Bipartite dimer model

AND MINIMAL SURFACES

in the Minkowski space
Dmitry Chelkak (ENS)
[joint works w/ Benoît Laslier, Sanjay Ramassamy, Marianna Russkikh]

UM - MSU Mathematics Colloquium, September 1st, 2020 @ Zoom

Outline:

- Basics of the bipartite dimer model:
\triangleright definition, Kasteleyn's theorem;
\triangleright Thurston's height functions;
\triangleright Temperleyan domains: $\hbar^{\delta} \rightarrow$ GFF.
- Conjectural picture on periodic grids:
\triangleright Cohn-Kenyon-Propp's theorem;
\triangleright Kenyon-Okounkov's prediction:

$$
\hbar^{\delta} \rightarrow \text { GFF in a non-trivial metric. }
$$

- New viewpoint: t-embeddings $\mathcal{T}^{\boldsymbol{\delta}}$
\triangleright basic concepts, origami maps \mathcal{O}^{δ}; \triangleright Assumptions: perfect t-embeddings, $\left(\mathcal{T}^{\delta}, \mathcal{O}^{\delta}\right) \rightarrow$ Lorenz-minimal surface; \triangleright Theorem [Ch. - Laslier-Russkikh '20].
- (Some) open questions/perspectives.

Illustration:

Aztec diamonds
[Ch.-Ramassamy] [arXiv:2002.07540]

Bipartite dimer model: basics

- $\left(\mathcal{G}, \nu_{b w}\right)$ - finite weighted bipartite planar graph (w/ marked outer face);
- Dimer configuration $=$ perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;
- Probability $\mathbb{P}(\mathcal{D}) \propto \nu(\mathcal{D})=\prod_{e \in \mathcal{D}} \nu_{e}$;
- Partition function $\mathcal{Z}_{\nu}(\mathcal{G})=\sum_{\mathcal{D}} \nu(\mathcal{D})$.
(Very) particular example:
[Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^{2}$]

Example: if all weights $\nu_{b w}=1$, then \mathcal{Z} is the number of perfect matchings in \mathcal{G}.

Bipartite dimer model: basics

- $\left(\mathcal{G}, \nu_{b w}\right)$ - finite weighted bipartite planar graph (w/ marked outer face);
- Dimer configuration $=$ perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;
- Probability $\mathbb{P}(\mathcal{D}) \propto \nu(\mathcal{D})=\prod_{e \in \mathcal{D}} \nu_{e}$;
- Partition function $\mathcal{Z}_{\nu}(\mathcal{G})=\sum_{\mathcal{D}} \nu(\mathcal{D})$.
(Very) particular example:
[Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^{2}$]

- Theorem (Kasteleyn, 1961): for each planar (not necessarily bipartite) graph (\mathcal{G}, ν), one can

$$
\mathcal{Z}_{\nu}(G)=\left|\operatorname{Pf} \mathcal{A}_{\nu}\right|=\left|\operatorname{det} \mathcal{A}_{\nu}\right|^{1 / 2}
$$ find a signed adjacency matrix $\mathcal{A}_{\nu}=-\mathcal{A}_{\nu}^{\top}$ of G :

[^0]Bipartite dimer model: basics

- $\left(\mathcal{G}, \nu_{b w}\right)$ - finite weighted bipartite planar graph (w/ marked outer face);
- Dimer configuration $=$ perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;
- Probability $\mathbb{P}(\mathcal{D}) \propto \nu(\mathcal{D})=\prod_{e \in \mathcal{D}} \nu_{e}$;
- Partition function $\mathcal{Z}_{\nu}(\mathcal{G})=\sum_{\mathcal{D}} \nu(\mathcal{D})$.

Q: Could you remind us what $\operatorname{Pf} \mathcal{A}$ is?
A: If $\mathcal{A}=-\mathcal{A}^{\top}$ is a $2 n \times 2 n$ matrix, then

$$
\operatorname{Pf} \mathcal{A}:=\frac{1}{2^{n} n!} \sum(-1)^{s(\sigma)} a_{\sigma_{1} \sigma_{2}} . . a_{\sigma_{2 n-1}} a_{\sigma_{2 n}}
$$

Example:

$$
\operatorname{Pf}\left[\begin{array}{cccc}
0 & a & b & c \\
-a & 0 & d & e \\
-b & -d & 0 & f \\
-c & -e & -f & 0
\end{array}\right]=a f-b e+c d
$$

- Theorem (Kasteleyn, 1961): for each planar (not necessarily bipartite) graph (\mathcal{G}, ν), one can

$$
\mathcal{Z}_{\nu}(G)=\left|\operatorname{Pf} \mathcal{A}_{\nu}\right|=\left|\operatorname{det} \mathcal{A}_{\nu}\right|^{1 / 2}
$$ find a signed adjacency matrix $\mathcal{A}_{\nu}=-\mathcal{A}_{\nu}^{\top}$ of G :

[^1]Bipartite dimer model: basics

- $\left(\mathcal{G}, \nu_{b w}\right)$ - finite weighted bipartite planar graph (w/ marked outer face);
- Dimer configuration $=$ perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;
- Probability $\mathbb{P}(\mathcal{D}) \propto \nu(\mathcal{D})=\prod_{e \in \mathcal{D}} \nu_{e}$;
- Partition function $\mathcal{Z}_{\nu}(\mathcal{G})=\sum_{\mathcal{D}} \nu(\mathcal{D})$.
- \mathcal{G} - bipartite $\Rightarrow \mathcal{A}_{\nu}=\left[\begin{array}{cc}0 & \mathcal{K}_{\nu} \\ -\mathcal{K}_{\nu}^{\top} & 0\end{array}\right]$ and $\left|\operatorname{Pf} \mathcal{A}_{\nu}\right|=\left|\operatorname{det} \mathcal{K}_{\nu}\right|$.
- Corollary: If $b \sim w$ in \mathcal{G}, then

$$
\mathbb{P}[(b w) \in \mathcal{D}]=\left|\mathcal{K}_{\nu}^{-1}(w, b)\right| .
$$

Moreover, the edges of a random dimer configuration \mathcal{D} form a determinantal process with the kernel $\mathcal{K}_{\nu}^{-1}: \mathbb{C}^{B} \rightarrow \mathbb{C}^{W}$.

- Theorem (Kasteleyn, 1961): for each planar (not necessarily bipartite) graph (\mathcal{G}, ν), one can

$$
\mathcal{Z}_{\nu}(G)=\left|\operatorname{Pf} \mathcal{A}_{\nu}\right|=\left|\operatorname{det} \mathcal{A}_{\nu}\right|^{1 / 2}
$$ find a signed adjacency matrix $\mathcal{A}_{\nu}=-\mathcal{A}_{\nu}^{\top}$ of G :

[^2]Bipartite dimer model: basics

- [Kenyon, 2000]: it is often convenient to introduce complex signs in \mathcal{K}_{ν}. E.g., on \mathbb{Z}^{2}, the following choice works:

- \mathcal{G} - bipartite $\Rightarrow \mathcal{A}_{\nu}=\left[\begin{array}{cc}0 & \mathcal{K}_{\nu} \\ -\mathcal{K}_{\nu}^{\top} & 0\end{array}\right]$ and $\left|\operatorname{Pf} \mathcal{A}_{\nu}\right|=\left|\operatorname{det} \mathcal{K}_{\nu}\right|$.
- Corollary: If $b \sim w$ in \mathcal{G}, then

$$
\mathbb{P}[(b w) \in \mathcal{D}]=\left|\mathcal{K}_{\nu}^{-1}(w, b)\right| .
$$

Moreover, the edges of a random dimer configuration \mathcal{D} form a determinantal process with the kernel $\mathcal{K}_{\nu}^{-1}: \mathbb{C}^{B} \rightarrow \mathbb{C}^{W}$.

- Theorem (Kasteleyn, 1961): for each planar (not necessarily bipartite) graph (\mathcal{G}, ν), one can

$$
\mathcal{Z}_{\nu}(G)=\left|\operatorname{Pf} \mathcal{A}_{\nu}\right|=\left|\operatorname{det} \mathcal{A}_{\nu}\right|^{1 / 2}
$$ find a signed adjacency matrix $\mathcal{A}_{\nu}=-\mathcal{A}_{\nu}^{\top}$ of G :

[^3]
GFF and random height fluctuations

- \mathcal{D} - random dimer configuration
- Random height function h on \mathcal{G}^{*} : fix \mathcal{D}_{0}, view $\mathcal{D} \cup \mathcal{D}_{0}$ as a topographic map.
- Height fluctuations $\hbar:=h-\mathbb{E}[h]$ do not depend on the choice of \mathcal{D}_{0}.
(Very) particular example:
[Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^{2}$]

GFF and random height fluctuations

- \mathcal{D} - random dimer configuration
- Random height function h on \mathcal{G}^{*} : fix \mathcal{D}_{0}, view $\mathcal{D} \cup \mathcal{D}_{0}$ as a topographic map.
- Height fluctuations $\hbar:=h-\mathbb{E}[h]$ do not depend on the choice of \mathcal{D}_{0}.
(Very) particular example:
[Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^{2}$]

GFF and random height fluctuations

- \mathcal{D} - random dimer configuration
- Random height function h on \mathcal{G}^{*} : fix \mathcal{D}_{0}, view $\mathcal{D} \cup \mathcal{D}_{0}$ as a topographic map.
- Height fluctuations $\hbar:=h-\mathbb{E}[h]$ do not depend on the choice of \mathcal{D}_{0}.
- Theorem (Kenyon, 2000): Let $\mathcal{G}_{\mathrm{T}}^{\delta} \subset \delta \mathbb{Z}^{2}$ be Temperleyan approximations to a given domain $\Omega \subset \mathbb{C}$. Then,

$$
\hbar^{\delta} \rightarrow \pi^{-\frac{1}{2}} \mathrm{GFF}_{\Omega} \text { as } \delta \rightarrow 0
$$

where GFF_{Ω} is the Gaussian Free Field in Ω with Dirichlet boundary conditions.
(Very) particular example:
[Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^{2}$]

Q: What is GFF_{Ω} ?
A: $\mathbb{E}[\hbar(z)]=0, z \in \Omega$;

$$
\begin{aligned}
& \mathbb{E}[\hbar(z) \hbar(w)] \\
& \quad=-\Delta_{\Omega}^{-1}(z, w) .
\end{aligned}
$$

GFF and random height fluctuations

- \mathcal{D} - random dimer configuration
- Random height function h on \mathcal{G}^{*} : fix \mathcal{D}_{0}, view $\mathcal{D} \cup \mathcal{D}_{0}$ as a topographic map.
- Height fluctuations $\hbar:=h-\mathbb{E}[h]$ do not depend on the choice of \mathcal{D}_{0}.

Q: why are Temperleyan \mathcal{G}_{T} so special?
A1: 'nice' boundary conditions for discrete holomorphic functions $\mathcal{K}^{-1}(w, \cdot)$. A2: Wilson's algorithm for UST \Rightarrow random walks with 'nice'(=absorbed) boundary conditions naturally appear.
(Very) particular example:
[Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^{2}$]

Temperley bijection: dimers on \mathcal{G}_{T} \leftrightarrow spanning trees on a related graph. This procedure is highly sensitive to the microscopic structure of the boundary.

Conjectural picture on periodic grids

- [Cohn-Kenyon-Propp, 2000]: random profiles δh^{δ} concentrate near a surface (with given boundary) that maximizes certain entropy functional.
\triangleright Example: flat height profile at $\partial \Omega$ \rightsquigarrow flat surface in the bulk of Ω.
\triangleright Remark: the entropy functional is non-trivial and lattice-dependent.

Examples on Hex* [(c) Kenyon]:

[!!!] Though the law of \hbar^{δ} is independent of the choice of \mathcal{D}_{0}^{δ}, the limit of \hbar^{δ} as $\delta \rightarrow 0$ heavily depends on the limit of deterministic boundary profiles of δh^{δ} :

- frozen/liquid/(gaseous) zones in Ω;
- 'arctic curves' \rightsquigarrow algebraic geometry;
- 'polygonal' examples are well-studied.

Conjectural picture on periodic grids

- [Cohn-Kenyon-Propp, 2000]:
random profiles δh^{δ} concentrate near a surface (with given boundary) that maximizes certain entropy functional.
- Prediction [Kenyon-Okounkov,'06] :

$$
\hbar^{\delta} \rightarrow \operatorname{GFF}_{(\Omega, \mu)},
$$

where $\operatorname{GFF}_{(\Omega, \mu)}$ denotes the Gaussian Free Field in a certain profile-dependent metric/conformal structure μ on Ω.

$$
\left[\text { i.e., } \mathbb{E}[\hbar(z) \hbar(w)]=-\Delta_{(\Omega, \mu)}^{-1}(z, w)\right]
$$

Examples on Hex* [(c) Kenyon]:

[!!!] Though the law of \hbar^{δ} is independent of the choice of \mathcal{D}_{0}^{δ}, the limit of \hbar^{δ} as $\delta \rightarrow 0$ heavily depends on the limit of deterministic boundary profiles of δh^{δ} :

- frozen/liquid/(gaseous) zones in Ω;
- 'arctic curves' \rightsquigarrow algebraic geometry;
- 'polygonal' examples are well-studied.

Conjectural picture on periodic grids

- [Cohn-Kenyon-Propp, 2000]: random profiles δh^{δ} concentrate near a surface (with given boundary) that maximizes certain entropy functional.
- Prediction [Kenyon-Okounkov,'06] :

$$
\hbar^{\delta} \rightarrow \operatorname{GFF}_{(\Omega, \mu)},
$$

where $\operatorname{GFF}_{(\Omega, \mu)}$ denotes the Gaussian Free Field in a certain profile-dependent metric/conformal structure μ on Ω.

$$
\left[\text { i.e., } \mathbb{E}[\hbar(z) \hbar(w)]=-\Delta_{(\Omega, \mu)}^{-1}(z, w)\right]
$$

[!] This is not proven even for $\Omega^{\delta} \subset \delta \mathbb{Z}^{2}$ composed of 2×2 blocks [\Rightarrow 'flat' μ].

- Classical example studied in detail:

Aztec diamonds

 [Elkies-Kuperberg-Larsen-Propp'92,...]

[(c) A. \& M. Borodin, S. Chhita]

Conjectural picture on periodic grids

- [Cohn-Kenyon-Propp, 2000]: random profiles δh^{δ} concentrate near a surface (with given boundary) that maximizes certain entropy functional.
- Prediction [Kenyon-Okounkov,'06] :

$$
\hbar^{\delta} \rightarrow \operatorname{GFF}_{(\Omega, \mu)},
$$

where $\operatorname{GFF}_{(\Omega, \mu)}$ denotes the Gaussian Free Field in a certain profile-dependent metric/conformal structure μ on Ω.

$$
\left[\text { i.e., } \mathbb{E}[\hbar(z) \hbar(w)]=-\Delta_{(\Omega, \mu)}^{-1}(z, w)\right]
$$

[!] This is not proven even for $\Omega^{\delta} \subset \delta \mathbb{Z}^{2}$ composed of 2×2 blocks [\Rightarrow 'flat' μ].

- Classical example studied in detail:

Aztec diamonds

[Elkies-Kuperberg-Larsen-Propp'92,...]

[(c) A. \& M. Borodin, S. Chhita]

Q: How can holomorphic/harmonic functions on $\delta \mathbb{Z}^{2}$ lead to a non-trivial complex structure in the limit $\delta \rightarrow 0$?
" A ": Think about functions $h(n, m)=$ $\sin (\alpha n) \sinh (b m)$ with $\cos \alpha+\cosh b=2$.

Conjectural picture on periodic grids

- [Cohn-Kenyon-Propp, 2000]: random profiles δh^{δ} concentrate near a surface (with given boundary) that maximizes certain entropy functional.
- Prediction [Kenyon-Okounkov,'06] :

$$
\hbar^{\delta} \rightarrow \operatorname{GFF}_{(\Omega, \mu)},
$$

where $\operatorname{GFF}_{(\Omega, \mu)}$ denotes the Gaussian Free Field in a certain profile-dependent metric/conformal structure μ on Ω.

$$
\left[\text { i.e., } \mathbb{E}[\hbar(z) \hbar(w)]=-\Delta_{(\Omega, \mu)}^{-1}(z, w)\right]
$$

[!] This is not proven even for $\Omega^{\delta} \subset \delta \mathbb{Z}^{2}$ composed of 2×2 blocks [\Rightarrow 'flat' μ].

- Known tools: problematic to apply \downarrow [???] to irregular graphs (\mathcal{G}, ν)
- Long [!!!]-term motivation: random maps carrying bipartite dimers [or the Ising model, via bosonization] and their scaling limits (Liouville CFT).

Conjectural picture on periodic grids

- [Cohn-Kenyon-Propp, 2000]:
random profiles δh^{δ} concentrate near a surface (with given boundary) that maximizes certain entropy functional.
- Prediction [Kenyon-Okounkov,'06] :

$$
\hbar^{\delta} \rightarrow \operatorname{GFF}_{(\Omega, \mu)},
$$

where $\operatorname{GFF}_{(\Omega, \mu)}$ denotes the Gaussian Free Field in a certain profile-dependent metric/conformal structure μ on Ω.

$$
\left[\text { i.e., } \mathbb{E}[\hbar(z) \hbar(w)]=-\Delta_{(\Omega, \mu)}^{-1}(z, w)\right]
$$

[!] This is not proven even for $\Omega^{\delta} \subset \delta \mathbb{Z}^{2}$ composed of 2×2 blocks [\Rightarrow 'flat' μ].

- Known tools: problematic to apply \downarrow [???] to irregular graphs (\mathcal{G}, ν)
- Long [!!!]-term motivation: random maps carrying bipartite dimers [or the Ising model, via bosonization] and their scaling limits (Liouville CFT).

- Wanted: special embeddings of abstract weighted bipartite planar graphs + 'discrete complex analysis' techniques \rightsquigarrow complex structure in the limit.

Theorem: [Ch. - Laslier-Russkikh] [arXiv:2001.11871 + 20**.**]
Assume that, for finite weighted bipartite planar graphs $\mathcal{G}^{\delta}=\left(\mathcal{G}^{\delta}, \nu^{\delta}\right)$,

- \mathcal{T}^{δ} are perfect t-embeddings of $\left(\mathcal{G}^{\delta}\right)^{*}$ [satisfying assumption Exp-FAT (δ)];
- as $\delta \rightarrow 0$, the images of \mathcal{T}^{δ} converge to a domain $\mathrm{D}_{\xi}\left[\xi \in \operatorname{Lip}_{1}(\mathbb{T}),|\xi|<\frac{\pi}{2}\right]$;
- origami maps $\left(\mathcal{T}^{\delta}, \mathcal{O}^{\delta}\right)$ converge to a Lorentz-minimal surface $\mathrm{S}_{\xi} \subset \mathrm{D}_{\xi} \times \mathbb{R}$. Then, the height fluctuations \hbar^{δ} in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the intrinsic metric of $\mathrm{S}_{\xi} \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.

Illustration:

Aztec diamonds
[Ch.-Ramassamy] [arXiv:2002.07540]

Theorem: [Ch.-Laslier-Russkikh] [arXiv:2001.11871 + 20**.**]
Assume that, for finite weighted bipartite planar graphs $\mathcal{G}^{\delta}=\left(\mathcal{G}^{\delta}, \nu^{\delta}\right)$,

- \mathcal{T}^{δ} are perfect t-embeddings of $\left(\mathcal{G}^{\delta}\right)^{*}$ [satisfying assumption Exp-FAT (δ)];
- as $\delta \rightarrow 0$, the images of \mathcal{T}^{δ} converge to a domain $\mathrm{D}_{\xi}\left[\xi \in \operatorname{Lip}_{1}(\mathbb{T}),|\xi|<\frac{\pi}{2}\right]$;
- origami maps $\left(\mathcal{T}^{\delta}, \mathcal{O}^{\delta}\right)$ converge to a Lorentz-minimal surface $\mathrm{S}_{\xi} \subset \mathrm{D}_{\xi} \times \mathbb{R}$. Then, the height fluctuations \hbar^{δ} in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the intrinsic metric of $\mathrm{S}_{\xi} \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.
- Domains D_{ξ}, surfaces S_{ξ} :
- $\xi: \mathbb{T} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-1$-Lipschitz function;
- D_{ξ} : bounded by $z(\phi)=e^{i \phi} \cdot(\cos \xi(\phi))^{-1}$;
- S_{ξ} spans $\mathrm{L}_{\xi}:=(z(\phi), \tan (\xi(\phi)))_{\phi \in \mathbb{T}}$
$\mathrm{L}_{\xi} \subset\left\{x \in \mathbb{R}^{2+1}:\|x\|^{2}=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=1\right\}$.
- Aztec case surface S_{ξ} :

Theorem: [Ch.-Laslier-Russkikh] [arXiv:2001.11871 + 20**.**]
Assume that, for finite weighted bipartite planar graphs $\mathcal{G}^{\delta}=\left(\mathcal{G}^{\delta}, \nu^{\delta}\right)$,

- \mathcal{T}^{δ} are perfect t-embeddings of $\left(\mathcal{G}^{\delta}\right)^{*}$ [satisfying assumption Exp-FAT (δ)];
- as $\delta \rightarrow 0$, the images of \mathcal{T}^{δ} converge to a domain $\mathrm{D}_{\xi}\left[\xi \in \operatorname{Lip}_{1}(\mathbb{T}),|\xi|<\frac{\pi}{2}\right]$;
- origami maps $\left(\mathcal{T}^{\delta}, \mathcal{O}^{\delta}\right)$ converge to a Lorentz-minimal surface $\mathrm{S}_{\xi} \subset \mathrm{D}_{\xi} \times \mathbb{R}$. Then, the height fluctuations \hbar^{δ} in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the intrinsic metric of $\mathrm{S}_{\xi} \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.

Illustration:

Aztec diamonds
[Ch.-Ramassamy]
[arXiv:2002.07540]

Embeddings of weighted bipartite planar graphs carrying the dimer model

 [and admitting reasonable notions of discrete complex analysis]- t-embeddings $=$ Coulomb gauges: given (\mathcal{G}, ν), find $\mathcal{T}: \mathcal{G}^{*} \rightarrow \mathbb{C}\left[\mathcal{G}^{*}\right.$ - augmented dual] s.t.
\triangleright weights ν_{e} are gauge equivalent to $\chi_{\left(v v^{\prime}\right)^{*}}:=\left|\mathcal{T}\left(v^{\prime}\right)-\mathcal{T}(v)\right|$ (i.e., $\nu_{b w}=g_{b} \chi_{b w} g_{w}$ for some $g: B \cup W \rightarrow \mathbb{R}_{+}$) and \triangleright at each inner vertex $\mathcal{T}(v)$, the sum of black angles $=\pi$.

Embeddings of weighted bipartite planar graphs carrying the dimer model

 [and admitting reasonable notions of discrete complex analysis]- t-embeddings $=$ Coulomb gauges: given (\mathcal{G}, ν), find $\mathcal{T}: \mathcal{G}^{*} \rightarrow \mathbb{C}\left[\mathcal{G}^{*}-\right.$ augmented dual $]$ s.t.
\triangleright weights ν_{e} are gauge equivalent to $\chi_{\left(v v^{\prime}\right)^{*}}:=\left|\mathcal{T}\left(v^{\prime}\right)-\mathcal{T}(v)\right|$ (i.e., $\nu_{b w}=g_{b} \chi_{b w} g_{w}$ for some $g: B \cup W \rightarrow \mathbb{R}_{+}$) and \triangleright at each inner vertex $\mathcal{T}(v)$, the sum of black angles $=\pi$.
- p-embeddings $=$ perfect t-embeddings:
\triangleright outer face is a tangential (possibly, non-convex) polygon, \triangleright edges adjacent to outer vertices are bisectors.
- Warning: for general (\mathcal{G}, ν), the existence of perfect t-embeddings is not known though they do exist in particular cases + the count of $\#$ (degrees of freedom) matches.

Embeddings of weighted bipartite planar graphs carrying the dimer model [and admitting reasonable notions of discrete complex analysis]

- t-embeddings $=$ Coulomb gauges: given (\mathcal{G}, ν), find $\mathcal{T}: \mathcal{G}^{*} \rightarrow \mathbb{C}\left[\mathcal{G}^{*}\right.$ - augmented dual] s.t.
\triangleright weights ν_{e} are gauge equivalent to $\chi_{\left(v v^{\prime}\right)^{*}}:=\left|\mathcal{T}\left(v^{\prime}\right)-\mathcal{T}(v)\right|$ (i.e., $\nu_{b w}=g_{b} \chi_{b w} g_{w}$ for some $g: B \cup W \rightarrow \mathbb{R}_{+}$) and \triangleright at each inner vertex $\mathcal{T}(v)$, the sum of black angles $=\pi$.
- origami maps $\mathcal{O}: \mathcal{G}^{*} \rightarrow \mathbb{C}$ " fold \mathbb{C} along segments of \mathcal{T} "
- the mapping $(\mathcal{T}, \mathcal{O})$ can be viewed as a 'piece-wise linear embedding' of \mathcal{G}^{*} into \mathbb{R}^{2+2}.

Theorem: [Ch. - Laslier - Russkikh] [arXiv:2001.11871 + 20**.**]
Assume that, for finite weighted bipartite planar graphs $\mathcal{G}^{\delta}=\left(\mathcal{G}^{\delta}, \nu^{\delta}\right)$,

- \mathcal{T}^{δ} are perfect t-embeddings of $\left(\mathcal{G}^{\delta}\right)^{*}$ [satisfying assumption Exp-FAT (δ)];
- as $\delta \rightarrow 0$, the images of \mathcal{T}^{δ} converge to a domain $\mathrm{D}_{\xi}\left[\xi \in \operatorname{Lip}_{1}(\mathbb{T}),|\xi|<\frac{\pi}{2}\right]$;
- origami maps $\left(\mathcal{T}^{\delta}, \mathcal{O}^{\delta}\right)$ converge to a Lorentz-minimal surface $\mathrm{S}_{\xi} \subset \mathrm{D}_{\xi} \times \mathbb{R}$. Then, the height fluctuations \hbar^{δ} in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the intrinsic metric of $\mathrm{S}_{\xi} \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.

Illustration:

Aztec diamonds
[Ch.-Ramassamy]
[arXiv:2002.07540]

Theorem: [Ch.-Laslier-Russkikh] [arXiv:2001.11871 + 20**.**]
Assume that, for finite weighted bipartite planar graphs $\mathcal{G}^{\delta}=\left(\mathcal{G}^{\delta}, \nu^{\delta}\right)$,

- \mathcal{T}^{δ} are perfect t-embeddings of $\left(\mathcal{G}^{\delta}\right)^{*}$ [satisfying assumption Exp-FAT (δ)];
- as $\delta \rightarrow 0$, the images of \mathcal{T}^{δ} converge to a domain $\mathrm{D}_{\xi}\left[\xi \in \operatorname{Lip}_{1}(\mathbb{T}),|\xi|<\frac{\pi}{2}\right]$;
- origami maps $\left(\mathcal{T}^{\delta}, \mathcal{O}^{\delta}\right)$ converge to a Lorentz-minimal surface $\mathrm{S}_{\xi} \subset \mathrm{D}_{\xi} \times \mathbb{R}$. Then, the height fluctuations \hbar^{δ} in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the intrinsic metric of $\mathrm{S}_{\xi} \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.
- Exp-Fat (δ) for triangulations \mathcal{T}^{δ} :
for each $\beta>0$, if one removes all ' $\exp \left(-\beta \delta^{-1}\right)$-fat' triangles from \mathcal{T}^{δ}, then the size of remaining (in the bulk of D_{ξ}) vertex-connected components $\rightarrow_{\delta \rightarrow 0} 0$.
[non-triangulations: split either black or white faces into triangles]

- Aztec case

 p-embeddings:

Embeddings of weighted bipartite planar graphs carrying the dimer model [and admitting reasonable notions of discrete complex analysis]
Coulomb gauges [Kenyon - Lam - Ramassamy - Russkikh, arXiv: 1810.05616]
§ (circle patterns, cluster algebras) [+Affolter arXiv:1808.04227] t-embeddings [Ch.-Laslier-Russkikh, arXiv:2001.11871, arXiv:20**.**] (discrete complex analysis framework \& a priori regularity estimates)

Particular cases: harmonic/Tutte's embeddings [via the Temperley bijection] Ising model s-embeddings [Ch., arXiv:1712.04192, 2006.14559]

Very particular case: Baxter's Z-invariant Ising model: rhombic lattices/isoradial graphs [Ch.-Smirnov, arXiv:0808.2547,0910.2045 "Universality in the 2D Ising model and conformal invariance of fermionic observables"]

Open questions, perspectives [general (\mathcal{G}, ν)]

[?] Existence of perfect t-embeddings

p-embeddings $=$ perfect t-embeddings:
\triangleright outer face is a tangential (non-convex) polygon, \triangleright edges adjacent to outer vertices are bisectors.

Open questions, perspectives [general (\mathcal{G}, ν)]

[?] Existence of perfect t-embeddings

p-embeddings $=$ perfect t-embeddings:
\triangleright outer face is a tangential (non-convex) polygon, \triangleright edges adjacent to outer vertices are bisectors.
[?] Why does Lorentz geometry appear?
Another simple example: annulus-type graphs \rightsquigarrow Lorentz-minimal cusp (z, arcsinh $|z|$).
[?] P-embeddings and more algebraic viewpoints: $\leftrightarrow \leadsto$ embeddings to the Klein/Plücker quadric [?]

Open questions, perspectives [general (\mathcal{G}, ν)]

[?] Existence of perfect t-embeddings

p-embeddings $=$ perfect t-embeddings:
\triangleright outer face is a tangential (non-convex) polygon, \triangleright edges adjacent to outer vertices are bisectors.
[?] Why does Lorentz geometry appear?
Another simple example: annulus-type graphs \rightsquigarrow Lorentz-minimal cusp (z, arcsinh $|z|$).
[?] P-embeddings and more algebraic viewpoints: $\leftrightarrow \rightarrow$ embeddings to the Klein/Plücker quadric [?]
[??] Eventually, what about embeddings of random maps weighted by dimers/lsing? Liouville CFT [??]

Open questions, perspectives [general (\mathcal{G}, ν)]

[?] Existence of perfect t-embeddings

p-embeddings $=$ perfect t-embeddings:
\triangleright outer face is a tangential (non-convex) polygon, \triangleright edges adjacent to outer vertices are bisectors.
[?] Why does Lorentz geometry appear?
Another simple example: annulus-type graphs \rightsquigarrow Lorentz-minimal cusp (z, arcsinh $|z|$).
[?] P-embeddings and more algebraic viewpoints: $\leftrightarrow \rightarrow$ embeddings to the Klein/Plücker quadric [?]
[??] Eventually, what about embeddings of random maps weighted by dimers/lsing? Liouville CFT [??]

[^0]: [such an orientation of edges of a planar graph \mathcal{G} is called a Pfaffian orientation]

[^1]: [such an orientation of edges of a planar graph \mathcal{G} is called a Pfaffian orientation]

[^2]: [such an orientation of edges of a planar graph \mathcal{G} is called a Pfaffian orientation]

[^3]: [such an orientation of edges of a planar graph \mathcal{G} is called a Pfaffian orientation]

