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Motivation:

I by-product: (uniform wrt all discrete domains) analogues of

classical estimates available in geometric complex analysis.

Example: (harmonic measure ωΩ(z ; (ab)) of a �far� boundary arc)

Theorem: (Ahlfors, Beurling, (Carleman))

ωΩ(z ; (ab)) ≍ exp[−πLΩ(z ; (ab))], LΩ(z ; (ab)) >
∫ x1
x0
(ϑ(x))−1dx .

Remark: ⇑ conformal invariance of ωΩ(z ; (ab)) and LΩ(z ; (ab)).
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�xed edge weights (conductances), and µu :=
∑

v∼u wuv for u ∈ Γ.

Discrete domains:

Let (VΩ;EΩ
int) be a bounded connected subgraph of (Γ;EΓ).

Denote by EΩ
bd the set of all (oriented) edges (ainta) ̸∈ EΩ

int

such that aint ∈ VΩ and a ̸∈ VΩ. We set Ω := IntΩ ∪ ∂Ω,

IntΩ := VΩ, ∂Ω := {(a ; (ainta)) : (ainta) ∈ EΩ
bd}.

Formally, the boundary ∂Ω of a discrete domain Ω should be

treated as the set of oriented edges (ainta), but we usually identify

it with the set of corresponding vertices a, and think about IntΩ
and ∂Ω as subsets of Γ, if no confusion arises.
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Let (Γ;EΓ) be an ini�nite planar graph embedded into C so that all

its edges (uv) ∈ EΓ are straight segments, wuv = wvu > 0 be some

�xed edge weights (conductances), and µu :=
∑

v∼u wuv for u ∈ Γ.

Discrete domains:

(VΩ;EΩ
int) � bounded and

connected,

EΩ
bd := {(ainta) ̸∈ EΩ

int :
aint ∈ VΩ, a ̸∈ VΩ},

Ω := IntΩ ∪ ∂Ω, IntΩ := VΩ,

∂Ω:={(a ; (ainta)) : (ainta)∈EΩ
bd}.
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where SΩ(x ; y) = {γ = (x = u0 ∼ u1 ∼ · · · ∼ un(γ) = y)} is the

set of all nearest-neighbor paths connecting x and y inside Ω
(i.e., u1, . . . , un(γ)−1 ∈ IntΩ while we admit x , y ∈ ∂Ω).

Examples: x , y ∈ IntΩ: GΩ(x ; y) Green's function in Ω;
x ∈ IntΩ,B ⊂ ∂Ω: ωΩ(x ;B) hitting prob. (= harmonic measure).
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I no ��at� angles: there exists a constant η0 > 0 such that all

angles between neighboring edges do not exceed π − η0
(NB: ⇒ all degrees of faces of Γ are bounded by 2π/η0);

I edge lengths are locally comparable: there exists a constant

ρ0 > 1 such that, for any vertex u ∈ Γ, one has

max
(uv)∈EΓ

|v − u| 6 ρ0ru, where ru := min
(uv)∈EΓ

|v − u|;

I Γ is �quantitatively locally �nite� : for any ρ > 1 there exists

some constant ν(ρ) > 0 such that, uniformly over all u ∈ Γ,

#{v ∈ Γ : |v−u| 6 ρru} 6 ν(ρ).
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In other words, if one considers some time parametrization

such that the (expected) time spent by the walk at a vertex v
before it jumps is of order r2v , then the expected time spent in

a discrete disc BΓ
r (u) by the random walk started at u before it

hits ∂BΓ
r (u) should be of order r2, uniformly over all discs.
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(Open) question: Do assumptions (a)�(d) on the graph Γ and the

edge weights wuv listed on the previous page imply (S) and (T)?

(Closed) answer: (A. Nachmias, private communication): YES.
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I Can be de�ned via the unique solution of some boundary value

problem for discrete harmonic functions: Dirichlet (= 0) on
(ab), Dirichlet (= 1) on CΩ(z), Neumann on ∂Ω \ (ab);

I Equivalently, can be de�ned via some optimization problem

for �discrete metrics� (or electric currents) g : EΩ → R+:

LΩ(CΩ(z); (ab)) := sup
g :EΩ→R+

[Lg (CΩ(z); (ab))]
2
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where Lg (CΩ(z); (ab)) := infγ:CΩ(z)↔(ab)

∑
e∈γ ge

and Ag (Ω) :=
∑

e∈EΩ weg
2
e .

In particular, any function g : EΩ → R+

gives a lower bound for LΩ(CΩ(z); (ab)).



Extremal Length LΩ(CΩ(z); (ab)):

LΩ(CΩ(z); (ab)) := sup
g :EΩ→R+

[Lg (CΩ(z); (ab))]
2

Ag (Ω)

Corollary: For any Ω ⊂ Z2 and some absolute constants β,C > 0,

ωΩ(z ; (ab)) 6 C exp[−β
∑k1

k=k0
ϑ−1
k ].

Proof: take g := ϑ−1
k on horizontal edges.
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If time permits ... some ideas of the proof on the next slides
→
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ωΩ(z ; (ab)), RW partition functions in annuli,

and corresponding extremal lengths L(Ω,z,a,b)).
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Some ideas of the proof:

I Work with discrete quadrilaterals (Ω; a, b, c , d): simply

connected domains with four marked boundary points;

I Discrete cross-ratios YΩ;

I RW partition function ZΩ = ZΩ((ab); (cd));

I Extremal length LΩ = LΩ((ab); (cd)).

Theorem: Uniformly for all discrete quadrilaterals (Ω; a, b, c , d),

log(1 +YΩ)
[!]
≍ ZΩ 6 L−1

Ω

log(1 + ỸΩ) ≍ Z̃Ω 6 L̃−1
Ω ,

where ỸΩ, Z̃Ω and L̃Ω denote the same objects for (Ω; b, c , d , a).

I YΩỸΩ = 1, LΩL̃Ω ≍ 1. Moreover, Z̃Ω ≍ L̃−1
Ω , if > const.
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I ⇒ if YΩ 6 const, then ZΩ ≍ YΩ (... sum along (ab) ...);

I In particular, if YΩ is of order 1, then ZΩ is of order 1 too.
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THANK YOU ONCE MORE!


