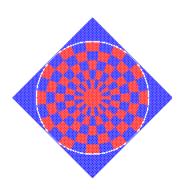
BIPARTITE DIMER MODEL:

Gaussian Free Field

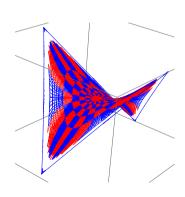
AND LORENTZ-MINIMAL SURFACES



Dmitry Chelkak (ENS)

[recent/in progress joint works w/ Benoît Laslier, Sanjay Ramassamy, Marianna Russkikh]

SCGP, MARCH 9, 2020



Outline of the talk:

- ▶ <u>Running illustration</u>: Aztec diamonds (w/ Ramassamy, arXiv:2002.07540).
- ▶ Intro: Thurston's height functions, conv. to GFF in a non-trivial metric.
- ▶ Long[!]-term motivation:
- ► T-embeddings: basic concepts and a priori regularity estimates (w/ Laslier and Russkikh, arXiv:2001.11871).
- ▶ Perfect t-embeddings and Lorentzminimal surfaces. <u>Main theorem</u> (w/ Laslier and Russkikh, arXiv:20**.**).
- ▶ Open questions/perspectives.

Illustration: (homogeneous) Aztec diamonds $A_n \subset n^{-1}\mathbb{Z}^2$

Theorem: [Ch.-Laslier-Russkikh] [arXiv:2001.11871 + 20**.**]

Let \mathcal{G}^δ , $\delta \to 0$, be finite weighted bipartite planar graphs. Assume that

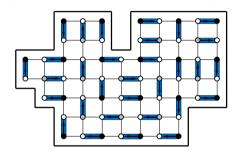
- \mathcal{T}^{δ} are *perfect t-embeddings* of $(\mathcal{G}^{\delta})^*$ [satisfying assumption EXP-FAT (δ)];
- as $\delta \to 0$, the images of \mathcal{T}^{δ} converge to a domain $D \subset \mathbb{C}$, tangential to \mathbb{D} ;
- origami maps $(\mathcal{T}^{\delta}, \mathcal{O}^{\delta})$ converge to a Lorentz-minimal surface $S_D \subset D \times \mathbb{R}$.

Then, height functions fluctuations in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the intrinsic metric of $S_D \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.

Illustration: (homogeneous) Aztec diamonds $A_n \subset n^{-1}\mathbb{Z}^2$

- (\mathcal{G}, ν_{bw}) finite weighted bipartite planar graph (w/ marked outer face);
- Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;
- Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_e$.

(Very) particular example:

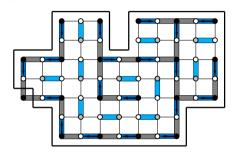


- (\mathcal{G}, ν_{bw}) finite weighted bipartite planar graph (w/ marked outer face);
- Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;
- Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_e$.

• In Temperleyan domains, random walks and discrete harmonic functions with 'nice' boundary conditions naturally appear. This is a very special case.

(Very) particular example:

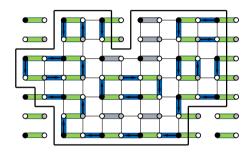
[Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^2$]



Temperley bijection: dimers on \mathcal{G}_T \leftrightarrow *spanning trees* on another graph. This procedure is highly sensitive to the *microscopic structure* of the boundary.

- (\mathcal{G}, ν_{bw}) finite weighted bipartite planar graph (w/ marked outer face);
- Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;
- Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_e$.
- Random height function h (on \mathcal{G}^*): fix \mathcal{D}_0 , view $\mathcal{D} \cup \mathcal{D}_0$ as a topographic map.
- Height fluctuations $\hbar := h \mathbb{E}[h]$ do <u>not</u> depend on the choice of \mathcal{D}_0 .

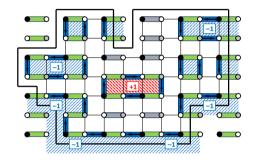
(Very) particular example:



- (\mathcal{G}, ν_{bw}) finite weighted bipartite planar graph (w/ marked outer face);
- Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;
- Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_e$.
- Random height function h (on \mathcal{G}^*): fix \mathcal{D}_0 , view $\mathcal{D} \cup \mathcal{D}_0$ as a topographic map.
- Height fluctuations $\hbar := h \mathbb{E}[h]$ do <u>not</u> depend on the choice of \mathcal{D}_0 .
- Gaussian Free Field: $\mathbb{E}[\hbar(z)] = 0$, $\mathbb{E}[\hbar(z)\hbar(w)] = G_{\Omega}(z,w) = -\Delta_{\Omega}^{-1}(z,w)$.

(Very) particular example:

[Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^2$]



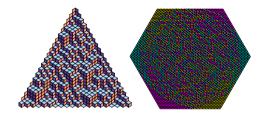
Theorem [Kenyon'00]:

$$\begin{split} \delta \mathbb{Z}^2 \supset \mathcal{G}_{\mathbf{T}}^{\delta} &\to \Omega \subset \mathbb{C} \\ \Rightarrow \hbar^{\delta} &\to \pi^{-\frac{1}{2}} \mathrm{GFF}(\Omega) \end{split}$$

- (\mathcal{G}, ν_{bw}) finite weighted bipartite planar graph (w/ marked outer face);
- Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;
- Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_e$.
- Random height function h (on \mathcal{G}^*): fix \mathcal{D}_0 , view $\mathcal{D} \cup \mathcal{D}_0$ as a topographic map.
- Height fluctuations ħ := h − E[h]
 do <u>not</u> depend on the choice of D₀.

[!!!] Still, the limit of \hbar^{δ} as $\delta \to 0$ <u>heavily depends</u> on the limit of (deterministic) boundary profiles of δh^{δ} .

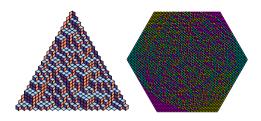
Examples (on Hex*) [(c) Kenyon]:



- (\mathcal{G}, ν_{bw}) finite weighted bipartite planar graph (w/ marked outer face);
- Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;
- Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_e$.
- Random height function h (on \mathcal{G}^*): fix \mathcal{D}_0 , view $\mathcal{D} \cup \mathcal{D}_0$ as a topographic map.
- Height fluctuations $\hbar := h \mathbb{E}[h]$ do <u>not</u> depend on the choice of \mathcal{D}_0 .

[!!!] Still, the limit of \hbar^{δ} as $\delta \to 0$ <u>heavily depends</u> on the limit of (deterministic) boundary profiles of δh^{δ} .

Examples (on Hex*) [(c) Kenyon]:



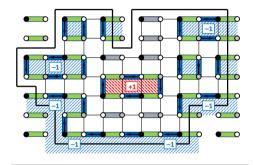
- [Cohn–Kenyon–Propp'00] the random profile δh^{δ} concentrates near a surface maximizing certain *entropy functional*.
- [Kenyon–Okounkov–Sheffield'06] gen.
 periodic lattices; prediction on ħ^δ:
 GFF in the profile-dependent metric.
- Problematic beyond periodic case.

- (\mathcal{G}, ν_{bw}) finite weighted bipartite planar graph (w/ marked outer face);
- Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;
- Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_e$.
- Random height function h (on \mathcal{G}^*): fix \mathcal{D}_0 , view $\mathcal{D} \cup \mathcal{D}_0$ as a topographic map.
- Height fluctuations $\hbar := h \mathbb{E}[h]$ do <u>not</u> depend on the choice of \mathcal{D}_0 .

[!!!] Still, the limit of \hbar^{δ} as $\delta \to 0$ <u>heavily depends</u> on the limit of (deterministic) boundary profiles of δh^{δ} .

(Very) particular example:

[Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^2$]

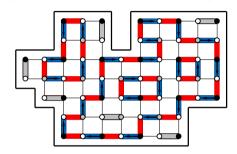


Remark: If $G_{\rm T}^{\delta}$ are Temperleyan, *then* the boundary profiles of δh^{δ} are 'flat'.

The *converse* is (by far) *false*: e.g., domains composed of 2×2 blocks are 'flat'.

- (\mathcal{G}, ν_{bw}) finite weighted bipartite planar graph (w/ marked outer face);
- Dimer configuration = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;
- Probability $\mathbb{P}(\mathcal{D}) \propto \prod_{e \in \mathcal{D}} \nu_e$.
- Random height function h (on \mathcal{G}^*): fix \mathcal{D}_0 , view $\mathcal{D} \cup \mathcal{D}_0$ as a topographic map.
- Height fluctuations $\hbar := h \mathbb{E}[h]$ do <u>not</u> depend on the choice of \mathcal{D}_0 .
- **Double-dimer model:** two independent random configurations \mathcal{D} and \mathcal{D}' .

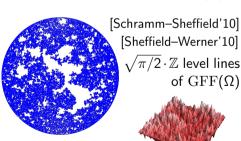
(Very) particular example:



- Height functions $h_{\text{dbl-d}} = h_1 h_2$.
- Loop ensembles $\mathcal{L}_{\mathsf{dbl-d}} = \mathcal{D} \cup \mathcal{D}'$.
- $\mathcal{L}_{dbl-d} = \{ \mathbb{Z} \text{ level lines of } h_{dbl-d} \}.$

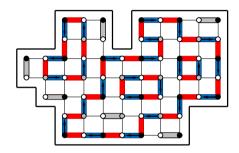
- $\hbar^\delta o \pi^{-1/2} \cdot \mathrm{GFF}(\Omega)$ [Kenyon'00]
- $\mathcal{L}_{\mathsf{dbl-d}}^{\delta} \xrightarrow{\text{[?]}} \mathrm{CLE_4}(\Omega)$ [Kenyon'10] \leadsto [Dubédat'14] \leadsto [Basok–Ch.'18] \leadsto ...

Conformal Loop Ensemble ${\rm CLE}_4(\Omega)$:



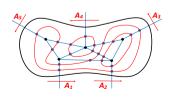
(c) David Wilson

(Very) particular example:



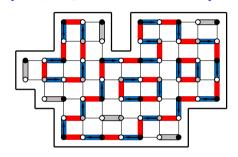
- Height functions $h_{\text{dbl-d}} = h_1 h_2$.
- Loop ensembles $\mathcal{L}_{\mathsf{dbl-d}} = \mathcal{D} \cup \mathcal{D}'$.
- $\mathcal{L}_{dbl-d} = \{ \mathbb{Z} \text{ level lines of } h_{dbl-d} \}.$

- $\hbar^\delta o \pi^{-1/2} \cdot \mathrm{GFF}(\Omega)$ [Kenyon'00]
- $\mathcal{L}_{\mathsf{dbl-d}}^{\delta} \xrightarrow{\text{[?]}} \mathrm{CLE_4}(\Omega)$ [Kenyon'10] \leadsto [Dubédat'14] \leadsto [Basok–Ch.'18] \leadsto ...
- GFF(Ω) \Rightarrow CLE₄(Ω) [" \Leftarrow " is OK] additional tool: topological observables $\tau^{\delta}(\rho) := \mathbb{E} \big[\prod_{\gamma \in \mathcal{L}_{Abld}^{\delta}} \frac{1}{2} \mathrm{Tr} \rho(\gamma) \big]$



 ρ : locally unipotent connections $\pi_1(\Omega \setminus \{\lambda_k\})$ $\to \operatorname{SL}_2(\mathbb{C})$

(Very) particular example:



- Height functions $h_{\text{dbl-d}} = h_1 h_2$.
- Loop ensembles $\mathcal{L}_{\mathsf{dbl-d}} = \mathcal{D} \cup \mathcal{D}'$.
- $\mathcal{L}_{dbl-d} = \{ \mathbb{Z} \text{ level lines of } h_{dbl-d} \}.$

• $\hbar^\delta o \pi^{-1/2} \cdot \mathrm{GFF}(\Omega)$ [Kenyon'00]

- Non-flat case: $\mathrm{GFF}_{\mu}(\Omega)$
- ▷ Temperleyan-type domains
 Hex*
 coming from T-graphs [Kenyon'04]
- ▷ 'polygons' via 'integrable probability' and (rather hard) asymptotic analysis [Petrov, Bufetov–Gorin, ... '12+]
- ▶ thorough analysis of concrete setups (e.g., Aztec diamonds) w/ interesting behavior
 [Chhita–Johansson–Young, ... '12+]

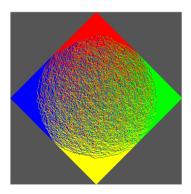
Aztec diamonds

$$A_n \subset n^{-1}\mathbb{Z}^2$$
:

[Elkies – Kuperberg – Larsen – Propp '92, ...]



[(c) A. & M. Borodin, S. Chhita]



• $\hbar^\delta o \pi^{-1/2} \cdot \mathrm{GFF}(\Omega)$ [Kenyon'00]

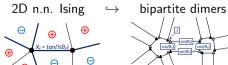
- Non-flat case: $\mathrm{GFF}_{\mu}(\Omega)$
- ► Temperleyan-type domains
 Hex*
 coming from T-graphs [Kenyon'04]
- ▷ 'polygons' via 'integrable probability' and (rather hard) asymptotic analysis [Petrov, Bufetov–Gorin, ... '12+]
- b thorough analysis of concrete setups (e.g., Aztec diamonds) w/ interesting behavior

[Chhita-Johansson-Young, ... '12+]

- Known tools: problematic to apply \uparrow [?] to generic graphs (\mathcal{G}, ν)
- Long[!]-term goal:

attack random maps carrying the bipartite dimer [or the *critical Ising*] model.

"Bosonization": [Dubédat'11, ...]:



• $\hbar^\delta o \pi^{-1/2} \cdot \mathrm{GFF}(\Omega)$ [Kenyon'00]

- Non-flat case: $\mathrm{GFF}_{\mu}(\Omega)$
- ► Temperleyan-type domains
 Hex*
 coming from T-graphs [Kenyon'04]
- ▷ 'polygons' via 'integrable probability' and (rather hard) asymptotic analysis [Petrov, Bufetov–Gorin, ... '12+]
- b thorough analysis of concrete setups (e.g., Aztec diamonds) w/ interesting behavior

[Chhita-Johansson-Young, ... '12+]

- Known tools: problematic to apply \uparrow [?] to generic graphs (\mathcal{G}, ν)
- Long[!]-term goal:

attack random maps carrying the bipartite dimer [or the *critical Ising*] model.

• Wanted: special embeddings of abstract weighted bipartite planar graphs + 'discrete complex analysis' techniques on such embeddings

Theorem: [Ch.-Laslier-Russkikh] [arXiv:2001.11871 + 20**.**]

Let \mathcal{G}^δ , $\delta \to 0$, be finite weighted bipartite planar graphs. Assume that

- \mathcal{T}^{δ} are *perfect t-embeddings* of $(\mathcal{G}^{\delta})^*$ [satisfying assumption EXP-FAT (δ)];
- as $\delta \to 0$, the images of \mathcal{T}^{δ} converge to a domain $D \subset \mathbb{C}$, tangential to \mathbb{D} ;
- origami maps $(\mathcal{T}^{\delta}, \mathcal{O}^{\delta})$ converge to a Lorentz-minimal surface $S_D \subset D \times \mathbb{R}$.

Then, height functions fluctuations in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the intrinsic metric of $S_D \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.

Illustration: Aztec diamonds [Ch.-Ramassamy] [arXiv:2002.07540]

Theorem: [Ch.-Laslier-Russkikh] [arXiv:2001.11871 + 20**.**]

Let $\mathcal{G}^\delta,\,\delta\to0,$ be finite weighted bipartite planar graphs. Assume that

- \mathcal{T}^{δ} are *perfect t-embeddings* of $(\mathcal{G}^{\delta})^*$ [satisfying assumption EXP-FAT (δ)];
- as $\delta \to 0$, the images of \mathcal{T}^{δ} converge to a domain $D \subset \mathbb{C}$, tangential to \mathbb{D} ;
- origami maps $(\mathcal{T}^{\delta}, \mathcal{O}^{\delta})$ converge to a Lorentz-minimal surface $S_D \subset D \times \mathbb{R}$.

Then, height functions fluctuations in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the intrinsic metric of $S_D \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.

Illustration: Aztec diamonds [Ch.-Ramassamy] [arXiv:2002.07540]

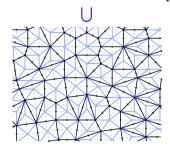
[and admitting reasonable notions of discrete complex analysis]

Particular cases: harmonic/Tutte's embeddings [via the Temperley bijection] Ising model s-embeddings [arXiv:1712.04192, via the bosonization]

Extremely particular case:

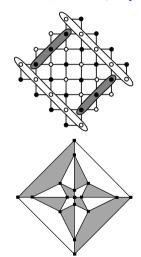
Baxter's critical Z-invariant Ising model on *rhombic lattices/isoradial graphs*

[Ch. – Smirnov, arXiv:0910.2045 "Universality in the 2D Ising model and conformal invariance of fermionic observables"]



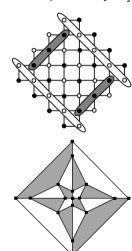
[and admitting reasonable notions of discrete complex analysis]

- t-embeddings = Coulomb gauges: given (\mathcal{G}, ν) , find $\mathcal{T}: \mathcal{G}^* \to \mathbb{C}$ [\mathcal{G}^* augmented dual] s.t.
- \triangleright weights ν_e are gauge equivalent to $\chi_{(vv')^*} := |\mathcal{T}(v') \mathcal{T}(v)|$ (i.e., $\nu_{bw} = g_b \chi_{bw} g_w$ for some $g : B \cup W \to \mathbb{R}_+$) and
- \triangleright at each inner vertex $\mathcal{T}(v)$, the sum of black angles $=\pi$.



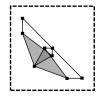
[and admitting reasonable notions of discrete complex analysis]

- *t-embeddings* = *Coulomb gauges*: given (\mathcal{G}, ν) , find $\mathcal{T}: \mathcal{G}^* \to \mathbb{C}$ [\mathcal{G}^* augmented dual] s.t.
- \triangleright weights ν_e are gauge equivalent to $\chi_{(vv')^*} := |\mathcal{T}(v') \mathcal{T}(v)|$ (i.e., $\nu_{bw} = g_b \chi_{bw} g_w$ for some $g : B \cup W \to \mathbb{R}_+$) and
- \triangleright at each inner vertex $\mathcal{T}(v)$, the sum of black angles $=\pi$.
- *p-embeddings* = *perfect t-embeddings*:
 - ▶ outer face is a tangential polygon,
 - ▶ edges adjacent to outer vertices are bisectors.
- Warning: for general (\mathcal{G}, ν) , the *existence* of perfect t-embeddings is not known though they do exist in particular cases + the count of #(degrees of freedom) matches.

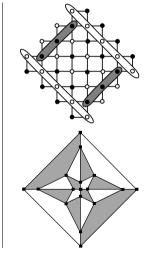


[and admitting reasonable notions of discrete complex analysis]

- *t-embeddings* = *Coulomb gauges*: given (\mathcal{G}, ν) , find $\mathcal{T}: \mathcal{G}^* \to \mathbb{C}$ [\mathcal{G}^* augmented dual] s.t.
- \triangleright weights ν_e are gauge equivalent to $\chi_{(vv')^*} := |\mathcal{T}(v') \mathcal{T}(v)|$ (i.e., $\nu_{bw} = g_b \chi_{bw} g_w$ for some $g : B \cup W \to \mathbb{R}_+$) and
- \triangleright at each inner vertex $\mathcal{T}(v)$, the sum of black angles $=\pi$.
- ullet origami maps $\mathcal{O}\colon \mathcal{G}^* o \mathbb{C}$ ["fold \mathbb{C} along segments of \mathcal{T} "]

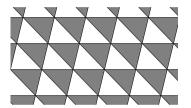


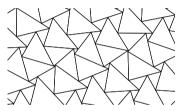
• T-graphs $\mathcal{T} + \alpha^2 \mathcal{O}$, $|\alpha| = 1$: [GeoGebra]



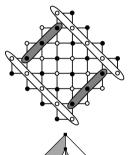
[and admitting reasonable notions of discrete complex analysis]

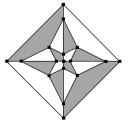
• "Regular" case: triangular grids [Kenyon'04 + Laslier'13]





- T-graphs $\mathcal{T} + \alpha^2 \mathcal{O}$, $|\alpha| = 1$: [GeoGebra]
- t-holomorphic functions $F^{\circ}: W \to \mathbb{C}$ $\overline{\alpha} \cdot \{ \text{ gradients of harmonic on } \mathcal{T} + \alpha^2 \mathcal{O} \}$ [this notion does <u>not</u> depend on α]





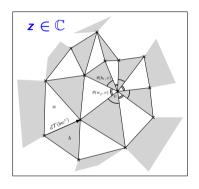
[and admitting reasonable notions of discrete complex analysis]

A priori regularity theory [arXiv:2001.11871]

ullet \mathcal{T}^{δ} satisfies $\mathrm{Lip}(\kappa,\delta)$ for $\kappa<1$ and $\delta>0$ if

$$|z'-z| \geq \delta \quad \Rightarrow \quad |\mathcal{O}^{\delta}(z') - \mathcal{O}^{\delta}(z)| \leq \kappa \cdot |z'-z|.$$

• (triangulations) \mathcal{T}^{δ} satisfy $\operatorname{Exp-Fat}(\delta)$ as $\delta \to 0$ if for each $\beta > 0$, if one removes all ' $\exp(-\beta \delta^{-1})$ -fat' triangles from \mathcal{T}^{δ} , then the size of remaining vertex-connected components tends to zero as $\delta \to 0$.



Results: • *Hölder* regularity of *t-holomorphic* functions,

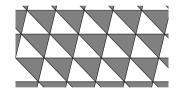
• *Lipschitz* regularity of *harmonic* functions on $\mathcal{T}^{\delta} + \alpha^2 \mathcal{O}^{\delta}$.

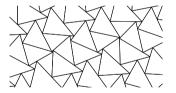
What can be said on subsequential limits?

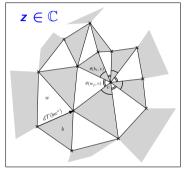
[and admitting reasonable notions of discrete complex analysis]

A priori regularity theory [arXiv:2001.11871]

• Assume that $\mathcal{O}^{\delta}(z) \to \vartheta(z)$, $\delta \to 0$. Then, limits of harmonic functions on $\mathcal{T}^{\delta} + \alpha^2 \mathcal{O}^{\delta}$ are martingales wrt to a *certain diffusion* whose coefficients *depend on* ϑ , α .







Results: • *Hölder* regularity of *t-holomorphic* functions,

• *Lipschitz* regularity of *harmonic* functions on $\mathcal{T}^{\delta} + \alpha^2 \mathcal{O}^{\delta}$.

• What can be said on subsequential limits?

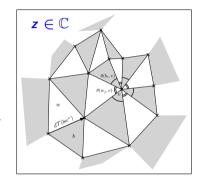
[and admitting reasonable notions of discrete complex analysis]

A priori regularity theory [arXiv:2001.11871]

• \mathcal{T}^{δ} satisfy $Lip(\kappa, \delta)$ and $Exp-Fat(\delta)$ as $\delta \to 0$.

Results: • Hölder reg. of t-holomorphic functions,

- Lipschitz reg. of harmonic functions on $\mathcal{T}^{\delta} + \alpha^2 \mathcal{O}^{\delta}$.
- Assume that $\mathcal{O}^{\delta}(z) \to \vartheta(z), \ z \in \mathbb{D}, \ \delta \to 0$ and that
- $\{(z, \vartheta(z))\}_{z \in D} \subset \mathbb{R}^{2+2}$ is a <u>Lorentz-minimal</u> surface.



- Let a parametrization ζ be conformal $z_{\zeta}\overline{z}_{\zeta}=\vartheta_{\zeta}\overline{\vartheta}_{\zeta}$ and harmonic $z_{\zeta\overline{\zeta}}=\vartheta_{\zeta\overline{\zeta}}=0$.
- Then, subsequential limits of harmonic functions on all T-graphs $\mathcal{T}^{\delta} + \alpha^2 \mathcal{O}^{\delta}$, $|\alpha| = 1$, and, moreover, all limits of dimer height functions *correlations are harmonic in* ζ .

Theorem: [Ch.-Laslier-Russkikh] [arXiv:2001.11871 + 20**.**]

Let \mathcal{G}^δ , $\delta \to 0$, be finite weighted bipartite planar graphs. Assume that

- \mathcal{T}^{δ} are *perfect t-embeddings* of $(\mathcal{G}^{\delta})^*$ [satisfying assumption EXP-FAT (δ)];
- as $\delta \to 0$, the images of \mathcal{T}^{δ} converge to a domain $D \subset \mathbb{C}$, tangential to \mathbb{D} ;
- origami maps $(\mathcal{T}^{\delta}, \mathcal{O}^{\delta})$ converge to a Lorentz-minimal surface $S_D \subset D \times \mathbb{R}$.

Then, height functions fluctuations in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the intrinsic metric of $S_D \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.

Illustration: Aztec diamonds [Ch.-Ramassamy] [arXiv:2002.07540]

Theorem: [Ch.-Laslier-Russkikh] [arXiv:2001.11871 + 20**.**]

Let $\mathcal{G}^\delta,\,\delta\to0,$ be finite weighted bipartite planar graphs. Assume that

- \mathcal{T}^{δ} are *perfect t-embeddings* of $(\mathcal{G}^{\delta})^*$ [satisfying assumption EXP-FAT (δ)];
- as $\delta \to 0$, the images of \mathcal{T}^{δ} converge to a domain $D \subset \mathbb{C}$, tangential to \mathbb{D} ;
- origami maps $(\mathcal{T}^{\delta}, \mathcal{O}^{\delta})$ converge to a Lorentz-minimal surface $S_D \subset D \times \mathbb{R}$.

Then, height functions fluctuations in the dimer models on \mathcal{T}^{δ} converge to the standard Gaussian Free Field in the intrinsic metric of $S_D \subset \mathbb{R}^{2+1} \subset \mathbb{R}^{2+2}$.

Illustration: Aztec diamonds [Ch.-Ramassamy] [arXiv:2002.07540]

Open questions, perspectives $[\underline{general}(\mathcal{G}, \nu)]$

• Existence of perfect t-embeddings

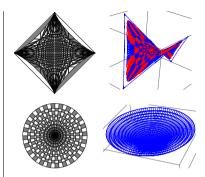
```
p-embeddings = perfect t-embeddings:
```

- ▶ outer face is a tangential polygon,
- ▶ edges adjacent to outer vertices are bisectors.

- $ightharpoonup \operatorname{deg} f_{\operatorname{out}} = 4$: OK [KLRR]
- > #(degrees of freedom): OK

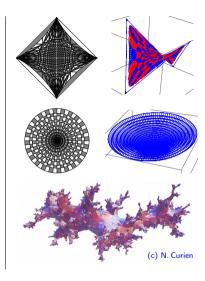
Open questions, perspectives [general (G, ν)]

- Existence of perfect t-embeddings
 - *p-embeddings* = *perfect t-embeddings*:
 - ▶ outer face is a tangential polygon,
 - ▶ edges adjacent to outer vertices are bisectors.
- [?] P-embeddings \times more algebraic viewpoints: embeddings to the Klein/Plücker quadric?



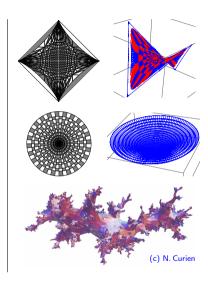
Open questions, perspectives $[general (\mathcal{G}, \nu)]$

- Existence of perfect t-embeddings
 - *p-embeddings* = *perfect t-embeddings*:
 - ▶ outer face is a tangential polygon,
 - ▶ edges adjacent to outer vertices are bisectors.
- [?] P-embeddings \times more algebraic viewpoints: embeddings to the Klein/Plücker quadric?
- [...] Eventually, what about embeddings of *random* maps weighted by the Ising model? Liouville CFT?



Open questions, perspectives $[\underline{general}(\mathcal{G}, \nu)]$

- Existence of perfect t-embeddings
 - *p-embeddings* = *perfect t-embeddings*:
 - ▶ outer face is a tangential polygon,
 - ▶ edges adjacent to outer vertices are bisectors.
- [?] P-embeddings \(\cdots\) more algebraic viewpoints: embeddings to the Klein/Plücker quadric?
- [...] Eventually, what about embeddings of random maps weighted by the Ising model? Liouville CFT?



THANK YOU!