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what we still would like to understand

Sample of a critical 2D Ising configuration

[with two disorders inserted] c⃝ Clément Hongler (EPFL, Lausanne)
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2D Ising model at and near criticality
what we can prove and

what we still would like to understand

Ising model = random assignment of
+1/−1 spins to lattice vertices (or faces)

Q: I heard this is called a percolation?

A:

[sample of a honeycomb percolation] c⃝ Clément Hongler (EPFL)
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Ising model = random assignment of
+1/−1 spins to lattice vertices (or faces)

according to some probabilities:

P[conf ] ∝ x#(′′+−′′),

where x = e−2βJ = e−2J/kT ∈ [0, 1] has
the same monotonicity as T ∈ [0,+∞].
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what we can prove and

what we still would like to understand

Ising model = random assignment of
+1/−1 spins to lattice vertices (or faces)

according to some probabilities:

P[conf ] ∝ x#(′′+−′′),

where x = e−2βJ = e−2J/kT ∈ [0, 1] has
the same monotonicity as T ∈ [0,+∞].

In other words, the partition function is

Z =
∑

σ∈{±1}|V |

exp

[
−β

∑
u∼v

Juvσuσv

]
.

c⃝ Clément Hongler (EPFL)
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2D Ising model at and near criticality
what we can prove and

what we still would like to understand

Six “short” stories:

1. Lenz-Ising model (1920–1941): phase transition in 1D and 2D;

2. Onsager’s solution (1944–1952) and orthogonal polynomials;

3. Conformal Field Theory predictions (1984–1990s);

4. Geometry: conformal loop ensembles [Sheffield–Werner, 2012];

5. What we can prove [Smirnov ’06 – ..., work in progress]:
From boundary value problems for discrete holomorphic
functions to convergence of correlations and interfaces

[Ch., Duminil-Copin, Hongler, Izyurov, Kemppainen, Kytölä, ...]

6. Would like to understand: renormalization, near-critical regimes



Lenz-Ising model (1920–1941): phase transition in 1D and 2D

Lenz, 1920: P[conf ] ∝ x#(′′+−′′)

∝ exp(−β[J
∑N−1

n=0 σnσn+1+h
∑N

n=0 σn]);

• No external magnetic field: h = 0;

• Boundary conditions: σ0 = σN = +1.

#0 . . . . . .#⌊rN⌋ . . . . . .#N
+1|+1||−1|−1|−1| . . . |+1|+1|+1|−1|−1| . . . |−1|+1|−1||+1|+1
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Intuition: It costs only x2 to have a pair . . .+1||−1 . . .−1||+1 . . .
of “domain walls” surrounding σ⌊rN⌋, so we see many of those.
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Ising: ... I discussed the result of my paper widely

with Professor Lenz and with Dr. Wolfgang Pauli, who

at that time was teaching in Hamburg. There was some

disappointment the linear model did not show the

expected ferromagnetic properties.
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∝ exp(−β[J
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Question: For r ∈ (0, 1), how does E[σ⌊rN⌋] behave as n → ∞?

Answer [Ising, 1925]: NO PHASE TRANSITION IN 1D.

1925 – ...: By analogy with 2× 2 transfer matrices computations
performed by Ising in 1D, it was believed that the model does not
exhibit a phase transition in 2D and 3D as well (the size of transfer
matrices in 2D is 2N × 2N , so nobody knew how to analyze them).
More involved models to explain ferromagnetism were proposed.
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Intuition (combinatorics): Consecutive “+−” contours surrounding
a given site should be longer and longer. Each costs us x#edges, so
it is not affordable to have many, provided x is small enough.
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Lenz, 1920: P[conf ] ∝ x#(′′+−′′)

∝ exp(−β[J
∑N−1

n=0 σnσn+1+h
∑N

n=0 σn]);

• No external magnetic field: h = 0;

• Boundary conditions: σ0 = σN = +1.

#0 . . . . . .#⌊rN⌋ . . . . . .#N
+1|+1||−1|−1|−1| . . . |+1|+1|+1|−1|−1| . . . |−1|+1|−1||+1|+1

Question: For r ∈ (0, 1), how does E[σ⌊rN⌋] behave as n → ∞?

Answer [Ising, 1925]: NO PHASE TRANSITION IN 1D.

[Peierls, 1936]: THERE IS A PHASE TRANSITION IN 2(+)D.

[Kramers-Wannier, 1941]: Combinatorial duality argument based
on the algebraic trick due to van der Waerden ⇒ a prediction for
the critical value xcrit = tan π

8 =
√
2− 1 on the square lattice.



Onsager’s solution (1944–1952) and orthogonal polynomials

x < xcrit x ≈ xcrit x > xcrit

[Dobrushin boundary values: two marked points a, b on the
boundary; −1 on the arc (ab), +1 on the opposite arc (ba)]



Onsager’s solution (1944–1952) and orthogonal polynomials

[Onsager, 1944]: diagonalization of 2N×2N transfer matrices in 2D
(involves highly nontrivial algebraic structure of those)

⇒ an explicit formula for the free energy of 2D Ising model
⇒ first breakthrough results about the (near-)critical behavior
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[Onsager, 1944]: diagonalization of 2N×2N transfer matrices in 2D
(involves highly nontrivial algebraic structure of those)

[Kaufman-Onsager, 1948-49, unpublished]: some spin-spin
expectations ⇒ scaling exponent 1

8 for the magnetization

E[σ∗] ≍ (xcrit − x)
1
8 as

x → xcrit,
N = ∞,

or E[σ∗] ≍ N− 1
8 as

N → ∞,
x = xcrit.
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[Onsager, 1944]: diagonalization of 2N×2N transfer matrices in 2D
(involves highly nontrivial algebraic structure of those)

[Kaufman-Onsager, 1948-49, unpublished]: some spin-spin
expectations ⇒ scaling exponent 1

8 for the magnetization

[Yang, 1952, Phys. Rev.]: “The spontaneous magnetization of a
two-dimensional Ising model”, first published rigorous derivation

[Szegö ’1952, Comm. Sém.Math. Univ. Lund] “On certain Hermitian
forms associated with the Fourier series of a positive function”

Historical comments: [R. J. Baxter, arXiv:1103.3347 & 1211.2665]



Onsager’s solution (1944–1952) and orthogonal polynomials

[Onsager, 1944]: diagonalization of 2N×2N transfer matrices in 2D
(involves highly nontrivial algebraic structure of those)

[Kaufman-Onsager, 1948-49, unpublished]: some spin-spin
expectations ⇒ scaling exponent 1

8 for the magnetization

Subtle point: asymptotics of Toeplitz determinants det[fj−k ]
n,n
0,0

! orthogonal polynomials w.r.t the weight f (e iθ) =
∑

s∈Z fse
isθ



Onsager’s solution (1944–1952) and orthogonal polynomials

[Onsager, 1944]: diagonalization of 2N×2N transfer matrices in 2D
(involves highly nontrivial algebraic structure of those)

[Kaufman-Onsager, 1948-49, unpublished]: some spin-spin
expectations ⇒ scaling exponent 1

8 for the magnetization

Subtle point: asymptotics of Toeplitz determinants det[fj−k ]
n,n
0,0

! orthogonal polynomials w.r.t the weight f (e iθ) =
∑

s∈Z fse
isθ

Historical comments: [R. J. Baxter, arXiv:1103.3347 & 1211.2665]
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evaluation of Toeplitz matrices. The only thing I

did not know was how to fill out the holes in the

mathematics and show the epsilons and the deltas and

all of that.
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[Onsager, 1944]: diagonalization of 2N×2N transfer matrices in 2D
(involves highly nontrivial algebraic structure of those)
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s∈Z fse
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Historical comments: [R. J. Baxter, arXiv:1103.3347 & 1211.2665]

Onsager: ... I have found a general formula for the

evaluation of Toeplitz matrices. The only thing I

did not know was how to fill out the holes in the

mathematics and show the epsilons and the deltas and

all of that.

... we talked to Kakutani and Kakutani talked

to Szego, and the mathematicians got there first.
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Onsager’s solution (1944–1952) and orthogonal polynomials

[Onsager, 1944]: diagonalization of 2N×2N transfer matrices in 2D
(involves highly nontrivial algebraic structure of those)

[Kaufman-Onsager, 1948-49, unpublished]: some spin-spin
expectations ⇒ scaling exponent 1

8 for the magnetization

Many explicit computations in the full (or half-) plane were
performed in [McCoy–Wu, 1973]. Nowadays, some of them can be
done in a much shorter way via discrete holomorphic fermions, e.g.

Magnetization in the zig-zag half-plane
at criticality: [Ch.–Hongler, unpublished]

E+
H♢

[σ2n] =

(
2

π

)n
·
2n−1∏
ℓ=1

(
1− 1

4ℓ2

)⌊ 1
2
ℓ⌋−n

[links with the spectral theory of Jacobi matrices
are available for the ‘layered’ Ising model in H♢]



Conformal Field Theory predictions (1984–1990s)

1952–1984: essential combinatorial simplifications (reduction to
the dimer model) were done and many scaling exponents explicitly
computed in the plane or the half-plane [McCoy–Wu, 1973].

[Belavin–Polyakov–Zamolodchikov, 1984]: scaling limits
of correlation functions should be conformally covariant.
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Conformal Field Theory predictions (1984–1990s)

1952–1984: essential combinatorial simplifications (reduction to
the dimer model) were done and many scaling exponents explicitly
computed in the plane or the half-plane [McCoy–Wu, 1973].

[Belavin–Polyakov–Zamolodchikov, 1984]: scaling limits
of correlation functions should be conformally covariant.

For instance, if Ωδ → Ω as δ → 0,
it should be

δ−
1
8Eab

Ωδ
[σ(zδ)] → C · ⟨σz⟩abΩ ,

with ⟨σz⟩abΩ = |ϕ′(z)|
1
8 ⟨σϕ(z)⟩

ϕ(a)ϕ(b)
Ω′

for all conformal mappings ϕ : Ω → Ω′.

Intuition: scaling covariance + rotational invariance [?]
+ locality of the model [? ⇒ ?] conformal covariance
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Together with some other “algebraic” assumptions (finite number
of primary fields, concrete scaling exponents, ...), this allows one to
identify all the scaling limits of correlation functions as (particular)
solutions to some PDEs provided by

Conformal Field Theory

For instance, it should be [Cardy, 1984; Burkhardt–Guim, 1993]

⟨σz1 . . . σzk ⟩
+
Ω =

∏k
s=1 |ϕ′(zs)|

1
8 · ⟨σϕ(z1) . . . σϕ(zk )⟩

+
Ω′ and

⟨σz1 . . . σzk ⟩
+
H =

k∏
s=1

(2 Im zs)
− 1

8 ×
[
2−

k
2

∑
µ∈{±1}k

∏
s<m

∣∣∣∣ zs−zm
zs−zm

∣∣∣∣µsµm
2

] 1
2
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In two words: CFT provides remarkable “algebraic” techniques
(e.g., some special Virasoro algebra representations play an
extremely important role) that eventually lead to very concrete
formulae for correlation functions. Case closed. Wonderful!

But...



Conformal Field Theory predictions (1984–1990s)

[Belavin–Polyakov–Zamolodchikov, 1984]: scaling limits
of correlation functions should be conformally covariant.

Together with some other “algebraic” assumptions (finite number
of primary fields, concrete scaling exponents, ...), this allows one to
identify all the scaling limits of correlation functions as (particular)
solutions to some PDEs provided by

Conformal Field Theory

In two words: CFT provides remarkable “algebraic” techniques
(e.g., some special Virasoro algebra representations play an
extremely important role) that eventually lead to very concrete
formulae for correlation functions. Case closed. Wonderful!

But... should one prove that discrete correlation functions indeed
have conformally covariant limits as δ → 0? ... [it depends] ...
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Theorem (Ch., Hongler, Izyurov, Ann. Math. 2015):

If Ωδ → Ω as δ → 0, δ−
n
8E+

Ωδ
[σ(z1) . . . σ(zk)] → ⟨σz1 . . . σzk ⟩

+
Ω .



Geometry: conformal loop ensembles [Sheffield–Werner, 2012]

Question: What could be a good can-
didate for the scaling limit of loops and
interfaces surrounding Ising clusters?

• [ single interfaces (e.g., with Dobrushin
+1/−1 boundary conditions):

Schramm’s SLEκ curves ]

In one line: non-self-intersecting 2D
curves, were introduced by Oded
Schramm in 2000, are defined dynami-
cally via the classical Loewner evolution
[1923] with a 1D white noise input,
can be analyzed combining geometrical
complex analysis and stochastic calculus. c⃝ Clément Hongler (EPFL)
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Given the set of loops inter-
secting D2\D1, the conditional
law of the remaining loops is
an independent CLE in each
component of the (interior of
the) complement of this set.
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Geometry: conformal loop ensembles [Sheffield–Werner, 2012]

Question: What could be a good can-
didate for the scaling limit of loops and
interfaces surrounding Ising clusters?

• collection of the outermost loops
(say, for all “+” boundary conditions)

Intuition: Distribution of loops should
(a) be conformally invariant
(b) satisfy a domain Markov property

a sample with free b.c., c⃝ C. Hongler

[Sheffield–Werner, 2012]:

provided loops do not touch each
other, this construction (for some
c ∈ [0, 1]) is the only possibility.

This ensemble is called CLEκ,
it consists of SLEκ-type bubbles.

but should one prove that dis-
crete interfaces/loops indeed
have conformally invariant
limits as δ → 0?

... [again, it depends] ...
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But can one prove that these beautiful ‘algebraic’ and ‘geometric’
structures indeed arise in the limit of some lattice model as δ → 0
(e.g., the Ising model, which contains a lot of ‘integrability’ inside)?
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Conformal Field Theory

Assuming conformal co-
variance of correlation
functions appearing in
the limit, they should
form one of “algebraic
structures”, parameter-
ized by a central charge.

[Ising model, 2006–...]:

proofs of convergence
for re-scaled correlation
functions (fermions, en-
ergy densities, spins, ...)

Lattice models
(e.g., Ising)

Main tool:
discrete

holomorphic
functions

Conformal Geometry

Assuming conformal in-
variance of curves and
loops appearing in the
limit, there exists a
unique family of “loop
ensembles”, parameter-
ized by some intensity.

[Ising model, 2006–...]:

proofs of convergence
for interfaces and their
ensembles (various b.c.
and topologies)
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Main tool: discrete holomorphic functions

F δ
a (z) :=

∑
loops+[a z]

x#edgese−
i
2
wind(a z).

• “discrete fermions” played a crucial role
in many aspects of the planar Ising model
starting with the very first derivations;

• existence of “holomorphic fields” provided
a strong evidence for the conformal invari-
ance of the limit and its CFT description

;

• still, much (hard) work is needed to understand how to use
these structures for the rigorous analysis when Ωδ → Ω as δ → 0,
especially in rough domains formed by fractal interfaces.
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Some papers/preprints (convergence of correlations):
• basic observables: [Smirnov ’06], universality: [Ch.,Smirnov ’09]
• energy density field: [Hongler,Smirnov ’10], [Hongler ’10]

• spinor version, some ratios of spin correlations: [Ch.,Izyurov ’11]
• spin field: [Ch.,Hongler,Izyurov ’12]

• mixed correlations in multiply-connected Ω’s [on the way]
• stress-energy tensor [Ch.,Glazman,Smirnov, on the way]

Some papers/preprints (convergence of interfaces):
• +/− b.c., weak topology: [Smirnov ’06], [Ch.,Smirnov ’09]

• +/free/− b.c. (dipolar SLE): [Hongler,Kytölä ’11]
• multiply-connected setups: [Izyurov ’13]

• strong topology (tightness of curves): [Kemppainen,Smirnov ’12],
[Ch.,Duminil-Copin,Hongler ’13], [Ch.,D.-C.,H.,K.,S. ’13(CRAS)]

• free b.c., exploration tree: [Benoist,Duminil-Copin,Hongler ’14]
• [on the way by smb]: full loop ensemble
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• multiply-connected setups: [Izyurov ’13]

• strong topology (tightness of curves): [Kemppainen,Smirnov ’12],
[Ch.,Duminil-Copin,Hongler ’13], [Ch.,D.-C.,H.,K.,S. ’13(CRAS)]

• free b.c., exploration tree: [Benoist,Duminil-Copin,Hongler ’14]
• [on the way by smb]: full loop ensemble



From boundary value problems for discrete holomorphic
functions to convergence of correlations and interfaces

Main tool: discrete holomorphic functions

• work is needed to understand how to use these structures for the rigorous analysis when Ωδ → Ω as δ → 0

Some papers/preprints (convergence of correlations):
• basic observables: [Smirnov ’06], universality: [Ch.,Smirnov ’09]
• energy density field: [Hongler,Smirnov ’10], [Hongler ’10]

• spinor version, some ratios of spin correlations: [Ch.,Izyurov ’11]
• spin field: [Ch.,Hongler,Izyurov ’12]

• mixed correlations in multiply-connected Ω’s [on the way]
• stress-energy tensor [Ch.,Glazman,Smirnov, on the way]

Some papers/preprints (convergence of interfaces):

• +/− b.c., weak topology: [Smirnov ’06], [Ch.,Smirnov ’09]
• +/free/− b.c. (dipolar SLE): [Hongler,Kytölä ’11]
• multiply-connected setups: [Izyurov ’13]

• strong topology (tightness of curves): [Kemppainen,Smirnov ’12],
[Ch.,Duminil-Copin,Hongler ’13], [Ch.,D.-C.,H.,K.,S. ’13(CRAS)]

• free b.c., exploration tree: [Benoist,Duminil-Copin,Hongler ’14]
• [on the way by smb]: full loop ensemble



From boundary value problems for discrete holomorphic
functions to convergence of correlations and interfaces

Main tool: discrete holomorphic functions

• work is needed to understand how to use these structures for the rigorous analysis when Ωδ → Ω as δ → 0

Some papers/preprints (convergence of correlations):
• basic observables: [Smirnov ’06], universality: [Ch.,Smirnov ’09]
• energy density field: [Hongler,Smirnov ’10], [Hongler ’10]

• spinor version, some ratios of spin correlations: [Ch.,Izyurov ’11]
• spin field: [Ch.,Hongler,Izyurov ’12]

• mixed correlations in multiply-connected Ω’s [on the way]
• stress-energy tensor [Ch.,Glazman,Smirnov, on the way]

Some papers/preprints (convergence of interfaces):
• +/− b.c., weak topology: [Smirnov ’06], [Ch.,Smirnov ’09]

• +/free/− b.c. (dipolar SLE): [Hongler,Kytölä ’11]
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• in discrete: encode quantities of interest as particular values of
a discrete holomorphic function (observable) F δ that solves some
discrete b.v.p. [‘magic’: a priori, it is unclear why such F δ’s exist];
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• choose a family of martingales w. r. t. the growing interface γδ
[there are many, e.g., Eab

Ωδ
[σz ] would do the job for +1/−1 b. c.];
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Strategy of proving the convergence of correlation functions:

• in discrete: encode quantities of interest as particular values of

a discrete holomorphic function (observable) Fδ that solves some

discrete b.v.p. [‘magic’: a priori, it is unclear why such Fδ ’s exist];

• discrete→continuum: prove convergence (as δ → 0) of Fδ to the
solution f of the similar continuous b.v.p. [(hard) work to be done];

• continuum→discrete: decipher the limit of discrete quantities

from the convergence Fδ → f [e.g., coefficients near singularities].

Strategy of proving the convergence of interfaces:

• choose a family of martingales w. r. t. the growing interface γδ
[there are many, e.g., Eab

Ωδ
[σz ] would do the job for +1/−1 b. c.];

• prove uniform convergence of the (re-scaled) quantities as δ → 0
[the one above (done in 2012) is not an optimal choice, there are
others that are easier to handle (first done in 2006 by Smirnov)];

• prove the convergence γδ → γ and recover the law of γ using this
family of martingales [some probabilistic techniques are needed].
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[σz ], one

should consider the following b.v.p.:

• f (w∗) ≡ −f (w), branches around z ;
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]
= 0 for ζ ∈ ∂Ω;

• f (w) = 1√
w−z

+ . . .
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Conformal exponent 1
8 : for any conformal map ϕ : Ω → Ω′,

• f[Ω,a](w) = f[Ω′,ϕ(a)](ϕ(w)) · (ϕ′(w))1/2 ;

• AΩ(z) = AΩ′(ϕ(z)) · ϕ′(z) + 1
8 · ϕ′′(z)/ϕ′(z) .
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Technical issues: • to find proper combinatorics in discrete;
• to handle tricky boundary conditions (Dirichlet for

∫
Re[f 2dz ]);

• to prove convergence, incl. near singularities [complex analysis];
• to recover the normalization of E+

Ωδ
[σz ] [probabilistic techniques].



What we still would like to understand

∼90 years after the Lenz-Ising model was first suggested,
even for regular 2D lattices, there are many hard questions
remaining, especially for mathematicians who once got there...

• renormalization: not only nearest-neighbor interactions
and/or the “massive” regime T−Tcrit ∼ m · δ as δ → 0.

[recent progress by Giuliani–Greenblatt–Mastropietro ’12]
(energy density field in C, spin field remains a challenge)
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Merci!


