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Outline:

. Long[!]-term motivation:

. Intro: Thurston’s height functions,

. conv. to GFF in a non-trivial metric.

. T-embeddings: basic concepts and
a priori regularity estimates (w/ Laslier
and Russkikh, arXiv:2001.11871).

. Perfect t-embeddings and Lorentz-
minimal surfaces. Main theorem (w/
Laslier and Russkikh, arXiv:20**.**).

. (Some) open questions/perspectives.

• Long[!]-term motivation:

correlation functions/loop ensembles on
random maps carrying the bipartite
dimer [ or the critical Ising ] model by
embedding them into C in a special way.
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‘Bosonization’ (Ising→ dimers): [Dubédat’11,...] 

Xe = tan(½ϑe) 
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• Detour: planar Ising model [ Lenz, 1920: centenary ! ]

• Lenz-Ising model on a planar graph G ∗ (dual
to G ) is a random assignment of +/− spins
to vertices of G ∗ (=faces of G ) according to

P
[
conf. σ ∈ {±1}V (G∗)

]
∝ exp

[
β
∑

e=〈uv〉 Juvσuσv
]

= Z−1 ·
∏

e=〈uv〉:σu 6=σv
xuv

where Juv > 0 are interaction constants preassigned
to edges 〈uv〉, β = 1/kT , and xuv = exp[−2βJuv ].

• Remark: w/o magnetic field ⇒ ‘free fermion’.

 

[ an example with ‘+’ boundary conditions ]
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• Example: square grid [xcrit =
√

2− 1]

x < xcrit x = xcrit x > xcrit

 

[ an example with ‘+’ boundary conditions ]

Two descriptions as δ → 0:

• correlation functions (CFT);

• loop ensembles (SLE/CLE).



• Known results on regular lattices:

• Critical Ising model: [Smirnov’06  ...]

• − correlations (fermions, spins, ...)
•−converge to the Ising CFT (c = 1

2 );

• − interfaces/loop ensembles
•−converge to SLE/CLE(κ), κ=3, 16

3 .

[ Interfaces on the square lattice. (c) Smirnov’06 ]
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• Known results on regular lattices:

• Bipartite dimer model: [Kenyon’00  ...]

• − fluctuations of the height function
•−converge to the Gaussian Free Field
•− [to be discussed on the next slides]

• − double-dimers loop ensembles

converge [??]

Kenyon’10,

Dubédat’14,

Basok–Chelkak’18,

... [still not quite] ...

to the nested
CLE(4)

(c) D. Wilson
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Bipartite dimer model: basics

• (G, νbw ) – finite weighted bipartite
planar graph (w/ marked outer face);

• Dimer configuration = perfect match-
ing D ⊂ E (G): subset of edges such
that each vertex is covered exactly once;

• Probability P(D) ∝
∏

e∈D νe .

(Very) particular example:
[ Temperleyan domains GT ⊂ Z2 ]
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planar graph (w/ marked outer face);

• Dimer configuration = perfect match-
ing D ⊂ E (G): subset of edges such
that each vertex is covered exactly once;

• Probability P(D) ∝
∏

e∈D νe .

• In Temperleyan domains, random
walks and discrete harmonic functions
with ‘nice’ boundary conditions natu-
rally appear. This is a very special case.

(Very) particular example:
[ Temperleyan domains GT ⊂ Z2 ]

 

Temperley bijection: dimers on GT
↔ spanning trees on another graph.
This procedure is highly sensitive to the
microscopic structure of the boundary.
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• Height fluctuations ~ := h − E[h]
do not depend on the choice of D0.

• Gaussian Free Field: E[~(z)] = 0,

E[~(z)~(w)]=GΩ(z ,w)=−∆−1
Ω (z ,w).

(Very) particular example:
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Theorem [Kenyon’00]:

δZ2 ⊃ GδT → Ω ⊂ C

⇒ ~δ → π−
1
2GFF(Ω)
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• (G, νbw ) – finite weighted bipartite
planar graph (w/ marked outer face);

• Dimer configuration = perfect match-
ing D ⊂ E (G): subset of edges such
that each vertex is covered exactly once;

• Probability P(D) ∝
∏

e∈D νe .

• Random height function h (on G∗): fix
D0, view D∪D0 as a topographic map.

• Height fluctuations ~ := h − E[h]
do not depend on the choice of D0.

[!] Still, the limit of ~δ as δ → 0 heavily
depends on the limit of (deterministic)
boundary profiles of δhδ.

Examples (on Hex∗) [ (c) Kenyon ] :

On periodic lattices:

• [Cohn–Kenyon–Propp’00] the random
profile δhδ concentrates near a surface
maximizing certain entropy functional.

• Prediction: [Kenyon–Okounkov’06]

~δ →GFF in a profile-dependent metric.

[!] Problematic beyond periodic graphs.



Known results: δZ2 ⊃ GδT → Ω ⊂ C

• ~δ → π−1/2 ·GFF(Ω) [ Kenyon’00 ]

• Non-flat case: GFFµ(Ω)

. Temperleyan-type domains ⊂ Hex∗

. coming from T-graphs [ Kenyon’04 ]

. ‘polygons’ via ‘integrable probability’

. and (rather hard) asymptotic analysis

. [ Petrov, Bufetov–Gorin, ... ’12+ ]

. thorough analysis of

. concrete setups (e.g.,

. Aztec diamonds) w/

. interesting behavior

. [ Chhita–Johansson–Young, ... ’12+ ]

Aztec diamonds
An ⊂ n−1Z2:

[ Elkies – Kuperberg –

Larsen – Propp ’92, ... ]

[ (c) A. & M. Borodin, S. Chhita ]
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• ~δ → π−1/2 ·GFF(Ω) [ Kenyon’00 ]

• Non-flat case: GFFµ(Ω)

. Temperleyan-type domains ⊂ Hex∗

. coming from T-graphs [ Kenyon’04 ]

. ‘polygons’ via ‘integrable probability’

. and (rather hard) asymptotic analysis

. [ Petrov, Bufetov–Gorin, ... ’12+ ]

. thorough analysis of

. concrete setups (e.g.,

. Aztec diamonds) w/

. interesting behavior

. [ Chhita–Johansson–Young, ... ’12+ ]

• Known tools: problematic to apply
l [ ? ] to generic graphs (G, ν)
• Long[!]-term goal:
attack random maps carrying the bipar-
tite dimer [ or the critical Ising ] model.

(c) N. Curien

• Wanted: special embeddings of ab-
stract weighted bipartite planar graphs
+ ‘discrete complex analysis’ techniques
on such embeddings

 complex structure in the limit.



Theorem: [ Ch. – Laslier – Russkikh ]
[ arXiv:2001.11871 + 20**.** ]

Let Gδ, δ → 0, be finite weighted bipar-
tite planar graphs. Assume that

• T δ are perfect t-embeddings of (Gδ)∗
[ satisfying assumption Exp-Fat(δ) ];

• as δ → 0, the images of T δ converge
to a domain Dξ [ ξ∈Lip1(T), |ξ|< π

2 ];

• origami maps (T δ,Oδ) converge to a

Lorentz-minimal surface Sξ ⊂ Dξ × R.

Then, height functions fluctuations in
the dimer models on T δ converge to the
standard Gaussian Free Field in the

intrinsic metric of Sξ⊂ R2+1⊂ R2+2.

Illustration:
Aztec diamonds
[ Ch.– Ramassamy ]
[ arXiv:2002.07540 ]

1

1
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tite planar graphs. Assume that
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[ satisfying assumption Exp-Fat(δ) ];

• as δ → 0, the images of T δ converge
to a domain Dξ [ ξ∈Lip1(T), |ξ|< π

2 ];

• origami maps (T δ,Oδ) converge to a

Lorentz-minimal surface Sξ ⊂ Dξ × R.

Then, height functions fluctuations in
the dimer models on T δ converge to the
standard Gaussian Free Field in the

intrinsic metric of Sξ⊂ R2+1⊂ R2+2.

• Domains Dξ, surfaces Sξ:

• 1-Lipschitz function |ξ(φ)|< π
2 on T;

• Dξ: inside of z(φ)=e iφ/cos(ξ(φ));

• Sξ spans Lξ := (z(φ), tan(ξ(φ)))φ∈T

Lξ ⊂ {x ∈R2+1 : ‖x‖2 = x2
1 + x2

2 − x2
3 = 1}.

Aztec case
(Dξ,Sξ):

1
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Embeddings of weighted bipartite planar graphs carrying the dimer model
[ and admitting reasonable notions of discrete complex analysis ]

Coulomb gauges [ Kenyon – Lam – Ramassamy – Russkikh, arXiv:1810.05616 ]
m

t-embeddings [ Ch. – Laslier – Russkikh, arXiv:2001.11871, arXiv:20**.** ]

Particular cases: harmonic/Tutte’s embeddings [ via the Temperley bijection ]
Ising model s-embeddings [ arXiv:1712.04192, via the bosonization ]

Extremely particular case:
Baxter’s critical Z-invariant Ising model
on rhombic lattices/isoradial graphs

[ Ch. – Smirnov, arXiv:0910.2045
“Universality in the 2D Ising model and con-
formal invariance of fermionic observables” ]

⋃

 



Embeddings of weighted bipartite planar graphs carrying the dimer model
[ and admitting reasonable notions of discrete complex analysis ]

• t-embeddings = Coulomb gauges: given (G, ν),
• find T : G∗ → C [G∗ – augmented dual ] s.t.

. weights νe are gauge equivalent to χ(vv ′)∗ := |T (v ′)−T (v)|

. (i.e., νbw = gbχbwgw for some g : B ∪W → R+) and

. at each inner vertex T (v), the sum of black angles = π.
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Embeddings of weighted bipartite planar graphs carrying the dimer model
[ and admitting reasonable notions of discrete complex analysis ]

• t-embeddings = Coulomb gauges: given (G, ν),
• find T : G∗ → C [G∗ – augmented dual ] s.t.

. weights νe are gauge equivalent to χ(vv ′)∗ := |T (v ′)−T (v)|

. (i.e., νbw = gbχbwgw for some g : B ∪W → R+) and

. at each inner vertex T (v), the sum of black angles = π.

• p-embeddings = perfect t-embeddings:
• . outer face is a tangential (possibly, non-convex) polygon,
• . edges adjacent to outer vertices are bisectors.

• Warning: for general (G, ν), the existence of perfect
t-embeddings is not known though they do exist in particular
cases + the count of #(degrees of freedom) matches.
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Embeddings of weighted bipartite planar graphs carrying the dimer model
[ and admitting reasonable notions of discrete complex analysis ]

• t-embeddings = Coulomb gauges: given (G, ν),
• find T : G∗ → C [G∗ – augmented dual ] s.t.

. weights νe are gauge equivalent to χ(vv ′)∗ := |T (v ′)−T (v)|

. (i.e., νbw = gbχbwgw for some g : B ∪W → R+) and

. at each inner vertex T (v), the sum of black angles = π.

• origami maps O: G∗ → C [ “ fold C along segments of T ” ]

•

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• T-graphs T +α2O, |α|=1: [GeoGebra]
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Embeddings of weighted bipartite planar graphs carrying the dimer model
[ and admitting reasonable notions of discrete complex analysis ]

• “Regular” case: triangular grids [ Kenyon’04 + Laslier’13 ]

1

1

•

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• T-graphs T +α2O, |α|=1: [GeoGebra]

• t-holomorphic functions F ◦ : W → C
α·{ gradients of harmonic on T +α2O }

[ this notion does not depend on α ]
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Embeddings of weighted bipartite planar graphs carrying the dimer model
[ and admitting reasonable notions of discrete complex analysis ]

A priori regularity theory [ arXiv:2001.11871 ]

• T δ satisfies Lip(κ,δ) for κ < 1 and δ > 0 if

|z ′ − z | ≥ δ ⇒ |Oδ(z ′)−Oδ(z)| ≤ κ · |z ′ − z |.

• (triangulations) T δ satisfy Exp-Fat(δ) as δ → 0 if

for each β > 0, if one removes all ‘exp(−βδ−1)-fat’
triangles from T δ, then the size of remaining vertex-
connected components tends to zero as δ → 0.

z ∈ C

θ(bi, v)

θ(wj , v)
v

w

b

dT (
bw

∗ )

Results: • Hölder regularity of t-holomorphic functions,

• Lipschitz regularity of harmonic functions on T δ+α2Oδ.
•What can be said on

•subsequential limits?



Embeddings of weighted bipartite planar graphs carrying the dimer model
[ and admitting reasonable notions of discrete complex analysis ]

A priori regularity theory [ arXiv:2001.11871 ]

• Assume that Oδ(z)→ϑ(z), δ → 0. Then, limits of
harmonic functions on T δ + α2Oδ are martingales wrt
to a certain diffusion whose coefficients depend on ϑ, α.

1

1

z ∈ C

θ(bi, v)

θ(wj , v)
v

w

b

dT (
bw

∗ )

Results: • Hölder regularity of t-holomorphic functions,

• Lipschitz regularity of harmonic functions on T δ+α2Oδ.
•What can be said on

•subsequential limits?



Embeddings of weighted bipartite planar graphs carrying the dimer model
[ and admitting reasonable notions of discrete complex analysis ]

A priori regularity theory [ arXiv:2001.11871 ]

• T δ satisfy Lip(κ,δ) and Exp-Fat(δ) as δ → 0.

Results: • Hölder reg. of t-holomorphic functions,

• Lipschitz reg. of harmonic functions on T δ+α2Oδ.

• Assume that Oδ(z)→ ϑ(z), z ∈ D, δ → 0 and that

• {(z , ϑ(z))}z∈D ⊂ R2+2 is a Lorentz-minimal surface.

z ∈ C

θ(bi, v)

θ(wj , v)
v

w

b

dT (
bw

∗ )

• Let a parametrization ζ be conformal zζzζ = ϑζϑζ and harmonic zζζ̄ = ϑζζ̄ = 0.

• Then, subsequential limits of harmonic functions on all T-graphs T δ +α2Oδ, |α| = 1,
• and, moreover, all limits of dimer height functions correlations are harmonic in ζ.



Theorem: [ Ch. – Laslier – Russkikh ]
[ arXiv:2001.11871 + 20**.** ]

Let Gδ, δ → 0, be finite weighted bipar-
tite planar graphs. Assume that

• T δ are perfect t-embeddings of (Gδ)∗
[ satisfying assumption Exp-Fat(δ) ];

• as δ → 0, the images of T δ converge
to a domain Dξ [ ξ∈Lip1(T), |ξ|< π

2 ];

• origami maps (T δ,Oδ) converge to a

Lorentz-minimal surface Sξ ⊂ Dξ × R.

Then, height functions fluctuations in
the dimer models on T δ converge to the
standard Gaussian Free Field in the

intrinsic metric of Sξ⊂ R2+1⊂ R2+2.

Illustration:
Aztec diamonds
[ Ch.– Ramassamy ]
[ arXiv:2002.07540 ]
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Open questions, perspectives [ general (G, ν) ]

• Existence of perfect t-embeddings

•p-embeddings = perfect t-embeddings:
• . outer face is a tangential (non-convex) polygon,
• . edges adjacent to outer vertices are bisectors.

1

. degfout = 4:

. OK [KLRR]

. #(degrees of

.freedom): OK
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• Why does Lorentz geometry appear?

• Another example: annulus-type graphs
•  Lorentz-minimal cusp (z , arcsinh |z |).
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[...] Eventually, what about embeddings of random
• maps weighted by the Ising model? Liouville CFT?
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Thank you!


