BIPARTITE DIMER MODEL:

T-EMEBEDDINGS OF GRAPHS AND GFF

ON SURFACES IN THE MINKOWSKI SPACE

Dmitry Chelkak (ENS)

[recent/in progress joint works w/

Benoît Laslier, Sanjay Ramassamy, Marianna Russkikh]

FARF-IV, 15.06.2020

Outline:

Long[!]-term motivation:

Intro: Thurston's height functions, conv. to GFF in a <u>non-trivial metric</u>.

▷ T-embeddings: basic concepts and a priori regularity estimates (w/ Laslier and Russkikh, arXiv:2001.11871).

▷ Perfect t-embeddings and Lorentzminimal surfaces. <u>Main theorem</u> (w/ Laslier and Russkikh, arXiv:20**.**).

▷ (Some) open questions/perspectives.

• Long[!]-term motivation:

correlation functions/loop ensembles on random maps carrying the bipartite dimer [or the critical lsing] model by <u>embedding</u> them into \mathbb{C} in a special way.

Outline:

Long[!]-term motivation:

Intro: Thurston's height functions, conv. to GFF in a <u>non-trivial metric</u>.

▷ T-embeddings: basic concepts and a priori regularity estimates (w/ Laslier and Russkikh, arXiv:2001.11871).

▷ Perfect t-embeddings and Lorentzminimal surfaces. <u>Main theorem</u> (w/ Laslier and Russkikh, arXiv:20**.**).

▷ (Some) open questions/perspectives.

• Long[!]-term motivation:

correlation functions/loop ensembles on random maps carrying the bipartite dimer [or the critical lsing] model by <u>embedding</u> them into \mathbb{C} in a special way.

• Detour: planar Ising model

Lenz-Ising model on a planar graph G* (dual to G) is a random assignment of +/- spins to vertices of G* (=faces of G) according to

$$\mathbb{P}\left[\text{conf. } \sigma \in \{\pm 1\}^{V(G^*)}\right] \propto \exp\left[\beta \sum_{e=\langle uv \rangle} J_{uv} \sigma_u \sigma_v\right]$$
$$= \mathcal{Z}^{-1} \cdot \prod_{e=\langle uv \rangle: \sigma_u \neq \sigma_v} x_{uv}$$

where $J_{uv} > 0$ are interaction constants preassigned to edges $\langle uv \rangle$, $\beta = 1/kT$, and $x_{uv} = \exp[-2\beta J_{uv}]$.

• **Remark:** w/o magnetic field \Rightarrow 'free fermion'.

[Lenz, 1920: centenary!] Θ an example with + boundary conditions]

- Detour: planar Ising model
- Lenz-Ising model on a planar graph G* (dual to G) is a random assignment of +/- spins to vertices of G* (=faces of G) according to

$$\mathbb{P}\left[\text{conf. } \sigma \in \{\pm 1\}^{V(G^*)}\right] \propto \exp\left[\beta \sum_{e=\langle uv \rangle} J_{uv} \sigma_u \sigma_v\right] \\ = \mathcal{Z}^{-1} \cdot \prod_{e=\langle uv \rangle: \sigma_u \neq \sigma_v} x_{uv}$$

• **Example:** square grid $[x_{crit} = \sqrt{2} - 1]$

[Lenz, 1920: centenary!] ø an example with + boundary conditions] Two descriptions as $\delta \rightarrow 0$: correlation functions (CFT); • loop ensembles (SLE/CLE).

- Known results on regular lattices:
- Critical Ising model: [Smirnov'06 --- ...]
 - correlations (fermions, spins, ...) converge to the Ising CFT ($c = \frac{1}{2}$);
 - interfaces/loop ensembles converge to SLE/CLE(κ), $\kappa = 3, \frac{16}{3}$.

[Interfaces on the square lattice. (c) Smirnov'06]

• Long[!]-term motivation:

correlation functions/loop ensembles on random maps carrying the bipartite dimer [or the critical lsing] model by <u>embedding</u> them into \mathbb{C} in a special way.

- Known results on regular lattices:
- Bipartite dimer model: [Kenyon'00 --- ...]
 - fluctuations of the height function converge to the Gaussian Free Field [to be discussed on the next slides]
 - double-dimers loop ensembles

converge [??]

Kenyon'10, Dubédat'14, Basok–Chelkak'18, ... [still not quite] ...

to the nested CLE(4)

• Long[!]-term motivation:

correlation functions/loop ensembles on random maps carrying the bipartite dimer [or the critical lsing] model by <u>embedding</u> them into \mathbb{C} in a special way.

(c) D.Wilson

• (\mathcal{G}, ν_{bw}) – finite weighted bipartite planar graph (w/ marked outer face);

• Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;

• Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_e$.

(Very) particular example: [Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^2$]

• (\mathcal{G}, ν_{bw}) – finite weighted bipartite planar graph (w/ marked outer face);

• Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;

• Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_e$.

• In Temperleyan domains, random walks and discrete harmonic functions with 'nice' boundary conditions naturally appear. This is a very special case.

Temperley bijection: dimers on \mathcal{G}_T \leftrightarrow *spanning trees* on another graph. This procedure is highly sensitive to the *microscopic structure* of the boundary.

(Very) particular example: [Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^2$]

• (\mathcal{G}, ν_{bw}) – finite weighted bipartite planar graph (w/ marked outer face);

• Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;

- Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_e$.
- Random height function h (on \mathcal{G}^*): fix \mathcal{D}_0 , view $\mathcal{D} \cup \mathcal{D}_0$ as a topographic map.
- Height fluctuations ħ := h − 𝔼[h] do <u>not</u> depend on the choice of 𝒫₀.

(Very) particular example: [Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^2$]

• (\mathcal{G}, ν_{bw}) – finite weighted bipartite planar graph (w/ marked outer face);

• Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;

- Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_e$.
- Random height function h (on \mathcal{G}^*): fix \mathcal{D}_0 , view $\mathcal{D} \cup \mathcal{D}_0$ as a topographic map.
- Height fluctuations ħ := h − ℝ[h] do <u>not</u> depend on the choice of D₀.

• Gaussian Free Field: $\mathbb{E}[\hbar(z)] = 0$, $\mathbb{E}[\hbar(z)\hbar(w)] = G_{\Omega}(z,w) = -\Delta_{\Omega}^{-1}(z,w)$.

(Very) particular example: [Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^2$]

Theorem [Kenyon'00]: $\delta \mathbb{Z}^2 \supset \mathcal{G}^{\delta}_{\mathbf{T}} \rightarrow \Omega \subset \mathbb{C}$ $\Rightarrow \hbar^{\delta} \rightarrow \pi^{-\frac{1}{2}} \mathrm{GFF}(\Omega)$

• (\mathcal{G}, ν_{bw}) – finite weighted bipartite planar graph (w/ marked outer face);

• Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;

- Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_e$.
- Random height function h (on \mathcal{G}^*): fix \mathcal{D}_0 , view $\mathcal{D} \cup \mathcal{D}_0$ as a topographic map.
- Height fluctuations ħ := h − E[h] do <u>not</u> depend on the choice of D₀.

[!] Still, the limit of \hbar^{δ} as $\delta \to 0$ <u>heavily</u> <u>depends</u> on the limit of (deterministic) **boundary profiles of** δh^{δ} .

Examples (on Hex*) [(c) Kenyon]:

• (\mathcal{G}, ν_{bw}) – finite weighted bipartite planar graph (w/ marked outer face);

• Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;

- Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_e$.
- Random height function h (on \mathcal{G}^*): fix \mathcal{D}_0 , view $\mathcal{D} \cup \mathcal{D}_0$ as a topographic map.
- Height fluctuations ħ := h − 𝔼[h] do <u>not</u> depend on the choice of 𝒫₀.

[!] Still, the limit of \hbar^{δ} as $\delta \to 0$ <u>heavily</u> <u>depends</u> on the limit of (deterministic) **boundary profiles of** δh^{δ} .

Examples (on Hex*) [(c) Kenyon]:

On periodic lattices:

- [Cohn–Kenyon–Propp'00] the random profile δh^{δ} concentrates near a surface maximizing certain *entropy functional*.
- **Prediction:** [Kenyon–Okounkov'06] $\hbar^{\delta} \rightarrow GFF$ in a profile-dependent metric. [!] **Problematic beyond periodic graphs.**

Known results: $\delta \mathbb{Z}^2 \supset \mathcal{G}^{\delta}_{\mathbf{T}} \rightarrow \Omega \subset \mathbb{C}$ • $\hbar^{\delta} \rightarrow \pi^{-1/2} \cdot \text{GFF}(\Omega)$ [Kenvon'00]

- Non-flat case: $GFF_{\mu}(\Omega)$
- \triangleright Temperleyan-type domains \subset Hex* coming from T-graphs [Kenyon'04]
- ▷ 'polygons' via 'integrable probability' and (rather hard) asymptotic analysis [Petrov, Bufetov–Gorin, ... '12+]
- thorough analysis of concrete setups (e.g., Aztec diamonds) w/ interesting behavior

[Chhita–Johansson–Young, ... '12+]

Aztec diamonds $A_n \subset n^{-1}\mathbb{Z}^2$: [Elkies – Kuperberg – Larsen – Propp '92, ...] [(c) A. & M. Borodin, S. Chhita]

Known results: $\delta \mathbb{Z}^2 \supset \mathcal{G}^{\delta}_{\mathbf{T}} \rightarrow \Omega \subset \mathbb{C}$ • $\hbar^{\delta} \rightarrow \pi^{-1/2} \cdot \text{GFF}(\Omega)$ [Kenvon'00]

- Non-flat case: $GFF_{\mu}(\Omega)$
- \triangleright Temperleyan-type domains \subset Hex* coming from T-graphs [Kenyon'04]
- ▷ 'polygons' via 'integrable probability' and (rather hard) asymptotic analysis [Petrov, Bufetov–Gorin, ... '12+]
- ▷ thorough analysis of concrete setups (e.g., Aztec diamonds) w/ interesting behavior [Chhita–Johansson–Young, ... '12+]

• Known tools: problematic to apply **[**?] to generic graphs (\mathcal{G}, ν) • Long[!]-term goal:

attack random maps carrying the bipartite dimer [or the critical Ising] model.

• Wanted: special embeddings of abstract weighted bipartite planar graphs + 'discrete complex analysis' techniques on such embeddings

 \rightsquigarrow complex structure in the limit.

Theorem: [Ch.-Laslier-Russkikh] [arXiv:2001.11871 + 20**.**]

Let $\mathcal{G}^{\delta},\,\delta\to 0,$ be finite weighted bipartite planar graphs. Assume that

- \mathcal{T}^{δ} are *perfect t-embeddings* of $(\mathcal{G}^{\delta})^*$ [satisfying assumption EXP-FAT (δ)];
- as $\delta \to 0$, the images of \mathcal{T}^{δ} converge to a domain $D_{\xi} [\xi \in Lip_1(\mathbb{T}), |\xi| < \frac{\pi}{2}];$

origami maps (T^δ, O^δ) converge to a Lorentz-minimal surface S_ξ ⊂ D_ξ × ℝ.
 Then, height functions fluctuations in the dimer models on T^δ converge to the standard Gaussian Free Field in the intrinsic metric of S_ξ ⊂ ℝ²⁺¹ ⊂ ℝ²⁺².

Illustration: Aztec diamonds [Ch.-Ramassamy] [arXiv:2002.07540]

Theorem: [Ch.-Laslier-Russkikh] [arXiv:2001.11871 + 20**.**]

Let $\mathcal{G}^{\delta},\,\delta\to 0,$ be finite weighted bipartite planar graphs. Assume that

- \mathcal{T}^{δ} are *perfect t-embeddings* of $(\mathcal{G}^{\delta})^*$ [satisfying assumption EXP-FAT (δ)];
- as δ → 0, the images of T^δ converge to a domain D_ξ [ξ∈Lip₁(T), |ξ| < π/2];

• origami maps $(\mathcal{T}^{\delta}, \mathcal{O}^{\delta})$ converge to a Lorentz-minimal surface $S_{\xi} \subset D_{\xi} \times \mathbb{R}$. Then, height functions fluctuations in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the intrinsic metric of $S_{\xi} \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.

- Domains D_{ξ} , surfaces S_{ξ} :
- 1-Lipschitz function $|\xi(\phi)| < \frac{\pi}{2}$ on \mathbb{T} ;
- D_{ξ} : inside of $z(\phi) = e^{i\phi}/\cos(\xi(\phi));$
- S_{ξ} spans $\mathrm{L}_{\xi}:=(z(\phi), an(\xi(\phi)))_{\phi\in\mathbb{T}}$

$$\mathbf{L}_{\xi} \subset \{ x \in \mathbb{R}^{2+1} \colon \| x \|^2 = x_1^2 + x_2^2 - x_3^2 = 1 \}.$$

Theorem: [Ch.-Laslier-Russkikh] [arXiv:2001.11871 + 20**.**]

Let $\mathcal{G}^{\delta},\,\delta\to 0,$ be finite weighted bipartite planar graphs. Assume that

- \mathcal{T}^{δ} are *perfect t-embeddings* of $(\mathcal{G}^{\delta})^*$ [satisfying assumption EXP-FAT (δ)];
- as $\delta \to 0$, the images of \mathcal{T}^{δ} converge to a domain $D_{\xi} [\xi \in Lip_1(\mathbb{T}), |\xi| < \frac{\pi}{2}];$

 origami maps (T^δ, O^δ) converge to a Lorentz-minimal surface S_ξ ⊂ D_ξ × ℝ. Then, height functions fluctuations in the dimer models on T^δ converge to the standard Gaussian Free Field in the intrinsic metric of S_ξ ⊂ ℝ²⁺¹ ⊂ ℝ²⁺². Illustration: Aztec diamonds [Ch.-Ramassamy] [arXiv:2002.07540]

> *Particular cases:* harmonic/*Tutte's embeddings* [via the Temperley bijection] Ising model *s-embeddings* [arXiv:1712.04192, via the bosonization]

Extremely particular case:

Baxter's critical Z-invariant Ising model on *rhombic lattices/isoradial graphs* [Ch.-Smirnov, arXiv:0910.2045

"Universality in the 2D Ising model and conformal invariance of fermionic observables"

t-embeddings = Coulomb gauges: given (G, ν), find T : G* → C [G* - augmented dual] s.t.
weights ν_e are gauge equivalent to χ_{(νν')*} := |T(ν') - T(ν)| (i.e., ν_{bw} = g_bχ_{bw}g_w for some g : B ∪ W → ℝ₊) and
at each inner vertex T(ν), the sum of black angles = π.

- *t-embeddings* = *Coulomb gauges:* given (\mathcal{G}, ν) , find $\mathcal{T} : \mathcal{G}^* \to \mathbb{C}$ $[\mathcal{G}^* augmented dual]$ s.t.
- \triangleright weights ν_e are gauge equivalent to $\chi_{(vv')^*} := |\mathcal{T}(v') \mathcal{T}(v)|$

(i.e., $\nu_{bw} = g_b \chi_{bw} g_w$ for some $g : B \cup W \to \mathbb{R}_+$) and

- ▷ at each inner vertex $\mathcal{T}(v)$, the sum of black angles = π .
- *p*-embeddings = perfect t-embeddings:
 - outer face is a tangential (possibly, <u>non</u>-convex) polygon,
 edges adjacent to outer vertices are bisectors.
- Warning: for general (\mathcal{G}, ν) , the *existence* of perfect t-embeddings is not known though they do exist in particular cases + the count of #(degrees of freedom) matches.

- t-embeddings = Coulomb gauges: given (G, ν), find T : G* → C [G* - augmented dual] s.t.
 weights ν_e are gauge equivalent to χ_{(νν')*} := |T(ν') - T(ν)| (i.e., ν_{bw} = g_bχ_{bw}g_w for some g : B ∪ W → ℝ₊) and
 at each inner vertex T(ν), the sum of black angles = π.
- origami maps $\mathcal{O}: \ \mathcal{G}^* \to \mathbb{C}$ ["fold \mathbb{C} along segments of \mathcal{T} "]

• *T*-graphs \mathcal{T} + $\alpha^2 \mathcal{O}$, $|\alpha|$ =1: [GeoGebra]

• "Regular" case: triangular grids [Kenyon'04 + Laslier'13]

• *T*-graphs $T + \alpha^2 O$, $|\alpha| = 1$: [GeoGebra]

• t-holomorphic functions $F^{\circ}: W \to \mathbb{C}$ $\overline{\alpha} \cdot \{ \text{ gradients of harmonic on } \mathcal{T} + \alpha^2 \mathcal{O} \}$ $[this notion does <u>not</u> depend on <math>\alpha]$

A priori regularity theory [arXiv:2001.11871]

• \mathcal{T}^{δ} satisfies $\mathrm{Lip}(\kappa,\delta)$ for $\kappa<1$ and $\delta>0$ if

$$|z'-z|\geq\delta \quad\Rightarrow\quad |\mathcal{O}^{\delta}(z')-\mathcal{O}^{\delta}(z)|\leq\kappa\cdot|z'-z|.$$

• (triangulations) \mathcal{T}^{δ} satisfy Exp-FAT(δ) as $\delta \to 0$ if for each $\beta > 0$, if one removes all 'exp $(-\beta\delta^{-1})$ -fat' triangles from \mathcal{T}^{δ} , then the size of remaining vertexconnected components tends to zero as $\delta \to 0$.

Results: • *Hölder* regularity of *t*-holomorphic functions,

• *Lipschitz* regularity of *harmonic* functions on $\mathcal{T}^{\delta} + \alpha^2 \mathcal{O}^{\delta}$.

• What can be said on subsequential limits?

A priori regularity theory [arXiv:2001.11871]

• Assume that $\mathcal{O}^{\delta}(z) \rightarrow \vartheta(z), \ \delta \rightarrow 0$. Then, limits of harmonic functions on $\mathcal{T}^{\delta} + \alpha^2 \mathcal{O}^{\delta}$ are martingales wrt to a *certain diffusion* whose coefficients *depend on* ϑ, α .

Results: • *Hölder* regularity of *t*-holomorphic functions,

- *Lipschitz* regularity of *harmonic* functions on $\mathcal{T}^{\delta} + \alpha^2 \mathcal{O}^{\delta}$.
- What can be said on subsequential limits?

A priori regularity theory [arXiv:2001.11871]

• \mathcal{T}^{δ} satisfy $\operatorname{Lip}(\kappa, \delta)$ and $\operatorname{Exp-Fat}(\delta)$ as $\delta \to 0$.

Results: • Hölder reg. of *t*-holomorphic functions, • Lipschitz reg. of harmonic functions on $\mathcal{T}^{\delta} + \alpha^2 \mathcal{O}^{\delta}$.

- Assume that $\mathcal{O}^{\delta}(z) \rightarrow \vartheta(z), \ z \in \mathrm{D}, \ \delta \rightarrow 0$ and that
- $\{(z, \vartheta(z))\}_{z \in D} \subset \mathbb{R}^{2+2}$ is a <u>Lorentz-minimal</u> surface.

- Let a parametrization ζ be conformal $z_{\zeta}\overline{z}_{\zeta} = \vartheta_{\zeta}\overline{\vartheta}_{\zeta}$ and harmonic $z_{\zeta\overline{\zeta}} = \vartheta_{\zeta\overline{\zeta}} = 0$.
- Then, subsequential limits of harmonic functions on all T-graphs $\mathcal{T}^{\delta} + \alpha^2 \mathcal{O}^{\delta}$, $|\alpha| = 1$, and, moreover, all limits of dimer height functions *correlations are harmonic in* ζ .

Theorem: [Ch.-Laslier-Russkikh] [arXiv:2001.11871 + 20**.**]

Let \mathcal{G}^{δ} , $\delta \to 0$, be finite weighted bipartite planar graphs. Assume that

- \mathcal{T}^{δ} are *perfect t-embeddings* of $(\mathcal{G}^{\delta})^*$ [satisfying assumption EXP-FAT (δ)];
- as $\delta \to 0$, the images of \mathcal{T}^{δ} converge to a domain $D_{\xi} [\xi \in Lip_1(\mathbb{T}), |\xi| < \frac{\pi}{2}];$

 origami maps (T^δ, O^δ) converge to a Lorentz-minimal surface S_ξ ⊂ D_ξ × ℝ. Then, height functions fluctuations in the dimer models on T^δ converge to the standard Gaussian Free Field in the intrinsic metric of S_ξ ⊂ ℝ²⁺¹ ⊂ ℝ²⁺². Illustration: Aztec diamonds [Ch.-Ramassamy] [arXiv:2002.07540]

• Existence of perfect t-embeddings

p-embeddings = *perfect t-embeddings*:
▷ outer face is a tangential (non-convex) polygon,
▷ edges adjacent to outer vertices are bisectors.

 #(degrees of freedom): OK

• Existence of perfect t-embeddings

p-embeddings = *perfect t-embeddings*:
▷ outer face is a tangential (non-convex) polygon,
▷ edges adjacent to outer vertices are bisectors.

• Why does Lorentz geometry appear?

Another example: annulus-type graphs \rightsquigarrow Lorentz-minimal cusp (z, arcsinh |z|).

• Existence of perfect t-embeddings

p-embeddings = *perfect t-embeddings*:
▷ outer face is a tangential (non-convex) polygon,
▷ edges adjacent to outer vertices are bisectors.

• Why does Lorentz geometry appear?

Another example: annulus-type graphs \rightsquigarrow Lorentz-minimal cusp (z, arcsinh |z|).

• 'S-embeddings of the Ising model on planar graphs' more complex analysis [arXiv:2006/07.????]

• Existence of perfect t-embeddings

p-embeddings = *perfect t-embeddings*:
▷ outer face is a tangential (non-convex) polygon,
▷ edges adjacent to outer vertices are bisectors.

• Why does Lorentz geometry appear? Another example: annulus-type graphs

 \rightsquigarrow Lorentz-minimal cusp (z, arcsinh |z|).

- 'S-embeddings of the Ising model on planar graphs' more complex analysis [arXiv:2006/07.????]
- [...] Eventually, what about embeddings of *random maps weighted by the Ising model? Liouville CFT?*

• Existence of perfect t-embeddings

p-embeddings = *perfect t-embeddings*:
▷ outer face is a tangential (non-convex) polygon,
▷ edges adjacent to outer vertices are bisectors.

- Why does Lorentz geometry appear?
 Another example: annulus-type graphs
 → Lorentz-minimal cusp (z, arcsinh |z|).
- 'S-embeddings of the Ising model on planar graphs' more complex analysis [arXiv:2006/07.?????]
- [...] Eventually, what about embeddings of *random maps weighted by the Ising model? Liouville CFT?*

THANK YOU!

