BIPARTITE DIMER MODEL

AND MINIMAL SURFACES

IN THE MINKOWSKI SPACE

 $\rm UM-MSU$ Mathematics Colloquium, September 1st, $2020\,@\,\rm Zoom$

Outline:

• Basics of the bipartite dimer model:

- definition, Kasteleyn's theorem;
- Thurston's height functions;
- ▷ Temperleyan domains: $\hbar^{\delta} \rightarrow \text{GFF}$.

• Conjectural picture on periodic grids:

- Cohn–Kenyon–Propp's theorem;
 Kenyon–Okounkov's prediction:
 - $\hbar^{\delta} \rightarrow \underline{GFF} \text{ in } \underline{a} \text{ non-trivial metric.}$
- New viewpoint: t-embeddings \mathcal{T}^{δ}
 - ▷ basic concepts, origami maps O^δ;
 ▷ <u>Assumptions</u>: perfect t-embeddings, (T^δ, O^δ) → <u>Lorenz-minimal surface;</u>
 ▷ <u>Theorem</u> [Ch. – Laslier – Russkikh '20].
- (Some) open questions/perspectives.

Illustration: Aztec diamonds [Ch.-Ramassamy] [arXiv:2002.07540]

• (\mathcal{G}, ν_{bw}) – finite weighted bipartite planar graph (w/ marked outer face);

• Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;

- Probability $\mathbb{P}(\mathcal{D}) \propto \nu(\mathcal{D}) = \prod_{e \in \mathcal{D}} \nu_e$;
- Partition function $\mathcal{Z}_{\nu}(\mathcal{G}) = \sum_{\mathcal{D}} \nu(\mathcal{D}).$

(Very) particular example: [Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^2$]

Example: if all weights $\nu_{bw} = 1$, then \mathcal{Z} is the number of perfect matchings in \mathcal{G} .

• (\mathcal{G}, ν_{bw}) – finite weighted bipartite planar graph (w/ marked outer face);

• Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;

- Probability $\mathbb{P}(\mathcal{D}) \propto \nu(\mathcal{D}) = \prod_{e \in \mathcal{D}} \nu_e$;
- Partition function $\mathcal{Z}_{\nu}(\mathcal{G}) = \sum_{\mathcal{D}} \nu(\mathcal{D}).$

(Very) particular example: [Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^2$]

• Theorem (Kasteleyn, 1961): for each planar (not necessarily bipartite) graph (\mathcal{G}, ν) , one can find a <u>signed</u> adjacency matrix $\mathcal{A}_{\nu} = -\mathcal{A}_{\nu}^{\top}$ of \mathcal{G} :

[such an orientation of edges of a planar graph \mathcal{G} is called a Pfaffian orientation]

 $|\mathcal{Z}_{
u}(G) = |\mathbf{Pf} \, \mathcal{A}_{oldsymbol{
u}}| = |\det \mathcal{A}_{
u}|^{1/2}$

• (\mathcal{G}, ν_{bw}) – finite weighted bipartite planar graph (w/ marked outer face);

• Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;

• Probability
$$\mathbb{P}(\mathcal{D}) \propto
u(\mathcal{D}) = \prod_{e \in \mathcal{D}}
u_e;$$

• Partition function $\mathcal{Z}_{\nu}(\mathcal{G}) = \sum_{\mathcal{D}} \nu(\mathcal{D}).$

Q: Could you remind us what **Pf** \mathcal{A} is? **A**: If $\mathcal{A} = -\mathcal{A}^{\top}$ is a $2n \times 2n$ matrix, then

$$Pf \mathcal{A} := \frac{1}{2^n n!} \sum (-1)^{s(\sigma)} a_{\sigma_1 \sigma_2} ... a_{\sigma_{2n-1}} a_{\sigma_{2n}}$$

Example:

$$Pf\begin{bmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{bmatrix} = af - be + cd$$

 $\mathcal{Z}_{\nu}(G) = |\mathbf{Pf} \mathcal{A}_{\nu}| = |\det \mathcal{A}_{\nu}|^{1/2}$

• Theorem (Kasteleyn, 1961): for each planar (not necessarily bipartite) graph (\mathcal{G}, ν) , one can find a <u>signed</u> adjacency matrix $\mathcal{A}_{\nu} = -\mathcal{A}_{\nu}^{\top}$ of \mathcal{G} :

= $-\mathcal{A}_{
u}^{ op}$ of G:

[such an orientation of edges of a planar graph $\mathcal G$ is called a Pfaffian orientation]

• (\mathcal{G}, ν_{bw}) – finite weighted bipartite planar graph (w/ marked outer face);

• Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;

• Probability
$$\mathbb{P}(\mathcal{D}) \propto
u(\mathcal{D}) = \prod_{e \in \mathcal{D}}
u_e;$$

• Partition function $\mathcal{Z}_{\nu}(\mathcal{G}) = \sum_{\mathcal{D}} \nu(\mathcal{D}).$

•
$$\mathcal{G}$$
 - bipartite $\Rightarrow \mathcal{A}_{\nu} = \begin{bmatrix} 0 & \mathcal{K}_{\nu} \\ -\mathcal{K}_{\nu}^{\top} & 0 \end{bmatrix}$
and $|\operatorname{Pf} \mathcal{A}_{\nu}| = |\det \mathcal{K}_{\nu}|.$

• Corollary: If
$$b \sim w$$
 in \mathcal{G} , then
 $\mathbb{P}[(bw) \in \mathcal{D}] = |\mathcal{K}_{\nu}^{-1}(w, b)|.$

Moreover, the edges of a random dimer configuration \mathcal{D} form a determinantal process with the kernel $\mathcal{K}_{\nu}^{-1} \colon \mathbb{C}^{B} \to \mathbb{C}^{W}$.

• Theorem (Kasteleyn, 1961): for each planar (not necessarily bipartite) graph (\mathcal{G}, ν) , one can find a <u>signed</u> adjacency matrix $\mathcal{A}_{\nu} = -\mathcal{A}_{\nu}^{\top}$ of G:

 $\mathcal{Z}_{
u}(G) = |\mathbf{Pf} \, \mathcal{A}_{oldsymbol{
u}}| = |\det \mathcal{A}_{
u}|^{1/2}$

[such an orientation of edges of a planar graph $\mathcal G$ is called a Pfaffian orientation]

• [Kenyon, 2000]: it is often convenient to introduce <u>complex signs</u> in \mathcal{K}_{ν} . E.g., on \mathbb{Z}^2 , the following choice works:

•
$$\mathcal{G}$$
 - bipartite $\Rightarrow \mathcal{A}_{\nu} = \begin{bmatrix} 0 & \mathcal{K}_{\nu} \\ -\mathcal{K}_{\nu}^{\top} & 0 \end{bmatrix}$
and $|\operatorname{Pf} \mathcal{A}_{\nu}| = |\det \mathcal{K}_{\nu}|.$

• Corollary: If
$$b \sim w$$
 in \mathcal{G} , then
 $\mathbb{P}[(bw) \in \mathcal{D}] = |\mathcal{K}_{\nu}^{-1}(w, b)|.$

Moreover, the edges of a random dimer configuration \mathcal{D} form a determinantal process with the kernel $\mathcal{K}_{\nu}^{-1} \colon \mathbb{C}^{B} \to \mathbb{C}^{W}$.

• Theorem (Kasteleyn, 1961): for each planar (not necessarily bipartite) graph (\mathcal{G}, ν) , one can find a <u>signed</u> adjacency matrix $\mathcal{A}_{\nu} = -\mathcal{A}_{\nu}^{\top}$ of G:

 $\mathcal{Z}_
u(\mathcal{G}) = |\mathbf{Pf} \, \mathcal{A}_{oldsymbol{
u}}| = |\det \mathcal{A}_
u|^{1/2}$

[such an orientation of edges of a planar graph \mathcal{G} is called a Pfaffian orientation]

- \mathcal{D} random dimer configuration
- Random *height function h on* \mathcal{G}^* : fix \mathcal{D}_0 , view $\mathcal{D} \cup \mathcal{D}_0$ as a topographic map.
- Height fluctuations ħ := h E[h] do <u>not</u> depend on the choice of D₀.

(Very) particular example: [Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^2$]

- \mathcal{D} random dimer configuration
- Random *height function h on* \mathcal{G}^* : fix \mathcal{D}_0 , view $\mathcal{D} \cup \mathcal{D}_0$ as a topographic map.
- Height fluctuations ħ := h E[h] do <u>not</u> depend on the choice of D₀.

(Very) particular example: [Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^2$]

- \mathcal{D} random dimer configuration
- Random *height function h on* \mathcal{G}^* : fix \mathcal{D}_0 , view $\mathcal{D} \cup \mathcal{D}_0$ as a topographic map.
- Height fluctuations ħ := h E[h] do <u>not</u> depend on the choice of D₀.

• Theorem (Kenyon, 2000): Let $\mathcal{G}_{T}^{\delta} \subset \delta \mathbb{Z}^{2}$ be <u>Temperleyan approximations</u> to a given domain $\Omega \subset \mathbb{C}$. Then,

 $\hbar^\delta o \pi^{-rac{1}{2}} \mathrm{GFF}_\Omega$ as $\delta o 0$,

where GFF_Ω is the Gaussian Free Field in Ω with Dirichlet boundary conditions.

(Very) particular example: [Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^2$]

Q: What is $\operatorname{GFF}_{\Omega}$? A: $\mathbb{E}[\hbar(z)] = 0, z \in \Omega;$ $\mathbb{E}[\hbar(z)\hbar(w)]$ $= -\Delta_{\Omega}^{-1}(z, w).$

- \mathcal{D} random dimer configuration
- Random *height function h on* \mathcal{G}^* : fix \mathcal{D}_0 , view $\mathcal{D} \cup \mathcal{D}_0$ as a topographic map.
- Height fluctuations ħ := h 𝔼[h] do <u>not</u> depend on the choice of D₀.

Q: why are Temperleyan \mathcal{G}_T <u>so special</u>?

A1: 'nice' boundary conditions for discrete holomorphic functions $\mathcal{K}^{-1}(w, \cdot)$.

A2: <u>Wilson's algorithm for UST</u> \Rightarrow random walks with 'nice'(=absorbed) boundary conditions naturally appear.

(Very) particular example: [Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^2$]

Temperley bijection: dimers on \mathcal{G}_{T} \leftrightarrow *spanning trees* on a related graph. This procedure is highly sensitive to the <u>microscopic structure of the boundary</u>.

• [Cohn-Kenyon-Propp, 2000]: random profiles δh^{δ} concentrate near a surface (with given boundary) that maximizes certain *entropy functional*.

- $\triangleright \mbox{ Example: flat height profile at } \partial \Omega$ $\rightsquigarrow \mbox{ flat surface in the bulk of } \Omega.$
- Remark: the entropy functional is non-trivial and <u>lattice</u>-<u>dependent</u>.

Examples on Hex* [(c) Kenyon]:

[!!!] Though the law of \hbar^{δ} is independent of the choice of \mathcal{D}_{0}^{δ} , the limit of \hbar^{δ} as $\delta \to 0$ <u>heavily depends on</u> the limit of deterministic <u>boundary profiles</u> of δh^{δ} :

- frozen/liquid/(gaseous) zones in Ω ;
- 'arctic curves' ~> algebraic geometry;
- 'polygonal' examples are well-studied.

• [Cohn-Kenyon-Propp, 2000]: random profiles δh^{δ} concentrate near a surface (with given boundary) that maximizes certain *entropy functional*.

• <u>Prediction</u> [Kenyon–Okounkov, '06] : $\hbar^{\delta} \to \operatorname{GFF}_{(\Omega,\mu)},$

where $\operatorname{GFF}_{(\Omega,\mu)}$ denotes the Gaussian Free Field in a certain *profile-dependent metric/conformal structure* μ on Ω .

[i.e.,
$$\mathbb{E}[\hbar(z)\hbar(w)] = -\Delta^{-1}_{(\Omega,\mu)}(z,w)$$
]

Examples on Hex* [(c) Kenyon]:

[!!!] Though the law of \hbar^{δ} is independent of the choice of \mathcal{D}_{0}^{δ} , the limit of \hbar^{δ} as $\delta \to 0$ <u>heavily depends on</u> the limit of deterministic <u>boundary profiles</u> of δh^{δ} :

- frozen/liquid/(gaseous) zones in Ω ;
- 'arctic curves' ~> algebraic geometry;
- 'polygonal' examples are well-studied.

• [Cohn-Kenyon-Propp, 2000]: random profiles δh^{δ} concentrate near a surface (with given boundary) that maximizes certain *entropy functional*.

• <u>Prediction</u> [Kenyon–Okounkov, '06] : $\hbar^{\delta} \to \operatorname{GFF}_{(\Omega,\mu)},$

where $\mathrm{GFF}_{(\Omega,\mu)}$ denotes the Gaussian Free Field in a certain *profile-dependent metric/conformal structure* μ on Ω .

$$[\text{i.e., } \mathbb{E}[\hbar(z)\hbar(w)] = -\Delta_{(\Omega,\mu)}^{-1}(z,w)]$$

[!] This is <u>not</u> proven even for $\Omega^{\delta} \subset \delta \mathbb{Z}^2$ composed of 2×2 blocks [\Rightarrow 'flat' μ]. • Classical example studied in detail:

Aztec diamonds

[Elkies–Kuperberg– Larsen–Propp'92,...]

[(c) A. & M. Borodin, S. Chhita]

• [Cohn-Kenyon-Propp, 2000]: random profiles δh^{δ} concentrate near a surface (with given boundary) that maximizes certain *entropy functional*.

• <u>Prediction</u> [Kenyon–Okounkov, '06] : $\hbar^{\delta} \to \operatorname{GFF}_{(\Omega,\mu)},$

where $\mathrm{GFF}_{(\Omega,\mu)}$ denotes the Gaussian Free Field in a certain *profile-dependent metric/conformal structure* μ on Ω .

[i.e., $\mathbb{E}[\hbar(z)\hbar(w)] = -\Delta^{-1}_{(\Omega,\mu)}(z,w)$]

[!] This is <u>not</u> proven even for $\Omega^{\delta} \subset \delta \mathbb{Z}^2$ composed of 2×2 blocks [\Rightarrow 'flat' μ].

• Classical example studied in detail:

Q: How can holomorphic/harmonic functions on $\delta \mathbb{Z}^2$ lead to a non-trivial complex structure in the limit $\delta \to 0$?

"A": Think about functions $h(n, m) = \sin(\alpha n) \sinh(bm)$ with $\cos \alpha + \cosh b = 2$.

• [Cohn-Kenyon-Propp, 2000]: random profiles δh^{δ} concentrate near a surface (with given boundary) that maximizes certain *entropy functional*.

• <u>Prediction</u> [Kenyon–Okounkov,'06] : $\hbar^{\delta} \to \operatorname{GFF}_{(\Omega,\mu)},$

where $\mathrm{GFF}_{(\Omega,\mu)}$ denotes the Gaussian Free Field in a certain *profile-dependent metric/conformal structure* μ on Ω .

[i.e.,
$$\mathbb{E}[\hbar(z)\hbar(w)] = -\Delta_{(\Omega,\mu)}^{-1}(z,w)$$
]

[!] This is **not** proven even for $\Omega^{\delta} \subset \delta \mathbb{Z}^2$ composed of 2×2 blocks [\Rightarrow 'flat' μ].

• Known tools: problematic to apply $\$ [???] to irregular graphs (\mathcal{G}, ν) • Long [!!!]-term motivation:

<u>random maps</u> carrying bipartite dimers [or the Ising model, via bosonization] and their scaling limits <u>(Liouville CFT</u>).

• [Cohn-Kenyon-Propp, 2000]: random profiles δh^{δ} concentrate near a surface (with given boundary) that maximizes certain *entropy functional*.

• <u>Prediction</u> [Kenyon–Okounkov, '06] : $\hbar^{\delta} \to \operatorname{GFF}_{(\Omega,\mu)},$

where $\operatorname{GFF}_{(\Omega,\mu)}$ denotes the Gaussian Free Field in a certain *profile-dependent metric/conformal structure* μ on Ω .

[i.e., $\mathbb{E}[\hbar(z)\hbar(w)] = -\Delta^{-1}_{(\Omega,\mu)}(z,w)$]

[!] This is **<u>not</u>** proven even for $\Omega^{\delta} \subset \delta \mathbb{Z}^2$ composed of 2×2 blocks [\Rightarrow 'flat' μ]. • Known tools: problematic to apply $\$ [???] to irregular graphs (\mathcal{G}, ν) • Long [!!!]-term motivation:

<u>random</u> <u>maps</u> carrying bipartite dimers [or the Ising model, via bosonization] and their scaling limits <u>(Liouville CFT</u>).

 Wanted: special embeddings of abstract weighted bipartite planar graphs
 + 'discrete complex analysis' techniques
 → complex structure in the limit.

<u>Assume that</u>, for finite weighted bipartite planar graphs $\mathcal{G}^{\delta} = (\mathcal{G}^{\delta}, \nu^{\delta})$,

- \mathcal{T}^{δ} are *perfect t-embeddings* of $(\mathcal{G}^{\delta})^*$ [satisfying assumption EXP-FAT (δ)];
- as δ → 0, the images of T^δ converge to a domain D_ξ [ξ∈Lip₁(T), |ξ|<π/2];
- origami maps (*T^δ*, *O^δ*) converge to a Lorentz-minimal surface S_ξ ⊂ D_ξ × ℝ.
 Then, the height fluctuations ħ^δ in the

dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the *intrinsic metric of* $S_{\varepsilon} \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.

Illustration: Aztec diamonds [Ch.-Ramassamy] [arXiv:2002.07540]

<u>Assume that</u>, for finite weighted bipartite planar graphs $\mathcal{G}^{\delta} = (\mathcal{G}^{\delta}, \nu^{\delta})$,

- \mathcal{T}^{δ} are *perfect t-embeddings* of $(\mathcal{G}^{\delta})^*$ [satisfying assumption EXP-FAT (δ)];
- as δ → 0, the images of T^δ converge to a <u>domain</u> D_ξ [ξ∈Lip₁(T), |ξ|< π/2];
- origami maps (*T^δ*, *O^δ*) converge to a
 Lorentz-minimal surface S_ξ ⊂ D_ξ × ℝ.

Then, the height fluctuations \hbar^{δ} in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the <u>intrinsic metric of</u> $S_{\xi} \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.

- Domains D_{ξ} , surfaces S_{ξ} :
- $\xi:\mathbb{T} \to \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ 1-Lipschitz function;
- D_{ξ} : bounded by $z(\phi) = e^{i\phi} \cdot (\cos \xi(\phi))^{-1}$;

•
$$\mathrm{S}_{\xi}$$
 spans $\mathrm{L}_{\xi}:=(z(\phi), \mathsf{tan}(\xi(\phi)))_{\phi\in\mathbb{T}}$

 $\mathbf{L}_{\xi} \subset \{ x \!\in\! \mathbb{R}^{2+1} \colon \|x\|^2 \!= x_1^2 + x_2^2 - x_3^2 \!= 1 \}.$

<u>Assume that</u>, for finite weighted bipartite planar graphs $\mathcal{G}^{\delta} = (\mathcal{G}^{\delta}, \nu^{\delta})$,

- \mathcal{T}^{δ} are <u>perfect</u> <u>t-embeddings</u> of $(\mathcal{G}^{\delta})^*$ [satisfying assumption EXP-FAT (δ)];
- as δ → 0, the images of T^δ converge to a domain D_ξ [ξ∈Lip₁(T), |ξ| < π/2];
- <u>origami</u> <u>maps</u> $(\mathcal{T}^{\delta}, \mathcal{O}^{\delta})$ converge to a Lorentz-minimal surface $S_{\xi} \subset D_{\xi} \times \mathbb{R}$.

Then, the height fluctuations \hbar^{δ} in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the *intrinsic metric of* $S_{\mathcal{E}} \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.

Illustration: Aztec diamonds [Ch.-Ramassamy] [arXiv:2002.07540]

t-embeddings = Coulomb gauges: given (G, ν), find T : G* → C [G* - augmented dual] s.t.
weights ν_e are <u>gauge equivalent</u> to χ_{(νν')*} := |T(ν') - T(ν)| (i.e., ν_{bw} = g_bχ_{bw}g_w for some g : B ∪ W → ℝ₊) and
at each inner vertex T(ν), the sum of black angles = π.

- *t-embeddings* = Coulomb gauges: given (G, ν), find T : G* → C [G* augmented dual] s.t.
 weights ν_e are <u>gauge equivalent</u> to χ_{(νν')*} := |T(ν') T(ν)| (i.e., ν_{bw} = g_bχ_{bw}g_w for some g : B ∪ W → R₊) and
 at each inner vertex T(ν), the sum of black angles = π.
- *p*-embeddings = perfect t-embeddings:
 - outer face is a tangential (possibly, <u>non</u>-convex) polygon,
 edges adjacent to outer vertices are bisectors.

• Warning: for general (\mathcal{G}, ν) , the <u>existence</u> of perfect t-embeddings is <u>not known</u> though they do exist in particular cases + the count of #(degrees of freedom) matches.

- t-embeddings = Coulomb gauges: given (G, ν), find T : G* → C [G* augmented dual] s.t.
 weights ν_e are <u>gauge equivalent</u> to χ_{(νν')*} := |T(ν') T(ν)| (i.e., ν_{bw} = g_bχ_{bw}g_w for some g : B ∪ W → ℝ₊) and
 at each inner vertex T(ν), the sum of black angles = π.
- origami maps $\mathcal{O}: \mathcal{G}^* \to \mathbb{C}$ "fold \mathbb{C} along segments of \mathcal{T} "
- the mapping (*T*, *O*) can be viewed as a 'piece-wise linear embedding' of *G*^{*} into ℝ²⁺².

<u>Assume that</u>, for finite weighted bipartite planar graphs $\mathcal{G}^{\delta} = (\mathcal{G}^{\delta}, \nu^{\delta})$,

- \mathcal{T}^{δ} are *perfect t-embeddings* of $(\mathcal{G}^{\delta})^*$ [satisfying assumption EXP-FAT (δ)];
- as δ → 0, the images of T^δ converge to a domain D_ξ [ξ∈Lip₁(T), |ξ| < π/2];
- origami maps $(\mathcal{T}^{\delta}, \mathcal{O}^{\delta})$ converge to a Lorentz-minimal surface $S_{\xi} \subset D_{\xi} \times \mathbb{R}$.

Then, the height fluctuations \hbar^{δ} in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the *intrinsic metric of* $S_{\mathcal{E}} \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.

Illustration: Aztec diamonds [Ch.-Ramassamy] [arXiv:2002.07540]

<u>Assume that</u>, for finite weighted bipartite planar graphs $\mathcal{G}^{\delta} = (\mathcal{G}^{\delta}, \nu^{\delta})$,

- \mathcal{T}^{δ} are *perfect t-embeddings* of $(\mathcal{G}^{\delta})^*$ [satisfying assumption EXP-FAT (δ)];
- as δ → 0, the images of T^δ converge to a domain D_ξ [ξ∈Lip₁(T), |ξ|<π/2];
- origami maps $(\mathcal{T}^{\delta}, \mathcal{O}^{\delta})$ converge to a Lorentz-minimal surface $S_{\xi} \subset D_{\xi} \times \mathbb{R}$. Then, the height fluctuations \hbar^{δ} in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the

intrinsic metric of $S_{\xi} \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.

• EXP-FAT (δ) for triangulations \mathcal{T}^{δ} :

for each $\beta > 0$, if one removes all 'exp $(-\beta\delta^{-1})$ -fat' triangles from \mathcal{T}^{δ} , then the size of remaining (in the bulk of D_{ξ}) vertex-connected components $\rightarrow_{\delta \rightarrow 0} 0$.

[non-triangulations: split either black or white faces into triangles]

<u>Coulomb gauges</u> [Kenyon - Lam - Ramassamy - Russkikh, arXiv:1810.05616] (circle patterns, cluster algebras) [+ Affolter arXiv:1808.04227] <u>t-embeddings</u> [Ch.-Laslier - Russkikh, arXiv:2001.11871, arXiv:20**.**] (discrete complex analysis framework & a priori regularity estimates)

> <u>Particular cases</u>: harmonic/Tutte's embeddings [via the Temperley bijection] Ising model s-embeddings [Ch., arXiv:1712.04192, 2006.14559]

<u>Very particular case</u>: Baxter's Z-invariant Ising model: *rhombic lattices/isoradial graphs* [Ch.-Smirnov, arXiv:0808.2547,0910.2045 "<u>Universality</u> in the 2D Ising model and conformal invariance of fermionic observables"]

[?] Existence of perfect t-embeddings

p-embeddings = *perfect t-embeddings*:
▷ outer face is a tangential (non-convex) polygon,
▷ edges adjacent to outer vertices are bisectors.

#(degrees of freedom): OK

[?] Existence of perfect t-embeddings

p-embeddings = perfect t-embeddings:
▷ outer face is a tangential (non-convex) polygon,
▷ edges adjacent to outer vertices are bisectors.

[?] Why does Lorentz geometry appear? Another simple example: annulus-type graphs → Lorentz-minimal cusp (z, arcsinh |z|).

[?] P-embeddings and more algebraic viewpoints:
•••• embeddings to the Klein/Plücker quadric [?]

[?] Existence of perfect t-embeddings

p-embeddings = perfect t-embeddings:
▷ outer face is a tangential (non-convex) polygon,
▷ edges adjacent to outer vertices are bisectors.

[?] Why does Lorentz geometry appear? Another simple example: annulus-type graphs → Lorentz-minimal cusp (z, arcsinh |z|).

[??] Eventually, what about embeddings of *random maps* weighted by dimers/Ising? Liouville CFT [??]

[?] Existence of perfect t-embeddings

p-embeddings = perfect t-embeddings:
▷ outer face is a tangential (non-convex) polygon,
▷ edges adjacent to outer vertices are bisectors.

[?] Why does Lorentz geometry appear? Another simple example: annulus-type graphs ~> Lorentz-minimal cusp (z, arcsinh |z|).

[??] Eventually, what about embeddings of *random maps* weighted by dimers/Ising? Liouville CFT [??]

THANK YOU!

