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2D ISING MODEL: S-HOLOMORPHICITY
AND CORRELATION FUNCTIONS

OUTLINE:

e Nearest-neighbor Ising model in 2D:

o definition, phase transition

o fermionic observables

o local relations: s-holomorphicity
o dimers and Kac—Ward matrices

e Conformal invariance at criticality:

o s-holomorphic observables
o spin correlations and other fields
o interfaces and loop ensembles

e Research routes

© Clément Hongler (EPFL)



Nearest-neighbor Ising or Lenz-Ising model in 2D

Definition: Lenz-Ising model on a planar graph G* (dual to G) is
a random assignment of +/— spins to vertices of G* (faces of G)

Q: | heard this is called a (site) percolation?



Nearest-neighbor Ising or Lenz-Ising model in 2D

Definition: Lenz-Ising model on a planar graph G* (dual to G) is
a random assignment of +/— spins to vertices of G* (faces of G)

Q: | heard this is called a (site) percolation?

[sample of a honeycomb percolation]



Nearest-neighbor Ising or Lenz-Ising model in 2D
Definition: Lenz-Ising model on a planar graph G* (dual to G) is

a random assignment of +/— spins to vertices of G* (faces of G)

Q: | heard this is called a (site) percolation?
A: .. according to the following probabilities:

P [conf. o € {£1}V(¢I)] o exp [BZ (wv) JuvOuoy

X H (uv):ou#oy Xuv
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B = 1/kT is the inverse temperature, and x,, = exp[—25J,,].
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e It is also convenient to use the parametrization x,, = tan(%&u\,).

e Working with subgraphs of regular lattices, one can consider the
homogeneous model in which all x,,, are equal to each other.



Nearest-neighbor Ising or Lenz-Ising model in 2D
Definition: Lenz-Ising model on a planar graph G* (dual to G) is

a random assignment of +/— spins to vertices of G* (faces of G)

Disclaimer:
no external magnetic field.

Juwouoy

P [conf. o € {il}V(G*)] X exp [52 (uv)

X H (uv):ou#oy Xuv

where J,,, > 0 are interaction constants assigned to edges (uv),
B = 1/kT is the inverse temperature, and x,, = exp[—25J,,].

e It is also convenient to use the parametrization x,, = tan(%&u\,).

e Working with subgraphs of regular lattices, one can consider the
homogeneous model in which all x,,, are equal to each other.



Phase transition (e.g., on Z?)

e Dobrushin boundary conditions: +1 on (ab) and —1 on (ba)

X < Xerit X = Xcrit X > Xerit

e Ising (1925): no phase transition in 1D ~~ doubts about 2+D;
e Peierls (1936): existence of the phase transition in 2D;

e Kramers-Wannier (1941): Xeelf-dual = V2 — 1 = tan(% ok

e Onsager (1944): sharp phase transition at x = /2 — 1.



At criticality (e.g., on Z?):

e Kaufman-Onsager(1948-49), Yang(1952):
scaling exponent % for the magnetization
(some spin correlations in Z2? at x 1 Xeit)-

e In particular, for Q5 — Qand us — u € Q,
it should be Eq,[o,;] = 6% as d — 0.
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it should be Eq,[o,,] < 08 as § — 0.

Questions for the part #2:

e Convergence of correlations, e.g.

X = Xcrit

078 Bay[ous - 0us] = (0w ou)a?

e Convergence of curves: interfaces (e.g. generated by Dobrushin
boundary conditions) to SLE3's, loop ensembles to CLE3's?



At criticality (e.g., on Z?):

e Kaufman-Onsager(1948-49), Yang(1952):
scaling exponent % for the magnetization
(some spin correlations in Z2? at x 1 Xeit)-

e In particular, for Q5 — Qand us — u € Q,
1
it should be Eq,[o,,] < 08 as § — 0.

Questions for the part #2:

e Convergence of correlations, e.g.

X = Xcrit

078 Bay[ous - 0us] = (0w ou)a?

e Convergence of curves: interfaces (e.g. generated by Dobrushin
boundary conditions) to SLE3's, loop ensembles to CLE3's?

Q: Why these limits are conformally invariant (covariant)?



Fermionic observables: combinatorial definition [Smirnov '00s]

For an oriented edge a of G and a midpoint z. of another edge e,

— 7 — Lwind(a~ze)
FG(aa Ze) : Na ZwéConfg(a,ze) |:€ 2 H(uv)éw Xuv:| )

where 7, denotes the (once and forever
fixed) square root of the direction of a.

e The factor e~ zVi"d(a2) does not de-
pend on the way how w is split into non-
intersecting loops and a path a ~ z..
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where 7, denotes the (once and forever
fixed) square root of the direction of a.

e The factor e~ zVi"d(a2) does not de-
pend on the way how w is split into non-
intersecting loops and a path a ~ z..

e When both a and e are “boundary”
edges, the factor ﬁae_éwmd("“”e) = £7,
is fixed and Fg(a, z.) becomes the parti-
tion function of the Ising model (on G*)
with Dobrushin boundary conditions.




Fermionic observables: combinatorial definition [Smirnov '00s]

For an oriented edge a of G and a midpoint z. of another edge e,

— 7 — Lwind(a~ze)
FG(aa Ze) : Na ZwéConfg(a,ze) |:€ 2 H(uv)ew Xuv:| )

where 7, denotes the (once and forever
fixed) square root of the direction of a.

e The factor e~ zVi"d(a2) does not de-
pend on the way how w is split into non-
intersecting loops and a path a ~ z..

e Local relations: if we similarly
define Fg(a,-) on “corners” of G,
then for any ¢ ~ z. # z, one has

Fe(a,c) = ei%(ee_a(c’e))Proj[ Fe(a, ze); e¢éeeﬁe] .



Fermionic observables: local relations

e Definition:

R — Iwind(a~ze)
FG(37 Ze) = 1N, ZWGCOnf(;(a,ze) |:e 2 H(uv)Ew Xuv:| .

e Claim: Fg(a,c) = e £5(0e—alce)) . Proj[ Fg(a, z); e%eeﬁe]-

e Proof: a bijection
between Confg(a, c)
and Conf(a, z.). Case A:
Case B:
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provided each edge e of G is a diagonal of a
rhombic tile with half-angle 8, and the Ising
model weights are given by x. = tan(%ﬁe).




Fermionic observables: local relations

e Definition:

R — Iwind(a~ze)
FG(a; Ze) = 1N, ZWGCOnfg(a,ze) |:e 2 H(uv)Gw Xuv:| .

e Claim: Fg(a,c) = et 3(0e—alc.e)) - Proj[ Fg(a, ze); e%eeﬁe]-

e S-holomorphicity (special self-dual weights on isoradial graphs):

Fg (aa C) - PI‘Oj[ Fc (a7 ZE) 5 ﬁc]
provided each edge e of G is a diagonal of a
rhombic tile with half-angle 8, and the Ising
model weights are given by x. = tan(%ﬁe).

e = critical weights on regular grids:
— square: Xt = tan g = V2 -1,
— honeycomb: x.iiy = tan § = l/ﬁ




2D Ising model as a dimer model on a non-bipartite graph
( ..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ... )

e There exist several represen-
tations of the 2D Ising model via
dimers on an auxiliary graph
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( ..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ... )

e There exist several represen-
tations of the 2D Ising model via
dimers on an auxiliary graph Gg.
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leg., 1-to-2! V(G correspondence of spin configurations
on G* (= domain walls on G) and dimers on this Gg;

note that V(Gfg) = {oriented edges and corners of G}]

] Kasteleyn,s theory: Z= Pf[ K ] [K=—KT is a weighted adjacency matrix of Gg ]

e Definition of fermionic observables via dimers on Gg:
Fola,c) =TK:y  and  Fo(a ze) = MK} + 7K L.

e Local relations: an equivalent form of the identity K - K—'= Id
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2D Ising model as a dimer model on a non-bipartite graph
( ..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ... )

e There exist several represen-
tations of the 2D Ising model via
dimers on an auxiliary graph Gg.

leg., 1-to-2! V(G correspondence of spin configurations

on G* (= domain walls on G) and dimers on this Gg;

note that V(Gfg) = {oriented edges and corners of G}]

] Kasteleyn,s theory: Z= Pf[ K ] [K=—KT is a weighted adjacency matrix of Gg ]

e Kac-Ward formula (1952-..., 1999-...): 22 = det[Id — T],

T, exp[éa(e, )] - (xexer )2 if € prolongs e but € # &:
€ o otherwise.

[ is equivalent to the Kasteleyn theorem for dimers on Gg |



2D Ising model as a dimer model on a non-bipartite graph
( ..., Fisher, Kasteleyn, ..., Kenyon, Dubedat, ... )

e There exist several represen-
tations of the 2D Ising model via
dimers on an auxiliary graph Gg.

leg., 1-to-2! V(G correspondence of spin configurations

on G* (= domain walls on G) and dimers on this Gg;

note that V(Gfg) = {oriented edges and corners of G}]

] Kasteleyn,s theory: Z= Pf[ K ] [K=—KT is a weighted adjacency matrix of Gg ]

e Kac-Ward formula (1952-..., 1999-...): 22 = det[Id — T],

T, exp[éa(e, )] - (xexer )2 if € prolongs e but € # &:
€ o otherwise.

e More information: arXiv:1507.08242 [Ch., Cimasoni, Kassel]



Part 1l: conformal invariance at criticality [Smirnov '06]
[Ch.,Duminil-Copin,Hongler, Izyurov, Kemppainen, Kytéla,... '09—...]
Main tool: discrete (s-)holomorphic functions

e (A fair amount of) work is needed to understand how
to use them for the rigorous analysis when Qs — Q,
especially in rough domains formed by fractal interfaces.
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Main tool: discrete (s-)holomorphic functions

e (A fair amount of) work is needed to understand how
to use them for the rigorous analysis when Qs — Q,
especially in rough domains formed by fractal interfaces.

General strategy to prove the convergence of correlations:
e in discrete: encode quantities of interest as particular values of
a discrete holomorphic function F9 that solves some

discrete boundary value problem;

e discrete—continuum: prove convergence (as & — 0) of F? to the
solution f of the similar continuous b.v.p. [some work to be done];

e continuum—discrete: decipher the limit of discrete quantities
from the convergence F® — f [e.g., coefficients at singularities].
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[there are many, e.g., IE?{; [c2] would do the job for +1/—1 b.c.];
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General strategy to prove the convergence of correlations:
e in discrete: encode quantities of interest as particular values of
a discrete holomorphic function FS that solves some

discrete boundary value problem;

e discrete—rcontinuum: prove convergence (as § — 0) of F% to the [©
solution f of the similar continuous b.v.p. [some work to be done];

e continuum—discrete: decipher the limit of discrete quantities
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from the convergence F® —s f [e.g., coefficients at singularities].
Typical strategy to prove the convergence of interfaces:

e choose a family of martingales w. r. t. the growing interface s
[there are many, e.g., IE?{; [c2] would do the job for +1/—1 b.c.];
e prove uniform convergence of the (re-scaled) quantities as § — 0
[the one above (done in 2012) is not an optimal choice, there are
others that are easier to handle (first done in 2006-2009)];

e prove the convergence 5 — v and recover the law of v using this
family of martingales [some probabilistic techniques are needed].
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Conformal covariance of correlation functions at criticality

e Three primary fields:
1, o (spin), € (energy density);
Scaling exponents: 0, é,

e Energy density: for an edge e of Q, let

€e = Ogt0g — Einf.vol.
= (1 - Einf.vol.) -2 X[e € w]

where e and € are two faces adjacent to e.

[ €inf.vol. is lattice-dependent: = 2~ (square) %(honeycomb),



Conformal covariance of correlation functions at criticality

e Three primary fields:
1, o (spin), € (energy density);
Scaling exponents: 0, é,

e CFT prediction:
If Q5 — and ex5—ex as 6 — 0, then
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Conformal covariance of correlation functions at criticality

e Three primary fields: \—-

1, o (spin), € (energy density); ! Conformal
Scaling exponents: 0, 3, jJticld Theory
e Theorem: [Hongler-Smirnov, Hongler] 1 |
If Q5—Q and e, 5s—ex as 6 — 0, then ; @%ﬁ

0BG [Eu - Euns]l 2 Cl(ger - Ee) s

where C; is a lattice-dependent constant,

<5u1 R Eun>$ = <€<p(u1) .- '€<p(un)>$/ : H::l |‘Pl(u5)|
for any conformal mapping ¢ : Q — @', and

. 2 _
(. 5z,.>]1—§ = (mi)™" - Pf [( —Zm)~ 1]sj7m:1 . Zs = Zontl-s-

e Ingredients: convergence of K and Pfaffian formalism



Conformal covariance of correlation functions at criticality

e Three primary fields:
1, o (spin), € (energy density);
Scaling exponents: 0, 3,
e CFT prediction:

If Q5 —Q and uy 5 — uk as 6 — 0, then
678 ES

Jou s ou,] e Cl-(oy, ...

where C, is a lattice-dependent constant,
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Conformal covariance of correlation functions at criticality

e Three primary fields:
1, o (spin), € (energy density);
Scaling exponents: 0, 3,
e Theorem: [Ch.—Hongler—Izyurov]

If Q5 —Q and uy 5 — uk as 6 — 0, then

5_§°]ESJ55 [Uul,a cee O-Un,(i] 530 Co{ouy -+ UUn)ﬂ’

where C, is a lattice-dependent constant,

\
|
‘
1
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“i

Conformal
Field Theory

1
<UU1 s O-Un>$ = <O'<p(u1) cee O'<p(u,,)>5/ ) H::l I‘Pl(us)|8
for any conformal mapping ¢ : Q — @', and

[(a’zl...a'zn } H (2Im z) —i

1<s<n
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e spin configurations on G*
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[K= —K T is a weighted adjacency matrix of Gg]
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Conformal covariance of spin correlations at criticality

e spin configurations on G*
«~ domain walls on G
«~ dimers on G
e Kasteleyn’s theory: Z = Pf[ K]

[K=—K " is a weighted adjacency matrix of G |

e Claim:
_ Pf[ K[ul,...,un]]

Pf[K]
where Ky, ,....u,] is obtained from K by changing the sign of its
entries on slits linking uy,...,u, (and, possibly, uyyt) pairwise.

Eloy, ...0u,]

e More invariant way to think about entries of K[;l ]

double-covers of G branching over uy,...,u,



Conformal covariance of spin correlations at criticality
Main tool: spinors on the double cover [Qs;uq,...,up].

edges(w
F95 (Z) = [Z;Z_(S [UU1 . --Uu,, Z ¢U17 -, Un (w Z) it ges(e)

wGCoanE(ul, )
Puy,oun (w0, 2) 1= €72V NAR()) . (—1)#1oops(\P@)). sheet (p (w) , 2).




Conformal covariance of spin correlations at criticality

Main tool: spinors on the double cover [Qs;uq,...,up].

edges(w
Fq, (z) := [Z;Z_(s [Ow - 0u]] Z Gur,.. iy (W, 2) - Zit gos(w)

wGCoanE(ul, )
Gup,un (W, 2) =€ —zwind(p(w)) | (—1)#1oops(\P@)). sheet (p (w) , 2).

e wind (p(y)) is the winding of

o the path p(v) : uy” = u1—|—g->z;
SEN ats
q\ e #loops — those containing an

odd number of uq, ..., u, inside;

o sheet (p(v),2) = +1, if p(y)
defines z, and —1 otherwise.




Conformal covariance of spin correlations at criticality

Main tool: spinors on the double cover [Qs;uq,...,up].

edges(w
Fq, (z) := [Z;ga [Ow - 0u]] Z Gur,.. iy (W, 2) - Zit gos(w)

wECoanE(ul, )
Gup,un (W, 2) =€ —zwind(p(w)) | (—1)#1oops(\P@)). sheet (p (w) , 2).

e wind (p(y)) is the winding of

. the path p () : u?:uﬁ—ng;
SEN ats
q\ e #loops — those containing an

odd number of uq, ..., u, inside;

o sheet (p(v),2) = +1, if p(y)
defines z, and —1 otherwise.

Egé [Ou+25 - 0u,)

e Claim: Fq (u+3) =
s 2 Egé [ow - ou,)
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Example: to handle E;; [04], one 4
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should consider the following b.v.p.: R

° f( *) = —f(z), branches around u; N>
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o f(z) =
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Example: to handle E;;é [04], one :
should consider the following b.v.p.: P

o f(z*) = —f(z), branches around u; -
o Im [f(g)\/@} = 0 for ¢ € 9;
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Conformal covariance of spin correlations at criticality

Example: to handle E;;é [04], one
should consider the following b.v.p.:

o f(z*) = —f(z), branches around u;
o Im [f(g) n(()} = 0 for ¢ € 9;
o f(z) = = +Aa(u) 2Vz—u+...
Claim: For Q5 — Q as § — 0,
o (20) log [E{ [0, 29] / B [o,]] = Re[ Aa(u) ]
o (20) log [BY, [7uy 210l / By [00,]] — —Tm [Aq(u)].

Conformal covariance %: for any conformal map ¢ : Q — @,
o fig.a(W) = figrgan (9(w)) - (&' (w))"/?;
o Aa(2) = Ax(#(2) - ¢/(2) + g - ¢"(2)/¢/(2).



Conformal covariance of spin correlations at criticality

Example: to handle E;;é [04], one 4
.
should consider the following b.v.p.: il

o f(z*) = —f(z), branches around u;
o Im [f(g) n(()} = 0 for ¢ € 9;
of(z) = 2=+ Aq(u)-2yz—u+...

Z—Uu

Claim: For Q5 — Q as d — 0,
o (20) log [E{ [0, 29] / B [o,]] = Re[ Aa(u) ]
o (28) log [E 00, 12is] / By [00,]] = — Im [ Ag(u)].

Work to be done:

e to handle tricky boundary conditions (Dirichlet for [ Re[f2dz]);
e to prove convergence, incl. near singularities [ complex analysis];
e to recover the normalization of IEE(; [o4] [probabilistic techniques].
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e Better understanding of the

CFT description at criticality:

more fields, Virasoro algebra at the lattice
level, “geometric” observables, height func-
tions, Riemann surfaces etc.
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X = Xcrit



Some research routes

e Better understanding of the CFT description at criticality:
more fields, Virasoro algebra at the lattice level, “geometric”
observables, height functions, Riemann surfaces etc.

e Near-critical (massive) regime x — X.it = m - d: convergence
of correlations, massive SLE3 curves and loop ensembles etc.

e Super-critical regime: e.g., convergence of interfaces to SLEg
curves for any fixed x > Xqit [known only for x = 1 (percolation)]

¢ Renormalization

fixed x> x¢pit, 0 —0
—_——

(X—Xerit) - 071 = 00

X = Xcrit
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Some research routes

e Better understanding of the CFT description at criticality:
more fields, Virasoro algebra at the lattice level, “geometric”
observables, height functions, Riemann surfaces etc.

e Near-critical (massive) regime x — X.it = m - d: convergence
of correlations, massive SLE3 curves and loop ensembles etc.

e Super-critical regime: e.g., convergence of interfaces to SLEg
curves for any fixed x > Xqit [known only for x = 1 (percolation)]

e lrregular graphs, random interactions etc: many questions...

Tool: local relations and spinor observables are always there!

e Not only nearest-neighbor interactions

[recent progress for the energy density field due to Giuliani, Greenblatt and Mastropietro, arXiv:1204.4040]

THANK YOU!



