
Bipartite dimer model

and minimal surfaces

in the Minkowski space

Dmitry Chelkak (ENS)

[ joint works w/ Benôıt Laslier,
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Outline:

• Basics of the bipartite dimer model:

• . definition, Kasteleyn’s theorem;
• . Thurston’s height functions;
• . Temperleyan domains: ~δ → GFF.

• Conjectural picture on periodic grids:

• . Cohn–Kenyon–Propp’s theorem;
• . Kenyon–Okounkov’s prediction:

~δ → GFF in a non-trivial metric.

• New viewpoint: t-embeddings T δ

• . basic concepts, origami maps Oδ;
• . Assumptions: perfect t-embeddings,

(T δ,Oδ)→ Lorenz-minimal surface;
• . Theorem [ Ch. – Laslier – Russkikh ’20 ].

• (Some) open questions/perspectives.

Illustration:
Aztec diamonds
[ Ch.– Ramassamy ]
[ arXiv:2002.07540 ]
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Bipartite dimer model: basics

• (G, νbw ) – finite weighted bipartite
planar graph (w/ marked outer face);

• Dimer configuration = perfect match-
ing D ⊂ E (G): subset of edges such
that each vertex is covered exactly once;

• Probability P(D) ∝ ν(D) =
∏

e∈D νe ;

• Partition function Zν(G)=
∑
D ν(D).

(Very) particular example:
[ Temperleyan domains GT ⊂ Z2 ]

 

Example: if all weights νbw = 1, then Z is the number of perfect matchings in G.
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• Theorem (Kasteleyn, 1961): for each planar
(not necessarily bipartite) graph (G, ν), one can Zν(G ) = |Pf Aν | = | detAν |1/2

find a signed adjacency matrix Aν = −A>ν of G :
[ such an orientation of edges of a planar graph G is called a Pfaffian orientation ]
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Q: Could you remind us what Pf A is?

A: If A=−A> is a 2n×2n matrix, then

Pf A := 1
2nn!

∑
(−1)s(σ)aσ1σ2 ..aσ2n−1aσ2n

Example:

Pf

 0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

= af −be +cd
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• Corollary: If b ∼ w in G, then
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ν (w , b)|.

Moreover, the edges of a random dimer
configuration D form a determinantal
process with the kernel K−1

ν : CB→CW.
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Bipartite dimer model: basics

• [ Kenyon, 2000 ]: it is often conve-
nient to introduce complex signs in Kν .
E.g., on Z2, the following choice works: 
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K · K−1 = Id
⇓

K−1(w , ·) : B→C
are discrete holo-
morphic functions.
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GFF and random height fluctuations

• D – random dimer configuration

• Random height function h on G∗: fix
D0, view D∪D0 as a topographic map.

• Height fluctuations ~ := h − E[h]
do not depend on the choice of D0.

(Very) particular example:
[ Temperleyan domains GT ⊂ Z2 ]
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GFF and random height fluctuations

• D – random dimer configuration

• Random height function h on G∗: fix
D0, view D∪D0 as a topographic map.

• Height fluctuations ~ := h − E[h]
do not depend on the choice of D0.

• Theorem (Kenyon, 2000): Let
GδT ⊂ δZ2 be Temperleyan approxima-
tions to a given domain Ω ⊂ C. Then,

~δ → π−
1
2GFFΩ as δ → 0,

where GFFΩ is the Gaussian Free Field
in Ω with Dirichlet boundary conditions.

(Very) particular example:
[ Temperleyan domains GT ⊂ Z2 ]
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Q: What is GFFΩ?

A: E[~(z)] = 0, z ∈ Ω;

A: E[~(z)~(w)]
= −∆−1

Ω (z ,w).



GFF and random height fluctuations

• D – random dimer configuration

• Random height function h on G∗: fix
D0, view D∪D0 as a topographic map.

• Height fluctuations ~ := h − E[h]
do not depend on the choice of D0.

Q: why are Temperleyan GT so special?

A1: ‘nice’ boundary conditions for dis-
crete holomorphic functions K−1(w , ·).

A2: Wilson’s algorithm for UST ⇒
random walks with ‘nice’(=absorbed)
boundary conditions naturally appear.

(Very) particular example:
[ Temperleyan domains GT ⊂ Z2 ]

 

Temperley bijection: dimers on GT
↔ spanning trees on a related graph.
This procedure is highly sensitive to the
microscopic structure of the boundary.



Conjectural picture on periodic grids

• [Cohn–Kenyon–Propp, 2000]:
random profiles δhδ concentrate near
a surface (with given boundary) that
maximizes certain entropy functional.

. Example: flat height profile at ∂Ω

.  flat surface in the bulk of Ω.

. Remark: the entropy functional is

. non-trivial and lattice-dependent.

Examples on Hex∗ [ (c) Kenyon ] :

[!!!] Though the law of ~δ is indepen-
dent of the choice of Dδ0, the limit of ~δ
as δ → 0 heavily depends on the limit of
deterministic boundary profiles of δhδ:

• frozen/liquid/(gaseous) zones in Ω;

• ‘arctic curves’  algebraic geometry;

• ‘polygonal’ examples are well-studied.



Conjectural picture on periodic grids

• [Cohn–Kenyon–Propp, 2000]:
random profiles δhδ concentrate near
a surface (with given boundary) that
maximizes certain entropy functional.

• Prediction [Kenyon–Okounkov,’06] :

~δ → GFF(Ω,µ) ,

where GFF(Ω,µ) denotes the Gaussian
Free Field in a certain profile-dependent
metric/conformal structure µ on Ω.

[ i.e., E[~(z)~(w)] = −∆−1
(Ω,µ)(z ,w) ]

Examples on Hex∗ [ (c) Kenyon ] :

[!!!] Though the law of ~δ is indepen-
dent of the choice of Dδ0, the limit of ~δ
as δ → 0 heavily depends on the limit of
deterministic boundary profiles of δhδ:

• frozen/liquid/(gaseous) zones in Ω;

• ‘arctic curves’  algebraic geometry;

• ‘polygonal’ examples are well-studied.



Conjectural picture on periodic grids

• [Cohn–Kenyon–Propp, 2000]:
random profiles δhδ concentrate near
a surface (with given boundary) that
maximizes certain entropy functional.

• Prediction [Kenyon–Okounkov,’06] :

~δ → GFF(Ω,µ) ,

where GFF(Ω,µ) denotes the Gaussian
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[!] This is not proven even for Ωδ⊂δZ2

composed of 2×2 blocks [ ⇒ ‘flat’ µ ].

• Classical example studied in detail:

Aztec diamonds
[ Elkies–Kuperberg–
Larsen–Propp’92,...]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[ (c) A. & M. Borodin, S. Chhita ]
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[ (c) A. & M. Borodin, S. Chhita ]

Q: How can holomorphic/harmonic
functions on δZ2 lead to a non-trivial
complex structure in the limit δ → 0?

“A”: Think about functions h(n,m) =
sin(αn) sinh(bm) with cosα+cosh b = 2.



Conjectural picture on periodic grids
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• Known tools: problematic to apply
l [ ??? ] to irregular graphs (G, ν)
• Long [ !!! ] -term motivation:
random maps carrying bipartite dimers
[ or the Ising model, via bosonization ]
and their scaling limits (Liouville CFT).

(c) N. Curien
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• Wanted: special embeddings of ab-
stract weighted bipartite planar graphs
+ ‘discrete complex analysis’ techniques

 complex structure in the limit.



Theorem: [ Ch. – Laslier – Russkikh ]
[ arXiv:2001.11871 + 20**.** ]

Assume that, for finite weighted bipar-
tite planar graphs Gδ = (Gδ, νδ),

• T δ are perfect t-embeddings of (Gδ)∗
[ satisfying assumption Exp-Fat(δ) ];

• as δ → 0, the images of T δ converge
to a domain Dξ [ ξ∈Lip1(T), |ξ|< π

2 ];

• origami maps (T δ,Oδ) converge to a

Lorentz-minimal surface Sξ ⊂ Dξ × R.

Then, the height fluctuations ~δ in the
dimer models on T δ converge to the
standard Gaussian Free Field in the

intrinsic metric of Sξ⊂ R2+1⊂ R2+2.

Illustration:
Aztec diamonds
[ Ch.– Ramassamy ]
[ arXiv:2002.07540 ]
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Theorem: [ Ch. – Laslier – Russkikh ]
[ arXiv:2001.11871 + 20**.** ]

Assume that, for finite weighted bipar-
tite planar graphs Gδ = (Gδ, νδ),

• T δ are perfect t-embeddings of (Gδ)∗
[ satisfying assumption Exp-Fat(δ) ];

• as δ → 0, the images of T δ converge
to a domain Dξ [ ξ∈Lip1(T), |ξ|< π

2 ];

• origami maps (T δ,Oδ) converge to a

Lorentz-minimal surface Sξ ⊂ Dξ × R.

Then, the height fluctuations ~δ in the
dimer models on T δ converge to the
standard Gaussian Free Field in the

intrinsic metric of Sξ⊂ R2+1⊂ R2+2.

• Domains Dξ, surfaces Sξ:

• ξ :T→ (−π
2 ,

π
2 ) – 1-Lipschitz function;

• Dξ : bounded by z(φ)=e iφ·(cos ξ(φ))−1;

• Sξ spans Lξ := (z(φ), tan(ξ(φ)))φ∈T

Lξ ⊂ {x ∈R2+1 : ‖x‖2 = x2
1 + x2

2 − x2
3 = 1}.

• Aztec case
• surface Sξ:

1
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Embeddings of weighted bipartite planar graphs carrying the dimer model
[ and admitting reasonable notions of discrete complex analysis ]

• t-embeddings = Coulomb gauges: given (G, ν),
• find T : G∗ → C [G∗ – augmented dual ] s.t.

. weights νe are gauge equivalent to χ(vv ′)∗ := |T (v ′)−T (v)|

. (i.e., νbw = gbχbwgw for some g : B ∪W → R+) and

. at each inner vertex T (v), the sum of black angles = π.
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Embeddings of weighted bipartite planar graphs carrying the dimer model
[ and admitting reasonable notions of discrete complex analysis ]

• t-embeddings = Coulomb gauges: given (G, ν),
• find T : G∗ → C [G∗ – augmented dual ] s.t.

. weights νe are gauge equivalent to χ(vv ′)∗ := |T (v ′)−T (v)|

. (i.e., νbw = gbχbwgw for some g : B ∪W → R+) and

. at each inner vertex T (v), the sum of black angles = π.

• p-embeddings = perfect t-embeddings:
• . outer face is a tangential (possibly, non-convex) polygon,
• . edges adjacent to outer vertices are bisectors.

• Warning: for general (G, ν), the existence of perfect
t-embeddings is not known though they do exist in particular
cases + the count of #(degrees of freedom) matches.
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Embeddings of weighted bipartite planar graphs carrying the dimer model
[ and admitting reasonable notions of discrete complex analysis ]

• t-embeddings = Coulomb gauges: given (G, ν),
• find T : G∗ → C [G∗ – augmented dual ] s.t.

. weights νe are gauge equivalent to χ(vv ′)∗ := |T (v ′)−T (v)|

. (i.e., νbw = gbχbwgw for some g : B ∪W → R+) and

. at each inner vertex T (v), the sum of black angles = π.

• origami maps O: G∗ → C
• “ fold C along segments of T ”

• the mapping (T ,O) can be
• viewed as a ‘piece-wise linear
• embedding’ of G∗ into R2+2. •
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Assume that, for finite weighted bipar-
tite planar graphs Gδ = (Gδ, νδ),

• T δ are perfect t-embeddings of (Gδ)∗
[ satisfying assumption Exp-Fat(δ) ];

• as δ → 0, the images of T δ converge
to a domain Dξ [ ξ∈Lip1(T), |ξ|< π

2 ];

• origami maps (T δ,Oδ) converge to a

Lorentz-minimal surface Sξ ⊂ Dξ × R.

Then, the height fluctuations ~δ in the
dimer models on T δ converge to the
standard Gaussian Free Field in the

intrinsic metric of Sξ⊂ R2+1⊂ R2+2.

• Exp-Fat(δ) for triangulations T δ:
• for each β > 0, if one removes all
‘exp(−βδ−1)-fat’ triangles from T δ, then
the size of remaining (in the bulk of Dξ)
vertex-connected components →δ→0 0.

[ non-triangulations: split either black or white faces into triangles ]

• Aztec case
p-embeddings:

1



Embeddings of weighted bipartite planar graphs carrying the dimer model
[ and admitting reasonable notions of discrete complex analysis ]

Coulomb gauges [ Kenyon – Lam – Ramassamy – Russkikh, arXiv:1810.05616 ]
m (circle patterns, cluster algebras) [ + Affolter arXiv:1808.04227 ]

t-embeddings [ Ch.– Laslier – Russkikh, arXiv:2001.11871, arXiv:20**.** ]
(discrete complex analysis framework & a priori regularity estimates)

Particular cases: harmonic/Tutte’s embeddings [ via the Temperley bijection ]
Ising model s-embeddings [ Ch., arXiv:1712.04192, 2006.14559 ]

Very particular case: Baxter’s Z-invariant
Ising model: rhombic lattices/isoradial graphs

[ Ch.–Smirnov, arXiv:0808.2547,0910.2045
“Universality in the 2D Ising model and con-

formal invariance of fermionic observables” ]

 



Open questions, perspectives [ general (G, ν) ]

[?] Existence of perfect t-embeddings

•p-embeddings = perfect t-embeddings:
• . outer face is a tangential (non-convex) polygon,
• . edges adjacent to outer vertices are bisectors.

1

. degfout = 4:

. OK [KLRR]

. #(degrees of

.freedom): OK
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[?] Why does Lorentz geometry appear?

• Another simple example: annulus-type graphs
•  Lorentz-minimal cusp (z , arcsinh |z |).

[?] P-embeddings and more algebraic viewpoints:
•! embeddings to the Klein/Plücker quadric [?]

1

1



Open questions, perspectives [ general (G, ν) ]

[?] Existence of perfect t-embeddings

•p-embeddings = perfect t-embeddings:
• . outer face is a tangential (non-convex) polygon,
• . edges adjacent to outer vertices are bisectors.

[?] Why does Lorentz geometry appear?

• Another simple example: annulus-type graphs
•  Lorentz-minimal cusp (z , arcsinh |z |).

[?] P-embeddings and more algebraic viewpoints:
•! embeddings to the Klein/Plücker quadric [?]
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[??] Eventually, what about embeddings of random
• maps weighted by dimers/Ising? Liouville CFT [??]
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1

(c) N. Curien

Thank you!


