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Nearest-neighbor critical 2D Ising model:
correlations, interfaces, estimates

• Introduction: phase transition,
diagonal correlations, conformal invariance

• Combinatorics: dimers, Kac-Ward,
fermionic observables, double-covers

• Scaling limits at criticality via
Riemann-type boundary value problems

• More fields: σ, µ, ψ, ε  glimpse of CFT

• Geometry: convergence of curves,
convergence to CLE [Benoist–Hongler’16 ]

• Regularity of interfaces: a priori estimates
via surgery of discrete domains

• Open questions

[ Two disorders: sample of a
critical 2D Ising configuration

c© Clément Hongler (EPFL) ]



Nearest-neighbor Ising (or Lenz-Ising) model in 2D

Definition: Lenz-Ising model on a planar graph G ∗ (dual to G ) is
a random assignment of +/− spins to vertices of G ∗ (faces of G )

Q: I heard this is called a (site) percolation?
A: .. according to the following probabilities:

P
[
conf. σ ∈ {±1}V (G∗)

]
∝ exp

[
β
∑

e=〈uv〉 Juvσuσv
]

∝ ∏
e=〈uv〉:σu 6=σv

xuv ,

where Juv > 0 are interaction constants assigned to edges 〈uv〉,
β = 1/kT is the inverse temperature, and xuv = exp[−2βJuv ].



Nearest-neighbor Ising (or Lenz-Ising) model in 2D

Definition: Lenz-Ising model on a planar graph G ∗ (dual to G ) is
a random assignment of +/− spins to vertices of G ∗ (faces of G )

Remark: w/o an external magnetic field
Remark:this is a “free fermion” model.

P
[
conf. σ ∈ {±1}V (G∗)

]
∝ exp

[
β
∑

e=〈uv〉 Juvσuσv
]

∝
∏

e=〈uv〉:σu 6=σv
xuv ,

where Juv > 0 are interaction constants assigned to edges 〈uv〉,
β = 1/kT is the inverse temperature, and xuv = exp[−2βJuv ].

• It is also convenient to use the parametrization xuv = tan(12θuv ).

• Working with subgraphs of regular lattices, one can consider the
homogeneous model in which all xuv are equal to each other.



Lenz-Ising model: phase transition (e.g., on Z
2)

E.g., Dobrushin boundary conditions: +1 on (ab) and −1 on (ba):

x < xcrit x = xcrit x > xcrit

• Ising (1925): no phase transition in 1D  doubts about 2+D;

• Peierls (1936): existence of the phase transition in 2D;

• Kramers-Wannier (1941): xself-dual =
√
2− 1 = tan(12 · π

4 );

• Onsager (1944): sharp phase transition at xcrit =
√
2− 1.



At criticality (e.g., on Z
2):

• scaling exponent 1
8
for the magnetization

[ Kaufman–Onsager(1948), Yang(1952) ]

limn→∞ E[σ0σ2n] ∼ cst · |x−xcrit|
1
4 , x ↑xcrit

[ Wu (1966), correlations at x = xcrit ]

E[σ0σ2n] =
(
2
π

)n ∏n−1
s=1

(
1− 1

4s2

)s−n

∼ cst · (2n)−
1
4 , n → ∞

x = xcrit

Remark: “modern” proofs
(Fourier transform applied
to full-plane observables)
take several pages only.

[see arXiv:1605.09035]. Similarly, “explicit” computations can be
done in the “layered” case [ Ch.–Hongler, still in preparation ], i.e.
when all interactions are the same in each of the zig-zag columns.



At criticality (e.g., on Z
2):

• scaling exponent 1
8
for the magnetization

[ Kaufman–Onsager(1948), Yang(1952) ]

limn→∞ E[σ0σ2n] ∼ cst · |x−xcrit|
1
4 , x ↑xcrit

[ Wu (1966), correlations at x = xcrit ]

E[σ0σ2n] =
(
2
π

)n ∏n−1
s=1

(
1− 1

4s2

)s−n

∼ cst · (2n)−
1
4 , n → ∞

x = xcrit

Theorem (layered half-plane): [Ch.–Hongler]

E
+
iH⋄

[σ−2n] =
detHn[t

1/2µ]

(detHn[µ]detHn[tµ])1/2
,

where detHn[µ] := det
[∫ 1

0 t i+jµ(dt)
]n−1

i ,j=0
and

µ is the spectral measure of the Jacobi matrix
〈y ,Wy〉=∑

n>0(a2na2n+1yn−b2n+1b2n+2yn+1)
2.

[Notation: ak = cos θk , bk = sin θk , where xk = tan 1
2
θk is the interaction constant in the k-th zig-zag column]



At criticality (e.g., on Z
2):

• scaling exponent 1
8
for the magnetization

[ Kaufman–Onsager(1948), Yang(1952) ]

limn→∞ E[σ0σ2n] ∼ cst · |x−xcrit|
1
4 , x ↑xcrit

[ Wu (1966), correlations at x = xcrit ]

 as Ωδ → Ω, it should be EΩδ
[σu] ≍ δ

1
8 .

• Existence of scaling limits as Ωδ → Ω:
[ Ch.–Hongler–Izyurov, arXiv:1202.2838 ]

x = xcrit

δ−
n
8 · EΩδ

[σu1 . . . σun ] → 〈σu1 . . . σun〉Ω
Conformal covariance: = 〈σϕ(u1) . . . σϕ(un)〉ϕ(Ω) ·

∏n
s=1 |ϕ′(us)|

1
8

Remark. Basing on this, one can study the convergence

of random fields (δ−
1
8σu)u∈Ω to a (non-Gaussian!) limit

as δ → 0 [ Camia–Garban–Newman ’13, Furlan–Mourrat ’16 ]



At criticality (e.g., on Z
2):

• scaling exponent 1
8
for the magnetization

[ Kaufman–Onsager(1948), Yang(1952) ]

limn→∞ E[σ0σ2n] ∼ cst · |x−xcrit|
1
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 as Ωδ → Ω, it should be EΩδ
[σu] ≍ δ

1
8 .
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x = xcrit

δ−
n
8 · EΩδ

[σu1 . . . σun ] → 〈σu1 . . . σun〉Ω
Conformal covariance: = 〈σϕ(u1) . . . σϕ(un)〉ϕ(Ω) ·

∏n
s=1 |ϕ′(us)|

1
8

• Instead of correlation functions, one can study convergence of
curves (e.g., domain walls generated by Dobrushin boundary
conditions) and loop ensembles (either outermost or nested)
to conformally invariant limits: SLE(3)’s and CLE(3).



2D Ising model as a dimer model [Fisher, Kasteleyn (’60s), ...]

• Partition function Z =
∑

σ∈{±1}V (G∗ )

∏
e=〈uv〉:σu 6=σv

xuv

• There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph:
e.g. 1-to-2|V (G)| correspondence of
{±1}V (G∗) with dimers on this G

F

Reference: “Revisiting 2D Ising combinatorics” arXiv:1507.08242
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2D Ising model as a dimer model [Fisher, Kasteleyn (’60s), ...]

• Partition function Z =
∑

σ∈{±1}V (G∗ )

∏
e=〈uv〉:σu 6=σv

xuv

• There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph:
e.g. 1-to-2|V (G)| correspondence of
{±1}V (G∗) with dimers on this G

F

• Kasteleyn’s theory: Z=Pf[K ] [K=−K
⊤ is a weighted adjacency matrix of G

F

]

• Kac–Ward formula (1952–...,1999–...): Z2 = det[Id−T],

Te,e′ =

{
exp[ i2wind(e, e′)] · (xexe′)1/2
0

[ is equivalent to the Kasteleyn theorem for dimers on G

F

]

Reference: “Revisiting 2D Ising combinatorics” arXiv:1507.08242



2D Ising model as a dimer model [Fisher, Kasteleyn (’60s), ...]

• Partition function Z =
∑

σ∈{±1}V (G∗ )

∏
e=〈uv〉:σu 6=σv

xuv

• There exist various representa-
tions of the 2D Ising model via
dimers on an auxiliary graph:
e.g. 1-to-2|V (G)| correspondence of
{±1}V (G∗) with dimers on this G

F

• Kasteleyn’s theory: Z=Pf[K ] [K=−K
⊤ is a weighted adjacency matrix of G

F

]

• Energy density field: note that P[σ
e

♯σ
e

♭ = −1 ] = |K−1
e,e | .

• Local relations for the entries K−1
a,e and K−1

a, of the inverse
Kasteleyn (or the inverse Kac–Ward) matrix:

(an equivalent form of) the identity K ·K−1= Id

Reference: “Revisiting 2D Ising combinatorics” arXiv:1507.08242



Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge ze (similarly, for a corner c),

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[
e−

i
2
wind(a ze)

∏
〈uv〉∈ω

xuv

]

where ηa denotes the (once and forever
fixed) square root of the direction of a.

• The factor e−
i
2
wind(a ze) does not de-

pend on the way how ω is split into non-
intersecting loops and a path a ze .

• Via dimers on G
F

: FG (a, c) = ηcK
−1
c,a

FG (a, ze) = ηeK
−1
e,a + ηeK

−1
e,a

Reference: “Revisiting 2D Ising combinatorics” arXiv:1507.08242



Fermionic observables: combinatorial definition [Smirnov’00s]

For an oriented edge a and a midedge ze (similarly, for a corner c),

FG (a, ze) := ηa
∑

ω∈ConfG (a,ze)

[
e−

i
2
wind(a ze)

∏
〈uv〉∈ω

xuv

]

where ηa denotes the (once and forever
fixed) square root of the direction of a.

• Local relations: at criticality, can
be thought of as a special form of
discrete Cauchy–Riemann equations.

• Boundary conditions F(a, z
e

)∈η
ē

R

(e is oriented outwards) uniquely de-
termine F as a solution to an appropriate
discrete Riemann-type boundary value problem.

   Scaling limit of fermions [ Smirnov’06, Ch.–Smirnov’09 ]
and of energy densities [ Hongler–Smirnov, Hongler’10 ]



Derivatives of spin correlations ↔ fermions on double-covers

• spin configurations on G ∗

! domain walls on G

! dimers on G

F

• Kasteleyn’s theory: Z =Pf[K ]
[K=−K

⊤ is a weighted adjacency matrix of G
F

]

• Claim:
E[σ

u1
. . . σ

u

n

] =
Pf [K[u1,...,un] ]

Pf [K ]
,

where K[u1,...,un] is obtained from K by changing the sign of its
entries on slits linking u1, . . . ,un (and, possibly, uout) pairwise.



Derivatives of spin correlations ↔ fermions on double-covers

• spin configurations on G ∗

! domain walls on G

! dimers on G

F

• Kasteleyn’s theory: Z =Pf[K ]
[K=−K

⊤ is a weighted adjacency matrix of G
F

]

• Claim:
E[σ

u1
. . . σ

u

n

] =
Pf [K[u1,...,un] ]

Pf [K ]
,

where K[u1,...,un] is obtained from K by changing the sign of its
entries on slits linking u1, . . . ,un (and, possibly, uout) pairwise.

More invariant way: double-covers branching over u1, ...,un.

• If one shifts u1 to a neighboring face ũ1, the “spatial derivative”

E[σ
ũ1
σ
u2
...σ

u

n

]

E[σ
u1
σ
u2
...σ

u

n

]
can be expressed via the entries of K−1

[u1,...,un]
.



Scaling limits via Riemann-type b.v.p.’s [ arXiv:1605.09035 ]

• Three local primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8
, 1.

• Theorem: [ Hongler–Smirnov, Hongler’10 ]

If Ωδ→Ω and ek→zk as δ → 0, then

δ−n · E+
Ωδ
[εe1 . . . εen ] →

δ→0
Cn
ε ·〈εz1 . . . εzn〉+Ω

where Cε is a lattice-dependent constant,

〈εz1 . . . εzn〉+Ω = 〈εϕ(z1) . . . εϕ(zn)〉+Ω′ ·
∏

n

s=1 |ϕ
′(u

s

)|

for any conformal mapping ϕ : Ω → Ω′, and

〈ε
z1
. . . ε

z

n

〉+
H

= in · Pf
[
(zs − zm)

−1
]2n
s,m=1

, zs = z2n+1−s .

• Ingredients: convergence of basic fermionic observables
(via Riemann-type b.v.p.) and (built-in) Pfaffian formalism



Scaling limits via Riemann-type b.v.p.’s [ arXiv:1605.09035 ]

• Three local primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8
, 1.

• Theorem: [ Ch.–Hongler–Izyurov’12 ]

If Ωδ→Ω as δ → 0, then

δ−
n

8 ·E+
Ωδ
[σu1 . . . σun ] →

δ→0
Cn
σ·〈σu1 . . . σun〉+Ω

where Cσ is a lattice-dependent constant,

〈σu1 . . . σun〉+Ω = 〈σϕ(u1) . . . σϕ(un)〉+Ω′ ·
∏

n

s=1 |ϕ
′(u

s

)|
1
8

for any conformal mapping ϕ : Ω → Ω′, and
[
〈σ

u1
. . . σ

u

n

〉+
H

]2
=

∏

16s6n

(2 Im us)
− 1

4 ×
∑

β∈{±1}n

∏

s<m

∣∣∣∣
us−um

us−um

∣∣∣∣

βsβm
2

• Another approach (full plane): “exact bosonization” [ J. Dubédat’11 ]



Scaling limits via Riemann-type b.v.p.’s [ arXiv:1605.09035 ]

• Three local primary fields:
1, σ (spin), ε (energy density);
Scaling exponents: 0, 1

8
, 1.

• Theorem: [ Ch.–Hongler–Izyurov’12 ]

If Ωδ→Ω as δ → 0, then

δ−
n

8 ·E+
Ωδ
[σu1 . . . σun ] →

δ→0
Cn
σ·〈σu1 . . . σun〉+Ω

a

z

a+
δ

2

E.g., to handle E
+
Ωδ

[σ
ũ

]/E+
Ωδ

[σ
u

], one
should consider the following b.v.p.:

◦ g(z ♯) ≡ −g(z ♭), branches over u;

◦ Im
[
g(ζ)

√
τ(ζ)

]
= 0 for ζ ∈ ∂Ω;

◦ g(z) = (2i)−1/2
√
z−u

[1+2AΩ(u)(z−u)+...]

• Conformal covariance: AΩ(z) = AΩ′(φ(z)) ·φ′(z)+ 1
8
· φ′′(z)

φ′(z)
.



σ−µ formalism [Kadanoff–Ceva’71]

• Given (an even number of) vertices

v1, ..., vm, consider the Ising model on a
double-cover G [v1,...,vm] ramified at each
of v1, ..., vm with the spin-flip symmetry

constrain σu♯ = −σu♭ if u♯ and u♭ lie over
the same face of G . Let

〈µ
v1
...µ

v

m

σ
u1
...σ

u

n

〉
G

:= EG [v1,..,vm ] [σu1 ...σun ] · Z
[v1,...,vm]
G /ZG . [two disorders inserted]

[ by definition, the (formal) correlator 〈µ
v1
...µ

v

m

σ
u1
...σ

u

n

〉
G

changes the sign when one of uk goes around of one of vs ]

Reference: “Revisiting 2D Ising combinatorics” arXiv:1507.08242



σ−µ formalism [Kadanoff–Ceva’71]

• Given (an even number of) vertices

v1, ..., vm, consider the Ising model on a
double-cover G [v1,...,vm] ramified at each
of v1, ..., vm with the spin-flip symmetry

constrain σu♯ = −σu♭ if u♯ and u♭ lie over
the same face of G . Let

〈µ
v1
...µ

v

m

σ
u1
...σ

u

n

〉
G

:= EG [v1,..,vm ] [σu1 ...σun ] · Z
[v1,...,vm]
G /ZG . [two disorders inserted]

• For a corner  lying in the face u() near the vertex v(), set

ψ


:= δ
1
2 (u()−v())−

1
2µ

v()σu(). Provided v(cp) 6= v(cq),

   the same fermions 〈ψ
1
...ψ

2k
〉
G

= Pf[ 〈ψ


p

ψ


q

〉
G

]2k
p,q=1,

this also works in presence of other spins and/or disorders.

Reference: “Revisiting 2D Ising combinatorics” arXiv:1507.08242



Scaling limits via Riemann-type b.v.p.’s: more fields

[ Ch.–Hongler–Izyurov ’17 (to appear soon...) ]

• Convergence of mixed correlations:
spins (σ), disorders (µ), fermions (ψ),
energy densities (ε) (in multiply connected
domains Ω, with mixed fixed/free boundary
conditions b) to conformally covariant limits,
which can be defined via solutions to appropriate
Riemann-type boundary value problems in Ω.

• Standard CFT fusion rules

σµ 1
2(ηψ + ηψ⋆), ψσ  µ, ψµ σ,

i
2ψψ

⋆  ε, σσ  1 + 1
2ε, µµ 1− 1

2ε

can be deduced directly from the analysis of these b.v.p.’s

[ cf. the invited session talk by Izyurov (on Monday...) ]



Scaling limits via Riemann-type b.v.p.’s: more fields

[ Ch.–Hongler–Izyurov ’17 (to appear soon...) ]

• Convergence of mixed correlations:
spins (σ), disorders (µ), fermions (ψ),
energy densities (ε) (in multiply connected
domains Ω, with mixed fixed/free boundary
conditions b) to conformally covariant limits,
which can be defined via solutions to appropriate
Riemann-type boundary value problems in Ω.

• Standard CFT fusion rules, e.g. σσ  1 + ε:

〈σu′σu...〉bΩ = |u′−u|− 1
4

[
〈...〉bΩ+ 1

2 |u′−u|〈εu ...〉bΩ+ . . .
]
,

can be deduced directly from the analysis of these b.v.p.’s

• More CFT: stress-energy tensor [ Ch. –Glazman – Smirnov’16 ];
Virasoro algebra on local fields [ Hongler–Kytölä–Viklund(’13–17) ]



Geometric viewpoint: conformal loop ensembles (CLEs)

Question: What could be a good can-
didate for the scaling limit of loops sur-
rounding clusters (e.g., with “+” b.c.)?

Intuition: Distribution of loops should
(a) be conformally invariant
(b) satisfy the domain Markov property:

given the loops intersecting D2 \D1, the

remaining ones form an independent CLE

in each component of the complement.

critical Ising sample with

free b.c., c© C. Hongler
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Loop-soup construction:

• sample a (countable) set of
Brownian loops using some
natural conformally-friendly
Poisson process of intensity c .
• fill the outermost clusters
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Geometric viewpoint: conformal loop ensembles (CLEs)

Question: What could be a good can-
didate for the scaling limit of loops sur-
rounding clusters (e.g., with “+” b.c.)?

Intuition: Distribution of loops should
(a) be conformally invariant
(b) satisfy the domain Markov property:

given the loops intersecting D2 \D1, the

remaining ones form an independent CLE

in each component of the complement.

critical Ising sample with

free b.c., c© C. Hongler

Thm [Sheffield–Werner’10]:
provided that loops do not
touch each other, (a) and (b)
imply that CLE has the law of
loop-soup boundaries for some
intensity c ∈ (0, 1].



Geometric viewpoint: conformal loop ensembles (CLEs)

Question: What could be a good can-
didate for the scaling limit of loops sur-
rounding clusters (e.g., with “+” b.c.)?

Theorem [Benoist –Hongler’16 ]:

The limit of critical spin-Ising clusters is
a (nested) CLE corresponding to c = 1

2 .

• The intensity in the loop-soup con-

struction coincide with the central charge

in the CFT formalism for correlations.
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Loop-soup construction:
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Geometric viewpoint: conformal loop ensembles (CLEs)

Question: What could be a good can-
didate for the scaling limit of loops sur-
rounding clusters (e.g., with “+” b.c.)?

Theorem [Benoist –Hongler’16 ]:

The limit of critical spin-Ising clusters is
a (nested) CLE corresponding to c = 1

2 .

• This is the tip of the iceberg, which
is built upon a work of many people.
Preliminary results [’06 – ’16] include:

critical Ising sample with

free b.c., c© C. Hongler

◦ Convergence of individual curves (via martingale observables)
for both spin- and FK-representations of the model [ Smirnov’06,
Ch. – Smirnov, Hongler – Kytölä / Izyurov, Kemppainen – Smirnov ]

◦ Uniform RSW-type bounds [ Ch. –Duminil-Copin –Hongler]
based on discrete complex analysis estimates in rough domains.



Convergence of correlations    convergence of interfaces

[ see Ch. –Duminil-Copin –Hongler –Kemppainen – Smirnov ’13 ]

• “Martingale observables”: choose
a function MΩδ

(z), z ∈ Ωδ, such
that MΩδ\γδ[0,n](z) is a martingale
wrt the filtration Fn := σ(γδ[0, n]).

Example: EΩδ
[σz ].

• Convergence of observables: prove uniform (wrt Ωδ) convergence
of the (re-scaled) martingales MΩδ

(z) to MΩ(z) as δ → 0.

Remark: technically, EΩδ
[σz ] is (by far) not an optimal choice of

Remark: a martingale: e.g., fermionic observables are much easier
Remark: to handle [ Smirnov ’06; Ch. – Smirnov ’09; Izyurov ’14 ]



Convergence of correlations    convergence of interfaces

[ see Ch. –Duminil-Copin –Hongler –Kemppainen – Smirnov ’13 ]

• “Martingale observables”: choose
a function MΩδ

(z), z ∈ Ωδ, such
that MΩδ\γδ [0,n](z) is a martingale

• Convergence of observables: prove
uniform (wrt Ωδ) convergence of the
(re-scaled) martingales MΩδ

(z)

• RSW-type crossing estimates ⇒ tightness of the family (γδ)δ→0:

[ Aizenmann –Burchard (1999), Kemppainen – Smirnov ’12 ];

◦ Crossings in rectangles: [ Duminil-Copin –Hongler –Nolin ’09 ];
◦ Rough domains: [ Ch. ’12  Ch. –Duminil-Copin –Hongler ’13 ]

• Identification of subsequential limits: for each γ = limδk→0 γδk ,
the quantities MΩ\γ[0,t](z) are martingales wrt Ft := σ(γ[0, t]).

• conformal covariance of MΩ ⇒ conformal invariance of γ



Convergence of correlations    convergence of interfaces

[ see Ch. –Duminil-Copin –Hongler –Kemppainen – Smirnov ’13 ]

• “Martingale observables”

• Convergence of observables

• Uniform RSW-type estimates
   control of “pinning points”

arising along the exploration

Convergence and conformal invariance of the loop ensemble

• “Exploration” [ Hongler – Kytölä’11;
Benoist –Duminil-Copin –Hongler’14;

Benoist –Hongler’16 ] iteratively switching
between spin- and FK(=random-cluster)-
representations of the Ising model.

Related work: [ Kempainnen – Smirnov ’15–’16]



“Strong” RSW-type theory for the critical (FK-)Ising model

[ “toolbox” arXiv:1212.6205 & Duminil-Copin –Hongler –Nolin’09
[ “toolbox” arXiv:1212.6205 Ch. –Duminil-Copin –Hongler’13 ]

Thm: [ Ch –DC–H ] Uniformly wrt Ω and boundary conditions,

P
FK

Ω [(ab) ↔ (cd)] ∈ [η(L), 1 − η(L)],

where L is the effective resistance of (Ω; (ab), (cd)).

FK-representation of the Ising model: sample a Bernoulli
percolation with parameter 1−xcrit on edges of spin clusters.



“Strong” RSW-type theory for the critical (FK-)Ising model

[ “toolbox” arXiv:1212.6205 & Duminil-Copin –Hongler –Nolin’09
[ “toolbox” arXiv:1212.6205 Ch. –Duminil-Copin –Hongler’13 ]

• Basic ingredients: second moment method, FKG inequality
and estimates of point-to-wired arc connection events via
fermionic observables and then discrete harmonic functions.

• But.. How to handle triple connections x ↔ y ↔̟ ?



“Strong” RSW-type theory for the critical (FK-)Ising model

[ “toolbox” arXiv:1212.6205 & Duminil-Copin –Hongler –Nolin’09
[ “toolbox” arXiv:1212.6205 Ch. –Duminil-Copin –Hongler’13 ]

• “Surgery”: given x , y (and ̟), to construct ̟x ,̟y such that

ZRW[x ↔ ̟] ≍ ZRW[x ↔ ̟x ] · ZRW[̟x ↔ ̟],
ZRW[y ↔ ̟] ≍ ZRW[y ↔ ̟y ] · ZRW[̟y ↔ ̟]

( with uniform wrt everything(!) constants in ≍ estimates ) and

ZRW[̟x ↔ ̟] ≍ ZRW[(xy) ↔ ̟] ≍ ZRW[̟y ↔ ̟].



“Strong” RSW-type theory for the critical (FK-)Ising model

[ “toolbox” arXiv:1212.6205 & Duminil-Copin –Hongler –Nolin’09
[ “toolbox” arXiv:1212.6205 Ch. –Duminil-Copin –Hongler’13 ]

• “Surgery”: given x , y (and ̟), to construct ̟x ,̟y such that

ZRW[x ↔ ̟] ≍ ZRW[x ↔ ̟x ] · ZRW[̟x ↔ ̟].

• Remark. Note that for the effective resistances one would have

L[x ↔ ̟] ≍ L[x ↔ ̟x ] + L[̟x ↔ ̟].

[ see arXiv:1212.6205 for all that and more, e.g. L ≍ log(1+Z
−1
RW

) ]



Some important open questions

• Spin field vs nested CLE(3): is there a way to couple them
so that one (of them) is a deterministic function of the other?

Can one construct correlation functions of other CFT fields
from CLE(3)? E.g., energy field! “occupation density”?



Some important open questions

• Massive SLE(3) curves: fix m ∈ R and let x = xcrit+mδ.
This breaks the conformal invariance (∂f − imf = 0) but one can
consider correlations and interfaces in a fixed domain as δ → 0.

 

 

a 

b 

at z 

Ω 

  ξt gt(a– ) gt(a+ ) 

gt(b)=∞ 

gt(z ) 

gt 

Similarly to mLERW computations from [Makarov–Smirnov’09],

dgt(z) =
2dt

gt(z)−ξt
, dξt =

√
3 dBt + 3 ∂

∂at
logF (m)

Ωt
(at , b) dt,

F (m)
Ωt

(at , b) = [ 〈ψ(m)(at)ψ
(m)(b)〉Ωt

/
〈ψ(at)ψ(b)〉Ωt

]1/2

 3 ∂
∂at

logF (m)
Ωt

(at , b) is a quite non-trivial functional of ξ[0, t].

A priori, even the existence of SDE solutions is unclear...



Some important open questions

• Spin field vs nested CLE(3): is there a way to couple them
so that one (of them) is a deterministic function of the other?

• Massive SLE(3) curves: fix m ∈ R and let x = xcrit+mδ.
This breaks the conformal invariance (∂f − imf = 0) but one can
consider correlations and interfaces in a fixed domain as δ → 0.

• Super-critical regime: interfaces should converge to SLE(6)...
Is it true that mSLE(3)→ SLE(6) as m → +∞?

x = xcrit

• Renormalization

fixed x>xcrit, δ→0

−−−−−−−−→
(x−xcrit) · δ−1 → ∞

x = 1



Some important open questions

• Spin field vs nested CLE(3): is there a way to couple them
so that one (of them) is a deterministic function of the other?

• Massive SLE(3) curves: fix m ∈ R and let x = xcrit+mδ.
This breaks the conformal invariance (∂f − imf = 0) but one can
consider correlations and interfaces in a fixed domain as δ → 0.

• Super-critical regime: interfaces should converge to SLE(6)...
Is it true that mSLE(3)→ SLE(6) as m → +∞?

x = xcrit

• Renormalization

fixed x>xcrit, δ→0

−−−−−−−−→
(x−xcrit) · δ−1 → ∞

x = 1Thank you!


