2D ISING MODEL: S-HOLOMORPHICITY AND CORRELATION FUNCTIONS

DMITRY CHELKAK (UNIVERSITÉ DE GENÈVE & Steklov Institute, St.Petersburg)

[Sample of a critical 2D Ising configuration (with two disorders), © Clément Hongler (EPFL)]

CHARLES RIVER LECTURES BOSTON, OCTOBER 2, 2015

2D ISING MODEL: S-HOLOMORPHICITY AND CORRELATION FUNCTIONS

OUTLINE:

- Nearest-neighbor Ising model in 2D:
- definition, phase transition
- fermionic observables
- o local relations: s-holomorphicity
- o dimers and Kac-Ward matrices
- Conformal invariance at criticality:
- s-holomorphic observables
 spin correlations and other fields
 interfaces and loop ensembles

• Research routes

© Clément Hongler (EPFL)

<u>Definition</u>: Lenz-Ising model on a planar graph G^* (dual to G) is a random assignment of +/- spins to vertices of G^* (faces of G)

Q: I heard this is called a (site) percolation?

<u>Definition</u>: Lenz-Ising model on a planar graph G^* (dual to G) is a random assignment of +/- spins to vertices of G^* (faces of G)

Q: I heard this is called a (site) percolation?

[sample of a honeycomb percolation]

<u>Definition</u>: Lenz-Ising model on a planar graph G^* (dual to G) is a random assignment of +/- spins to vertices of G^* (faces of G)

Q: I heard this is called a (site) percolation? A: .. according to the following probabilities:

$$\begin{split} \mathbb{P}\left[\text{conf. } \sigma \in \{\pm 1\}^{V(G^*)} \right] &\propto & \exp\left[\beta \sum_{e=\langle uv \rangle} J_{uv} \sigma_u \sigma_v\right] \\ &\propto & \prod_{e=\langle uv \rangle: \sigma_u \neq \sigma_v} x_{uv} \,, \end{split}$$

where $J_{uv} > 0$ are interaction constants assigned to edges $\langle uv \rangle$, $\beta = 1/kT$ is the inverse temperature, and $x_{uv} = \exp[-2\beta J_{uv}]$.

<u>Definition</u>: Lenz-Ising model on a planar graph G^* (dual to G) is a random assignment of +/- spins to vertices of G^* (faces of G)

Q: I heard this is called a (site) percolation? A: .. according to the following probabilities:

$$\mathbb{P}\left[\text{conf. } \sigma \in \{\pm 1\}^{V(G^*)} \right] \propto \exp\left[\beta \sum_{e = \langle uv \rangle} J_{uv} \sigma_u \sigma_v \right] \\ \propto \prod_{e = \langle uv \rangle: \sigma_u \neq \sigma_v} x_{uv} ,$$

where $J_{uv} > 0$ are interaction constants assigned to edges $\langle uv \rangle$, $\beta = 1/kT$ is the inverse temperature, and $x_{uv} = \exp[-2\beta J_{uv}]$.

- It is also convenient to use the parametrization $x_{uv} = \tan(\frac{1}{2}\theta_{uv})$.
- Working with subgraphs of *regular lattices*, one can consider the *homogeneous model* in which all *x*_{uv} are equal to each other.

<u>Definition</u>: Lenz-Ising model on a planar graph G^* (dual to G) is a random assignment of +/- spins to vertices of G^* (faces of G)

Disclaimer:

no external magnetic field.

$$\mathbb{P}\left[\text{conf. } \sigma \in \{\pm 1\}^{V(G^*)} \right] \propto \exp\left[\beta \sum_{e = \langle uv \rangle} J_{uv} \sigma_u \sigma_v \right] \\ \propto \prod_{e = \langle uv \rangle: \sigma_u \neq \sigma_v} x_{uv} ,$$

where $J_{uv} > 0$ are interaction constants assigned to edges $\langle uv \rangle$, $\beta = 1/kT$ is the inverse temperature, and $x_{uv} = \exp[-2\beta J_{uv}]$.

- It is also convenient to use the parametrization $x_{uv} = \tan(\frac{1}{2}\theta_{uv})$.
- Working with subgraphs of *regular lattices*, one can consider the *homogeneous model* in which all *x*_{uv} are equal to each other.

Phase transition (e.g., on \mathbb{Z}^2)

• Dobrushin boundary conditions: +1 on (ab) and -1 on (ba)

- Ising (1925): no phase transition in 1D \rightsquigarrow doubts about 2+D;
- Peierls (1936): existence of the phase transition in 2D;
- Kramers-Wannier (1941): $x_{self-dual} = \sqrt{2} 1 = \tan(\frac{1}{2} \cdot \frac{\pi}{4});$
- Onsager (1944): sharp phase transition at $x = \sqrt{2} 1$.

At criticality (e.g., on \mathbb{Z}^2):

- Kaufman-Onsager(1948-49), Yang(1952): scaling exponent ¹/₈ for the magnetization (some spin correlations in Z² at x ↑ x_{crit}).
- In particular, for $\Omega_{\delta} \to \Omega$ and $u_{\delta} \to u \in \Omega$, it should be $\mathbb{E}_{\Omega_{\delta}}[\sigma_{u_{\delta}}] \simeq \delta^{\frac{1}{8}}$ as $\delta \to 0$.

 $x = x_{\rm crit}$

At criticality (e.g., on \mathbb{Z}^2):

- Kaufman-Onsager(1948-49), Yang(1952): scaling exponent ¹/₈ for the magnetization (some spin correlations in Z² at x ↑ x_{crit}).
- In particular, for $\Omega_{\delta} \to \Omega$ and $u_{\delta} \to u \in \Omega$, it should be $\mathbb{E}_{\Omega_{\delta}}[\sigma_{u_{\delta}}] \asymp \delta^{\frac{1}{8}}$ as $\delta \to 0$.

Questions for the part #2:

• Convergence of correlations, e.g.

$$\delta^{-\frac{n}{8}} \cdot \mathbb{E}_{\Omega_{\delta}}[\sigma_{u_{1,\delta}} \dots \sigma_{u_{n,\delta}}] \xrightarrow[\delta \to 0]{} \langle \sigma_{u_{1}} \dots \sigma_{u_{n}} \rangle_{\Omega} ?$$

$$x = x_{\rm crit}$$

• Convergence of curves: interfaces (e.g. generated by Dobrushin boundary conditions) to SLE_3 's, loop ensembles to CLE_3 's?

At criticality (e.g., on \mathbb{Z}^2):

- Kaufman-Onsager(1948-49), Yang(1952): scaling exponent ¹/₈ for the magnetization (some spin correlations in Z² at x ↑ x_{crit}).
- In particular, for $\Omega_{\delta} \to \Omega$ and $u_{\delta} \to u \in \Omega$, it should be $\mathbb{E}_{\Omega_{\delta}}[\sigma_{u_{\delta}}] \asymp \delta^{\frac{1}{8}}$ as $\delta \to 0$.

Questions for the part #2:

• Convergence of correlations, e.g.

$$\delta^{-\frac{n}{8}} \cdot \mathbb{E}_{\Omega_{\delta}}[\sigma_{u_{1,\delta}} \dots \sigma_{u_{n,\delta}}] \xrightarrow[\delta \to 0]{} \langle \sigma_{u_{1}} \dots \sigma_{u_{n}} \rangle_{\Omega} ?$$

$$x = x_{\rm crit}$$

• Convergence of curves: interfaces (e.g. generated by Dobrushin boundary conditions) to ${\rm SLE}_3$'s, loop ensembles to ${\rm CLE}_3$'s?

Q: Why these limits are conformally invariant (covariant)?

Fermionic observables: combinatorial definition [Smirnov'00s]

For an oriented edge a of G and a midpoint z_e of another edge e,

$$F_G(a, z_e) := \overline{\eta}_a \sum_{\omega \in \operatorname{Conf}_G(a, z_e)} \left[e^{-\frac{i}{2} \operatorname{wind}(a \rightsquigarrow z_e)} \prod_{\langle uv \rangle \in \omega} x_{uv} \right],$$

where η_a denotes the (once and forever fixed) square root of the direction of a.

• The factor $e^{-\frac{i}{2}\text{wind}(a \rightarrow z_e)}$ does not depend on the way how ω is split into nonintersecting loops and a path $a \rightarrow z_e$.

Fermionic observables: combinatorial definition [Smirnov '00s]

For an oriented edge a of G and a midpoint z_e of another edge e,

$$F_G(a, z_e) := \overline{\eta}_a \sum_{\omega \in \operatorname{Conf}_G(a, z_e)} \left[e^{-\frac{i}{2} \operatorname{wind}(a \rightsquigarrow z_e)} \prod_{\langle uv \rangle \in \omega} x_{uv} \right],$$

where η_a denotes the (once and forever fixed) square root of the direction of a.

• The factor $e^{-\frac{i}{2}\text{wind}(a \rightsquigarrow z_e)}$ does not depend on the way how ω is split into nonintersecting loops and a path $a \rightsquigarrow z_e$.

• When both *a* and *e* are "boundary" edges, the factor $\overline{\eta}_a e^{-\frac{i}{2} \text{wind}(a \rightsquigarrow z_e)} = \pm \overline{\eta}_e$ is fixed and $F_G(a, z_e)$ becomes the partition function of the Ising model (on G^*) with Dobrushin boundary conditions.

Fermionic observables: combinatorial definition [Smirnov'00s]

For an oriented edge a of G and a midpoint z_e of another edge e,

$$F_G(a, z_e) := \overline{\eta}_a \sum_{\omega \in \operatorname{Conf}_G(a, z_e)} \left[e^{-\frac{i}{2} \operatorname{wind}(a \rightsquigarrow z_e)} \prod_{\langle uv \rangle \in \omega} x_{uv} \right],$$

where η_a denotes the (once and forever fixed) square root of the direction of a.

• The factor $e^{-\frac{i}{2} \text{wind}(a \rightsquigarrow z_e)}$ does not depend on the way how ω is split into nonintersecting loops and a path $a \rightsquigarrow z_e$.

• Local relations: if we similarly define $F_G(a, \cdot)$ on "corners" of G, then for any $c \sim z_e \neq z_a$ one has

$$F_G(a,c) = e^{\pm rac{i}{2}(heta_e - lpha(\mathbf{c},\mathbf{e}))} \operatorname{Proj}[F_G(a,z_e); e^{\pm rac{i}{2} heta_e} \overline{\eta}_e]$$

• Definition:

$$F_G(a, z_e) := \overline{\eta}_a \sum_{\omega \in \operatorname{Conf}_G(a, z_e)} \left[e^{-\frac{i}{2} \operatorname{wind}(a \rightsquigarrow z_e)} \prod_{\langle uv \rangle \in \omega} x_{uv} \right].$$

• Claim: $F_G(a,c) = e^{\pm \frac{i}{2}(\theta_e - \alpha(c,e))} \cdot \operatorname{Proj}[F_G(a, z_e); e^{\pm \frac{i}{2}\theta_e}\overline{\eta}_e].$

• Definition:

$$F_G(a, z_e) := \overline{\eta}_a \sum_{\omega \in \operatorname{Conf}_G(a, z_e)} \left[e^{-\frac{i}{2} \operatorname{wind}(a \rightsquigarrow z_e)} \prod_{\langle uv \rangle \in \omega} x_{uv} \right].$$

• Claim: $F_G(a,c) = e^{\pm \frac{i}{2}(\theta_e - \alpha(c,e))} \cdot \operatorname{Proj}[F_G(a, z_e); e^{\pm \frac{i}{2}\theta_e}\overline{\eta}_e].$

• Definition:

$$F_G(a, z_e) := \overline{\eta}_a \sum_{\omega \in \operatorname{Conf}_G(a, z_e)} \left[e^{-\frac{i}{2} \operatorname{wind}(a \rightsquigarrow z_e)} \prod_{\langle uv \rangle \in \omega} x_{uv} \right].$$

- Claim: $F_G(a,c) = e^{\pm \frac{i}{2}(\theta_e \alpha(c,e))} \cdot \operatorname{Proj}[F_G(a,z_e); e^{\pm \frac{i}{2}\theta_e}\overline{\eta}_e].$
- S-holomorphicity (special self-dual weights on isoradial graphs):

• Definition:

$$F_G(a, z_e) := \overline{\eta}_a \sum_{\omega \in \operatorname{Conf}_G(a, z_e)} \left[e^{-\frac{i}{2} \operatorname{wind}(a \rightsquigarrow z_e)} \prod_{\langle uv \rangle \in \omega} x_{uv} \right].$$

- Claim: $F_G(a,c) = e^{\pm \frac{i}{2}(\theta_e \alpha(c,e))} \cdot \operatorname{Proj}[F_G(a,z_e); e^{\pm \frac{i}{2}\theta_e}\overline{\eta}_e].$
- S-holomorphicity (special self-dual weights on isoradial graphs):
 F_G(a, c) = Proj[F_G(a, z_e); n
 _c]
 provided each edge e of G is a diagonal of a

rhombic tile with half-angle θ_e and the Ising model weights are given by $x_e = \tan(\frac{1}{2}\theta_e)$.

• Definition:

$$F_G(a, z_e) := \overline{\eta}_a \sum_{\omega \in \operatorname{Conf}_G(a, z_e)} \left[e^{-\frac{i}{2} \operatorname{wind}(a \rightsquigarrow z_e)} \prod_{\langle uv \rangle \in \omega} x_{uv} \right].$$

- Claim: $F_G(a,c) = e^{\pm \frac{i}{2}(\theta_e \alpha(c,e))} \cdot \operatorname{Proj}[F_G(a,z_e); e^{\pm \frac{i}{2}\theta_e}\overline{\eta}_e].$
- S-holomorphicity (special self-dual weights on isoradial graphs): $F_G(a, c) = \operatorname{Proj}[F_G(a, z_e); \overline{\eta}_c]$

provided each edge e of G is a diagonal of a rhombic tile with half-angle θ_e and the Ising model weights are given by $x_e = \tan(\frac{1}{2}\theta_e)$.

- $\bullet \Rightarrow$ critical weights on regular grids:
 - square: $x_{\rm crit} = \tan \frac{\pi}{8} = \sqrt{2} 1$,
 - honeycomb: $x_{\rm crit} = \tan \frac{\pi}{6} = 1/\sqrt{3}$, ...

• There exist **several representations** of the 2D Ising model via dimers on an auxiliary graph

• There exist **several representations** of the 2D Ising model via dimers on an auxiliary graph **G**_F.

• There exist several representations of the 2D Ising model via dimers on an auxiliary graph G_F . [e.g., 1-to-2^{|V(G)|} correspondence of spin configurations on G^* (= domain walls on G) and dimers on this G_F ; note that $V(G_F) \cong \{$ oriented edges and corners of $G \}$]

• There exist several representations of the 2D Ising model via dimers on an auxiliary graph G_F . [e.g., 1-to-2^{|V(G)|} correspondence of spin configurations on G^* (= domain walls on G) and dimers on this G_F ; note that $V(G_F) \cong \{$ oriented edges and corners of $G \}$]

• There exist several representations of the 2D Ising model via dimers on an auxiliary graph G_F . [e.g., 1-to-2^{|V(G)|} correspondence of spin configurations on G^* (= domain walls on G) and dimers on this G_F ; note that $V(G_F) \cong$ {oriented edges and corners of G}]

• Kasteleyn's theory: $\mathcal{Z} = Pf[K]$ [K = -K^T is a weighted adjacency matrix of G_F]

• There exist several representations of the 2D Ising model via dimers on an auxiliary graph G_F . [e.g., 1-to-2^{|V(G)|} correspondence of spin configurations on G^* (= domain walls on G) and dimers on this G_F ; note that $V(G_F) \cong$ {oriented edges and corners of G}]

- Kasteleyn's theory: $\mathcal{Z} = Pf[K]$ [K = -K^T is a weighted adjacency matrix of G_F]
- Definition of fermionic observables via dimers on G_F:

$${\sf F}_{\sf G}({\sf a},{\sf c})=\overline{\eta}_{\sf c}{
m K}_{{\sf c},{\sf a}}^{-1}$$
 and ${\sf F}_{\sf G}({\sf a},z_{\sf e})=\overline{\eta}_{\sf e}{
m K}_{{\sf e},{\sf a}}^{-1}+\overline{\eta}_{\overline{\sf e}}{
m K}_{\overline{{\sf e}},{\sf a}}^{-1}$

• Local relations: an equivalent form of the identity $K \cdot K^{-1} = Id$

• There exist several representations of the 2D Ising model via dimers on an auxiliary graph G_F . [e.g., 1-to-2^{|V(G)|} correspondence of spin configurations on G^* (= domain walls on G) and dimers on this G_F ; note that $V(G_F) \cong$ {oriented edges and corners of G}]

• Kasteleyn's theory: $\mathcal{Z} = Pf[K]$ [K = -K^T is a weighted adjacency matrix of G_F]

• Kac–Ward formula (1952–..., 1999–...): $\mathcal{Z}^2 = \det[\mathrm{Id} - \mathbf{T}],$ $T_{e,e'} = \begin{cases} \exp[\frac{i}{2}\alpha(e,e')] \cdot (x_e x_{e'})^{1/2} & e \\ 0 &$

• There exist several representations of the 2D Ising model via dimers on an auxiliary graph G_F . [e.g., 1-to-2^{|V(G)|} correspondence of spin configurations on G^* (= domain walls on G) and dimers on this G_F ; note that $V(G_F) \cong$ {oriented edges and corners of G}]

• Kasteleyn's theory: $\mathcal{Z} = Pf[K]$ [K = -K^T is a weighted adjacency matrix of G_F]

• Kac-Ward formula (1952-..., 1999-...): $\mathcal{Z}^2 = \det[\mathrm{Id} - \mathbf{T}]$, $T_{e,e'} = \begin{cases} \exp[\frac{i}{2}\alpha(e, e')] \cdot (x_e x_{e'})^{1/2} & \text{if } e' \text{ prolongs } e \text{ but } e' \neq \overline{e}; \\ 0 & \text{otherwise.} \end{cases}$

[is equivalent to the Kasteleyn theorem for dimers on G_F]

• There exist several representations of the 2D Ising model via dimers on an auxiliary graph G_F . [e.g., 1-to-2^{|V(G)|} correspondence of spin configurations on G^* (= domain walls on G) and dimers on this G_F ; note that $V(G_F) \cong$ {oriented edges and corners of G}]

• Kasteleyn's theory: $\mathcal{Z} = Pf[K]$ [K = -K^T is a weighted adjacency matrix of G_F]

• Kac–Ward formula (1952–..., 1999–...): $\mathcal{Z}^2 = \det[\mathrm{Id} - \mathbf{T}]$, $T_{e,e'} = \begin{cases} \exp[\frac{i}{2}\alpha(e, e')] \cdot (x_e x_{e'})^{1/2} & \text{if } e' \text{ prolongs } e \text{ but } e' \neq \overline{e}; \\ 0 & \text{otherwise.} \end{cases}$

• More information: arXiv:1507.08242 [Ch., Cimasoni, Kassel]

Main tool: discrete (s-)holomorphic functions

• (A fair amount of) work is needed to understand how to use them for the rigorous analysis when $\Omega_{\delta} \rightarrow \Omega$, especially in rough domains formed by fractal interfaces.

Main tool: discrete (s-)holomorphic functions

• (A fair amount of) work is needed to understand how to use them for the rigorous analysis when $\Omega_{\delta} \rightarrow \Omega$, especially in rough domains formed by fractal interfaces.

General strategy to prove the convergence of correlations:

• in discrete: encode quantities of interest as particular values of a discrete holomorphic function F^{δ} that solves some

discrete boundary value problem;

• <u>discrete \rightarrow continuum</u>: prove convergence (as $\delta \rightarrow 0$) of F^{δ} to the solution f of the similar continuous b.v.p. [some work to be done];

• <u>continuum→discrete</u>: decipher the limit of discrete quantities from the convergence $F^{\delta} \rightarrow f$ [e.g., coefficients at singularities].

Main tool: discrete (s-)holomorphic functions

• (A fair amount of) work is needed to understand how to use them for the rigorous analysis when $\Omega_{\delta} \rightarrow \Omega$, especially in rough domains formed by fractal interfaces.

Some papers/preprints (convergence of correlations):

- basic observables: [Smirnov '06], universality: [Ch., Smirnov '09]
- energy density field: [Hongler,Smirnov '10], [Hongler '10]
- spinor version, some ratios of spin correlations: [Ch., Izyurov '11]
- spin field: [Ch., Hongler, Izyurov '12]
- mixed correlations in multiply-connected Ω's [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]

Main tool: discrete (s-)holomorphic functions

• (A fair amount of) work is needed to understand how to use them for the rigorous analysis when $\Omega_{\delta} \rightarrow \Omega$, especially in rough domains formed by fractal interfaces.

Some papers/preprints (convergence of correlations):

• basic observables: [Smirnov '06], universality: [Ch., Smirnov '09]

• energy density field: [Hongler,Smirnov '10], [Hongler '10]

spinor version, some ratios of spin correlations: [Ch., Izyurov '11]
spin field: [Ch., Hongler, Izyurov '12]

mixed correlations in multiply-connected Ω's [on the way]

stress-energy tensor [Ch., Glazman, Smirnov, on the way]

Main tool: discrete (s-)holomorphic functions

• (A fair amount of) work is needed to understand how to use them for the rigorous analysis when $\Omega_{\delta} \rightarrow \Omega$, especially in rough domains formed by fractal interfaces.

Some papers/preprints (convergence of correlations):

- basic observables: [Smirnov '06], universality: [Ch., Smirnov '09]
- energy density field: [Hongler,Smirnov '10], [Hongler '10]
- spinor version, some ratios of spin correlations: [Ch., Izyurov '11]
- spin field: [Ch., Hongler, Izyurov '12]
- mixed correlations in multiply-connected Ω's [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]

Main tool: discrete (s-)holomorphic functions

General strategy to prove the convergence of correlations:

- in discrete: encode quantities of interest as particular values of
- a discrete holomorphic function F^{δ} that solves some

discrete boundary value problem;

• <u>discrete \rightarrow continuum</u>: prove convergence (as $\delta \rightarrow 0$) of F^{δ} to the solution f of the similar continuous b.v.p. [some work to be done];

• <u>continuum→discrete</u>: decipher the limit of discrete quantities from the convergence $F^{\delta} \rightarrow f$ [e.g., coefficients at singularities].

Typical strategy to prove the convergence of interfaces:

• choose a family of martingales w.r.t. the growing interface γ_{δ} [there are many, e.g., $\mathbb{E}_{\Omega_{\delta}}^{ab}[\sigma_z]$ would do the job for +1/-1 b.c.];

Main tool: discrete (s-)holomorphic functions

General strategy to prove the convergence of correlations:

- in discrete: encode quantities of interest as particular values of
- a discrete holomorphic function F^{δ} that solves some

discrete boundary value problem;

• <u>discrete \rightarrow continuum</u>: prove convergence (as $\delta \rightarrow 0$) of F^{δ} to the solution f of the similar continuous b.v.p. [some work to be done];

• <u>continuum→discrete</u>: decipher the limit of discrete quantities from the convergence $F^{\delta} \rightarrow f$ [e.g., coefficients at singularities].

Typical strategy to prove the convergence of interfaces:

• choose a family of martingales w.r.t. the growing interface γ_{δ} [there are many, e.g., $\mathbb{E}_{\Omega_{\delta}}^{ab}[\sigma_{z}]$ would do the job for +1/-1 b.c.];

• prove uniform convergence of the (re-scaled) quantities as $\delta \rightarrow 0$ [the one above (done in 2012) is <u>not</u> an optimal choice, there are others that are easier to handle (first done in 2006–2009)];

• prove the convergence $\gamma_{\delta} \rightarrow \gamma$ and recover the law of γ using this family of martingales [some probabilistic techniques are needed].

Main tool: discrete (s-)holomorphic functions

• (A fair amount of) work is needed to understand how to use them for the rigorous analysis when $\Omega_{\delta} \rightarrow \Omega$, especially in rough domains formed by fractal interfaces.

Some papers/preprints (convergence of correlations):

- basic observables: [Smirnov '06], universality: [Ch., Smirnov '09]
- energy density field: [Hongler,Smirnov '10], [Hongler '10]
- spinor version, some ratios of spin correlations: [Ch., Izyurov '11]
- spin field: [Ch., Hongler, Izyurov '12]
- mixed correlations in multiply-connected Ω's [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]

Some papers/preprints (convergence of interfaces):

• +/- b.c. (conv. to SLE_3 in a weak topology): [Ch.,Smirnov '09]

- +/free/- b.c. (dipolar SLE₃): [Hongler, Kytölä '11]
- multiply-connected setups: [Izyurov '13]
- strong topology (tightness of curves): [Kemppainen,Smirnov '12], [Ch. '12], [Ch.,Duminil-Copin,Hongler '13], [Ch.,D.-C.,H.,K.,S. '13]
- free b.c. (exploration tree): [Benoist, Duminil-Copin, Hongler '14]
- [on the way by smb]: full loop ensemble (convergence to CLE3)

Main tool: discrete (s-)holomorphic functions

• (A fair amount of) work is needed to understand how to use them for the rigorous analysis when $\Omega_{\delta} \rightarrow \Omega$, especially in rough domains formed by fractal interfaces.

Some papers/preprints (convergence of correlations):

- basic observables: [Smirnov '06], universality: [Ch., Smirnov '09]
- energy density field: [Hongler,Smirnov '10], [Hongler '10]
- spinor version, some ratios of spin correlations: [Ch., Izyurov '11]
- spin field: [Ch., Hongler, Izyurov '12]
- mixed correlations in multiply-connected Ω's [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]

Some papers/preprints (convergence of interfaces):

• +/- b.c. (conv. to SLE_3 in a weak topology): [Ch., Smirnov '09]

- +/free/- b.c. (dipolar SLE₃): [Hongler,Kytölä '11]
- multiply-connected setups: [Izyurov '13]

• strong topology (tightness of curves): [Kemppainen,Smirnov '12], [Ch. '12], [Ch.,Duminil-Copin,Hongler '13], [Ch.,D.-C.,H.,K.,S. '13]

- free b.c. (exploration tree): [Benoist, Duminil-Copin, Hongler '14]
- [on the way by smb]: full loop ensemble (convergence to CLE3)

Main tool: discrete (s-)holomorphic functions

• (A fair amount of) work is needed to understand how to use them for the rigorous analysis when $\Omega_{\delta} \rightarrow \Omega$, especially in rough domains formed by fractal interfaces.

Some papers/preprints (convergence of correlations):

- basic observables: [Smirnov '06], universality: [Ch., Smirnov '09]
- energy density field: [Hongler,Smirnov '10], [Hongler '10]
- spinor version, some ratios of spin correlations: [Ch., Izyurov '11]
- spin field: [Ch., Hongler, Izyurov '12]
- mixed correlations in multiply-connected Ω's [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]

Some papers/preprints (convergence of interfaces):

- \bullet +/- b.c. (conv. to ${\bf SLE_3}$ in a weak topology): [Ch.,Smirnov '09]
- +/free/- b.c. (dipolar SLE₃): [Hongler, Kytölä '11]
- multiply-connected setups: [Izyurov '13]

• strong topology (tightness of curves): [Kemppainen,Smirnov '12], [Ch. '12], [Ch.,Duminil-Copin,Hongler '13], [Ch.,D.-C.,H.,K.,S. '13]

• free b.c. (exploration tree): [Benoist, Duminil-Copin, Hongler '14]

• [on the way by smb]: full loop ensemble (convergence to CLE3)

Main tool: discrete (s-)holomorphic functions

• (A fair amount of) work is needed to understand how to use them for the rigorous analysis when $\Omega_{\delta} \rightarrow \Omega$, especially in rough domains formed by fractal interfaces.

Some papers/preprints (convergence of correlations):

- basic observables: [Smirnov '06], universality: [Ch., Smirnov '09]
- energy density field: [Hongler,Smirnov '10], [Hongler '10]
- spinor version, some ratios of spin correlations: [Ch., Izyurov '11]
- spin field: [Ch., Hongler, Izyurov '12]
- mixed correlations in multiply-connected Ω's [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]

Some papers/preprints (convergence of interfaces):

- +/- b.c. (conv. to SLE_3 in a weak topology): [Ch., Smirnov '09]
- +/free/- b.c. (dipolar SLE₃): [Hongler, Kytölä '11]
- multiply-connected setups: [Izyurov '13]
- strong topology (tightness of curves): [Kemppainen,Smirnov '12], [Ch. '12], [Ch.,Duminil-Copin,Hongler '13], [Ch.,D.-C.,H.,K.,S. '13]
- free b.c. (exploration tree): [Benoist, Duminil-Copin, Hongler '14]
- [on the way by smb]: full loop ensemble (convergence to CLE₃)

- Three primary fields:
 1, σ (spin), ε (energy density);
 Scaling exponents: 0, ¹/₈, 1.
- Energy density: for an edge e of Ω , let

$$\begin{split} \varepsilon_{e} &:= \sigma_{e^{\sharp}} \sigma_{e^{\flat}} - \varepsilon_{\text{inf.vol.}} \\ &= (1 - \varepsilon_{\text{inf.vol.}}) - 2 \cdot \chi[e \in \omega] \end{split}$$

Conformal Bield Theory

where e^{\sharp} and e^{\flat} are two faces adjacent to *e*. [$\varepsilon_{inf.vol.}$ is lattice-dependent: $=2^{-\frac{1}{2}}(square), =\frac{2}{3}(honeycomb), ...]$

- Three primary fields:
 1, σ (spin), ε (energy density);
 Scaling exponents: 0, ¹/₈, 1.
- CFT prediction:

If $\Omega_{\delta} \rightarrow \Omega$ and $e_{k,\delta} \rightarrow e_k$ as $\delta \rightarrow 0$, then

$$\delta^{-\mathbf{n}} \cdot \mathbb{E}^+_{\Omega_{\delta}}[\varepsilon_{u_{1,\delta}} \dots \varepsilon_{u_{n,\delta}}] \xrightarrow[\delta \to 0]{} \mathcal{C}^n_{\varepsilon} \cdot \langle \varepsilon_{\mathbf{e}_1} \dots \varepsilon_{\mathbf{e}_n} \rangle^+_{\Omega},$$

where $\mathcal{C}_{\varepsilon}$ is a lattice-dependent constant,

 $\langle \varepsilon_{u_1} \dots \varepsilon_{u_n} \rangle_{\Omega}^+ = \langle \varepsilon_{\varphi(u_1)} \dots \varepsilon_{\varphi(u_n)} \rangle_{\Omega'}^+ \cdot \prod_{s=1}^n |\varphi'(\mathbf{u}_s)|$

for any conformal mapping $\varphi:\Omega\to\Omega'$, and

$$\langle \boldsymbol{\varepsilon}_{\mathbf{z_1}} \dots \boldsymbol{\varepsilon}_{\mathbf{z_n}} \rangle_{\mathbb{H}}^+ = (\pi i)^{-n} \cdot \operatorname{Pf} \left[(z_s - z_m)^{-1} \right]_{s,m=1}^{2n}, \quad z_s = \overline{z}_{2n+1-s}.$$

- Three primary fields:
 1, σ (spin), ε (energy density);
 Scaling exponents: 0, ¹/₈, 1.
- Theorem: [Hongler–Smirnov, Hongler]

If $\Omega_{\delta} \rightarrow \Omega$ and $e_{k,\delta} \rightarrow e_k$ as $\delta \rightarrow 0$, then

$$\delta^{-\mathbf{n}} \cdot \mathbb{E}^+_{\Omega_{\delta}}[\varepsilon_{u_{1,\delta}} \dots \varepsilon_{u_{n,\delta}}] \xrightarrow[\delta \to 0]{} \mathcal{C}^n_{\varepsilon} \cdot \langle \varepsilon_{\mathbf{e}_1} \dots \varepsilon_{\mathbf{e}_n} \rangle^+_{\Omega},$$

where $\mathcal{C}_{\varepsilon}$ is a lattice-dependent constant,

 $\langle \varepsilon_{u_1} \dots \varepsilon_{u_n} \rangle_{\Omega}^+ = \langle \varepsilon_{\varphi(u_1)} \dots \varepsilon_{\varphi(u_n)} \rangle_{\Omega'}^+ \cdot \prod_{s=1}^n |\varphi'(\mathbf{u}_s)|$

for any conformal mapping $\varphi:\Omega\to \Omega',$ and

$$\langle \boldsymbol{\varepsilon}_{\mathbf{z_1}} \dots \boldsymbol{\varepsilon}_{\mathbf{z_n}} \rangle_{\mathbb{H}}^+ = (\pi i)^{-n} \cdot \operatorname{Pf} \left[(z_s - z_m)^{-1} \right]_{s,m=1}^{2n}, \quad z_s = \overline{z}_{2n+1-s}.$$

• Ingredients: convergence of $K_{e,a}^{-1}$ and Pfaffian formalism

- Three primary fields:
 1, σ (spin), ε (energy density);
 Scaling exponents: 0, ¹/₈, 1.
- CFT prediction:

If
$$\Omega_{\delta} \rightarrow \Omega$$
 and $u_{k,\delta} \rightarrow u_k$ as $\delta \rightarrow 0$, then

$$\delta^{-\frac{n}{8}} \cdot \mathbb{E}^+_{\Omega_{\delta}}[\sigma_{u_{1,\delta}} \dots \sigma_{u_{n,\delta}}] \xrightarrow[\delta \to 0]{} \mathcal{C}^n_{\sigma} \cdot \langle \sigma_{u_1} \dots \sigma_{u_n} \rangle^+_{\Omega},$$

where C_{σ} is a lattice-dependent constant,

$$\langle \sigma_{u_1} \dots \sigma_{u_n} \rangle_{\Omega}^+ = \langle \sigma_{\varphi(u_1)} \dots \sigma_{\varphi(u_n)} \rangle_{\Omega'}^+ \cdot \prod_{s=1}^n |\varphi'(\mathbf{u}_s)|_{\mathbf{g}}^1$$

for any conformal mapping $\varphi:\Omega\to\Omega',$ and

$$\left[\left\langle \boldsymbol{\sigma}_{\mathbf{z}_{1}} \dots \boldsymbol{\sigma}_{\mathbf{z}_{n}} \right\rangle_{\mathbb{H}}^{+} \right]^{2} = \prod_{1 \leqslant s \leqslant n} (2 \operatorname{Im} z_{s})^{-\frac{1}{4}} \times \sum_{\mu \in \{\pm 1\}^{n}} \prod_{s < m} \left| \frac{z_{s} - z_{m}}{z_{s} - \overline{z}_{m}} \right|^{\frac{\mu_{s} \mu_{m}}{2}}$$

- Three primary fields:
 1, σ (spin), ε (energy density);
 Scaling exponents: 0, ¹/₈, 1.
- Theorem: [Ch.-Hongler-Izyurov]

If $\Omega_{\delta} \rightarrow \Omega$ and $u_{k,\delta} \rightarrow u_k$ as $\delta \rightarrow 0$, then

$$\delta^{-\frac{n}{8}} \cdot \mathbb{E}_{\Omega_{\delta}}^{+} [\sigma_{u_{1,\delta}} \dots \sigma_{u_{n,\delta}}] \xrightarrow[\delta \to 0]{} \mathcal{C}_{\sigma}^{n} \cdot \langle \sigma_{u_{1}} \dots \sigma_{u_{n}} \rangle_{\Omega}^{+},$$

where \mathcal{C}_{σ} is a lattice-dependent constant,

$$\langle \sigma_{u_1} \dots \sigma_{u_n} \rangle_{\Omega}^+ = \langle \sigma_{\varphi(u_1)} \dots \sigma_{\varphi(u_n)} \rangle_{\Omega'}^+ \cdot \prod_{s=1}^n |\varphi'(\mathbf{u}_s)|_{\mathbf{u}}^{\mathbf{u}}$$

for any conformal mapping $\varphi:\Omega\to\Omega'$, and

$$\left[\left\langle \boldsymbol{\sigma}_{\mathbf{z}_{1}} \dots \boldsymbol{\sigma}_{\mathbf{z}_{n}} \right\rangle_{\mathbb{H}}^{+} \right]^{2} = \prod_{1 \leqslant s \leqslant n} (2 \operatorname{Im} z_{s})^{-\frac{1}{4}} \times \sum_{\mu \in \{\pm 1\}^{n}} \prod_{s < m} \left| \frac{z_{s} - z_{m}}{z_{s} - \overline{z}_{m}} \right|^{\frac{\mu_{s} \mu_{m}}{2}}$$

- spin configurations on G*
 ↔→ domain walls on G
 ↔→ dimers on G_F
- Kasteleyn's theory: $\mathcal{Z} = Pf[K]$

 $[\,{\bf K}\,{=}\,{-}\,{\bf K}^{\top}$ is a weighted adjacency matrix of $G_F\,]$

- spin configurations on G*
 ↔→ domain walls on G
 ↔→ dimers on G_F
- Kasteleyn's theory: $\boldsymbol{\mathcal{Z}} = \Pr[\mathbf{K}]$

[$\mathbf{K}\!=\!-\mathbf{K}^{\top}$ is a weighted adjacency matrix of G_F]

• Claim:

 $\mathbb{E}[\sigma_{u_1}\ldots\sigma_{u_n}] = \frac{\Pr[\mathbf{K}_{[u_1,\ldots,u_n]}]}{\Pr[\mathbf{K}]},$

where $\mathbf{K}_{[u_1,...,u_n]}$ is obtained from \mathbf{K} by changing the sign of its entries on slits linking u_1, \ldots, u_n (and, possibly, u_{out}) pairwise.

- spin configurations on G*
 ↔→ domain walls on G
 ↔→ dimers on G_F
- Kasteleyn's theory: $\mathcal{Z} = Pf[K]$

[$\mathbf{K}\!=\!-\mathbf{K}^{\top}$ is a weighted adjacency matrix of G_F]

• Claim:

 $\mathbb{E}[\sigma_{u_1} \dots \sigma_{u_n}] = \frac{\Pr[\mathbf{K}_{[u_1, \dots, u_n]}]}{\Pr[\mathbf{K}]},$

where $\mathbf{K}_{[u_1,...,u_n]}$ is obtained from \mathbf{K} by changing the sign of its entries on slits linking u_1, \ldots, u_n (and, possibly, u_{out}) pairwise.

• More invariant way to think about entries of $\mathbf{K}_{[u_1,...,u_n]}^{-1}$:

double-covers of G branching over u_1, \ldots, u_n

Conformal covariance of spin correlations at criticality Main tool: spinors on the double cover $[\Omega_{\delta}; u_1, \dots, u_n]$.

$$\begin{split} F_{\Omega_{\delta}}\left(z\right) &:= \left[\mathcal{Z}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{1}}\ldots\sigma_{u_{n}}\right]\right]^{-1} \cdot \sum_{\omega \in \operatorname{Conf}_{\Omega_{\delta}}\left(u_{1}^{\rightarrow},z\right)} \phi_{u_{1},\ldots,u_{n}}\left(\omega,z\right) \cdot x_{\operatorname{crit}}^{\#\operatorname{edges}\left(\omega\right)}, \\ \phi_{u_{1},\ldots,u_{n}}\left(\omega,z\right) &:= e^{-\frac{i}{2}\operatorname{wind}\left(p\left(\omega\right)\right)} \cdot \left(-1\right)^{\#\operatorname{loops}\left(\omega \setminus p\left(\omega\right)\right)} \cdot \operatorname{sheet}\left(p\left(\omega\right),z\right). \end{split}$$

Conformal covariance of spin correlations at criticality <u>Main tool</u>: spinors on the double cover $[\Omega_{\delta}; u_1, \ldots, u_n]$.

$$F_{\Omega_{\delta}}(z) := \left[\mathcal{Z}_{\Omega_{\delta}}^{+} \left[\sigma_{u_{1}} \dots \sigma_{u_{n}} \right] \right]^{-1} \cdot \sum_{\omega \in \operatorname{Conf}_{\Omega_{\delta}} \left(u_{1}^{\rightarrow}, z \right)} \phi_{u_{1}, \dots, u_{n}}(\omega, z) \cdot x_{\operatorname{crit}}^{\#\operatorname{edges}(\omega)},$$

 $\phi_{u_1,\ldots,u_n}(\omega,z) := e^{-\frac{i}{2}\mathrm{wind}(\mathrm{p}(\omega))} \cdot (-1)^{\#\mathrm{loops}(\omega \setminus \mathrm{p}(\omega))} \cdot \mathrm{sheet}\,(\mathrm{p}\,(\omega),z).$

• wind $(p(\gamma))$ is the winding of the path $p(\gamma): u_1^{\rightarrow} = u_1 + \frac{\delta}{2} \rightsquigarrow z;$

• #loops – those containing an odd number of u_1, \ldots, u_n inside;

• sheet $(p(\gamma), z) = +1$, if $p(\gamma)$ defines *z*, and -1 otherwise.

Conformal covariance of spin correlations at criticality <u>Main tool</u>: spinors on the double cover $[\Omega_{\delta}; u_1, \ldots, u_n]$.

$$F_{\Omega_{\delta}}(z) := \left[\mathcal{Z}_{\Omega_{\delta}}^{+} \left[\sigma_{u_{1}} \dots \sigma_{u_{n}} \right] \right]^{-1} \cdot \sum_{\omega \in \operatorname{Conf}_{\Omega_{\delta}} \left(u_{1}^{\rightarrow}, z \right)} \phi_{u_{1}, \dots, u_{n}}(\omega, z) \cdot x_{\operatorname{crit}}^{\#\operatorname{edges}(\omega)},$$

 $\phi_{u_1,\ldots,u_n}(\omega,z) := e^{-\frac{i}{2}\mathrm{wind}(\mathrm{p}(\omega))} \cdot (-1)^{\#\mathrm{loops}(\omega \setminus \mathrm{p}(\omega))} \cdot \mathrm{sheet}\,(\mathrm{p}\,(\omega),z).$

• wind $(p(\gamma))$ is the winding of the path $p(\gamma): u_1^{\rightarrow} = u_1 + \frac{\delta}{2} \rightsquigarrow z;$

• #loops – those containing an odd number of u_1, \ldots, u_n inside;

• sheet $(p(\gamma), z) = +1$, if $p(\gamma)$ defines *z*, and -1 otherwise.

• <u>Claim</u>: $F_{\Omega_{\delta}}(u_1 + \frac{3\delta}{2}) = \frac{\mathbb{E}_{\Omega_{\delta}}^+ [\sigma_{u_1 + 2\delta} \dots \sigma_{u_n}]}{\mathbb{E}_{\Omega_{\delta}}^+ [\sigma_{u_1} \dots \sigma_{u_n}]}$

Example: to handle $\mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{u}]$, one should consider the following b.v.p.:

f(z*) ≡ −f(z), branches around u;
 Im [f(ζ)√n(ζ)] = 0 for ζ ∈ ∂Ω;
 f(z) = 1/√(z-u) + ...

Example: to handle $\mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{u}]$, one should consider the following b.v.p.:

 $\circ f(z^*) \equiv -f(z), \text{ branches around } u;$ $\circ \operatorname{Im} \left[f(\zeta) \sqrt{n(\zeta)} \right] = 0 \text{ for } \zeta \in \partial\Omega;$ $\circ f(z) = \frac{1}{\sqrt{z-u}} + \mathcal{A}_{\Omega}(\mathbf{u}) \cdot 2\sqrt{z-u} + \dots$ Claim: For $\Omega_{\delta} \to \Omega$ as $\delta \to 0$, $\circ (2\delta)^{-1} \log \left[\mathbb{E}^+_{\Omega_{\delta}} [\sigma_{u_{\delta}+2\delta}] / \mathbb{E}^+_{\Omega_{\delta}} [\sigma_{u_{\delta}}] \right] \to \operatorname{Re}[\mathcal{A}_{\Omega}(u)];$ $\circ (2\delta)^{-1} \log \left[\mathbb{E}^+_{\Omega_{\delta}} [\sigma_{u_{\delta}+2i\delta}] / \mathbb{E}^+_{\Omega_{\delta}} [\sigma_{u_{\delta}}] \right] \to -\operatorname{Im} \left[\mathcal{A}_{\Omega}(u) \right].$

Example: to handle $\mathbb{E}^+_{\Omega_{\delta}}[\sigma_u]$, one should consider the following b.v.p.:

$$\circ f(z^*) \equiv -f(z), \text{ branches around } u;$$

$$\circ \operatorname{Im} \left[f(\zeta) \sqrt{n(\zeta)} \right] = 0 \text{ for } \zeta \in \partial\Omega;$$

$$\circ f(z) = \frac{1}{\sqrt{z-u}} + \mathcal{A}_{\Omega}(\mathbf{u}) \cdot 2\sqrt{z-u} + \dots$$
Claim: For $\Omega_{\delta} \to \Omega$ as $\delta \to 0$,

$$\circ (2\delta)^{-1} \log \left[\mathbb{E}^+_{\Omega_{\delta}} [\sigma_{u_{\delta}+2\delta}] / \mathbb{E}^+_{\Omega_{\delta}} [\sigma_{u_{\delta}}] \right] \to \operatorname{Re}[\mathcal{A}_{\Omega}(u)];$$

$$\circ (2\delta)^{-1} \log \left[\mathbb{E}^+_{\Omega_{\delta}} [\sigma_{u_{\delta}+2i\delta}] / \mathbb{E}^+_{\Omega_{\delta}} [\sigma_{u_{\delta}}] \right] \to -\operatorname{Im}[\mathcal{A}_{\Omega}(u)].$$

Conformal covariance $\frac{1}{8}$: for any conformal map $\phi : \Omega \to \Omega'$,

$$\circ \quad f_{[\Omega,a]}(w) = f_{[\Omega',\phi(a)]}(\phi(w)) \cdot (\phi'(w))^{1/2};$$

$$\circ \quad \mathcal{A}_{\Omega}(z) = \mathcal{A}_{\Omega'}(\phi(z)) \cdot \phi'(z) + \frac{1}{8} \cdot \phi''(z)/\phi'(z).$$

Example: to handle $\mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{u}]$, one should consider the following b.v.p.:

$$\circ f(z^*) \equiv -f(z), \text{ branches around } u;$$

$$\circ \operatorname{Im} \left[f(\zeta) \sqrt{n(\zeta)} \right] = 0 \text{ for } \zeta \in \partial\Omega;$$

$$\circ f(z) = \frac{1}{\sqrt{z-u}} + \mathcal{A}_{\Omega}(\mathbf{u}) \cdot 2\sqrt{z-u} + \dots$$
Claim: For $\Omega_{\delta} \to \Omega$ as $\delta \to 0$,

$$\circ (2\delta)^{-1} \log \left[\mathbb{E}^+_{\Omega_{\delta}} [\sigma_{u_{\delta}+2\delta}] / \mathbb{E}^+_{\Omega_{\delta}} [\sigma_{u_{\delta}}] \right] \to \operatorname{Re}[\mathcal{A}_{\Omega}(u)];$$

$$\circ (2\delta)^{-1} \log \left[\mathbb{E}^+_{\Omega_{\delta}} [\sigma_{u_{\delta}+2i\delta}] / \mathbb{E}^+_{\Omega_{\delta}} [\sigma_{u_{\delta}}] \right] \to -\operatorname{Im} \left[\mathcal{A}_{\Omega}(u) \right].$$

Work to be done:

- to handle tricky boundary conditions (Dirichlet for $\int \operatorname{Re}[f^2 dz]$);
- to prove convergence, incl. near singularities [complex analysis];
- to recover the normalization of $\mathbb{E}^+_{\Omega_{\delta}}[\sigma_u]$ [probabilistic techniques].

• Better understanding of the CFT description at criticality:

more fields, Virasoro algebra at the lattice level, "geometric" observables, height functions, Riemann surfaces etc.

• Better understanding of the CFT description at criticality: more fields, Virasoro algebra at the lattice level, "geometric" observables, height functions, Riemann surfaces etc.

• Near-critical (massive) regime $x - x_{crit} = m \cdot \delta$: convergence of correlations, massive SLE₃ curves and loop ensembles etc.

• Super-critical regime: e.g., convergence of interfaces to SLE_6 curves for any fixed $x > x_{crit}$ [known only for x = 1 (percolation)]

$$x = 1$$

 $x = x_{\rm crit}$

• Better understanding of the CFT description at criticality: more fields, Virasoro algebra at the lattice level, "geometric" observables, height functions, Riemann surfaces etc.

• Near-critical (massive) regime $x - x_{crit} = m \cdot \delta$: convergence of correlations, massive SLE₃ curves and loop ensembles etc.

• Super-critical regime: e.g., convergence of interfaces to SLE_6 curves for any fixed $x > x_{crit}$ [known only for x = 1 (percolation)]

Renormalization

fixed $x > x_{\rm crit}, \ \delta \rightarrow 0$

$$(x - x_{
m crit}) \cdot \delta^{-1} o \infty$$

x = 1

 $x = x_{\rm crit}$

• Better understanding of the CFT description at criticality: more fields, Virasoro algebra at the lattice level, "geometric" observables, height functions, Riemann surfaces etc.

• Near-critical (massive) regime $x - x_{crit} = m \cdot \delta$: convergence of correlations, massive SLE₃ curves and loop ensembles etc.

• Super-critical regime: e.g., convergence of interfaces to SLE_6 curves for any fixed $x > x_{crit}$ [known only for x = 1 (percolation)]

• Irregular graphs, random interactions etc: many questions...

Tool: local relations and spinor observables are always there!

• Better understanding of the CFT description at criticality: more fields, Virasoro algebra at the lattice level, "geometric" observables, height functions, Riemann surfaces etc.

• Near-critical (massive) regime $x - x_{crit} = m \cdot \delta$: convergence of correlations, massive SLE₃ curves and loop ensembles etc.

• Super-critical regime: e.g., convergence of interfaces to SLE_6 curves for any fixed $x > x_{crit}$ [known only for x = 1 (percolation)]

• Irregular graphs, random interactions etc: many questions...

Tool: local relations and spinor observables are always there!

• Not only nearest-neighbor interactions

[recent progress for the energy density field due to Giuliani, Greenblatt and Mastropietro, arXiv:1204.4040]

• Better understanding of the CFT description at criticality: more fields, Virasoro algebra at the lattice level, "geometric" observables, height functions, Riemann surfaces etc.

• Near-critical (massive) regime $x - x_{crit} = m \cdot \delta$: convergence of correlations, massive SLE₃ curves and loop ensembles etc.

• Super-critical regime: e.g., convergence of interfaces to SLE_6 curves for any fixed $x > x_{crit}$ [known only for x = 1 (percolation)]

• Irregular graphs, random interactions etc: many questions...

Tool: local relations and spinor observables are always there!

• Not only nearest-neighbor interactions

[recent progress for the energy density field due to Giuliani, Greenblatt and Mastropietro, arXiv:1204.4040]

THANK YOU!