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2D Ising model: correlations
via boundary value problems

• Nearest-neighbor Ising model in 2D
◦ dimers and fermionic observables
◦ discrete holomorphicity at criticality
◦ spinor observables and spin correlations

• A classical computation revisited: ex-
plicit formulae for “diagonal” two-point
correlations in Z

2 via full-plane spinors

• Conformal covariance at criticality
◦ Riemann boundary value problems
for holomorphic spinors in continuum
◦ Explicit formulae (CFT prediction)
◦ Convergence (Ch.–Hongler–Izyurov)
◦ Other fields (convergence, fusion rules)

Extended version:

arXiv:1605.09035
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Nearest-neighbor Ising (or Lenz-Ising) model in 2D

Definition: Lenz-Ising model on a planar graph G ∗ (dual to G ) is
a random assignment of +/− spins to vertices of G ∗ (faces of G )

Q: I heard this is called a (site) percolation?

[sample of a honeycomb percolation]



Nearest-neighbor Ising (or Lenz-Ising) model in 2D

Definition: Lenz-Ising model on a planar graph G ∗ (dual to G ) is
a random assignment of +/− spins to vertices of G ∗ (faces of G )

Q: I heard this is called a (site) percolation?
A: .. according to the following probabilities:

P
[

conf. σ ∈ {±1}V (G∗)
]

∝ exp
[

β
∑

e=〈uv〉 Juvσuσv
]

∝ ∏

e=〈uv〉:σu 6=σv
xuv ,

where Juv > 0 are interaction constants assigned to edges 〈uv〉,
β = 1/kT is the inverse temperature, and xuv = exp[−2βJuv ].



Nearest-neighbor Ising (or Lenz-Ising) model in 2D

Definition: Lenz-Ising model on a planar graph G ∗ (dual to G ) is
a random assignment of +/− spins to vertices of G ∗ (faces of G )

Disclaimer:
no external magnetic field.

P
[

conf. σ ∈ {±1}V (G∗)
]

∝ exp
[

β
∑

e=〈uv〉 Juvσuσv
]

∝ ∏

e=〈uv〉:σu 6=σv
xuv ,

where Juv > 0 are interaction constants assigned to edges 〈uv〉,
β = 1/kT is the inverse temperature, and xuv = exp[−2βJuv ].

• It is also convenient to use the parametrization xuv = tan(12θuv ).

• Working with subgraphs of regular lattices, one can consider the
homogeneous model in which all xuv are equal to each other.



Phase transition (e.g., on Z
2)

E.g., Dobrushin boundary conditions: +1 on (ab) and −1 on (ba):

x < xcrit x = xcrit x > xcrit

• Ising (1925): no phase transition in 1D  doubts about 2+D;

• Peierls (1936): existence of the phase transition in 2D;

• Kramers-Wannier (1941): xself-dual =
√
2− 1 = tan(12 · π

4 );

• Onsager (1944): sharp phase transition at xcrit =
√
2− 1.



At criticality (e.g., on Z
2):

◦ Kaufman-Onsager(1948-49), Yang(1952):
scaling exponent 1

8
for the magnetization.

[via spin-spin correlations in Z
2 at x ↑ xcrit]

◦ At criticality, for Ωδ → Ω and uδ → u ∈ Ω,

it should be EΩδ
[σuδ ] ≍ δ

1
8 as δ → 0.

x = xcrit



At criticality (e.g., on Z
2):

◦ Kaufman-Onsager(1948-49), Yang(1952):
scaling exponent 1

8
for the magnetization.

[via spin-spin correlations in Z
2 at x ↑ xcrit]

◦ At criticality, for Ωδ → Ω and uδ → u ∈ Ω,

it should be EΩδ
[σuδ ] ≍ δ

1
8 as δ → 0.

• Question: Convergence of (rescaled) spin
correlations and conformal covariance of their
scaling limits in arbitrary planar domains: x = xcrit

δ−
n

8 · EΩδ
[σu1,δ . . . σun,δ ] → 〈σu1 . . . σun〉Ω

= 〈σϕ(u1) . . . σϕ(un)〉ϕ(Ω) ·
∏

n

s=1 |ϕ′(us)|
1
8

• In the infinite-volume setup other techniques are available,
notably “exact bosonization” approach due to J. Dubédat.



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn (’60s+),..., Kenyon, Dubédat (’00s+),...]

• Partition function Z =
∑

σ∈{±1}V (G∗ )

∏

e=〈uv〉:σu 6=σv
xuv

• There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph
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2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn (’60s+),..., Kenyon, Dubédat (’00s+),...]

• Partition function Z =
∑

σ∈{±1}V (G∗ )

∏

e=〈uv〉:σu 6=σv
xuv

• There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph:
e.g. 1-to-2|V (G)| correspondence of
{±1}V (G∗) with dimers on this G

F

• Kasteleyn’s theory: Z=Pf[K ] [K=−K
⊤ is a weighted adjacency matrix of G

F

]

• Kac–Ward formula (1952–..., 1999–...): Z2 = det[Id−T],

Te,e′ =

{

exp[ i2wind(e, e′)] · (xexe′)1/2
0

if e′ 6= e prolongs e;
otherwise.



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn (’60s+),..., Kenyon, Dubédat (’00s+),...]

• Partition function Z =
∑

σ∈{±1}V (G∗ )

∏

e=〈uv〉:σu 6=σv
xuv

• There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph:
e.g. 1-to-2|V (G)| correspondence of
{±1}V (G∗) with dimers on this G

F

• Kasteleyn’s theory: Z=Pf[K ] [K=−K
⊤ is a weighted adjacency matrix of G

F

]

• Kac–Ward formula (1952–..., 1999–...): Z2 = det[Id−T],

Te,e′ =

{

exp[ i2wind(e, e′)] · (xexe′)1/2
0

[ is equivalent to the Kasteleyn theorem for dimers on G

F

]
[ more details in arXiv:1507.08242 ( w/ Cimasoni & Kassel ) ]



2D Ising model as a dimer model (on a non-bipartite graph)
[Fisher, Kasteleyn (’60s+),..., Kenyon, Dubédat (’00s+),...]

• Partition function Z =
∑

σ∈{±1}V (G∗ )

∏

e=〈uv〉:σu 6=σv
xuv

• There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph:
e.g. 1-to-2|V (G)| correspondence of
{±1}V (G∗) with dimers on this G

F

• Kasteleyn’s theory: Z=Pf[K ] [K=−K
⊤ is a weighted adjacency matrix of G

F

]

• Note that V (GF ) ∼= {oriented edges and 
orners of G}

• Local relations for the entries K−1
a,e and K−1

a,
 of the inverse
Kasteleyn (or the inverse Kac–Ward) matrix:

(an equivalent form of) the identity K ·K−1= Id



Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge ze (similarly, for a corner c),

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[

e−
i

2
wind(a ze)

∏

〈uv〉∈ω
xuv

]

where ηa denotes the (once and forever
fixed) square root of the direction of a.

• The factor e−
i

2
wind(a ze) does not de-

pend on the way how ω is split into non-
intersecting loops and a path a ze .

• Via dimers on G

F

: FG (a, c) = ηcK
−1
c,a

FG (a, ze) = ηeK
−1
e,a + ηeK

−1
e,a
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For an oriented edge a and a midedge ze (similarly, for a corner c),

FG (a, ze) := ηa
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• When both a and e are “boundary”

edges, the factor ηae
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2
wind(a ze) = ±ηē

is fixed and FG (a, ze) becomes the parti-
tion function of the Ising model (on G ∗)
with Dobrushin boundary conditions.
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Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge ze (similarly, for a corner c),

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[

e−
i

2
wind(a ze)

∏

〈uv〉∈ω
xuv

]

where ηa denotes the (once and forever
fixed) square root of the direction of a.

• Local relations: at criticality, can
be thought of as some (strong) form of
discrete Cauchy–Riemann equations.

• Boundary conditions F(a, z
e

)∈η
ē

R

(e is oriented outwards) uniquely deter-
mine F as a solution to an appropriate

discrete Riemann-type boundary value problem.



Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge ze (similarly, for a corner c),

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[

e−
i

2
wind(a ze)

∏

〈uv〉∈ω
xuv

]

Fermionic observables per se can be used

• to construct (discrete) martingales
for growing interfaces and then to
study their convergence to SLE curves
[Smirnov(2006), ..., Ch.–Duminil-Copin
–Hongler–Kemppainen–Smirnov(2013)]

• to analyze the energy density field
[Hongler–Smirnov, Hongler (2010)]

ε
e

:= δ−1 · [σ
e

−σ
e

+ − ε∞e ]

where e± are the two neighboring faces separated by an edge e



Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge ze (similarly, for a corner c),

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[

e−
i

2
wind(a ze)

∏

〈uv〉∈ω
xuv

]

Fermionic observables per se can be used

• to construct (discrete) martingales
for growing interfaces and then to
study their convergence to SLE curves
[Smirnov(2006), ..., Ch.–Duminil-Copin
–Hongler–Kemppainen–Smirnov(2013)]

• to analyze the energy density field
[Hongler–Smirnov, Hongler (2010)]

ε
e

:= δ−1 · [σ
e

−σ
e

+ − ε∞e ]

• but more involved ones are needed to study spin correlations
and their limits [Ch.–Izyurov(2011), Ch.–Hongler–Izyurov(2012)]



Spinor observables and spin correlations

• spin configurations on G ∗

! domain walls on G
! dimers on G

F

• Kasteleyn’s theory: Z =Pf[K ]
[K=−K

⊤ is a weighted adjacency matrix of G
F

]



Spinor observables and spin correlations

• spin configurations on G ∗

! domain walls on G
! dimers on G

F

• Kasteleyn’s theory: Z =Pf[K ]
[K=−K

⊤ is a weighted adjacency matrix of G
F

]

• Claim:

E[σ
u1
. . . σ

u

n

] =
Pf [K[u1,...,un] ]

Pf [K ]
,

where K[u1,...,un] is obtained from K by changing the sign of its
entries on slits linking u1, . . . ,un (and, possibly, uout) pairwise.

• More invariant way to think about entries of K−1
[u1,...,un]

:

double-covers of G branching over u1, . . . ,un



Spinor observables and spin correlations

Main tool: spinors on the double cover [Ωδ;u1, . . . ,un].

FΩδ
(z) :=

[

Z+
Ωδ

[σu1 . . . σun ]
]−1 ·

∑

ω∈ConfΩδ (u
→
1 , z)

φu1,...,un (ω, z) ·x
#edges(ω)
crit ,

φu1,...,un (ω, z) := e−
i

2
wind(p(ω)) · (−1)#loops(ω\p(ω))· sheet (p (ω) , z).

a

z

a+
δ

2

• wind (p (γ)) is the winding of
the path p (γ) : u→1 = u1+

δ
2 z ;

• #loops – those containing an
odd number of u1, . . . , un inside;

• sheet (p (γ) , z) = +1, if p(γ)
defines z , and −1 otherwise.

• Note that F(z♯) = −F(z♭) if
z ♯, z ♭ lie over the same edge of Ωδ.



Spinor observables and spin correlations

Main tool: spinors on the double cover [Ωδ;u1, . . . ,un].

FΩδ
(z) :=

[

Z+
Ωδ

[σu1 . . . σun ]
]−1 ·

∑

ω∈ConfΩδ (u
→
1 , z)

φu1,...,un (ω, z) ·x
#edges(ω)
crit ,

φu1,...,un (ω, z) := e−
i

2
wind(p(ω)) · (−1)#loops(ω\p(ω))· sheet (p (ω) , z).

a

z

a+
δ

2

Claim:

FΩδ
(u1+

3δ
2 ) =

E
+
Ωδ

[σ
u1+2δ . . . σu

n

]

E
+
Ωδ

[σ
u1
. . . σ

u

n

]

In other words, spatial derivatives
of spin correlations are particular
values of spinor observables.

• Remark: Both fermionic and
spinor observables can be intro-

duced using spin-disorder formalism of Kadanoff and Ceva.



“Diagonal” correlations in Z
2: classical computation revisited

Let x=tan 1
2θ 6 xcrit=tan π

8 and Dn(x) := EC⋄[σ(0,0)σ(2n,0)]

where C
⋄ = {(k , s) : k , s ∈ Z, k+s ∈ 2Z} is the π

4 -rotated Z
2.

Theorem: [B. Kaufman – L. Onsager ’48-49, C.N. Yang ’52]

lim
n→∞D

n

(x) = (1− tan4 θ)
1
4 ∼ const · (xcrit−x)

1
4 for x < xcrit

[T.T.Wu’66] D
n

(xcrit) =
(

2
π

)n ∏n−1
s=1

(

1− 1
4s2

)s−n∼ const · (2n)− 1
4

Classical reference for many explicit computations (1973):

B.M. McCoy and T.T. Wu “The two-dimensional Ising model”



“Diagonal” correlations in Z
2: classical computation revisited

Let x=tan 1
2θ 6 xcrit=tan π

8 and Dn(x) := EC⋄[σ(0,0)σ(2n,0)]

where C
⋄ = {(k , s) : k , s ∈ Z, k+s ∈ 2Z} is the π

4 -rotated Z
2.

Theorem: [B. Kaufman – L. Onsager ’48-49, C.N. Yang ’52]

lim
n→∞D

n

(x) = (1− tan4 θ)
1
4 ∼ const · (xcrit−x)

1
4 for x < xcrit

Historical comments: [ see R.J. Baxter, arXiv:1103.3347 & 1211.2665 for more details ]

Onsager: ... I have found a general formula for the

evaluation of Toeplitz matrices. The only thing I

did not know was how to fill out the holes in the

mathematics and show the epsilons and the deltas

and all of that...

... we talked to Kakutani and Kakutani talked to

Szego, and the mathematicians got there first.



“Diagonal” correlations in Z
2: classical computation revisited

Let x=tan 1
2θ 6 xcrit=tan π

8 and Dn+1(x) :=EC⋄ [σ(− 3
2
,0)σ(2n+ 1

2
,0)]

Local relations: FC⋄(d) = m

4

∑

d ′∼d
FC⋄(d ′), m := sin(2θ) 6 1.

[Above, we focus on purely real values of the spinor observable on
one particular type of corners.] Note that m = 1 iff x = xcrit.



“Diagonal” correlations in Z
2: classical computation revisited

Let x=tan 1
2θ 6 xcrit=tan π

8 and Dn+1(x) :=EC⋄ [σ(− 3
2
,0)σ(2n+ 1

2
,0)]

Local relations: FC⋄(d) = m

4

∑

d ′∼d
FC⋄(d ′), m := sin(2θ) 6 1.

For s > 0, denote Q
n,s(e

it) :=
∑

k∈Z:k+s∈2Z e
1
2
ikt

FC⋄(k, s).

Local relations ⇒ Qn,s(e
it) = (m2 cos t

2) · (Qn,s−1(e
it)+Qn,s+1(e

it)).

Boundedness as s→∞ ⇒ Qn,1(e
it) =

[

1−(1−(m cos t

2
)2)

1
2

m cos t

2

]

Qn,0(e
it).



“Diagonal” correlations in Z
2: classical computation revisited

Let x=tan 1
2θ 6 xcrit=tan π

8 and Dn+1(x) :=EC⋄ [σ(− 3
2
,0)σ(2n+ 1

2
,0)]

Combinatorics of spinor observables ⇒ the following values on R:

Dn+1Qn,0(e
it) = 0 + Dn + . . .+ D∗

ne
int + 0

w(e it) · Dn+1Qn,0(e
it) = . . . + Dn+1 + 0 + q2D∗

n+1e
int + . . .

where w(e it)= |1−q

2
e

it |, q :=tan θ61 and D∗
n :=Dn(tan(

π
4−θ)).



“Diagonal” correlations in Z
2: classical computation revisited

Let x=tan 1
2θ 6 xcrit=tan π

8 and Dn+1(x) :=EC⋄ [σ(− 3
2
,0)σ(2n+ 1

2
,0)]

Therefore, the values of these full-plane spinor observables on
the real line are coefficients of certain orthogonal polynomials Q

n

wrt w(e it) [ which are simply Legendre polynomials if x = xcrit ].

=⇒ one can express Dn+1,D
∗
n+1 via Dn,D

∗
n and norms of Qn,

where w(e it)= |1−q

2
e

it |, q :=tan θ61 and D∗
n :=Dn(tan(

π
4−θ)).



Conformal covariance of spin correlations at criticality

• Three local primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8
, 1.

• CFT prediction:

If Ωδ→Ω and uk,δ→uk as δ → 0, then

δ−
n

8 ·E+
Ωδ
[σu1,δ . . . σun,δ ] →

δ→0
Cn

σ·〈σu1
. . . σ

u

n

〉+
Ω

where Cσ is a lattice-dependent constant,

〈σu1 . . . σun〉+Ω = 〈σϕ(u1) . . . σϕ(un)〉+Ω′ ·
∏

n

s=1 |ϕ′(us)|
1
8

for any conformal mapping ϕ : Ω → Ω′, and
[

〈σ
u1
. . . σ

u

n

〉+
H

]2
=

∏

16s6n

(2 Im us)
− 1

4 ×
∑

µ∈{±1}n

∏

s<m

∣

∣

∣

∣

us−um
us−um

∣

∣

∣

∣

µsµm
2
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• Three local primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8
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• Theorem: [Ch.–Hongler–Izyurov]
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∣

∣

∣
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∣

∣

∣
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Conformal covariance of spin correlations at criticality

• Three local primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8
, 1.

• Theorem: [Ch.–Hongler–Izyurov]

If Ωδ→Ω and uk,δ→uk as δ → 0, then

δ−
n

8 ·E+
Ωδ
[σu1,δ . . . σun,δ ] →

δ→0
Cn

σ·〈σu1
. . . σ

u

n

〉+
Ω

General strategy: • in discrete: encode spatial derivatives
as values of discrete holomorphic spinors F δ that solve some

discrete Riemann-type boundary value problems;

• discrete→continuum: prove convergence of F δ to the solutions f
of the similar continuous b.v.p. [ non-trivial technicalities ];

• continuum→discrete: find the limit of (spatial derivatives of)
using the convergence F δ → f [ via coefficients at singularities ].



Conformal covariance of spin correlations at criticality

Example: to handle E
+
Ωδ
[σu], one

should consider the following b.v.p.:

◦ f (z ♯) ≡ −f (z ♭), branches over u;

◦ Im
[

f (ζ)
√

n(ζ)
]

= 0 for ζ ∈ ∂Ω;

◦ f (z) = 1√
z−u

+ . . .
a

z

a+
δ

2



Conformal covariance of spin correlations at criticality

Example: to handle E
+
Ωδ
[σu], one

should consider the following b.v.p.:

◦ f (z ♯) ≡ −f (z ♭), branches over u;

◦ Im
[

f (ζ)
√

n(ζ)
]

= 0 for ζ ∈ ∂Ω;

◦ f (z) = 1√
z−u

+2AΩ(u) ·
√
z−u+ . . .

a

z

a+
δ

2

Claim: If Ωδ converges to Ω as δ → 0, then

◦ (2δ)−1 log
[

E
+
Ωδ
[σuδ+2δ] /E

+
Ωδ
[σuδ ]

]

→ Re[AΩ(u) ] ;

◦ (2δ)−1 log
[

E
+
Ωδ
[σuδ+2iδ] /E

+
Ωδ
[σuδ ]

]

→ − Im [AΩ(u) ] .
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Conformal covariance 1
8
: for any conformal map φ : Ω → Ω′,

◦ f[Ω,a](w) = f[Ω′,φ(a)](φ(w)) · (φ′(w))1/2 ;

◦ AΩ(z) = AΩ′(φ(z)) · φ′(z) + 1
8
· φ′′(z)/φ′(z) .



Conformal covariance of spin correlations at criticality

Example: to handle E
+
Ωδ
[σu], one

should consider the following b.v.p.:

◦ f (z ♯) ≡ −f (z ♭), branches over u;

◦ Im
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f (ζ)
√

n(ζ)
]

= 0 for ζ ∈ ∂Ω;

◦ f (z) = 1√
z−u

+2AΩ(u) ·
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z−u+ . . .

a
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δ
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Claim: If Ωδ converges to Ω as δ → 0, then

◦ (2δ)−1 log
[

E
+
Ωδ
[σuδ+2δ] /E

+
Ωδ
[σuδ ]

]

→ Re[AΩ(u) ] ;

◦ (2δ)−1 log
[

E
+
Ωδ
[σuδ+2iδ] /E

+
Ωδ
[σuδ ]

]

→ − Im [AΩ(u) ] .

Quite a lot of technical work is needed, e.g.:

• to handle tricky boundary conditions [ Dirichlet for
∫

Re[f 2dz ] ];
• to prove convergence, incl. near singularities [ complex analysis ];
• to recover the normalization of E+

Ωδ
[σu1 ...σun ] [ probability ].



Explicit formulae for multi-point spin correlations

We define 〈σ
u1
. . . σ

u

n

〉+
Ω

:= exp[
∫

L(u1, . . . , un) ], where

LΩ(u1, . . . , un) :=
∑

n

s=1Re [AΩ(us ; u1, ..., ûs , ..., un)dus ],

and the multiplicative normalization is chosen so that

〈σu1 ...σun〉+Ω ∼ 〈σu1 ....σun−1〉+Ω · 〈σun〉+Ω as un → ∂Ω ,

〈σu1σu2〉+Ω ∼ |u2 − u1|−
1
4 as u2 → u1 ∈ Ω .

Coefficients AΩ(u1;u2, ...,un) are defined via the following b.v.p.:

◦ f (z ♯) ≡ −f (z ♭) is a holomorphic spinor on [Ω; u1, ..., un];

◦ Im
[

f (ζ)(n(ζ))
1
2

]

= 0 for ζ ∈ ∂Ω;

◦ f (z) = ics · (z − us)
− 1

2 + . . . for some (unknown) cs ∈ R, s > 2;

◦ f (z) = (z − u1)
− 1

2 + 2AΩ(u1; u2, ..., un) · (z − u1)
1
2 + . . .



Explicit formulae for multi-point spin correlations

We define 〈σ
u1
. . . σ

u

n

〉+
Ω

:= exp[
∫

L(u1, . . . , un) ], where

LΩ(u1, . . . , un) :=
∑

n

s=1Re [AΩ(us ; u1, ..., ûs , ..., un)dus ],

and the multiplicative normalization is chosen so that

〈σu1 ...σun〉+Ω ∼ 〈σu1 ....σun−1〉+Ω · 〈σun〉+Ω as un → ∂Ω ,

〈σu1σu2〉+Ω ∼ |u2 − u1|−
1
4 as u2 → u1 ∈ Ω .

Remarks: • The closedness of the differential form LΩ,n and the
existence of an appropriate multiplicative normalization are not
immediate (can be deduced along the proof of convergence);

• Similar techniques can be applied for more involved boundary
conditions and/or in the multiply connected setup (when no
explicit formulae are available), as well as to other fields...



Correlations at criticality: convergence to CFT predictions

• Three local primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8
, 1.

• Theorem: [Ch.–Hongler–Izyurov]

If Ωδ→Ω and uk,δ→uk as δ → 0, then

δ−
n

8 ·E+
Ωδ
[σu1,δ . . . σun,δ ] →

δ→0
Cn

σ·〈σu1
. . . σ

u

n

〉+
Ω

where Cσ is a lattice-dependent constant,

〈σu1 . . . σun〉+Ω = 〈σϕ(u1) . . . σϕ(un)〉+Ω′ ·
∏

n

s=1 |ϕ′(us)|
1
8

for any conformal mapping ϕ : Ω → Ω′, and
[

〈σ
u1
. . . σ

u

n

〉+
H

]2
=

∏

16s6n

(2 Im us)
− 1

4 ×
∑

µ∈{±1}n

∏

s<m

∣

∣

∣

∣

us−um
us−um

∣

∣

∣

∣

µsµm
2



Correlations at criticality: convergence to CFT predictions

• Three local primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8
, 1.

• Theorem: [Hongler–Smirnov, Hongler (2010)]

If Ωδ→Ω and ek,δ→zk as δ → 0, then

δ−n ·E+
Ωδ
[εe1,δ . . . εen,δ ] →

δ→0
Cn

ε ·〈εz1 . . . εzn〉+Ω
where Cε is a lattice-dependent constant,

〈εz1 . . . εzn〉+Ω = 〈εϕ(z1) . . . εϕ(zn)〉+Ω′ ·
∏

n

s=1 |ϕ′(us)|
for any conformal mapping ϕ : Ω → Ω′, and

〈ε
z1
. . . ε

z

n

〉+
H

= in · Pf
[

(zs − zm)
−1

]2n

s,m=1
, zs = z2n+1−s .

• Ingredients: convergence of basic fermionic observables
(via Riemann-type b.v.p.) and (built-in) Pfaffian formalism



Correlations at criticality: convergence to CFT predictions

[Ch.–Hongler–Izyurov (2016, in progress)]

• Convergence of mixed correlations:
spins (σ), disorders (µ), fermions (ψ),
energy densities (ε) (in multiply connected
domains Ω, with mixed free/fixed boundary
conditions b) to conformally covariant limits
that can be defined via solutions to appropriate
Riemann-type boundary value problems in Ω.

• Standard CFT fusion rules

σµ ηψ + ηψ, ψσ  µ, ψµ σ,

iψψ  ε, σσ  1 + ε, µµ 1− ε

can be deduced from properties of solutions to Riemann-type b.v.p.

• Stress-energy tensor: [Ch.–Glazman–Smirnov (2016)]



Correlations at criticality: convergence to CFT predictions

[Ch.–Hongler–Izyurov (2016, in progress)]

• Convergence of mixed correlations:
spins (σ), disorders (µ), fermions (ψ),
energy densities (ε) (in multiply connected
domains Ω, with mixed free/fixed boundary
conditions b) to conformally covariant limits
that can be defined via solutions to appropriate
Riemann-type boundary value problems in Ω.

• Standard CFT fusion rules, e.g. σσ  1 + ε:

〈σu′σu . . .〉bΩ = |u′−u|− 1
4

[

〈. . .〉bΩ+ 1
2 |u′−u|〈εu . . .〉bΩ+ o(|u′−u|)

]

,

can be deduced from properties of solutions to Riemann-type b.v.p.

• More details: arXiv:1605.09035, arXiv:1[6]??.?????



Some research routes / open questions

• Better understanding of the CFT description at criticality:
other fields, fusion rules, height functions, “geometric” observables
(e.g., probabilities of concrete topologies of domain walls)

• Near-critical (massive) regime x − xcrit = m · δ: convergence
of correlations, massive SLE3 curves and loop ensembles etc.

• Super-critical regime: e.g., convergence of interfaces to SLE6

curves for any fixed x > xcrit [known only for x = 1 (percolation)]

x = xcrit

• Renormalization

fixed x>xcrit, δ→0

−−−−−−−−→
(x−xcrit) · δ−1 → ∞

x = 1
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• Irregular graphs, random interactions etc: many questions...

Tool: local relations and spinor observables are always there!
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• Near-critical (massive) regime x − xcrit = m · δ: convergence
of correlations, massive SLE3 curves and loop ensembles etc.

• Super-critical regime: e.g., convergence of interfaces to SLE6

curves for any fixed x > xcrit [known only for x = 1 (percolation)]

• Irregular graphs, random interactions etc: many questions...

Tool: local relations and spinor observables are always there!

Extended version of this talk: arXiv:1605.09035

Thank you!


