) are called integral curves of the vector-field f .

Sometimes, one also calls the decomposition of U into integral curves of (9.1) the
phase plot of the equation/system. Let x0 ∈ U . If f(x0) 6= 0, then the integral
curves passing near x0 are close to straight lines going in the direction f(x0).

• If f(x0) = 0, then ϕt(x0) = x0 and x0 is called a stationary point of f .

Further, a stationary point x0 is called

• stable if for each C > 0 there exist ε = ε(C) > 0 such that Tmax(x) = +∞
and ‖ϕt(x)− x0‖ ≤ C for all x ∈ B(x0, ε) ⊂ U and t ≥ 0;
• asymptotically stable if one also has ϕt(x)→ x0 as t→ +∞ for all x ∈ B(x0, ε0)

provided that ε0 > 0 is small enough;
• exponentially stable if, in addition to the above, there exist α,C > 0 such

that ‖ϕt(x)− x0‖ ≤ Ce−αt‖x− x0‖ for all x ∈ B(x0, ε0) and t ≥ 0.

Near a stationary point x0 the equation (9.1) can be written as

d
dt (u(t)− x0) = A(u(t)− x0) + o(‖u(t)− x0‖), where A := [Df ](x0) ∈ Rn×n.

One can consider a linear approximation v′(t) = Av(t) of this equation. Clearly,
if A has zero eigenvalues, then the behaviour of trajectories near the corresponding
eigenspace cannot be modeled by this linear approximation so we assume that
λk 6= 0. To develop an intuition, let us consider small-dimensional examples. A
general perspective, which we will not(!) justify, is the following: the trajectories
of the original equation (9.1) and those of its linearization v′(t) = Av(t) near x0

have ‘the same structure’ provided that Imλk 6= 0 for all k = 1, . . . , n.

• Let n = 1. If A > 0, then the solution grows as t → +∞ whilst, if A < 0,
then the solution decays exponentially fast as t → +∞. Note that this is
exactly what happens with solutions of the equation u′(t) = (u(t))2−1 near
the stationary points u = ±1: the stationary point u = +1 is unstable, the
stationary point u = −1 is exponentially stable.

9Détour (this discussion was totally omitted during the lecture). It is worth noting that, at
lest formally, the classical heat equation ut = ∆u, which was already mentioned during the last

lecture, can be thought of as a gradient-descent equation with E(u) := 1
2

∫
Rn ‖∇u(x)‖2dx. Indeed,

a formal integration by parts implies that [∇E(u)]h =
∫
〈∇u(x),∇h(x)〉dx = −

∫
∆u(x)h(x)dx.

In a similar manner, the classical wave equation utt = ∆u can be, at least formally viewed as

a Hamiltonian system with the Hamiltonian H(u, v) := 1
2

∫
Rn (‖∇u(x)‖2 + (v(x))2)dx.

However, let us emphasize that it is not at all easy to adapt the finite-dimensional discussion

to these equations; we mention them here only in order to make links with other courses.
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• Now let n = 2. The real 2×2 matrix A has either two real eigenvalues or two
complex-conjugated ones. Assume for simplicity that λ1 6= λ2. Changing
the basis in R2 appropriately, we can assume that

A =

(
a1 0
0 a2

)
or A =

(
a b
−b a

)
,

where λ1 = a+ ib and λ2 = a− ib in the second case. In the first case (two
real eigenvalues) we have the following situations:

◦ If both 0 > a1,2 = λ1,2, then all solutions decay as t → +∞ whilst, if
both 0 < λ1,2 = a1,2, then all solutions grow as t → +∞. Note that

exp(ta2) = [exp(ta1)]a2/a1 , so the solutions of the linearized equation
looks like power-low curves. Stationary points with such local behavior
are called stable/unstable nodes.

◦ If a1 < 0 < a2, then the picture is different: the solution started at a
vector v(0) = t(v1(0), 0) exponentially decays whist all other solution
grow as t→ +∞. Such stationary points are called saddle points.

◦ The name saddle point comes from considering the gradient-descent
flow u′(t) = −[t∇E ](u(t)): local minima of the function E : R2 → R
give rise to stable nodes, local maxima – to unstable nodes, and the
saddle points are those points where [t∇E ](x0) = 0 but the Hessian
[∇t∇E ](x0) is not sign-definite.

In the second case (two complex-conjugated eigenvalues) the solutions can
be written explicitly as

v1(t) = eat(v1(0) cos bt+ v2(0) sin bt),
v2(t) = eat(−v1(0) sin bt+ v2(0) cos bt).

◦ The solutions of the linearized equation are logarithmic spirals, either
going towards the origin if a < 0 or diverging from it if a > 0. Such
stationary points are called stable/unstable foci.

◦ If a = 0, then the trajectories of v′(t) = Av(t) are circles (or ellipses
in the original coordinate system). Such stationary points are called
centers. However, let us emphasize that this picture is not stable when
we add smaller terms to the linearization v′(t) = A(t): the trajectories
u(t) − x0 can diverge from v(t) (and of the stationary point x0) as
t→ +∞ due to a kind of a resonance effect mentioned during the last
lecture and produced by lower terms in the expansion of f near x0.

• Clearly, when the dimension n increases, more and more different scenarios
appear depending on the properties of eigenvalues of A. However, the case
n = 2 is already instructive enough: provided that Reλk 6= 0 for all k,
the picture in Rn can be loosely viewed as a direct sum of two- and one-
dimensional pictures in the corresponding eigenspaces of A.

Definition 9.1. (i) A function Φ : U → R is called a Lyapunov function for the
autonomous differential equation (9.1) if ∇Φ(x) · f(x) ≤ 0 for all x ∈ U .

(ii) A function H : U → R is called a first integral if ∇H(x) · f(x) = 0.

Lemma 9.2. A function Φ : U → R is a Lyapunov function for (9.1) if and only
if d

dtΦ(ϕt(x)) ≤ 0 for all trajectories. Similarly, a function H : U → R is a first
integral if H(ϕt(x)) remains constant along the trajectories (this is why the name).
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Proof. By the chain rule, we have d
dtΦ(ϕt(x)) = ∇Φ(ϕt(x)) · f(ϕt(x)). �

In particular,

◦ for gradient-descent systems the function E is a Lyapunov function;
◦ for autonomous Hamiltonian systems the Hamiltonian H is a first integral

and hence a Lyapunov function.

Proposition 9.3. If x0 is a strict (i.e., [D2Φ](x0) ≥ β2 Id, β > 0) local minimum
of a Lyapunov function Φ, then x0 is a stable stationary point.

Proof. Let Φ(x0) + 1
2β

2‖x− x0‖2 ≤ Φ(x) ≤ Φ(x0) + 2B2‖x− x0‖2 near x. Then,

B(x0, ε) ⊂ {x : Φ(x) ≤ Φ(x0) + 2B2ε2} ⊂ B(x0, 2Bβ
−1 · ε)

if ε > 0 is small enough. Since Φ(ϕt(x)) is a non-increasing function, we have
‖ϕt(x)−x0‖ ≤ C if ‖x−x0‖ ≤ ε := 1

2βB
−1 ·C provided that C is small enough. �

The following theorem is a standard criterion of stability of stationary points.

Theorem 9.4. Let x0 be a stationary point of the autonomous equation (9.1) and
all eigenvalues λk, k = 1, . . . , n, of the matrix [Df ](x0) satisfy Reλk ≤ −α < 0.
Then, x0 is a stable and, moreover, an exponentially stable stationary point.

Proof. Let A = [Df ](x0). Considering the Jordan normal form of A we can find
an invertible complex-valued matrix Q such that QAQ−1 = Λ + E, where Λ =
diag{λ1, . . . , λn} and ‖E‖ ≤ 1

4α. Indeed, 10

Let Φ(x) := ‖Q(x−x0)‖2 = t(x− x0)tQQ(x− x0). Then,

∇Φ · h = thtQQ(x− x0) + t(x− x0)tQQh

= 2 Re[t(x−x0)tQQh]

and hence, since QA = (Λ + E)Q,

∇Φ(x) · f(x) = 2 Re[t(x− x0)tQQA(x− x0)] + o(‖x− x0‖2)

= 2 Re[t(x− x0)tQ(Λ + E)Q(x− x0)] + o(‖x− x0‖2)

≤ −2α · ‖Q(x− x0)‖2 + 1
2α‖Q(x− x0)‖+ o(‖x− x0‖2)

≤ −α · ‖Q(x− x0)‖2 = −α · Φ(x)

provided that ‖x − x0‖ ≤ ε0 and ε0 > 0 is chosen small enough. In particular, Φ
is a Lyapunov function which has a strict minimum at x0, therefore x0 is a stable
stationary point. Moreover, we have d

dtΦ(ϕt(x)) ≤ −αΦ(ϕt(x)), which implies (via
Gronwall’s lemma) that Φ(ϕt(x)) ≤ e−αtΦ(x). Since Q is an invertible matrix, we
also have C−1‖x− x0‖2 ≤ Φ(x) ≤ C‖x− x0‖2 for a certain constant C > 0, which
means that ‖ϕt(x)− x0‖ ≤ Ce−αt‖x− x0‖, i.e., the exponential stability. �

10Indeed, one can handle non-trivial Jordan cells by noting that
λ 1 0 0

0 λ 1 0

. . . . . . . . . . . .
0 0 0 λ

 = diag{1, ε, ε2, . . .}


λ ε 0 0

0 λ ε 0

. . . . . . . . . . . .
0 0 0 λ

diag{1, ε−1, ε−2, . . .}.
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10. Vector-fields and derivations on smooth manifolds

Let M be a C∞-smooth manifold and consider the space C∞(M) of smooth
R-valued functions on M .

Definition 10.1. A linear mapping D : C∞(M)→ C∞(M) is called a derivation if
it satisfies the Leibnitz rule: for all f, g ∈ C∞(M) we have D(fg) = fD(g)+gD(f).

It is easy to see that this definition automatically implies that

• D vanishes on constant functions: D(1) = 0 since D(1 · 1) = 2D(1);

• D is a local operation: if f(b) = 0 for all b ∈ Ua ⊃M , then [Df ](a) = 0 (and
hence, by linearity, if f1(b) = f2(b) for all b ∈ Ua, then [Df1](a) = [Df2](a)).
Indeed, if φ ∈ C∞(M) is chosen so that φ(a) = 0 and φ|MrUa = 1, then
f = φf and the Leibnitz rule gives [Df ](a) = [D(φf)](a) = 0.

Let v : M → TM , a 7→ v(a) ∈ TaM , be a smooth vector-field on M . Denote by
ϕtv = ϕt : M →M the flow defined by the differential equation u′(t) = v(u(t)). It
is easy to see that

[Dvf ](a) :=
d

dt
f(ϕtv(a))

∣∣
t=0

(10.1)

defines a derivation on M . An important fact that we prove below (see Theo-
rem 10.3) is that all derivations on M can be obtained in this way, i.e.,

there exists a bijection {derivations} ←→ {smooth vector-fields}.
Recall that smooth manifolds are defined via homeomorphisms (called charts)

ϕα : M ⊃ Uα → Bn := B(0, 1) ⊂ Rn

such that the compositions ϕβ ◦ ϕ−1
α are C∞-mappings between subsets of Rn.

• Given f ∈ C∞(M) and a chart ϕα, denote fα := f ◦ ϕ−1
α ∈ C∞(Bn;R).

This is the same function but considered in Bn ⊂ Rn instead of Uα ⊂M .

Further, recall that the tangent space TaM is formally defined as the space of
equivalence classes of smooth curves γ : (−1, 1) → M passing through a. Given a
chart ϕα, this space is identified with Rn by considering curves ϕα ◦ γ instead of γ.

• For a smooth vector-field v on M and a chart ϕα such that a ∈ Uα, let
a vector-field vα : Bn → Rn be defined as vα(x) := (ϕα ◦ γ)′(0), where
γ ∈ v(ϕ−1

α (x)) (recall that the latter is an equivalence class of smooth
curves passing through the point γ(0) = ϕ−1

α (x) ∈M).

• If we replace ϕα by another chart ϕβ , then

vβ((ϕβ ◦ ϕ−1
α )(x)) = [D(ϕβ ◦ ϕ−1

α )(x)] vα(x) (10.2)

• By definition, the differential equation u′(t) = v(u(t)) on M reads as
u′α(t) = vα(uα(t)) in a chart ϕα, where uα := u ◦ ϕ−1

α ; it is easy to see
from (10.2) that local solutions of this differential equation do not depend
on the choice of a chart ϕα used to define them. In particular, we have (by
the chain rule) the following formula:

[Dvf ](ϕ−1
α (x)) =

n∑
k=1

(vα(x))k ·
∂fα
∂xk

(x), x ∈ Bn ⊂ Rn, (10.3)

where (vα(x))k denotes the k-th component of the vector vα(x) ∈ Rn.
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We need a simple fact, which is usually called Hadamard’s lemma:

Lemma 10.2. Let f be a (Cm-)smooth function on the unit ball Bn ⊂ Rn. Then,
there exists (Cm−1-)smooth functions gk such that f(x) = f(0) +

∑n
k=1 xkgk(x).

In particular, one can take gk(x) :=
∫ 1

0
(∂f/∂xk)(tx)dt.

Proof. This is nothing but the identity f(x)− f(0) =
∫ 1

0
[(Df)(tx)](x) dt. �

Theorem 10.3. Let D be a derivation on M . Then, there exists unique smooth
vector-field on M such that D = Dv, where the derivation Dv is defined by (10.1)

Proof. Let f ∈ C∞(M) and consider a chart ϕα : M ⊃ Uα → Bn ⊂ Rn. We can
apply Lemma 10.2 to the function fα := f ◦ ϕ−1

α : Bn → R and write

fα(x) = fα(0) +
∑n
k=1 xkgk(x), x ∈ Bn,

or, if we assume that ϕα(a0) = 0,

f(a) = f(a0) +
∑n
k=1(πk ◦ ϕα)(a)(gk ◦ ϕα)(a), a ∈ Uα, (10.4)

where πk : x 7→ xk is the k-th coordinate function on Bn. Assume for a second
that we can view all functions in the identity (10.4) as being defined on the whole
manifold M and not only in Uα. Then, the Leibnitz rule for D implies that

(Df)(a0) =
∑n
k=1[D(πk ◦ ϕα)](a0) · (gk ◦ ϕα)(a0).

Note that (gk ◦ ϕα)(a0) = gk(0) = (∂fα/∂xk)(0). Therefore, if we define

vα(a) := [D(πk ◦ ϕα)](a), a ∈ Uα, (10.5)

then the formula (10.3) holds. Clearly, vα is smooth on Uα since D maps smooth
functions to smooth functions. It remains

(i) to fix a technical issue that functions πk ◦ ϕα and gk ◦ ϕα are defined only
on Uα and not on the whole manifold M ;

(ii) to prove that definitions (10.5) of vα and vβ in two different charts ϕα and
ϕβ agree with each other in the sense of (10.3).

To fix (i), note that we can multiply functions (πk ·ϕα) and (gk ·ϕα) by a smooth
function φ ∈ (C∞) chosen so that φ ≡ 1 near a0 and φ ≡ 0 outside Uα, provided
that we also replace f by φ2f . Since derivation D is a local operation (see first
comments after Definition 10.1), this multiplication does not change anything in
the computation made above.

Finally, to check (ii), note that we already know from the formula (10.3) that
(Df)(a) = 0 if Df(a) = 0, i.e., if ∂fα/∂xk(ϕα(a)) = 0 for all k = 1, . . . , n. Let
y1, . . . , yn be the coordinates in another chart ϕβ . We need to check that

[D(πs ◦ ϕβ)](a) =
∑n
k=1(∂ys/∂xk)(ϕα(a))[D(πk ◦ ϕα)](a).

By linearity of D, this is equivalent to say that[
D
(
πs ◦ ϕβ −

∑n
k=1(∂ys/∂xk)(ϕα(a)) · (πk ◦ ϕα)

)
](a) = 0.

The result follows since [D(πs◦ϕβ−
∑n
k=1(∂ys/∂xk)(ϕα(a)) ·(πk ◦ϕα))](a) = 0. �
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Lemma 10.4. If Dv and Dw are derivations on M , then so is Dv ◦Dw −Dw ◦Dv.

Proof. We only need to check that Dv ◦Dw −Dw ◦Dv satisfies the Leibnitz rule: it
holds due to

(Dv ◦ Dw)(fg) = Dv(f · Dwg + g · Dw)

= f · (Dv ◦ Dw)g + (Dvf) · (Dwg) + (Dvg) · (Dwf) + g · (Dv ◦ Dw)f

and a similar formula for (Dw ◦ Dv)(fg). �

Lemma 10.4 together with Theorem 10.3 allow to give the following definition

Definition 10.5. Let v, w be smooth vector-fields. A smooth vector-field [v, w],
called the Lie bracket of v and w is defined by the identity Dv◦Dw−Dw◦Dv = D[v,w].

(In algebra, a Lie bracket is an anti-symmetric bilinear operation satisfying the
Jacobi identity [u, [v, w]]+[v, [w, u]]+[w, [u, v]] = 0, which is starightforward if [v, w]
is defined as a commutator of two mappings defined by v and w, respectively.)

Recall that (Dwf)(a) = limt→0
1
t (f(ϕtw(a))− f(a)) and hence

D[v,w]f(x) = lim
s,t→0

f((ϕtw ◦ ϕsv)(a))− f((ϕsv ◦ ϕtw)(a))

st

In other words, the Lie bracket [v, w] describes the non-commutativity of the two
flows ϕtw and ϕsv. An alternative way of writing the same formula is

D[v,w]f(a) =
∂2

∂s∂t
f(ϕ−tw ◦ ϕ−sv ◦ ϕtw ◦ ϕsv(a))

∣∣
s=t=0

, (10.6)

where we replaced a by (ϕ−tw ◦ϕsv)(a) in the previous formula and changed the signs
of both s and t. (It is worth mentiong that no technical issues with exchanging the
limits etc arise since we work with C∞-smooth functions, so all convergences are
actually uniform and all these ratios are smooth functions themselves.)

This discussion naturally leads to the course Géométrie Différentielle and we
stop it here: recall that the subject of these notes is simply to develop a basement
(language, basic notions etc) for more advanced courses.

Quasi-détour. The last topic to briefly mention is a very particular case when the
manifold M is a matrix Lie group, i.e. a certain subgroup of Rn×n which is also a
topological manifold. We will focus on a concrete (simplest) case

M = SLn(R) = {G ∈ Rn×n : detG = 1}
but a similar discussion applies to all such groups.

• Let us consider the tangent space TIdM to M at the identity element, which
is called the Lie algebra sln(R) corresponding to the Lie group SLn(R).
Since det(Id +tA + o(t)) = 1 + tTrA + o(t), this tangent space admits an
explicit description:

TIdM = sln(R) = {A ∈ Rn×n : TrA = 0}.
(Indeed, note that we can viewM = SLn(R) as a smooth (n2−1)-dimensional

manifold embedded into the Euclidean space Rn2

. All matrices A ∈ TIdM
should satisfy the equation TrA = 0 and this space already has dimension
n2 − 1, so there cannot be additional conditions.)



TOPOLOGIE ET CALCUL DIFF. II. CALCUL ET ÉQUATIONS DIFFÉRENTIELLES 39

To justify the name ‘Lie algebra’ for the vector-space sln(R), we need to introduce
a Lie bracket sln(R) × sln(R) → sln(R), which can be done in a ‘brute force’ way
by declaring [A,B] := AB − BA, note that Tr(AB) = Tr(BA). However, this
construction can be understood in a much more conceptual way.

• Let A ∈ sln(R) = TIdM . Note that the mapping

vA : G 7→ vA(G) := GA ∈ TGM
defines a smooth vector-field on M = SLn(R) (indeed, it is easy to see that
TGM = {B ∈ Rn×n : Tr(G−1B) = 0} and hence GA ∈ TGM iff A ∈ TIdM).

Thus, inside a huge set of all smooth vector-fields on M we now have a reasonably
small subset of vector-fields vA associated with the elements of the tangent space
TIdM (note that the group structure of M is absolutely crucial to define vA). We
can now try to compute the Lie bracket of two such vector-fields vA, vB and wonder
whether the result is also associated to a certain element of TIdM or not. As the
following computation shows, the answer is affirmative. Moreover, the two Lie
brackets [vA, vB ] and [A,B] = AB −BA are the same.

Proposition 10.6. The set of vector-fields {vA, A ∈ sln(R)} on SLn(R) is closed
under the operation of taking the Lie bracket and is isomorphic to the Lie alge-
bra sln(R), i.e., [vA, vB ] = v[A,B] for all A,B ∈ sln(R).

Proof. Note that ϕtvA(G) = G exp(tA) since to construct the flow ϕtvA we simply
need to solve a linear differential equation U ′(t) = U(t)A with constant A. There-
fore, if f is smooth function on M = SLn(R) and G ∈M , then for all A,B ∈ sln(R)
we have (by expanding exponentials into series)

(ϕ−tvB ◦ ϕ
−s
vA ◦ ϕ

t
vB ◦ ϕ

s
vA)(G) = G · exp(sA) exp(tB) exp(−sA) exp(−tB)

= G · (Id +st · (AB−BA) +O(s2t) +O(st2))

= ϕstvC (G) +O(s2t) +O(st2), where C := [A,B].

Therefore, formula (10.6) implies that (D[vA,vB ]f)(G) = (DCf)(G). Since this
identity holds for all functions f ∈ C∞(M) and all G ∈M , we are done. �

This discussion provides a glimpse of an analysis on Lie groups: if we want to
think about higher derivatives of functions defined on, e.g., (subsets of) SLn(R),
then, instead of commuting partial derivatives ∂/∂xk which we used for functions
defined on Rn, it makes sense to consider all derivations DvA , A ∈ sln(R) simultane-
ously and to benefit from the fact that the non-commutativity of these derivations
can be expressed by similar derivations. Obviously, this discussion (as well as many
much more inmportant things about Lie groups and algebras) also goes far beyond
the scope of our class.

We stop here and hope that this introduction into the general topology and basics
of the differential calculus will help you with other – more interesting – subjects.

The end


