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2D Ising model: s-holomorphicity
and correlation functions

Outline:

• Nearest-neighbor Ising model in 2D:

◦ definition, phase transition
◦ fermionic observables
◦ local relations: s-holomorphicity
◦ dimers and Kac–Ward matrices

• Conformal invariance at criticality:

◦ s-holomorphic observables
◦ spin correlations and other fields
◦ interfaces and loop ensembles

• Research routes
c⃝ Clément Hongler (EPFL)



Nearest-neighbor Ising or Lenz-Ising model in 2D

Definition: Lenz-Ising model on a planar graph G ∗ (dual to G ) is
a random assignment of +/− spins to vertices of G ∗ (faces of G )

Q: I heard this is called a (site) percolation?
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Definition: Lenz-Ising model on a planar graph G ∗ (dual to G ) is
a random assignment of +/− spins to vertices of G ∗ (faces of G )

Q: I heard this is called a (site) percolation?

[sample of a honeycomb percolation]



Nearest-neighbor Ising or Lenz-Ising model in 2D

Definition: Lenz-Ising model on a planar graph G ∗ (dual to G ) is
a random assignment of +/− spins to vertices of G ∗ (faces of G )

Q: I heard this is called a (site) percolation?
A: .. according to the following probabilities:

P
[
conf. σ ∈ {±1}V (G∗)

]
∝ exp

[
β
∑

e=⟨uv⟩ Juvσuσv
]

∝
∏

e=⟨uv⟩:σu ̸=σv
xuv ,

where Juv > 0 are interaction constants assigned to edges ⟨uv⟩,
β = 1/kT is the inverse temperature, and xuv = exp[−2βJuv ].
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• It is also convenient to use the parametrization xuv = tan(12θuv ).

• Working with subgraphs of regular lattices, one can consider the
homogeneous model in which all xuv are equal to each other.



Nearest-neighbor Ising or Lenz-Ising model in 2D

Definition: Lenz-Ising model on a planar graph G ∗ (dual to G ) is
a random assignment of +/− spins to vertices of G ∗ (faces of G )

Disclaimer:
no external magnetic field.

P
[
conf. σ ∈ {±1}V (G∗)

]
∝ exp

[
β
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where Juv > 0 are interaction constants assigned to edges ⟨uv⟩,
β = 1/kT is the inverse temperature, and xuv = exp[−2βJuv ].

• It is also convenient to use the parametrization xuv = tan(12θuv ).

• Working with subgraphs of regular lattices, one can consider the
homogeneous model in which all xuv are equal to each other.



Phase transition (e.g., on Z2)

• Dobrushin boundary conditions: +1 on (ab) and −1 on (ba)

x < xcrit x = xcrit x > xcrit

• Ising (1925): no phase transition in 1D  doubts about 2+D;

• Peierls (1936): existence of the phase transition in 2D;

• Kramers-Wannier (1941): xself-dual =
√
2− 1 = tan(12 · π

4 );

• Onsager (1944): sharp phase transition at x =
√
2− 1.



At criticality (e.g., on Z2):

• Kaufman-Onsager(1948-49), Yang(1952):
scaling exponent 1

8 for the magnetization
(some spin correlations in Z2 at x ↑ xcrit).

• In particular, for Ωδ → Ω and uδ → u ∈ Ω,

it should be EΩδ
[σuδ ] ≍ δ

1
8 as δ → 0.

x = xcrit
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• In particular, for Ωδ → Ω and uδ → u ∈ Ω,

it should be EΩδ
[σuδ ] ≍ δ

1
8 as δ → 0.

Questions for the part #2:

• Convergence of correlations, e.g.

δ−
n
8 ·EΩδ

[σu1,δ . . . σun,δ ] →
δ→0

⟨σu1 . . . σun⟩Ω ?
x = xcrit

• Convergence of curves: interfaces (e.g. generated by Dobrushin
boundary conditions) to SLE3’s, loop ensembles to CLE3’s?



At criticality (e.g., on Z2):

• Kaufman-Onsager(1948-49), Yang(1952):
scaling exponent 1

8 for the magnetization
(some spin correlations in Z2 at x ↑ xcrit).

• In particular, for Ωδ → Ω and uδ → u ∈ Ω,

it should be EΩδ
[σuδ ] ≍ δ

1
8 as δ → 0.

Questions for the part #2:

• Convergence of correlations, e.g.

δ−
n
8 ·EΩδ

[σu1,δ . . . σun,δ ] →
δ→0

⟨σu1 . . . σun⟩Ω ?
x = xcrit

• Convergence of curves: interfaces (e.g. generated by Dobrushin
boundary conditions) to SLE3’s, loop ensembles to CLE3’s?

Q: Why these limits are conformally invariant (covariant)?



Fermionic observables: combinatorial definition [Smirnov ’00s]

For an oriented edge a of G and a midpoint ze of another edge e,

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[
e−

i
2
wind(a ze)

∏
⟨uv⟩∈ω

xuv

]
,

where ηa denotes the (once and forever
fixed) square root of the direction of a.

• The factor e−
i
2
wind(a ze) does not de-

pend on the way how ω is split into non-
intersecting loops and a path a ze .
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i
2
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pend on the way how ω is split into non-
intersecting loops and a path a ze .

• When both a and e are “boundary”

edges, the factor ηae
− i

2
wind(a ze) = ±ηe

is fixed and FG (a, ze) becomes the parti-
tion function of the Ising model (on G ∗)
with Dobrushin boundary conditions.



Fermionic observables: combinatorial definition [Smirnov ’00s]

For an oriented edge a of G and a midpoint ze of another edge e,

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[
e−

i
2
wind(a ze)

∏
⟨uv⟩∈ω

xuv

]
,

where ηa denotes the (once and forever
fixed) square root of the direction of a.

• The factor e−
i
2
wind(a ze) does not de-

pend on the way how ω is split into non-
intersecting loops and a path a ze .

• Local relations: if we similarly
define FG (a, ·) on “corners” of G ,
then for any c ∼ ze ̸= za one has

FG (a, c) = e±
i
2
(θe−α(c,e))Proj[FG (a, ze) ; e

∓ i
2
θeηe ] .



Fermionic observables: local relations

• Definition:

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[
e−

i
2
wind(a ze)

∏
⟨uv⟩∈ω

xuv

]
.

• Claim: FG (a, c) = e±
i
2
(θe−α(c,e)) · Proj[FG (a, ze) ; e∓

i
2
θeηe ] .

• Proof: a bijection
between ConfG (a, c)
and Conf(a, ze). Case A:
Case B:
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FG(a, c) = Proj[FG(a, ze) ; ηc ]

provided each edge e of G is a diagonal of a
rhombic tile with half-angle θe and the Ising
model weights are given by xe = tan(12θe).



Fermionic observables: local relations

• Definition:

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[
e−

i
2
wind(a ze)

∏
⟨uv⟩∈ω

xuv

]
.

• Claim: FG (a, c) = e±
i
2
(θe−α(c,e)) · Proj[FG (a, ze) ; e∓

i
2
θeηe ] .

• S-holomorphicity (special self-dual weights on isoradial graphs):

FG(a, c) = Proj[FG(a, ze) ; ηc ]

provided each edge e of G is a diagonal of a
rhombic tile with half-angle θe and the Ising
model weights are given by xe = tan(12θe).

• ⇒ critical weights on regular grids:
− square: xcrit = tan π

8 =
√
2− 1,

− honeycomb: xcrit = tan π
6 = 1/

√
3, ...



2D Ising model as a dimer model on a non-bipartite graph
( ..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ... )

• There exist several represen-
tations of the 2D Ising model via
dimers on an auxiliary graph GF.
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2D Ising model as a dimer model on a non-bipartite graph
( ..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ... )

• There exist several represen-
tations of the 2D Ising model via
dimers on an auxiliary graph GF.
[e.g., 1-to-2|V (G)| correspondence of spin configurations

on G∗ (= domain walls on G) and dimers on this GF;

note that V (GF ) ∼= {oriented edges and corners of G}]

• Kasteleyn’s theory: Z=Pf[K ] [K=−K⊤ is a weighted adjacency matrix of GF ]

• Definition of fermionic observables via dimers on GF:

FG (a, c) = ηcK
−1
c,a and FG (a, ze) = ηeK

−1
e,a + ηeK

−1
e,a .

• Local relations: an equivalent form of the identity K ·K−1= Id
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2D Ising model as a dimer model on a non-bipartite graph
( ..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ... )

• There exist several represen-
tations of the 2D Ising model via
dimers on an auxiliary graph GF.
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• Kac–Ward formula (1952–..., 1999–...): Z2 = det[Id−T],

Te,e′ =

{
exp[ i2α(e, e

′)] · (xexe′)1/2

0

if e ′ prolongs e but e ′ ̸= ē;
otherwise.

[ is equivalent to the Kasteleyn theorem for dimers on GF ]



2D Ising model as a dimer model on a non-bipartite graph
( ..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ... )

• There exist several represen-
tations of the 2D Ising model via
dimers on an auxiliary graph GF.
[e.g., 1-to-2|V (G)| correspondence of spin configurations

on G∗ (= domain walls on G) and dimers on this GF;

note that V (GF ) ∼= {oriented edges and corners of G}]

• Kasteleyn’s theory: Z=Pf[K ] [K=−K⊤ is a weighted adjacency matrix of GF ]

• Kac–Ward formula (1952–..., 1999–...): Z2 = det[Id−T],

Te,e′ =

{
exp[ i2α(e, e

′)] · (xexe′)1/2

0

if e ′ prolongs e but e ′ ̸= ē;
otherwise.

• More information: arXiv:1507.08242 [Ch., Cimasoni, Kassel]



Part II: conformal invariance at criticality [Smirnov ’06]
[Ch.,Duminil-Copin,Hongler,Izyurov,Kemppainen,Kytölä,... ’09 – ...]

Main tool: discrete (s-)holomorphic functions

• (A fair amount of) work is needed to understand how
to use them for the rigorous analysis when Ωδ → Ω,
especially in rough domains formed by fractal interfaces.
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Main tool: discrete (s-)holomorphic functions

• (A fair amount of) work is needed to understand how
to use them for the rigorous analysis when Ωδ → Ω,
especially in rough domains formed by fractal interfaces.

General strategy to prove the convergence of correlations:

• in discrete: encode quantities of interest as particular values of
a discrete holomorphic function F δ that solves some

discrete boundary value problem;

• discrete→continuum: prove convergence (as δ → 0) of F δ to the
solution f of the similar continuous b.v.p. [ some work to be done ];

• continuum→discrete: decipher the limit of discrete quantities
from the convergence F δ → f [e.g., coefficients at singularities].
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General strategy to prove the convergence of correlations:

• in discrete: encode quantities of interest as particular values of

a discrete holomorphic function Fδ that solves some

discrete boundary value problem;

• discrete→continuum: prove convergence (as δ → 0) of Fδ to the
solution f of the similar continuous b.v.p. [ some work to be done ];

• continuum→discrete: decipher the limit of discrete quantities

from the convergence Fδ → f [e.g., coefficients at singularities].

Typical strategy to prove the convergence of interfaces:

• choose a family of martingales w. r. t. the growing interface γδ
[there are many, e.g., Eab

Ωδ
[σz ] would do the job for +1/−1 b. c.];

• prove uniform convergence of the (re-scaled) quantities as δ → 0
[the one above (done in 2012) is not an optimal choice, there are
others that are easier to handle (first done in 2006–2009)];

• prove the convergence γδ → γ and recover the law of γ using this
family of martingales [some probabilistic techniques are needed].
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[Ch.,Duminil-Copin,Hongler,Izyurov,Kemppainen,Kytölä,... ’09 – ...]

Main tool: discrete (s-)holomorphic functions
• (A fair amount of) work is needed to understand how to use them for the rigorous analysis when Ωδ → Ω,
especially in rough domains formed by fractal interfaces.

Some papers/preprints (convergence of correlations):
• basic observables: [Smirnov ’06], universality: [Ch.,Smirnov ’09]
• energy density field: [Hongler,Smirnov ’10], [Hongler ’10]

• spinor version, some ratios of spin correlations: [Ch.,Izyurov ’11]
• spin field: [Ch.,Hongler,Izyurov ’12]

• mixed correlations in multiply-connected Ω’s [on the way]
• stress-energy tensor [Ch.,Glazman,Smirnov, on the way]

Some papers/preprints (convergence of interfaces):
• +/− b.c. (conv. to SLE3 in a weak topology): [Ch.,Smirnov ’09]

• +/free/− b.c. (dipolar SLE3): [Hongler,Kytölä ’11]
• multiply-connected setups: [Izyurov ’13]

• strong topology (tightness of curves): [Kemppainen,Smirnov ’12],
[Ch. ’12], [Ch.,Duminil-Copin,Hongler ’13], [Ch.,D.-C.,H.,K.,S. ’13]

• free b.c. (exploration tree): [Benoist,Duminil-Copin,Hongler ’14]
• [on the way by smb]: full loop ensemble (convergence to CLE3)



Conformal covariance of correlation functions at criticality

• Three primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8 , 1.

• Energy density: for an edge e of Ω, let

εe := σe♯σe♭ − εinf.vol.
= (1− εinf.vol.)− 2 · χ[e ∈ ω]

where e♯ and e♭ are two faces adjacent to e.

[ εinf.vol. is lattice-dependent: = 2−
1
2 (square), = 2

3(honeycomb), ...]



Conformal covariance of correlation functions at criticality

• Three primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8 , 1.

• CFT prediction:

If Ωδ→Ω and ek,δ→ek as δ → 0, then

δ−n·E+
Ωδ
[εu1,δ . . . εun,δ ] →

δ→0
Cn
ε ·⟨εe1 . . . εen⟩

+
Ω ,

where Cε is a lattice-dependent constant,

⟨εu1 . . . εun⟩+Ω = ⟨εφ(u1) . . . εφ(un)⟩
+
Ω′ ·

∏∏∏n
s=1 |φ′(us)|

for any conformal mapping φ : Ω → Ω′, and

⟨εz1 . . . εzn⟩
+
H = (πi)−n · Pf

[
(zs − zm)

−1
]2n
s,m=1

, zs = z2n+1−s .



Conformal covariance of correlation functions at criticality

• Three primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8 , 1.

• Theorem: [Hongler–Smirnov, Hongler]

If Ωδ→Ω and ek,δ→ek as δ → 0, then

δ−n·E+
Ωδ
[εu1,δ . . . εun,δ ] →

δ→0
Cn
ε ·⟨εe1 . . . εen⟩

+
Ω ,

where Cε is a lattice-dependent constant,

⟨εu1 . . . εun⟩+Ω = ⟨εφ(u1) . . . εφ(un)⟩
+
Ω′ ·

∏∏∏n
s=1 |φ′(us)|

for any conformal mapping φ : Ω → Ω′, and

⟨εz1 . . . εzn⟩
+
H = (πi)−n · Pf

[
(zs − zm)

−1
]2n
s,m=1

, zs = z2n+1−s .

• Ingredients: convergence of K−1
e,a and Pfaffian formalism
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• Three primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8 , 1.

• CFT prediction:

If Ωδ→Ω and uk,δ→uk as δ → 0, then

δ−
n
8 ·E+

Ωδ
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Ω ,

where Cσ is a lattice-dependent constant,

⟨σu1 . . . σun⟩+Ω = ⟨σφ(u1) . . . σφ(un)⟩
+
Ω′ ·

∏∏∏n
s=1 |φ′(us)|

1
8

for any conformal mapping φ : Ω → Ω′, and[
⟨σz1 . . . σzn⟩

+
H

]2
=

∏
16s6n

(2 Im zs)
− 1

4 ×
∑

µ∈{±1}n

∏
s<m

∣∣∣∣ zs−zm
zs−zm

∣∣∣∣µsµm2
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Conformal covariance of spin correlations at criticality

• spin configurations on G ∗

! domain walls on G
! dimers on GF

• Kasteleyn’s theory: Z =Pf[K ]
[K=−K⊤ is a weighted adjacency matrix of GF ]
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• Kasteleyn’s theory: Z =Pf[K ]
[K=−K⊤ is a weighted adjacency matrix of GF ]

• Claim:

E[σu1 . . . σun] =
Pf [K[u1,...,un] ]

Pf [ K ]
,

where K[u1,...,un] is obtained from K by changing the sign of its
entries on slits linking u1, . . . ,un (and, possibly, uout) pairwise.



Conformal covariance of spin correlations at criticality

• spin configurations on G ∗

! domain walls on G
! dimers on GF

• Kasteleyn’s theory: Z =Pf[K ]
[K=−K⊤ is a weighted adjacency matrix of GF ]

• Claim:

E[σu1 . . . σun] =
Pf [K[u1,...,un] ]

Pf [ K ]
,

where K[u1,...,un] is obtained from K by changing the sign of its
entries on slits linking u1, . . . ,un (and, possibly, uout) pairwise.

• More invariant way to think about entries of K−1
[u1,...,un]

:

double-covers of G branching over u1, . . . ,un



Conformal covariance of spin correlations at criticality

Main tool: spinors on the double cover [Ωδ;u1, . . . ,un].

FΩδ
(z) :=

[
Z+
Ωδ

[σu1 . . . σun ]
]−1 ·

∑
ω∈ConfΩδ(u

→
1 , z)

ϕu1,...,un (ω, z) ·x
#edges(ω)
crit ,

ϕu1,...,un (ω, z) := e−
i
2
wind(p(ω)) · (−1)#loops(ω\p(ω))· sheet (p (ω) , z).

a

z

a+
δ

2
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• wind (p (γ)) is the winding of
the path p (γ) : u→1 = u1+

δ
2 z ;

• #loops – those containing an
odd number of u1, . . . , un inside;

• sheet (p (γ) , z) = +1, if p(γ)
defines z , and −1 otherwise.



Conformal covariance of spin correlations at criticality

Main tool: spinors on the double cover [Ωδ;u1, . . . ,un].

FΩδ
(z) :=

[
Z+
Ωδ

[σu1 . . . σun ]
]−1 ·

∑
ω∈ConfΩδ(u

→
1 , z)

ϕu1,...,un (ω, z) ·x
#edges(ω)
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ϕu1,...,un (ω, z) := e−
i
2
wind(p(ω)) · (−1)#loops(ω\p(ω))· sheet (p (ω) , z).
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• Claim:

• wind (p (γ)) is the winding of
the path p (γ) : u→1 = u1+

δ
2 z ;

• #loops – those containing an
odd number of u1, . . . , un inside;

• sheet (p (γ) , z) = +1, if p(γ)
defines z , and −1 otherwise.

FΩδ
(u1+

3δ
2 ) =

E+
Ωδ

[σu1+2δ . . . σun ]

E+
Ωδ

[σu1 . . . σun ]



Conformal covariance of spin correlations at criticality

Example: to handle E+
Ωδ
[σu], one

should consider the following b.v.p.:

◦ f (z∗) ≡ −f (z), branches around u;

◦ Im
[
f (ζ)

√
n(ζ)

]
= 0 for ζ ∈ ∂Ω;

◦ f (z) = 1√
z−u

+ . . .
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z

a+
δ

2



Conformal covariance of spin correlations at criticality
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Ωδ
[σu], one

should consider the following b.v.p.:

◦ f (z∗) ≡ −f (z), branches around u;

◦ Im
[
f (ζ)

√
n(ζ)

]
= 0 for ζ ∈ ∂Ω;

◦ f (z) = 1√
z−u

+AΩ(u) · 2
√
z−u+ . . .

a

z

a+
δ

2

Claim: For Ωδ → Ω as δ → 0,

◦ (2δ)−1 log
[
E+
Ωδ
[σuδ+2δ] /E+

Ωδ
[σuδ ]

]
→ Re[AΩ(u) ] ;

◦ (2δ)−1 log
[
E+
Ωδ
[σuδ+2iδ] /E+

Ωδ
[σuδ ]

]
→ − Im [AΩ(u) ] .



Conformal covariance of spin correlations at criticality
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◦ f (z∗) ≡ −f (z), branches around u;
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Claim: For Ωδ → Ω as δ → 0,

◦ (2δ)−1 log
[
E+
Ωδ
[σuδ+2δ] /E+

Ωδ
[σuδ ]

]
→ Re[AΩ(u) ] ;

◦ (2δ)−1 log
[
E+
Ωδ
[σuδ+2iδ] /E+

Ωδ
[σuδ ]

]
→ − Im [AΩ(u) ] .

Conformal covariance 1
8 : for any conformal map ϕ : Ω → Ω′,

◦ f[Ω,a](w) = f[Ω′,ϕ(a)](ϕ(w)) · (ϕ′(w))1/2 ;

◦ AΩ(z) = AΩ′(ϕ(z)) · ϕ′(z) + 1
8 · ϕ′′(z)/ϕ′(z) .



Conformal covariance of spin correlations at criticality

Example: to handle E+
Ωδ
[σu], one

should consider the following b.v.p.:

◦ f (z∗) ≡ −f (z), branches around u;

◦ Im
[
f (ζ)

√
n(ζ)

]
= 0 for ζ ∈ ∂Ω;

◦ f (z) = 1√
z−u

+AΩ(u) · 2
√
z−u+ . . .

a

z

a+
δ

2

Claim: For Ωδ → Ω as δ → 0,

◦ (2δ)−1 log
[
E+
Ωδ
[σuδ+2δ] /E+

Ωδ
[σuδ ]

]
→ Re[AΩ(u) ] ;

◦ (2δ)−1 log
[
E+
Ωδ
[σuδ+2iδ] /E+

Ωδ
[σuδ ]

]
→ − Im [AΩ(u) ] .

Work to be done:

• to handle tricky boundary conditions (Dirichlet for
∫
Re[f 2dz ]);

• to prove convergence, incl. near singularities [ complex analysis];
• to recover the normalization of E+

Ωδ
[σu] [probabilistic techniques].
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• Better understanding of the
CFT description at criticality:
more fields, Virasoro algebra at the lattice
level, “geometric” observables, height func-
tions, Riemann surfaces etc.
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• Better understanding of the CFT description at criticality:
more fields, Virasoro algebra at the lattice level, “geometric”
observables, height functions, Riemann surfaces etc.

• Near-critical (massive) regime x − xcrit = m · δ: convergence
of correlations, massive SLE3 curves and loop ensembles etc.

• Super-critical regime: e.g., convergence of interfaces to SLE6

curves for any fixed x > xcrit [known only for x = 1 (percolation)]

• Irregular graphs, random interactions etc: many questions...

Tool: local relations and spinor observables are always there!

• Not only nearest-neighbor interactions
[ recent progress for the energy density field due to Giuliani, Greenblatt and Mastropietro, arXiv:1204.4040 ]

Thank you!


