Double-sided estimates of hitting probabilities in discrete planar domains

Dmitry Chelkak (Steklov Institute (PDMI RAS) \& Chebyshev Lab (SPbSU), St.Petersburg)

based on "Robust discrete complex analysis: a toolbox", arXiv:1212.6205

Russian-Chinese Seminar on Asymptotic Methods in Probability Theory and Mathematical Statistics

St. Petersburg, June 10, 2013

Motivation:

- geometric point of view on scaling limits of 2D lattice models (e.g., recent progress in mathematical understanding of a conformally invariant limit of the critical Ising model)

Motivation:

- geometric point of view on scaling limits of 2D lattice models (e.g., recent progress in mathematical understanding of a conformally invariant limit of the critical Ising model)

(spin representation,
C. Hongler)

(random cluster representation,
(c) S. Smirnov)

Motivation:

- geometric point of view on scaling limits of 2D lattice models (e.g., recent progress in mathematical understanding of a conformally invariant limit of the critical Ising model): a priori estimates for crossing-type events via reductions to discrete holomorphic and discrete harmonic functions

Motivation:

- geometric point of view on scaling limits of 2D lattice models (e.g., recent progress in mathematical understanding of a conformally invariant limit of the critical Ising model): a priori estimates for crossing-type events via reductions to discrete holomorphic and discrete harmonic functions;
- by-product: (uniform wrt all discrete domains) analogues of classical estimates available in geometric complex analysis.

Motivation:

- geometric point of view on scaling limits of 2D lattice models (e.g., recent progress in mathematical understanding of a conformally invariant limit of the critical Ising model): a priori estimates for crossing-type events via reductions to discrete holomorphic and discrete harmonic functions;
- by-product: (uniform wrt all discrete domains) analogues of classical estimates available in geometric complex analysis.

Example: (harmonic measure $\omega_{\Omega}(z ;(a b))$ of a "far" boundary arc)

Motivation:

- by-product: (uniform wrt all discrete domains) analogues of classical estimates available in geometric complex analysis.

Example: (harmonic measure $\omega_{\Omega}(z ;(a b))$ of a "far" boundary arc)

Theorem: (Ahlfors, Beurling, (Carleman))

$$
\omega_{\Omega}(z ;(a b)) \leqslant \frac{8}{\pi} \exp \left[-\pi \int_{x_{0}}^{x_{1}} \frac{d x}{\vartheta(x)}\right] .
$$

Motivation:

- by-product: (uniform wrt all discrete domains) analogues of classical estimates available in geometric complex analysis.

Example: (harmonic measure $\omega_{\Omega}(z ;(a b))$ of a "far" boundary arc)

Theorem: (Ahlfors, Beurling, (Carleman))
$\omega_{\Omega}(z ;(a b)) \asymp \exp \left[-\pi \mathrm{L}_{\Omega}(z ;(a b))\right], \quad \mathrm{L}_{\Omega}(z ;(a b)) \geqslant \int_{x_{0}}^{x_{1}}(\vartheta(x))^{-1} d x$.
Remark: $\quad \Uparrow$ conformal invariance of $\omega_{\Omega}(z ;(a b))$ and $L_{\Omega}(z ;(a b))$.

Notation:

Let $\left(\Gamma ; \mathrm{E}^{\Gamma}\right)$ be an inifinite planar graph embedded into \mathbb{C} so that all its edges $(u v) \in \mathrm{E}^{\Gamma}$ are straight segments, $\mathrm{w}_{u v}=\mathrm{w}_{v u}>0$ be some fixed edge weights (conductances), and $\mu_{u}:=\sum_{v \sim u} \mathrm{w}_{u v}$ for $u \in \Gamma$.

Notation:

Let $\left(\Gamma ; \mathrm{E}^{\Gamma}\right)$ be an inifinite planar graph embedded into \mathbb{C} so that all its edges $(u v) \in \mathrm{E}^{\Gamma}$ are straight segments, $\mathrm{w}_{u v}=\mathrm{w}_{v u}>0$ be some fixed edge weights (conductances), and $\mu_{u}:=\sum_{v \sim u} \mathrm{w}_{u v}$ for $u \in \Gamma$.

Discrete domains:

Let $\left(V^{\Omega} ; \mathrm{E}_{\mathrm{int}}^{\Omega}\right)$ be a bounded connected subgraph of $\left(\Gamma ; \mathrm{E}^{\Gamma}\right)$. Denote by E_{bd}^{Ω} the set of all (oriented) edges $\left(a_{\text {int }} a\right) \notin E_{\text {int }}^{\Omega}$ such that $a_{\text {int }} \in V^{\Omega}$ and $a \notin V^{\Omega}$. We set $\Omega:=\operatorname{Int} \Omega \cup \partial \Omega$,

$$
\operatorname{Int} \Omega:=V^{\Omega}, \quad \partial \Omega:=\left\{\left(a ;\left(a_{\text {int }} a\right)\right):\left(a_{\text {int }} a\right) \in E_{\mathrm{bd}}^{\Omega}\right\}
$$

Formally, the boundary $\partial \Omega$ of a discrete domain Ω should be treated as the set of oriented edges ($a_{i n t} a$), but we usually identify it with the set of corresponding vertices a, and think about Int Ω and $\partial \Omega$ as subsets of Γ, if no confusion arises.

Notation:

Let $\left(\Gamma ; \mathrm{E}^{\Gamma}\right)$ be an inifinite planar graph embedded into \mathbb{C} so that all its edges $(u v) \in \mathrm{E}^{\Gamma}$ are straight segments, $\mathrm{w}_{u v}=\mathrm{w}_{v u}>0$ be some fixed edge weights (conductances), and $\mu_{u}:=\sum_{v \sim u} \mathrm{w}_{u v}$ for $u \in \Gamma$.

Discrete domains:

$$
\begin{aligned}
& \left(V^{\Omega} ; \mathrm{E}_{\text {int }}^{\Omega}\right)-\text { bounded } \text { and } \\
& \text { connected, } \\
& E_{\text {bd }}^{\Omega}:=\left\{\left(a_{\text {int }} a\right) \notin \mathrm{E}_{\text {int }}^{\Omega}:\right. \\
& \\
& \left.a_{\text {int }} \in V^{\Omega}, a \notin V^{\Omega}\right\},
\end{aligned}
$$

$$
\Omega:=\operatorname{Int} \Omega \cup \partial \Omega, \quad \operatorname{Int} \Omega:=V^{\Omega},
$$

$$
\partial \Omega:=\left\{\left(a ;\left(a_{\text {int }} a\right)\right):\left(a_{\text {int }} a\right) \in E_{\mathrm{bd}}^{\Omega}\right\} .
$$

dashed - polygonal representation

Notation:

Let $\left(\Gamma ; \mathrm{E}^{\Gamma}\right)$ be an inifinite planar graph embedded into \mathbb{C} so that all its edges $(u v) \in \mathrm{E}^{\Gamma}$ are straight segments, $\mathrm{w}_{u v}=\mathrm{w}_{v u}>0$ be some fixed edge weights (conductances), and $\mu_{u}:=\sum_{v \sim u} \mathrm{w}_{u v}$ for $u \in \Gamma$.
Partition function of the random walk:
For a bounded discrete domain $\Omega \subset \Gamma$ and $x, y \in \Omega$,

$$
\mathrm{Z}_{\Omega}(x ; y):=\sum_{\gamma \in S_{\Omega}(x ; y)} \mathrm{w}(\gamma), \quad \mathrm{w}(\gamma):=\frac{\prod_{k=0}^{n(\gamma)-1} \mathrm{w}_{u_{k} u_{k+1}}}{\prod_{k=0}^{n(\gamma)} \mu_{u_{k}}}
$$

where $S_{\Omega}(x ; y)=\left\{\gamma=\left(x=u_{0} \sim u_{1} \sim \cdots \sim u_{n(\gamma)}=y\right)\right\}$ is the set of all nearest-neighbor paths connecting x and y inside Ω
(i.e., $u_{1}, \ldots, u_{n(\gamma)-1} \in \operatorname{Int} \Omega$ while we admit $x, y \in \partial \Omega$).

Notation:

Let $\left(\Gamma ; \mathrm{E}^{\Gamma}\right)$ be an inifinite planar graph embedded into \mathbb{C} so that all its edges $(u v) \in \mathrm{E}^{\Gamma}$ are straight segments, $\mathrm{w}_{u v}=\mathrm{w}_{v u}>0$ be some fixed edge weights (conductances), and $\mu_{u}:=\sum_{v \sim u} \mathrm{w}_{u v}$ for $u \in \Gamma$.
Partition function of the random walk:
For a bounded discrete domain $\Omega \subset \Gamma$ and $x, y \in \Omega$,

$$
\mathrm{Z}_{\Omega}(x ; y):=\sum_{\gamma \in S_{\Omega}(x ; y)} \mathrm{w}(\gamma), \quad \mathrm{w}(\gamma):=\frac{\prod_{k=0}^{n(\gamma)-1} \mathrm{w}_{u_{k} u_{k+1}}}{\prod_{k=0}^{n(\gamma)} \mu_{u_{k}}}
$$

where $S_{\Omega}(x ; y)=\left\{\gamma=\left(x=u_{0} \sim u_{1} \sim \cdots \sim u_{n(\gamma)}=y\right)\right\}$ is the set of all nearest-neighbor paths connecting x and y inside Ω (i.e., $u_{1}, \ldots, u_{n(\gamma)-1} \in \operatorname{Int} \Omega$ while we admit $x, y \in \partial \Omega$).

Further, for $A, B \subset \Omega$, let $Z_{\Omega}(A ; B):=\sum_{x \in A, y \in B} Z_{\Omega}(x ; y)$.

Notation:

Let $\left(\Gamma ; \mathrm{E}^{\Gamma}\right)$ be an inifinite planar graph embedded into \mathbb{C} so that all its edges $(u v) \in \mathrm{E}^{\Gamma}$ are straight segments, $\mathrm{w}_{u v}=\mathrm{w}_{v u}>0$ be some fixed edge weights (conductances), and $\mu_{u}:=\sum_{v \sim u} \mathrm{w}_{u v}$ for $u \in \Gamma$.
Partition function of the random walk:
For a bounded discrete domain $\Omega \subset \Gamma$ and $x, y \in \Omega$,

$$
\mathrm{Z}_{\Omega}(x ; y):=\sum_{\gamma \in S_{\Omega}(x ; y)} \mathrm{w}(\gamma), \quad \mathrm{w}(\gamma):=\frac{\prod_{k=0}^{n(\gamma)-1} \mathrm{w}_{u_{k} u_{k+1}}}{\prod_{k=0}^{n(\gamma)} \mu_{u_{k}}}
$$

where $S_{\Omega}(x ; y)=\left\{\gamma=\left(x=u_{0} \sim u_{1} \sim \cdots \sim u_{n(\gamma)}=y\right)\right\}$ is the set of all nearest-neighbor paths connecting x and y inside Ω
(i.e., $u_{1}, \ldots, u_{n(\gamma)-1} \in \operatorname{Int} \Omega$ while we admit $x, y \in \partial \Omega$).

Examples: $x, y \in \operatorname{Int} \Omega: G_{\Omega}(x ; y)$ Green's function in Ω; $x \in \operatorname{Int} \Omega, B \subset \partial \Omega: \omega_{\Omega}(x ; B)$ hitting prob. ($=$ harmonic measure).

Assumptions on the graph 「 and the edge weights $\mathrm{w}_{\nu v}$:

- uniformly bounded degrees: there exists a constant $\nu_{0}>0$ such that, for all $u \in \Gamma, \mu_{u}:=\sum_{(u v) \in \mathrm{E}^{\Gamma}} \mathrm{W}_{u v} \leqslant \nu_{0}$ and $\mathrm{w}_{u v} \geqslant \nu_{0}^{-1}$;

Assumptions on the graph 「 and the edge weights $\mathrm{w}_{u v}$:

- uniformly bounded degrees: there exists a constant $\nu_{0}>0$ such

- no "flat" angles: there exists a constant $\eta_{0}>0$ such that all angles between neighboring edges do not exceed $\pi-\eta_{0}$ (NB: \Rightarrow all degrees of faces of Γ are bounded by $2 \pi / \eta_{0}$);

Assumptions on the graph 「 and the edge weights $\mathrm{w}_{u v}$:

- uniformly bounded degrees: there exists a constant $\nu_{0}>0$ such

- no "flat" angles: there exists a constant $\eta_{0}>0$ such that all angles between neighboring edges do not exceed $\pi-\eta_{0}$ (NB: \Rightarrow all degrees of faces of Γ are bounded by $2 \pi / \eta_{0}$);
- edge lengths are locally comparable: there exists a constant $\rho_{0} \geqslant 1$ such that, for any vertex $u \in \Gamma$, one has

$$
\max _{(u v) \in \mathrm{E}^{\Gamma}}|v-u| \leqslant \rho_{0} r_{u}, \quad \text { where } \quad r_{u}:=\min _{(u v) \in \mathrm{E}^{\Gamma}}|v-u|
$$

Assumptions on the graph Γ and the edge weights $\mathrm{w}_{u v}$:

- uniformly bounded degrees: there exists a constant $\nu_{0}>0$ such

- no "flat" angles: there exists a constant $\eta_{0}>0$ such that all angles between neighboring edges do not exceed $\pi-\eta_{0}$ (NB: \Rightarrow all degrees of faces of Γ are bounded by $2 \pi / \eta_{0}$);
- edge lengths are locally comparable: there exists a constant $\rho_{0} \geqslant 1$ such that, for any vertex $u \in \Gamma$, one has

$$
\max _{(u v) \in \mathrm{E}^{\Gamma}}|v-u| \leqslant \rho_{0} r_{u}, \quad \text { where } \quad r_{u}:=\min _{(u v) \in \mathrm{E}^{\Gamma}}|v-u|
$$

- 「 is "quantitatively locally finite": for any $\rho \geqslant 1$ there exists some constant $\nu(\rho)>0$ such that, uniformly over all $u \in \Gamma$,

$$
\#\left\{v \in \Gamma:|v-u| \leqslant \rho r_{u}\right\} \leqslant \nu(\rho)
$$

Assumptions on the graph 「 and the edge weights $\mathrm{w}_{\nu v}$:

- Assumption S ("space"): There exist two positive constants $\eta_{0}, c_{0}>0$ such that, uniformly over all discrete discs $\mathrm{B}_{r}^{\Gamma}(u)$, $u \in \Gamma, r \geqslant r_{u}$, and $\theta \in[0,2 \pi]$, one has

$$
\omega_{\mathrm{B}_{r}^{\ulcorner }(u)}\left(u ;\left\{a \in \partial \mathrm{~B}_{r}^{\Gamma}(v): \arg (a-u) \in\left[\theta, \theta+\left(\pi-\eta_{0}\right)\right]\right\}\right) \geqslant c_{0} .
$$

Assumptions on the graph 「 and the edge weights $\mathrm{w}_{u v}$:

- Assumption S ("space"): There exist two positive constants $\eta_{0}, c_{0}>0$ such that, uniformly over all discrete discs $\mathrm{B}_{r}^{\Gamma}(u)$, $u \in \Gamma, r \geqslant r_{u}$, and $\theta \in[0,2 \pi]$, one has

$$
\omega_{\mathrm{B}_{r}^{\ulcorner }(u)}\left(u ;\left\{a \in \partial \mathrm{~B}_{r}^{\Gamma}(v): \arg (a-u) \in\left[\theta, \theta+\left(\pi-\eta_{0}\right)\right]\right\}\right) \geqslant c_{0} .
$$

In other words, there are no exceptional directions: the random walk started at the center of any discrete disc $\mathrm{B}_{r}^{\Gamma}(u)$ can exit this disc through any given boundary arc of the angle $\pi-\eta_{0}$ with probability uniformly bounded away from 0 .

Assumptions on the graph 「 and the edge weights $\mathrm{w}_{\nu v}$:

- Assumption S ("space"): There exist two positive constants $\eta_{0}, c_{0}>0$ such that, uniformly over all discrete discs $\mathrm{B}_{r}^{\Gamma}(u)$, $u \in \Gamma, r \geqslant r_{u}$, and $\theta \in[0,2 \pi]$, one has

$$
\omega_{\mathrm{B}_{r}^{\ulcorner }(u)}\left(u ;\left\{a \in \partial \mathrm{~B}_{r}^{\Gamma}(v): \arg (a-u) \in\left[\theta, \theta+\left(\pi-\eta_{0}\right)\right]\right\}\right) \geqslant c_{0} .
$$

- Assumption T ("time"): There exist two positive constants $c_{0}, C_{0}>0$ such that, uniformly over all $u \in \Gamma$ and $r \geqslant r_{u}$,

$$
c_{0} r^{2} \leqslant \sum_{v \in \operatorname{Int} \mathrm{~B}_{r}^{\ulcorner }(u)} r_{v}^{2} G_{\mathrm{B}_{r}^{\ulcorner }(u)}(v ; u) \leqslant C_{0} r^{2}
$$

Assumptions on the graph Γ and the edge weights $\mathrm{w}_{u v}$:

- Assumption S ("space"): There exist two positive constants $\eta_{0}, c_{0}>0$ such that, uniformly over all discrete discs $\mathrm{B}_{r}^{\Gamma}(u)$, $u \in \Gamma, r \geqslant r_{u}$, and $\theta \in[0,2 \pi]$, one has

$$
\omega_{\mathrm{B}_{r}^{\ulcorner }(u)}\left(u ;\left\{a \in \partial \mathrm{~B}_{r}^{\Gamma}(v): \arg (a-u) \in\left[\theta, \theta+\left(\pi-\eta_{0}\right)\right]\right\}\right) \geqslant c_{0} .
$$

- Assumption T ("time"): There exist two positive constants $c_{0}, C_{0}>0$ such that, uniformly over all $u \in \Gamma$ and $r \geqslant r_{u}$,

$$
c_{0} r^{2} \leqslant \sum_{v \in \operatorname{Int} \mathrm{~B}_{r}^{\ulcorner }(u)} r_{v}^{2} G_{\mathrm{B}_{r}^{\ulcorner }(u)}(v ; u) \leqslant C_{0} r^{2}
$$

In other words, if one considers some time parametrization such that the (expected) time spent by the walk at a vertex v before it jumps is of order r_{v}^{2}, then the expected time spent in a discrete disc $\mathrm{B}_{r}^{\Gamma}(u)$ by the random walk started at u before it hits $\partial \mathrm{B}_{r}^{\Gamma}(u)$ should be of order r^{2}, uniformly over all discs.

Assumptions on the graph 「 and the edge weights $\mathrm{w}_{u v}$:

- Assumption S ("space"): There exist two positive constants $\eta_{0}, c_{0}>0$ such that, uniformly over all discrete discs $\mathrm{B}_{r}^{\Gamma}(u)$, $u \in \Gamma, r \geqslant r_{u}$, and $\theta \in[0,2 \pi]$, one has

$$
\omega_{\mathrm{B}_{r}^{\ulcorner }(u)}\left(u ;\left\{a \in \partial \mathrm{~B}_{r}^{\Gamma}(v): \arg (a-u) \in\left[\theta, \theta+\left(\pi-\eta_{0}\right)\right]\right\}\right) \geqslant c_{0} .
$$

- Assumption T ("time"): There exist two positive constants $c_{0}, C_{0}>0$ such that, uniformly over all $u \in \Gamma$ and $r \geqslant r_{u}$,

$$
c_{0} r^{2} \leqslant \sum_{v \in \operatorname{Int} \mathrm{~B}_{r}^{\ulcorner }(u)} r_{v}^{2} G_{\mathrm{B}_{r}^{\ulcorner }(u)}(v ; u) \leqslant C_{0} r^{2} .
$$

(Open) question: Do assumptions (a)-(d) on the graph Γ and the edge weights $\mathrm{w}_{u v}$ listed on the previous page imply (S) and (T)?

Assumptions on the graph Γ and the edge weights $\mathrm{w}_{u v}$:

- Assumption S ("space"): There exist two positive constants $\eta_{0}, c_{0}>0$ such that, uniformly over all discrete discs $\mathrm{B}_{r}^{\Gamma}(u)$, $u \in \Gamma, r \geqslant r_{u}$, and $\theta \in[0,2 \pi]$, one has

$$
\omega_{\mathrm{B}_{r}^{\ulcorner }(u)}\left(u ;\left\{a \in \partial \mathrm{~B}_{r}^{\Gamma}(v): \arg (a-u) \in\left[\theta, \theta+\left(\pi-\eta_{0}\right)\right]\right\}\right) \geqslant c_{0} .
$$

- Assumption T ("time"): There exist two positive constants $c_{0}, C_{0}>0$ such that, uniformly over all $u \in \Gamma$ and $r \geqslant r_{u}$,

$$
c_{0} r^{2} \leqslant \sum_{v \in \operatorname{Int} \mathrm{~B}_{r}^{\ulcorner }(u)} r_{v}^{2} G_{\mathrm{B}_{r}^{\ulcorner }(u)}(v ; u) \leqslant C_{0} r^{2}
$$

(Open) question: Do assumptions (a)-(d) on the graph Γ and the edge weights $\mathrm{w}_{u v}$ listed on the previous page imply (S) and (T)?
(Closed) answer: (A. Nachmias, private communication): YES.

Uniform estimates of $\omega_{\Omega}(z ;(a b))$ in simply connected Ω 's:
Let Ω be a simply connected discrete domain, $u \in \operatorname{Int} \Omega$, and $(a b) \subset \partial \Omega$ be a (far from z) boundary arc. Let $\mathrm{C}_{\Omega}(z)$ be the boundary of a discrete disc $\mathrm{B}_{r}^{\Gamma}(z), r=\frac{1}{4} \operatorname{dist}(z ; \partial \Omega)$.

Uniform estimates of $\omega_{\Omega}(z ;(a b))$ in simply connected Ω 's:
Let Ω be a simply connected discrete domain, $u \in \operatorname{Int} \Omega$, and $(a b) \subset \partial \Omega$ be a (far from z) boundary arc. Let $\mathrm{C}_{\Omega}(z)$ be the boundary of a discrete disc $\mathrm{B}_{r}^{\Gamma}(z), r=\frac{1}{4} \operatorname{dist}(z ; \partial \Omega)$.

Theorem: For some constants $\beta_{1,2}, C_{1,2}>0$, the following estimates are fulfilled uniformly for all configurations (Ω, z, a, b):

$$
C_{1} \exp \left[-\beta_{1} \mathrm{~L}_{(\Omega, z, a, b)}\right] \leqslant \omega_{\Omega}(z ;(a b)) \leqslant C_{2} \exp \left[-\beta_{2} \mathrm{~L}_{(\Omega, z, a, b)}\right]
$$

where $\mathrm{L}_{(\Omega, z, a, b)}=\mathrm{L}_{\Omega}\left(\mathrm{C}_{\Omega}(z) ;(a b)\right)$ denotes the extremal length (aka effective resistance) between $\mathrm{C}_{\Omega}(z)$ and $(a b)$ in Ω.

Uniform estimates of $\omega_{\Omega}(z ;(a b))$ in simply connected Ω 's:
Let Ω be a simply connected discrete domain, $u \in \operatorname{Int} \Omega$, and $(a b) \subset \partial \Omega$ be a (far from z) boundary arc. Let $\mathrm{C}_{\Omega}(z)$ be the boundary of a discrete disc $\mathrm{B}_{r}^{\Gamma}(z), r=\frac{1}{4} \operatorname{dist}(z ; \partial \Omega)$.

Theorem: For some constants $\beta_{1,2}, C_{1,2}>0$, the following estimates are fulfilled uniformly for all configurations (Ω, z, a, b):

$$
C_{1} \exp \left[-\beta_{1} \mathrm{~L}_{(\Omega, z, a, b)}\right] \leqslant \omega_{\Omega}(z ;(a b)) \leqslant C_{2} \exp \left[-\beta_{2} \mathrm{~L}_{(\Omega, z, a, b)}\right]
$$

where $\mathrm{L}_{(\Omega, z, a, b)}=\mathrm{L}_{\Omega}\left(\mathrm{C}_{\Omega}(z) ;(a b)\right)$ denotes the extremal length (aka effective resistance) between $\mathrm{C}_{\Omega}(z)$ and $(a b)$ in Ω.

Corollary: Uniformly for all discrete domains (Ω, z, a, b), one has

$$
\log \left(1+\omega_{\text {disc }}^{-1}\right) \asymp \mathrm{L}_{\text {disc }} \asymp \mathrm{L}_{\text {cont }} \asymp \log \left(1+\omega_{\text {cont }}^{-1}\right)
$$

(hardly available by any coupling arguments, if ω 's are exp. small)

Extremal Length $\mathrm{L}_{\Omega}\left(\mathrm{C}_{\Omega}(z) ;(a b)\right)$:

- Can be defined via the unique solution of some boundary value problem for discrete harmonic functions: Dirichlet $(=0)$ on $(a b)$, Dirichlet $(=1)$ on $\mathrm{C}_{\Omega}(z)$, Neumann on $\partial \Omega \backslash(a b)$

Extremal Length $\mathrm{L}_{\Omega}\left(\mathrm{C}_{\Omega}(z) ;(a b)\right)$:

- Can be defined via the unique solution of some boundary value problem for discrete harmonic functions: Dirichlet $(=0)$ on $(a b)$, Dirichlet $(=1)$ on $C_{\Omega}(z)$, Neumann on $\partial \Omega \backslash(a b)$;
- Equivalently, can be defined via some optimization problem for "discrete metrics" (or electric currents) $g: \mathrm{E}^{\Omega} \rightarrow \mathbb{R}_{+}$

Extremal Length $\mathrm{L}_{\Omega}\left(\mathrm{C}_{\Omega}(z) ;(a b)\right)$:

- Can be defined via the unique solution of some boundary value problem for discrete harmonic functions: Dirichlet $(=0)$ on $(a b)$, Dirichlet $(=1)$ on $C_{\Omega}(z)$, Neumann on $\partial \Omega \backslash(a b)$;
- Equivalently, can be defined via some optimization problem for "discrete metrics" (or electric currents) $g: \mathrm{E}^{\Omega} \rightarrow \mathbb{R}_{+}$:

$$
\mathrm{L}_{\Omega}\left(\mathrm{C}_{\Omega}(z) ;(a b)\right):=\sup _{g: E^{\Omega} \rightarrow \mathbb{R}_{+}} \frac{\left[L_{g}\left(\mathrm{C}_{\Omega}(z) ;(a b)\right)\right]^{2}}{A_{g}(\Omega)}
$$

where $L_{g}\left(\mathrm{C}_{\Omega}(z) ;(a b)\right):=\inf _{\gamma: \mathrm{C}_{\Omega}(z) \leftrightarrow(a b)} \sum_{e \in \gamma} g_{e}$
and $A_{g}(\Omega):=\sum_{e \in E^{\Omega}} \mathrm{W}_{e} g_{e}^{2}$.

Extremal Length $\mathrm{L}_{\Omega}\left(\mathrm{C}_{\Omega}(z) ;(a b)\right)$:

- Can be defined via the unique solution of some boundary value problem for discrete harmonic functions: Dirichlet $(=0)$ on $(a b)$, Dirichlet $(=1)$ on $\mathrm{C}_{\Omega}(z)$, Neumann on $\partial \Omega \backslash(a b)$;
- Equivalently, can be defined via some optimization problem for "discrete metrics" (or electric currents) $g: \mathrm{E}^{\Omega} \rightarrow \mathbb{R}_{+}$:

$$
\mathrm{L}_{\Omega}\left(\mathrm{C}_{\Omega}(z) ;(a b)\right):=\sup _{g: E^{\Omega} \rightarrow \mathbb{R}_{+}} \frac{\left[L_{g}\left(\mathrm{C}_{\Omega}(z) ;(a b)\right)\right]^{2}}{A_{g}(\Omega)}
$$

where $L_{g}\left(\mathrm{C}_{\Omega}(z) ;(a b)\right):=\inf _{\gamma: \mathrm{C}_{\Omega}(z) \leftrightarrow(a b)} \sum_{e \in \gamma} g_{e}$ and $A_{g}(\Omega):=\sum_{e \in E^{\Omega}} \mathrm{W}_{e} g_{e}^{2}$.

In particular, any function $g: \mathrm{E}^{\Omega} \rightarrow \mathbb{R}_{+}$ gives a lower bound for $\mathrm{L}_{\Omega}\left(\mathrm{C}_{\Omega}(z) ;(a b)\right)$.

Extremal Length $\mathrm{L}_{\Omega}\left(\mathrm{C}_{\Omega}(z) ;(a b)\right)$:

$$
\mathrm{L}_{\Omega}\left(\mathrm{C}_{\Omega}(z) ;(a b)\right):=\sup _{g: E^{\Omega} \rightarrow \mathbb{R}_{+}} \frac{\left[L_{g}\left(\mathrm{C}_{\Omega}(z) ;(a b)\right)\right]^{2}}{A_{g}(\Omega)}
$$

Corollary: For any $\Omega \subset \mathbb{Z}^{2}$ and some absolute constants $\beta, C>0$,

$$
\omega_{\Omega}(z ;(a b)) \leqslant C \exp \left[-\beta \sum_{k=k_{0}}^{k_{1}} \vartheta_{k}^{-1}\right] .
$$

Proof: take $g:=\vartheta_{k}^{-1}$ on horizontal edges.

Uniform estimates of $\omega_{\Omega}(z ;(a b))$ in simply connected Ω 's:
Let Ω be a simply connected discrete domain, $u \in \operatorname{Int} \Omega$, and $(a b) \subset \partial \Omega$ be a (far from z) boundary arc. Let $\mathrm{C}_{\Omega}(z)$ be the boundary of a discrete disc $\mathrm{B}_{r}^{\Gamma}(z), r=\frac{1}{4} \operatorname{dist}(z ; \partial \Omega)$.

Theorem: For some constants $\beta_{1,2}, C_{1,2}>0$, the following estimates are fulfilled uniformly for all configurations (Ω, z, a, b):

$$
C_{1} \exp \left[-\beta_{1} \mathrm{~L}_{(\Omega, z, a, b)}\right] \leqslant \omega_{\Omega}(z ;(a b)) \leqslant C_{2} \exp \left[-\beta_{2} \mathrm{~L}_{(\Omega, z, a, b)}\right]
$$

where $\mathrm{L}_{(\Omega, z, a, b)}=\mathrm{L}_{\Omega}\left(\mathrm{C}_{\Omega}(z) ;(a b)\right)$ denotes the extremal length (aka effective resistance) between $\mathrm{C}_{\Omega}(z)$ and $(a b)$ in Ω.

Corollary: Uniformly for all discrete domains (Ω, z, a, b), one has

$$
\log \left(1+\omega_{\text {disc }}^{-1}\right) \asymp \mathrm{L}_{\text {disc }} \asymp \mathrm{L}_{\text {cont }} \asymp \log \left(1+\omega_{\text {cont }}^{-1}\right)
$$

Uniform estimates of $\omega_{\Omega}(z ;(a b))$ in simply connected Ω 's:
Let Ω be a simply connected discrete domain, $u \in \operatorname{Int} \Omega$, and $(a b) \subset \partial \Omega$ be a (far from z) boundary arc. Let $\mathrm{C}_{\Omega}(z)$ be the boundary of a discrete disc $\mathrm{B}_{r}^{\Gamma}(z), r=\frac{1}{4} \operatorname{dist}(z ; \partial \Omega)$.

Theorem: For some constants $\beta_{1,2}, C_{1,2}>0$, the following estimates are fulfilled uniformly for all configurations (Ω, z, a, b):

$$
C_{1} \exp \left[-\beta_{1} \mathrm{~L}_{(\Omega, z, a, b)}\right] \leqslant \omega_{\Omega}(z ;(a b)) \leqslant C_{2} \exp \left[-\beta_{2} \mathrm{~L}_{(\Omega, z, a, b)}\right]
$$

where $\mathrm{L}_{(\Omega, z, a, b)}=\mathrm{L}_{\Omega}\left(\mathrm{C}_{\Omega}(z) ;(a b)\right)$ denotes the extremal length (aka effective resistance) between $\mathrm{C}_{\Omega}(z)$ and $(a b)$ in Ω.

Corollary: Uniformly for all discrete domains (Ω, z, a, b), one has

$$
\log \left(1+\omega_{\text {disc }}^{-1}\right) \asymp \mathrm{L}_{\text {disc }} \asymp \mathrm{L}_{\text {cont }} \asymp \log \left(1+\omega_{\text {cont }}^{-1}\right)
$$

THANK YOU!

Uniform estimates of $\omega_{\Omega}(z ;(a b))$ in simply connected Ω 's:
Let Ω be a simply connected discrete domain, $u \in \operatorname{Int} \Omega$, and $(a b) \subset \partial \Omega$ be a (far from z) boundary arc. Let $\mathrm{C}_{\Omega}(z)$ be the boundary of a discrete disc $\mathrm{B}_{r}^{\Gamma}(z), r=\frac{1}{4} \operatorname{dist}(z ; \partial \Omega)$.

Theorem: For some constants $\beta_{1,2}, C_{1,2}>0$, the following estimates are fulfilled uniformly for all configurations (Ω, z, a, b):

$$
C_{1} \exp \left[-\beta_{1} \mathrm{~L}_{(\Omega, z, a, b)}\right] \leqslant \omega_{\Omega}(z ;(a b)) \leqslant C_{2} \exp \left[-\beta_{2} \mathrm{~L}_{(\Omega, z, a, b)}\right]
$$

where $\mathrm{L}_{(\Omega, z, a, b)}=\mathrm{L}_{\Omega}\left(\mathrm{C}_{\Omega}(z) ;(a b)\right)$ denotes the extremal length (aka effective resistance) between $\mathrm{C}_{\Omega}(z)$ and $(a b)$ in Ω.
Corollary: Uniformly for all discrete domains (Ω, z, a, b), one has

$$
\log \left(1+\omega_{\text {disc }}^{-1}\right) \asymp \mathrm{L}_{\text {disc }} \asymp \mathrm{L}_{\text {cont }} \asymp \log \left(1+\omega_{\text {cont }}^{-1}\right)
$$

If time permits ... some ideas of the proof on the next slides

Some ideas of the proof:

- Work with discrete quadrilaterals ($\Omega ; a, b, c, d$): simply connected domains with four marked boundary points
(then use some additional reduction to handle $\omega_{\Omega}(z ;(a b))$, RW partition functions in annuli, and corresponding extremal lengths $\left.\mathrm{L}_{(\Omega, z, a, b)}\right)$.

Some ideas of the proof:

- Work with discrete quadrilaterals ($\Omega ; a, b, c, d$): simply connected domains with four marked boundary points;
- Discrete cross-ratios Y_{Ω} :

$$
\mathrm{Y}_{\Omega}(a, b ; c, d):=\left[\frac{\mathrm{Z}_{\Omega}(a ; d) \mathrm{Z}_{\Omega}(b ; c)}{\mathrm{Z}_{\Omega}(a ; b) \mathrm{Z}_{\Omega}(c ; d)}\right]^{1 / 2}
$$

Some ideas of the proof:

- Work with discrete quadrilaterals ($\Omega ; a, b, c, d$): simply connected domains with four marked boundary points;
- Discrete cross-ratios Y_{Ω} :

$$
\mathrm{Y}_{\Omega}(a, b ; c, d):=\left[\frac{\mathrm{Z}_{\Omega}(a ; d) \mathrm{Z}_{\Omega}(b ; c)}{\mathrm{Z}_{\Omega}(a ; b) \mathrm{Z}_{\Omega}(c ; d)}\right]^{1 / 2} ;
$$

- RW partition function $\mathrm{Z}_{\Omega}=\mathrm{Z}_{\Omega}((a b) ;(c d))$

Some ideas of the proof:

- Work with discrete quadrilaterals ($\Omega ; a, b, c, d$): simply connected domains with four marked boundary points;
- Discrete cross-ratios Y_{Ω} :

$$
\mathrm{Y}_{\Omega}(a, b ; c, d):=\left[\frac{\mathrm{Z}_{\Omega}(a ; d) \mathrm{Z}_{\Omega}(b ; c)}{\mathrm{Z}_{\Omega}(a ; b) \mathrm{Z}_{\Omega}(c ; d)}\right]^{1 / 2}
$$

- RW partition function $\mathrm{Z}_{\Omega}=\mathrm{Z}_{\Omega}((a b) ;(c d))$;
- Extremal length $\mathrm{L}_{\Omega}=\mathrm{L}_{\Omega}((a b) ;(c d))$.

Some ideas of the proof:

- Work with discrete quadrilaterals ($\Omega ; a, b, c, d$): simply connected domains with four marked boundary points;
- Discrete cross-ratios Y_{Ω} :

$$
\mathrm{Y}_{\Omega}(a, b ; c, d):=\left[\frac{\mathrm{Z}_{\Omega}(a ; d) \mathrm{Z}_{\Omega}(b ; c)}{\mathrm{Z}_{\Omega}(a ; b) \mathrm{Z}_{\Omega}(c ; d)}\right]^{1 / 2} ;
$$

- RW partition function $\mathrm{Z}_{\Omega}=\mathrm{Z}_{\Omega}((a b) ;(c d))$;
- Extremal length $\mathrm{L}_{\Omega}=\mathrm{L}_{\Omega}((a b) ;(c d))$.

Theorem: Uniformly for all discrete quadrilaterals ($\Omega ; a, b, c, d$),

$$
\log \left(1+\mathrm{Y}_{\Omega}\right) \stackrel{[!]}{\rightleftharpoons} \mathrm{Z}_{\Omega} \leqslant \mathrm{L}_{\Omega}^{-1}
$$

Some ideas of the proof:

- Work with discrete quadrilaterals ($\Omega ; a, b, c, d$): simply connected domains with four marked boundary points;
- Discrete cross-ratios Y_{Ω} :

$$
\mathrm{Y}_{\Omega}(a, b ; c, d):=\left[\frac{\mathrm{Z}_{\Omega}(a ; d) \mathrm{Z}_{\Omega}(b ; c)}{\mathrm{Z}_{\Omega}(a ; b) \mathrm{Z}_{\Omega}(c ; d)}\right]^{1 / 2}
$$

- RW partition function $\mathrm{Z}_{\Omega}=\mathrm{Z}_{\Omega}((a b) ;(c d))$;
- Extremal length $\mathrm{L}_{\Omega}=\mathrm{L}_{\Omega}((a b) ;(c d))$.

Theorem: Uniformly for all discrete quadrilaterals ($\Omega ; a, b, c, d$),

$$
\begin{aligned}
& \log \left(1+\mathrm{Y}_{\Omega}\right) \stackrel{[!]}{\sim} \mathrm{Z}_{\Omega} \leqslant \mathrm{L}_{\Omega}^{-1} \\
& \log \left(1+\widetilde{\mathrm{Y}}_{\Omega}\right) \asymp \widetilde{\mathrm{Z}}_{\Omega} \leqslant \widetilde{\mathrm{L}}_{\Omega}^{-1}
\end{aligned}
$$

where $\widetilde{\mathrm{Y}}_{\Omega}, \widetilde{\mathrm{Z}}_{\Omega}$ and $\widetilde{\mathrm{L}}_{\Omega}$ denote the same objects for $(\Omega ; b, c, d, a)$.

Some ideas of the proof:

- Work with discrete quadrilaterals ($\Omega ; a, b, c, d$): simply connected domains with four marked boundary points;
- Discrete cross-ratios Y_{Ω};
- RW partition function $\mathrm{Z}_{\Omega}=\mathrm{Z}_{\Omega}((a b) ;(c d))$;
- Extremal length $\mathrm{L}_{\Omega}=\mathrm{L}_{\Omega}((a b) ;(c d))$.

Theorem: Uniformly for all discrete quadrilaterals ($\Omega ; a, b, c, d$),

$$
\begin{aligned}
& \log \left(1+\mathrm{Y}_{\Omega}\right) \stackrel{[!]}{\sim} \mathrm{Z}_{\Omega} \leqslant \mathrm{L}_{\Omega}^{-1} \\
& \log \left(1+\widetilde{\mathrm{Y}}_{\Omega}\right) \asymp \widetilde{\mathrm{Z}}_{\Omega} \leqslant \widetilde{\mathrm{L}}_{\Omega}^{-1}
\end{aligned}
$$

where $\widetilde{\mathrm{Y}}_{\Omega}, \widetilde{\mathrm{Z}}_{\Omega}$ and $\widetilde{\mathrm{L}}_{\Omega}$ denote the same objects for $(\Omega ; b, c, d, a)$.

- $\mathrm{Y}_{\Omega} \widetilde{\mathrm{Y}}_{\Omega}=1, \mathrm{~L}_{\Omega} \widetilde{\mathrm{L}}_{\Omega} \asymp 1$. Moreover, $\widetilde{\mathrm{Z}}_{\Omega} \asymp \widetilde{\mathrm{L}}_{\Omega}^{-1}$, if \geqslant const.

Some ideas of the proof:
Theorem: Uniformly for all discrete quadrilaterals ($\Omega ; a, b, c, d$),

$$
\mathrm{Z}_{\Omega}((a b) ;(c d)) \asymp \log \left(1+\mathrm{Y}_{\Omega}\right), \quad \mathrm{Y}_{\Omega}=\left[\frac{\mathrm{Z}_{\Omega}(a ; d) \mathrm{Z}_{\Omega}(b ; c)}{\mathrm{Z}_{\Omega}(a ; b) \mathrm{Z}_{\Omega}(c ; d)}\right]^{1 / 2}
$$

Some ideas of the proof:
Theorem: Uniformly for all discrete quadrilaterals ($\Omega ; a, b, c, d$),

$$
\mathrm{Z}_{\Omega}((a b) ;(c d)) \asymp \log \left(1+\mathrm{Y}_{\Omega}\right), \quad \mathrm{Y}_{\Omega}=\left[\frac{\mathrm{Z}_{\Omega}(a ; d) \mathrm{Z}_{\Omega}(b ; c)}{\mathrm{Z}_{\Omega}(a ; b) \mathrm{Z}_{\Omega}(c ; d)}\right]^{1 / 2}
$$

- (Factorization) Theorem: Uniformly for all ($\Omega ; a, c, d$),

$$
\mathrm{Z}_{\Omega}(a ;(c d)) \asymp\left[\mathrm{Z}_{\Omega}(a ; c) \mathrm{Z}_{\Omega}(a ; d) / \mathrm{Z}_{\Omega}(c ; d)\right]^{1 / 2}
$$

Some ideas of the proof:
Theorem: Uniformly for all discrete quadrilaterals ($\Omega ; a, b, c, d$), $\mathrm{Z}_{\Omega}((a b) ;(c d)) \asymp \log \left(1+\mathrm{Y}_{\Omega}\right), \quad \mathrm{Y}_{\Omega}=\left[\frac{\mathrm{Z}_{\Omega}(a ; d) \mathrm{Z}_{\Omega}(b ; c)}{\mathrm{Z}_{\Omega}(a ; b) \mathrm{Z}_{\Omega}(c ; d)}\right]^{1 / 2}$.

- (Factorization) Theorem: Uniformly for all ($\Omega ; a, c, d$),

$$
\mathrm{Z}_{\Omega}(a ;(c d)) \asymp\left[\mathrm{Z}_{\Omega}(a ; c) \mathrm{Z}_{\Omega}(a ; d) / \mathrm{Z}_{\Omega}(c ; d)\right]^{1 / 2}
$$

- \Rightarrow if $\mathrm{Y}_{\Omega} \leqslant$ const, then $\mathrm{Z}_{\Omega} \asymp \mathrm{Y}_{\Omega}$ (... sum along (ab) ...)

Some ideas of the proof:
Theorem: Uniformly for all discrete quadrilaterals ($\Omega ; a, b, c, d$), $\mathrm{Z}_{\Omega}((a b) ;(c d)) \asymp \log \left(1+\mathrm{Y}_{\Omega}\right), \quad \mathrm{Y}_{\Omega}=\left[\frac{\mathrm{Z}_{\Omega}(a ; d) \mathrm{Z}_{\Omega}(b ; c)}{\mathrm{Z}_{\Omega}(a ; b) \mathrm{Z}_{\Omega}(c ; d)}\right]^{1 / 2}$.

- (Factorization) Theorem: Uniformly for all ($\Omega ; a, c, d$),

$$
\mathrm{Z}_{\Omega}(a ;(c d)) \asymp\left[\mathrm{Z}_{\Omega}(a ; c) \mathrm{Z}_{\Omega}(a ; d) / \mathrm{Z}_{\Omega}(c ; d)\right]^{1 / 2}
$$

- \Rightarrow if $\mathrm{Y}_{\Omega} \leqslant$ const, then $\mathrm{Z}_{\Omega} \asymp \mathrm{Y}_{\Omega}$ (... sum along ($a b$) ...);
- In particular, if Y_{Ω} is of order 1 , then Z_{Ω} is of order 1 too.

Some ideas of the proof:

Theorem: Uniformly for all discrete quadrilaterals ($\Omega ; a, b, c, d$),

$$
\mathrm{Z}_{\Omega}((a b) ;(c d)) \asymp \log \left(1+\mathrm{Y}_{\Omega}\right), \quad \mathrm{Y}_{\Omega}=\left[\frac{\mathrm{Z}_{\Omega}(a ; d) \mathrm{Z}_{\Omega}(b ; c)}{\mathrm{Z}_{\Omega}(a ; b) \mathrm{Z}_{\Omega}(c ; d)}\right]^{1 / 2}
$$

- (Factorization) Theorem: Uniformly for all ($\Omega ; a, c, d$),

$$
\mathrm{Z}_{\Omega}(a ;(c d)) \asymp\left[\mathrm{Z}_{\Omega}(a ; c) \mathrm{Z}_{\Omega}(a ; d) / \mathrm{Z}_{\Omega}(c ; d)\right]^{1 / 2}
$$

- \Rightarrow if $\mathrm{Y}_{\Omega} \leqslant$ const, then $\mathrm{Z}_{\Omega} \asymp \mathrm{Y}_{\Omega}$ (... sum along (ab) ...);
- \Rightarrow if $\mathrm{Y}_{\Omega} \geqslant$ const, then $\mathrm{Z}_{\Omega} \asymp \log \mathrm{Y}_{\Omega}$: partition functions Z_{Ω} are additive while cross-ratios Y_{Ω} are multiplicative as one splits the arc $(a b)$ into smaller arcs $\left(a_{0} a_{1}\right) \cup \cdots \cup\left(a_{n-1} a_{n}\right)$.

Some ideas of the proof:

Theorem: Uniformly for all discrete quadrilaterals ($\Omega ; a, b, c, d$),

$$
\mathrm{Z}_{\Omega}((a b) ;(c d)) \asymp \log \left(1+\mathrm{Y}_{\Omega}\right), \quad \mathrm{Y}_{\Omega}=\left[\frac{\mathrm{Z}_{\Omega}(a ; d) \mathrm{Z}_{\Omega}(b ; c)}{\mathrm{Z}_{\Omega}(a ; b) \mathrm{Z}_{\Omega}(c ; d)}\right]^{1 / 2}
$$

- (Factorization) Theorem: Uniformly for all ($\Omega ; a, c, d$),

$$
\mathrm{Z}_{\Omega}(a ;(c d)) \asymp\left[\mathrm{Z}_{\Omega}(a ; c) \mathrm{Z}_{\Omega}(a ; d) / \mathrm{Z}_{\Omega}(c ; d)\right]^{1 / 2}
$$

- \Rightarrow if $\mathrm{Y}_{\Omega} \leqslant$ const, then $\mathrm{Z}_{\Omega} \asymp \mathrm{Y}_{\Omega}$ (... sum along (ab) ...);
- \Rightarrow if $\mathrm{Y}_{\Omega} \geqslant$ const, then $\mathrm{Z}_{\Omega} \asymp \log \mathrm{Y}_{\Omega}$: partition functions Z_{Ω} are additive while cross-ratios Y_{Ω} are multiplicative as one splits the arc $(a b)$ into smaller arcs $\left(a_{0} a_{1}\right) \cup \cdots \cup\left(a_{n-1} a_{n}\right)$.

