PLANAR ISING MODEL AT CRITICALITY:

STATE-OF-THE-ART AND PERSPECTIVES

DMITRY CHELKAK, ÉNS, PARIS [& PDMI, ST. PETERSBURG (ON LEAVE)]

ICM, RIO DE JANEIRO, AUGUST 4, 2018

Planar Ising model at criticality: outline

• Combinatorics

Definition, phase transition Dimers and fermionic observables Spin correlations and fermions on double-covers Kadanoff–Ceva's disorders and propagation equation Diagonal correlations and orthogonal polynomials

• Conformal invariance at criticality

S-holomorphic functions and Smirnov's s-harmonicity Spin correlations: convergence to tau-functions More fields and CFT on the lattice Convergence of interfaces and loop ensembles Tightness of interfaces and 'strong' RSW

- Beyond regular lattices: s-embeddings [2017+]
- Perspectives and open questions

[two disorders inserted]

(c) Clément Hongler (EPFL)

Planar Ising model: definition [Lenz, 1920]

Lenz-Ising model on a planar graph G* (dual to G) is a random assignment of +/- spins to vertices of G* (=faces of G) according to

$$\mathbb{P}\left[\text{conf. } \sigma \in \{\pm 1\}^{V(G^*)} \right] \propto \exp \left[\beta \sum_{e = \langle uv \rangle} J_{uv} \sigma_u \sigma_v \right] \\ = \mathcal{Z}^{-1} \cdot \prod_{e = \langle uv \rangle: \sigma_u \neq \sigma_v} x_{uv} ,$$

where $J_{uv} > 0$ are interaction constants preassigned to edges $\langle uv \rangle$, $\beta = 1/kT$, and $x_{uv} = \exp[-2\beta J_{uv}]$.

- **Remark:** w/o magnetic field \Rightarrow 'free fermion'.
- **Example:** homogeneous model $(x_{uv} = x)$ on \mathbb{Z}^2 .
- \circ lsing'25: no phase transition in 1D \rightsquigarrow doubts;
- Peierls'36: existence of the phase transition in 2(+)D;
- Kramers-Wannier'41: $x_{self-dual} = \sqrt{2} 1;$
- **Onsager'44:** sharp phase transition at $x_{crit} = x_{self-dual}$.

[Centenary soon!]

Ensemble of domain walls between + and - spins.

'+' boundary conditions
 ⇒ collection of loops.

Planar Ising model: phase transition [Kramers–Wannier'41: $x_{crit} = \sqrt{2} - 1$ on \mathbb{Z}^2]

- Spin-spin correlations:
- e.g., two spins at distance $2n \rightarrow \infty$ along a diagonal. $x < x_{crit}$: does not vanish; $x = x_{crit}$: power-law decay; $x > x_{crit}$: exponential decay.

Theorem ["diagonal correlations", Kaufman–Onsager'49, Yang'52, McCoy–Wu'66+]: (i) For $x = \tan \frac{1}{2}\theta < x_{crit}$, one has $\lim_{n\to\infty} \mathbb{E}^{x}_{\mathbb{C}^{\diamond}}[\sigma_{0}\sigma_{2n}] = (1-\tan^{4}\theta)^{1/4} > 0$. (ii) At criticality, $\mathbb{E}^{x=x_{crit}}_{\mathbb{C}^{\diamond}}[\sigma_{0}\sigma_{2n}] = (\frac{2}{\pi})^{n} \cdot \prod_{k=1}^{n-1} (1-\frac{1}{4k^{2}})^{k-n} \sim C_{\sigma}^{2} \cdot (2n)^{-\frac{1}{4}}$.

Remark: Many highly nontrivial results on the *spin correlations in the infinite volume* are known. Reference: B.M.McCoy-T.T.Wu "The two-dimensional Ising model".

Planar Ising model: phase transition [Kramers–Wannier'41: $x_{crit} = \sqrt{2} - 1$ on \mathbb{Z}^2]

- Spin-spin correlations:
- e.g., two spins at distance $2n \rightarrow \infty$ along a diagonal. $x < x_{crit}$: does not vanish; $x = x_{crit}$: power-law decay; $x > x_{crit}$: exponential decay.

- Domain walls structure:
- $x < x_{crit}$: "straight";
- $x = x_{crit}$: SLE(3), CLE(3);
- $x > x_{crit}$: SLE(6), CLE(6). [this is <u>not</u> proved]

Combinatorics: planar Ising model via dimers ('60s) and fermionic observables

Fisher's graph $G^{\mathbf{F}}$: vertices are corners and oriented edges of G.

- Kasteleyn's theory: $\mathbf{F} = \overline{\mathbf{F}} = -\mathbf{F}^{\top}, \ \mathcal{Z} \cong \mathbf{Pf}[\mathbf{F}]$
- Fermions: $\langle \phi_c \phi_d \rangle := F^{-1}(c, d) = \langle \phi_d \phi_c \rangle$

Pfaffian (or Grassmann variables) formalism:

$$\langle \phi_{c_1} \dots \phi_{c_{2k}} \rangle = \Pr[\langle \phi_{c_p} \phi_{c_q} \rangle]_{p,q=1}^{2k}$$

Combinatorics: planar Ising model via dimers ('60s) and fermionic observables

There are other combinatorial correspondences of the same kind:

 $\mathcal{Z} \cong \operatorname{Pf}[\mathbf{F}] \\ \cong \operatorname{Pf}[\mathbf{K}]$

 \simeq

Pf[C]

- Fisher's graph $G^{\mathbf{F}}$: vertices are corners and oriented edges of G.
- Kasteleyn's theory: $\mathbf{F} = \overline{\mathbf{F}} = -\mathbf{F}^{\top}$
- Fermions: $\langle \phi_c \phi_d \rangle := \mathrm{F}^{-1}(c,d) = -\langle \phi_d \phi_c \rangle$

Pfaffian (or Grassmann variables) formalism:

$$\langle \phi_{c_1} \dots \phi_{c_{2k}} \rangle = \Pr[\langle \phi_{c_p} \phi_{c_q} \rangle]_{p,q=1}^{2k}$$

Kasteleyn's terminal graph G^{K} , vertices = oriented edges of G.

 G^{C} : vertices = corners of G.

Combinatorics: planar Ising model via dimers ('60s) and fermionic observables

There are other combinatorial correspondences of the same kind:

 $\mathcal{Z} \cong$

 \cong

 \simeq

 $\mathbf{Pf}[\mathbf{F}]$

Pf[K]

Pf[C]

Fisher's graph $G^{\mathbf{F}}$: vertices are corners and oriented edges of G.

- Two other useful techniques:
- Kac–Ward matrix is equivalent to K;
- Smirnov's fermionic observables (2000s) are combinatorial expansions of Pf[F_{V(G^F)\{c,d}}].

Kasteleyn's terminal graph G^{K} , vertices = oriented edges of G.

Reference: arXiv:1507.08242 (w/ D. Cimasoni and A. Kassel) "Revisiting the combinatorics of the 2D Ising model"

Combinatorics: spin correlations and fermions on double-covers

Observation:

 $\mathbb{E}[\sigma_{u_1}...\sigma_{u_n}]$ $Pf[F_{[u_1,\ldots,u_n]}]$

Fisher's graph $G^{\mathbf{F}}$: vertices are corners and oriented edges of G.

One changes $x_e \mapsto -x_e$ along $\gamma_{[u_1, u_2]}$ to compute $\mathbb{E}[\sigma_{u_1} \sigma_{u_2}]$.

Combinatorics: spin correlations and fermions on double-covers

Fisher's graph $G^{\mathbf{F}}$: vertices are

corners and oriented edges of G.

Observation:

 $\mathbb{E}[\sigma_{u_1}...\sigma_{u_n}] = \frac{\Pr[\mathbf{F}_{[u_1,...,u_n]}]}{\Pr[\mathbf{F}]}$

One changes $x_e \mapsto -x_e$ along $\gamma_{[u_1, u_2]}$ to compute $\mathbb{E}[\sigma_{u_1} \sigma_{u_2}]$.

Corollary: Let
$$w_1 \sim u_1$$
. The ratio $\frac{\mathbb{E}[\sigma_{w_1}\sigma_{u_2}...\sigma_{u_n}]}{\mathbb{E}[\sigma_{u_1}\sigma_{u_2}...\sigma_{u_n}]}$ can be expressed via $\mathbf{F}_{[u_1,...,u_n]}^{-1}$.

Remark: Instead of fixing cuts one can view $F_{[u_1,..,u_n]}^{-1}(c^{\flat}, d) = -F_{[u_1,..,u_n]}^{-1}(c^{\sharp}, d)$ as a spinor on the **double-cover** $G_{[u_1,..,u_n]}^{\mathrm{F}}$ of the graph G^{F} ramified over faces $u_1, .., u_n$.

- Given (an even number of) vertices $v_1, ..., v_m$, consider the Ising model on (the faces of) the double-cover $G^{[v_1,...,v_m]}$ ramified over $v_1, ..., v_m$ with the spin-flip symmetry constraint $\sigma_{u^\flat} = -\sigma_{u^\sharp}$ provided that u^\flat, u^\sharp lie over the same face u of G.
- Define $\langle \mu_{v_1} ... \mu_{v_m} \sigma_{u_1} ... \sigma_{u_n} \rangle$

 $:= \mathbb{E}^{[\mathbf{v}_1,..,\mathbf{v}_m]}[\sigma_{u_1}...\sigma_{u_n}] \cdot \mathcal{Z}^{[\mathbf{v}_1,..,\mathbf{v}_m]}/\mathcal{Z}.$

[!] By definition, this (formal) correlator changes the sign when one of u_k goes around of one of v_s .

[two disorders inserted]

(c) Clément Hongler (EPFL)

- Given (an even number of) vertices $v_1, ..., v_m$, consider the Ising model on (the faces of) the double-cover $G^{[v_1,...,v_m]}$ ramified over $v_1, ..., v_m$ with the spin-flip symmetry constraint $\sigma_{u^\flat} = -\sigma_{u^\sharp}$ provided that u^\flat, u^\sharp lie over the same face u of G.
- Define $\langle \mu_{\mathbf{v}_1} \dots \mu_{\mathbf{v}_m} \sigma_{u_1} \dots \sigma_{u_n} \rangle$:= $\mathbb{E}^{[\mathbf{v}_1, \dots, \mathbf{v}_m]}[\sigma_{u_1} \dots \sigma_{u_n}] \cdot \mathcal{Z}^{[\mathbf{v}_1, \dots, \mathbf{v}_m]}/\mathcal{Z}$.
- For a corner c of G, define $\chi_c := \mu_{v(c)} \sigma_{u(c)}$.
- **Proposition:** If all vertices $v(c_k)$ are distinct, then

 $\pm \langle \chi_{c_1} ... \chi_{c_{2k}} \rangle = \pm \langle \phi_{c_1} ... \phi_{c_{2k}} \rangle.$

Proof: expand both sides combinatorially on *G*.

[two disorders inserted] (c) Clément Hongler (EPEL)

Parameterization:

$$x_e = an rac{1}{2} heta_e$$

- Propagation equation: Let $X(c) := \langle \chi_c \mathcal{O}[\mu, \sigma] \rangle$. Then $X(c_{00}) = X(c_{01}) \cos \theta_e + X(c_{10}) \sin \theta_e$.
- For a corner c of G, define $\chi_c := \mu_{v(c)} \sigma_{u(c)}$.
- **Proposition:** If all vertices $v(c_k)$ are distinct, then

 $\pm \langle \chi_{c_1} ... \chi_{c_{2k}} \rangle = \pm \langle \phi_{c_1} ... \phi_{c_{2k}} \rangle.$

Proof: expand both sides combinatorially on *G*.

[two disorders inserted] (c) Clément Hongler (EPFL)

Parameterization:

 $x_e = \tan \frac{1}{2} \theta_e$

- Propagation equation: Let $X(c) := \langle \chi_c \mathcal{O}[\mu, \sigma] \rangle$. Then $X(c_{00}) = X(c_{01}) \cos \theta_e + X(c_{10}) \sin \theta_e$. [Perk'80, Dotsenko–Dotsenko'83, ..., Mercat'01]
- **Bosonization:** To obtain a combinatorial representation of the model via *dimers on G*^D one should start with <u>two</u> *lsing configurations* [e.g., see Dubédat'11, Boutillier–de Tilière'14]

 G^{D} : bipartite (Wu-Lin'75). Fact: $\mathbf{D}^{-1} = \mathbf{C}^{-1} + \mathbf{local}$.

Infinite-volume limit on \mathbb{Z}^2 : diagonal correlations and orthogonal polynomials

• The propagation equation implies the (massive) harmonicity of spinors on each type of the corners.

• Fourier transform allows to construct such a spinor explicitly.

• Its values on \mathbb{R} must be coefficients of an *orthogonal polynomial*

Theorem ["diagonal correlations", Kaufman–Onsager'49, Yang'52, McCoy–Wu'66+]: (i) For $x = \tan \frac{1}{2}\theta < x_{crit}$, one has $\lim_{n\to\infty} \mathbb{E}^{x}_{\mathbb{C}^{\diamond}}[\sigma_{0}\sigma_{2n}] = (1-\tan^{4}\theta)^{1/4} > 0$. (ii) At criticality, $\mathbb{E}^{x=x_{crit}}_{\mathbb{C}^{\diamond}}[\sigma_{0}\sigma_{2n}] = (\frac{2}{\pi})^{n} \cdot \prod_{k=1}^{n-1} (1-\frac{1}{4k^{2}})^{k-n} \sim C_{\sigma}^{2} \cdot (2n)^{-\frac{1}{4}}$.

Remark: Originally considered as a very involved derivation, nowadays it can be done in two pages (see arXiv:1605:09035), based on the strong Szegö theorem for simple *real weights on* T.

Conformal invariance at *x***_{crit}: s-holomorphicity**

Assume that each $(v_0 u_0 v_1 u_1)$ is drawn as a *rhombus* with an *angle* $2\theta_{v_0 v_1}$ and $x_e = \tan \frac{1}{2}\theta_e$

• Propagation equation: Let $X(c) := \langle \chi_c \mathcal{O}[\mu, \sigma] \rangle$. Then $X(c_{00}) = X(c_{01}) \cos \theta_e + X(c_{10}) \sin \theta_e$.

Remark: In particular, this setup includes

- square $(x_{\rm crit} = \sqrt{2} 1 = \tan \frac{\pi}{8})$,
- honeycomb ($x_{\rm crit} = 1/\sqrt{3} = \tan \frac{\pi}{6}$),
- triangular $(x_{\rm crit} = 2 \sqrt{3} = \tan \frac{\pi}{12})$ and
- rectangular $(2x_{\rm h}/(1{-}x_{\rm h}^2)\cdot 2x_{\rm v}/(1{-}x_{\rm v}^2)=1)$ grids.

• Critical Z-invariant model [Baxter'86] on isoradial graphs: [...,Boutillier-deTilière-Raschel'16]

Conformal invariance at x_{crit} : s-holomorphicity

Assume that each $(v_0 u_0 v_1 u_1)$ is drawn as a *rhombus* with an *angle* $2\theta_{v_0 v_1}$ and $x_e = \tan \frac{1}{2}\theta_e$

• Propagation equation: Let $X(c) := \langle \chi_c \mathcal{O}[\mu, \sigma] \rangle$. Then $X(c_{00}) = X(c_{01}) \cos \theta_e + X(c_{10}) \sin \theta_e$.

• S-holomorphicity: Let $F(c) := \eta_c \delta^{-1/2} X(c)$, where $\eta_c := e^{i\frac{\pi}{4}} \exp[-\frac{i}{2} \arg(v(c) - u(c))]$. Then $F(c) = \Pr[F(z); \eta_c] = \frac{1}{2} [F(z) + \eta_c^2 \overline{F(z)}]$ for some $F(z) \in \mathbb{C}$ and all corners $c \sim z$. • Critical Z-invariant model [Baxter'86] on isoradial graphs: [...,Boutillier-deTilière-Raschel'16]

Conformal invariance at *x***_{crit}: s-holomorphicity**

Assume that each $(v_0 u_0 v_1 u_1)$ is drawn as a *rhombus* with an *angle* $2\theta_{v_0 v_1}$ and $x_e = \tan \frac{1}{2}\theta_e$

• Propagation equation: Let $X(c) := \langle \chi_c \mathcal{O}[\mu, \sigma] \rangle$. Then $X(c_{00}) = X(c_{01}) \cos \theta_e + X(c_{10}) \sin \theta_e$.

- S-holomorphicity: Let $F(c) := \eta_c \delta^{-1/2} X(c)$, where $\eta_c := e^{i\frac{\pi}{4}} \exp[-\frac{i}{2} \arg(v(c) - u(c))]$.
 - Then $F(c) = \Pr[F(z); \eta_c] = \frac{1}{2} [F(z) + \eta_c^2 \overline{F(z)}]$ for some $F(z) \in \mathbb{C}$ and all corners $c \sim z$.

- A priori regularity theory for s-holomorphic functions [Ch.-Smirnov'09] is based on the following miraculous fact:
- Smirnov's s-harmonicity:

Let *F* be s-holomorphic. Then $\Delta^{\bullet} H_F \ge 0$, $\Delta^{\circ} H_F \le 0$, where the function H_F is defined by $H_F(\mathbf{v}) - H_F(\mathbf{u}) := (X(\mathbf{c}))^2$

and can/should be viewed as $H_F = \int \text{Im}[F(z)^2 dz].$

Conformal invariance at *x***_{crit}: spin correlations** ['12, w/ C. Hongler & K. Izyurov]

 Theorem: Let Ω ⊂ C be a (bounded) simply connected domain and Ω_δ→Ω as δ → 0. Then

$$\delta^{-\frac{n}{8}} \cdot \mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{u_{1}}...\sigma_{u_{n}}] \xrightarrow[\delta \to 0]{} C_{\sigma}^{n} \cdot \langle \sigma_{u_{1}}...\sigma_{u_{n}} \rangle_{\Omega}^{+},$$

where $\langle \sigma_{u_1}...\sigma_{u_n} \rangle_{\Omega}^+ = \langle \sigma_{\varphi(u_1)}...\sigma_{\varphi(u_n)} \rangle_{\Omega'}^+ \cdot \prod_{s=1}^n |\varphi'(u_s)|^{\frac{1}{8}}$ for conformal mappings $\varphi : \Omega \to \Omega'$ and

$$\left[\langle \boldsymbol{\sigma}_{\boldsymbol{u}_{1}}...\boldsymbol{\sigma}_{\boldsymbol{u}_{n}}\rangle_{\mathbb{H}}^{+}\right]^{2} = \prod_{1 \leq s \leq n} (2 \operatorname{Im} u_{s})^{-\frac{1}{4}} \cdot \sum_{\beta \in \{\pm 1\}^{n}} \prod_{s < m} \left| \frac{u_{s} - u_{m}}{u_{s} - \overline{u}_{m}} \right|^{\frac{D \leq \beta}{2}}$$

• Techniques: Analysis of the kernel $\mathbf{D}_{[u_1,...,u_n]}^{-1}$ viewed as the s-holomorphic solution to a discrete Riemann-type boundary value problem. Applying Smirnov's trick, boundary conditions $\mathbf{Im}[F(\zeta)\tau(\zeta)^{1/2}] = \mathbf{0}$ become $\int^{\zeta} \mathrm{Im}[F(z)^2 dz] = H_F(\zeta) = \mathbf{0}, \ \zeta \in \partial\Omega$.

Conformal invariance at x_{crit} : spin correlations ['12, w/ C. Hongler & K. Izyurov]

As $\delta \rightarrow 0$, one gets the isomonodromic au-function

: det
$$D_{[\Omega;u_1,...,u_n]}$$
:, where $D_{[\Omega;u_1,...,u_n]}f := \partial \overline{f}$

is an anti-Hermitian operator acting in (originally) the *real Hilbert space* of spinors $f : \Omega_{[u_1,...,u_n]} \to \mathbb{C}$ satisfying Riemann-type b.c. $\overline{f} = \tau f$ on $\partial \Omega$.

[Kyoto school (Jimbo, Miwa, Sato, Ueno)'70s; ...; Palmer'07 "Planar Ising correlations"; Dubédat'11]

• Techniques: Analysis of the kernel $\mathbf{D}_{[u_1,...,u_n]}^{-1}$ viewed as the s-holomorphic solution to a discrete Riemann-type boundary value problem. Applying Smirnov's trick, boundary conditions $\mathbf{Im}[F(\zeta)\tau(\zeta)^{1/2}] = \mathbf{0}$ become $\int^{\zeta} \mathbf{Im}[F(z)^2 dz] = H_F(\zeta) = \mathbf{0}, \ \zeta \in \partial\Omega$.

Conformal invariance at x_{crit} : spin correlations ['12, w/ C. Hongler & K. Izyurov]

As $\delta \rightarrow 0$, one gets the **isomonodromic** τ -function

: det
$$D_{[\Omega;u_1,...,u_n]}$$
:, where $D_{[\Omega;u_1,...,u_n]}f := \partial \overline{f}$

is an anti-Hermitian operator acting in (originally) the *real Hilbert space* of spinors $f : \Omega_{[u_1,...,u_n]} \to \mathbb{C}$ satisfying Riemann-type b.c. $\overline{f} = \tau f$ on $\partial \Omega$.

$$\left[\langle \sigma_{u_1} \dots \sigma_{u_n} \rangle_{\mathbb{H}}^+\right]^2 = \prod_{1 \leq s \leq n} (2 \operatorname{Im} u_s)^{-\frac{1}{4}} \cdot \sum_{\beta \in \{\pm 1\}^n} \prod_{s < m} \left| \frac{u_s - u_m}{u_s - \overline{u}_m} \right|^{\frac{\nu_s \leq m}{2}}$$

• **Remark:** Passing to the *complex Hilbert space* one gets the (massless) Dirac operator

$$\begin{pmatrix} 0 & \partial \\ \overline{\partial} & 0 \end{pmatrix} \begin{pmatrix} f \\ \overline{f} \end{pmatrix} = \begin{pmatrix} \partial \overline{f} \\ \overline{\partial} f \end{pmatrix}$$

with *b.c.* $\overline{f} = \tau f$. For $\Omega = \mathbb{H}$
this operator boils down to
 $f \mapsto \overline{\partial} f$ on $\mathbb{C}_{[\eta_1,\dots,\eta_n,\overline{\eta}_1,\dots,\overline{\eta}_n]}$.

• **Convergence of random distributions:** Basing on the convergence of multi-point spin correlations, one can study the convergence of random fields $(\delta^{-\frac{1}{8}}\sigma_u)_{u\in\Omega_{\delta}}$ to a (non-Gaussian!) random Schwartz distribution on Ω [Camia–Garban–Newman '13, Furlan–Mourrat '16] (see also [Caravenna–Sun–Zygouras '15] for disorder relevance results).

Conformal invariance at x_{crit} : more fields and CFT on the lattice

From the CFT perspective, the 2D critical Ising model is

- FFF (= Fermionic Free Field): $\mathcal{Z} = Pf[D]$.
- Minimal model with central charge c = ¹/₂ and three primary fields 1, σ, ε with scaling exponents 0, ¹/₈, 1.
- Convergence results:

Fermions: [Smirnov'06 (\mathbb{Z}^2), Ch.–Smirnov'09 (isoradial)]; Energy densities: $\varepsilon := \sqrt{2} \cdot \sigma_{e^-} \sigma_{e^+} - 1 = \frac{i}{2} \psi_e \psi_e^*$ [Hongler–Smirnov'10, Hongler'10]; Spins: [Ch.–Hongler–Izvurov'12]:

• Mixed correlations: [Ch.-Hongler-Izyurov, '16-'18]

spins (σ), disorders (μ), fermions (ψ, ψ^*), energy densities (ε) in multiply connected domains Ω , with mixed fixed/free boundary conditions. The limits of correlations are defined via solutions to appropriate Riemann-type boundary value problems in Ω .

Conformal invariance at x_{crit} : more fields and CFT on the lattice

From the CFT perspective, the 2D critical Ising model is

- FFF (= Fermionic Free Field): $\mathcal{Z} = Pf[D]$.
- Minimal model with central charge $c = \frac{1}{2}$ and three primary fields $1, \sigma, \varepsilon$ with scaling exponents $0, \frac{1}{8}, 1$.
- Convergence results:

Fermions: [Smirnov'06 (\mathbb{Z}^2), Ch.–Smirnov'09 (isoradial)]; Energy densities: $\varepsilon := \sqrt{2} \cdot \sigma_{e^-} \sigma_{e^+} - 1 = \frac{i}{2} \psi_e \psi_e^*$ [Hongler–Smirnov'10, Hongler'10]; Spins: [Ch.–Hongler–Izyurov'12];

• Mixed correlations: [Ch.-Hongler-Izyurov, '16-'18]

• And more [Hongler– Kytölä–Viklund'17, …]: E.g., one can define an action of the Virasoro algebra on local lattice fields via the Sugawara construction applied to lattice fermions.

spins (σ), disorders (μ), fermions (ψ, ψ^*), energy densities (ε) in multiply connected domains Ω , with mixed fixed/free boundary conditions. The limits of correlations are defined via solutions to appropriate Riemann-type boundary value problems in Ω .

Conformal invariance at *x***_{crit}: interfaces and loop ensembles**

- Dobrushin b.c., weak topology:
 [Smirnov'06], [Ch.–Smirnov'09]
- Dipolar SLE(3) (+/free/– b.c.): [Hongler–Kytölä'11], [lzyurov'14]
- Strong topology (tightness of curves): [Kemppainen–Smirnov'12]
- Brief summary up to that date: [Ch-DC-H-K-S, arXiv:1312.0533]

• Theorem [Smirnov'06]:

 ${\rm Ising\ interfaces} \rightarrow {\rm SLE(3)} \qquad {\rm FK-Ising\ o}$

FK-Ising ones \rightarrow SLE(16/3)

- Spin-Ising boundary arc ensemble for free b.c.: [Benoist-Duminil-Copin-Hongler'14]
- Convergence of the full spin-Ising loop ensemble to **CLE(3)**: [Benoist-Hongler'16]
- Exploration of FK boundary loops: [Kemppainen-Smirnov'15], see also [Garban-Wu'18]
- Convergence of the FK loop ensemble to CLE(16/3): [Kemppainen-Smirnov'16]
- "CLE percolations" [Miller–Sheffield–Werner'16]: FK-Ising \rightsquigarrow CLE(16/3) \rightsquigarrow CLE(3)

Conformal invariance at x_{crit} : interfaces and loop ensembles

- Dobrushin b.c., weak topology:
 [Smirnov'06], [Ch.–Smirnov'09]
- Dipolar SLE(3) (+/free/– b.c.): [Hongler–Kytölä'11], [lzyurov'14]
- Strong topology (tightness of curves): [Kemppainen–Smirnov'12]
- Brief summary up to that date: [Ch-DC-H-K-S, arXiv:1312.0533]

• Theorem [Smirnov'06]:

Ising interfaces \rightarrow SLE(3)

FK-Ising ones \rightarrow SLE(16/3)

 Fortuin–Kasteleyn (=random cluster) expansion of the spin-Ising model [Edwards–Sokol coupling]: spins → FK: p_e := 1 - x_e percolation on spin clusters; FK → spins: toss a fair coin for each of the FK clusters.

Conformal invariance at x_{crit} : **CLE(3) = ?** [Sheffield–Werner, arXiv:1006.2374]

- Question: What could be a good candidate for the scaling limit of the outermost domain walls surrounding '-' clusters in Ω_δ (with '+' b.c.)?
- Intuition: This random loop ensemble should

 (a) be conformally invariant;

(b) satisfy the *domain Markov property:* given the loops intersecting $D_1 \setminus D_2$, the remaining ones form the same CLEs in the complement.

- Theorem: Provided that its loops do not touch each other, a CLE must have the following law for some intensity c ∈ (0, 1]:
 (i) sample a (countable) set of *Brownian loops* using the natural conformally-friendly *Poisson process* of intensity c;
 (ii) fill the *outermost clusters*.
- Nesting: Iterate the construction inside all the *first-level loops*.

Conformal invariance at x_{crit} : convergence of loop ensembles

Sample with free b.c. (c) C. Hongler (EPFL)

• Subtlety in the passage from SLEs to CLEs:

To prove the convergence to a CLE, one uses an iterative *exploration procedure* (e.g., [B–H'16] alternate between exploring boundary arc ensembles for free b.c. and FK-Ising clusters touching the boundary).

To ensure that discrete and continuous exploration processes do not deviate from each other (e.g., to control relevant *stopping times*), one needs uniform *crossing estimates* in rough domains ['strong' RSW]

- Spin-Ising boundary arc ensemble for free b.c.: [Benoist-Duminil-Copin-Hongler'14]
- Convergence of the full spin-Ising loop ensemble to **CLE(3)**: [Benoist-Hongler'16]
- Exploration of FK boundary loops: [Kemppainen-Smirnov'15], see also [Garban-Wu'18]
- Convergence of the FK loop ensemble to CLE(16/3): [Kemppainen-Smirnov'16]
- "CLE percolations" [Miller–Sheffield–Werner'16]: FK-Ising \rightsquigarrow CLE(16/3) \rightsquigarrow CLE(3)

Conformal invariance at x_{crit} : tightness of interfaces

• **Crossing estimates (RSW):** due to the FKG inequality it is enough to prove that

for rectangles of a given aspect ratio $k > \sqrt{3}+1$, uniformly over all scales.

↓ [Aizenman–Burchard'99] ↓ [Kemppainen–Smirnov'12]

Arm exponents $\Delta_n \ge \varepsilon n \Rightarrow$ tightness of curves and of the corresponding Loewner driving forces ξ_t^{δ} : $\mathbb{E}[\exp(\varepsilon |\xi_t^{\delta}| / \sqrt{t})] \le C$.

Conformal invariance at x_{crit}: tightness of interfaces and 'strong' RSW

• **Crossing estimates (RSW):** due to the FKG inequality it is enough to prove that

for rectangles of a given aspect ratio $k > \sqrt{3}+1$, uniformly over all scales.

↓ [Aizenman–Burchard'99]
 ↓ [Kemppainen–Smirnov'12]

Arm exponents $\Delta_n \ge \varepsilon n \Rightarrow$ tightness of curves and of the corresponding Loewner driving forces ξ_t^{δ} : $\mathbb{E}[\exp(\varepsilon |\xi_t^{\delta}|/\sqrt{t})] \le C$.

Theorem: [Ch.–Duminil-Copin–Hongler'13] Uniformly w.r.t. $(\Omega_{\delta}; a, b, c, d)$ and b.c., $\mathbb{P}^{\mathrm{FK}}[(ab) \leftrightarrow (cd)] \ge \eta(\mathcal{L}_{\Omega;(ab),(cd)}) > 0$, where $\mathcal{L}_{\Omega;(ab),(cd)}$ is the discrete extremal

length (= effective resistance) of the quad.

• Remark: Such a uniform lower bound is not straightforward even for the random walk partition functions ['toolbox': arXiv:1212.6205].

- Question: generalize convergence results from the very particular isoradial case to (as) general (as possible) weighted graphs.
- A model question: (reversible) random walks in a periodic (or in your favorite) environment.

[Smirnov'06]: ℤ² [Ch.–Smirnov'09]: isoradial

- Question: generalize convergence results from the very particular isoradial case to (as) general (as possible) weighted graphs.
- A model question: (reversible) random walks in a periodic (or in your favorite) environment.
- But ... how should we draw a planar graph?
 - Invariance under the star-triangle transform;
 - Compatibility with the isoradial setup.
- Random walks: Tutte's barycentric embeddings.
 - [!] For periodic graphs, we also need to fix the conformal modulus of the fundamental domain.
- Planar Ising model: s-embeddings.

• Criticality: $x(\mathcal{E}_0) = x(\mathcal{E}_1)$ [Cimasoni-Duminil-Copin'12] $1 + x_3x_4 = x_3 + x_4 + x_1x_2$ $+ x_1x_2x_3 + x_2x_3x_4 + x_1x_2x_3x_4$

Assume that each $(v_0 u_0 v_1 u_1)$ is a *rhombus* with an angle $2\theta_{v_0v_1}$ and $x_e = \tan \frac{1}{2}\theta_e$.

• Propagation equation:

 $X(c_{00}) = X(c_{01}) \cos \theta_e + X(c_{10}) \sin \theta_e.$

• S-holomorphicity: Let
$$F(c) := \eta_c \delta^{-1/2} X(c)$$
,
where $\eta_c := e^{i \frac{\pi}{4}} \exp[-\frac{i}{2} \arg(v(c) - u(c))]$.

[!] In the isoradial setup, $\mathcal{X}(c) := (\mathbf{v}(c) - \mathbf{u}(c))^{1/2}$ satisfies the propagation equation. • Criticality: $x(\mathcal{E}_0) = x(\mathcal{E}_1)$ [Cimasoni–Duminil-Copin'12] $1 + x_3x_4 = x_3 + x_4 + x_1x_2$ $+ x_1x_2x_3 + x_2x_3x_4 + x_1x_2x_3x_4$

How to draw graphs: (periodic) s-embeddings

At criticality, the propagation equation admits *two periodic solutions*.

- Propagation equation: $X(c_{00}) = X(c_{01}) \cos \theta_e + X(c_{10}) \sin \theta_e.$
- Definition: Given a (periodic) complex-valued solution X to the PE, we define the s-embedding S_X of the graph by S_X(v)-S_X(u) := (X(c))².
- The function $L_{\mathcal{X}}(v) L_{\mathcal{X}}(u) := |\mathcal{X}(c)|^2$ is also well-defined \Rightarrow tangential quads.

• Criticality: $x(\mathcal{E}_0) = x(\mathcal{E}_1)$ [Cimasoni-Duminil-Copin'12] $1 + x_3x_4 = x_3 + x_4 + x_1x_2$ $+ x_1x_2x_3 + x_2x_3x_4 + x_1x_2x_3x_4$

At criticality, the propagation equation admits *two periodic solutions*.

- Propagation equation: $X(c_{00}) = X(c_{01}) \cos \theta_e + X(c_{10}) \sin \theta_e.$
- Definition: Given a (periodic) complex-valued solution X to the PE, we define the s-embedding S_X of the graph by S_X(v)-S_X(u) := (X(c))².
- S-holomorphicity: e^{i π/4} X(c)/X(c) = Pr[F(z);η_c] for all real-valued spinors X satisfying the PE.

 $\mathcal{S}_{\mathcal{X}}(\mathbf{v}) - \mathcal{S}_{\mathcal{X}}(u) := (\mathcal{X}(c))^2$ $L_{\mathcal{X}}(\mathbf{v}) - L_{\mathcal{X}}(u) := |\mathcal{X}(c)|^2$

• **Lemma:**
$$\exists ! \mathcal{X} : L_{\mathcal{X}} - \text{periodic.}$$

• Key ingredients:

- A priori *Lipshitzness of projections* $Pr[F(z); \alpha]$;
- o Control of discrete contour integrals of F via L_{χ} ;
- Positivity lemma: $\Delta_{S}H_{F} \ge 0$ for some $\Delta_{S} = \Delta_{S}^{\top}$ ([!] Δ_{S} is sign-indefinite \rightsquigarrow no interpretation via RWs);
- o A priori *regularity of H_F* is nevertheless doable;
- o Coarse-graining for H_F: harmonicity in the limit;
- Boundedness of *F* near *"straight" boundaries* ⇒ convergence for (special) "straight" rectangles;
- $o \Rightarrow RSW \Rightarrow$ convergence for arbitrary shapes Ω .
- S-holomorphicity: e^{i π/4} X(c)/X(c) = Pr[F(z);η_c] for all real-valued spinors X satisfying the PE.

$$\mathcal{S}_{\mathcal{X}}(\mathbf{v}) - \mathcal{S}_{\mathcal{X}}(u) := (\mathcal{X}(c))^2$$

 $L_{\mathcal{X}}(\mathbf{v}) - L_{\mathcal{X}}(u) := |\mathcal{X}(c)|^2$

• **Lemma:** $\exists ! \mathcal{X} : L_{\mathcal{X}}$ – periodic.

Some perspectives and open questions

periodic setup: other observables, 'strong' RSW, loop ensembles, spin correlations;

your favorite object in your favorite setup: invariance principle for the limit;

Ising model on random planar maps:

can one attack not only SLEs/CLEs but also LQG in this way?

 Topological correlators in the planar Ising model and CLE(3): is it possible to understand the convergence of 'topological correlators' for loop ensembles directly via a kind of *τ*-functions?

• Supercritical regime, renormalization: convergence to CLE(6) for $x > x_{crit}$.

Some perspectives and open questions

periodic setup: other observables, 'strong' RSW, loop ensembles, spin correlations;

your favorite object in your favorite setup: invariance principle for the limit;

Ising model on random planar maps:

can one attack not only SLEs/CLEs but also LQG in this way?

 Topological correlators in the planar Ising model and CLE(3): is it possible to understand the convergence of 'topological correlators' for loop ensembles directly via a kind of *τ*-functions?

• Supercritical regime, renormalization: convergence to CLE(6) for $x > x_{crit}$.

THANK YOU FOR YOUR ATTENTION!