2D ISING MODEL AT CRITICALITY: CORRELATIONS, INTERFACES, ESTIMATES

DMITRY CHELKAK (ÉNS, PARIS & PDMI, ST.PETERSBURG)

[Sample of a critical 2D Ising configuration with two disorders, © Clément Hongler (EPFL)]

SPA2017, Moscow, 27.07.2017

2D ISING MODEL AT CRITICALITY: CORRELATIONS, INTERFACES, ESTIMATES

[THIS IS A LONG STORY, MANY PEOPLE INVOLVED:

David Cimasoni, Alexander Glazman, Adrien Kassel, Pierre Nolin, Frederik Viklund, ...]

SPA2017, Moscow, 27.07.2017

NEAREST-NEIGHBOR CRITICAL 2D ISING MODEL: CORRELATIONS, INTERFACES, ESTIMATES

- Introduction: phase transition, diagonal correlations, conformal invariance
- Combinatorics: dimers, Kac-Ward, fermionic observables, double-covers
- Scaling limits at criticality via Riemann-type boundary value problems
- More fields: $\sigma, \mu, \psi, \varepsilon \iff$ glimpse of CFT
- Geometry: convergence of curves, convergence to CLE [Benoist-Hongler'16]
- Regularity of interfaces: a priori estimates via surgery of discrete domains
- Open questions

[Two disorders: sample of a critical 2D Ising configuration

© Clément Hongler (EPFL)]

Nearest-neighbor Ising (or Lenz-Ising) model in 2D

Definition: Lenz-Ising model on a planar graph G^* (dual to G) is a random assignment of +/- spins to vertices of G^* (faces of G)

Q: I heard this is called a (site) percolation? A: .. according to the following probabilities:

$$\begin{split} \mathbb{P}\left[\text{conf. } \sigma \in \{\pm 1\}^{V(G^*)} \right] &\propto & \exp\left[\beta \sum_{e=\langle uv \rangle} J_{uv} \sigma_u \sigma_v\right] \\ &\propto & \prod_{e=\langle uv \rangle: \sigma_u \neq \sigma_v} \mathsf{x}_{uv} \,, \end{split}$$

where $J_{uv} > 0$ are interaction constants assigned to edges $\langle uv \rangle$, $\beta = 1/kT$ is the inverse temperature, and $x_{uv} = \exp[-2\beta J_{uv}]$.

Nearest-neighbor Ising (or Lenz-Ising) model in 2D

Definition: Lenz-Ising model on a planar graph G^* (dual to G) is a random assignment of +/- spins to vertices of G^* (faces of G)

Remark: w/o an external magnetic field this is a "free fermion" model.

$$\mathbb{P}\left[\text{conf. } \sigma \in \{\pm 1\}^{V(G^*)} \right] \propto \exp\left[\beta \sum_{e=\langle uv \rangle} J_{uv} \sigma_u \sigma_v \right] \\ \propto \prod_{e=\langle uv \rangle: \sigma_u \neq \sigma_v} x_{uv} ,$$

where $J_{uv} > 0$ are interaction constants assigned to edges $\langle uv \rangle$, $\beta = 1/kT$ is the inverse temperature, and $x_{uv} = \exp[-2\beta J_{uv}]$.

- It is also convenient to use the parametrization $x_{uv} = tan(\frac{1}{2}\theta_{uv})$.
- Working with subgraphs of *regular lattices*, one can consider the *homogeneous model* in which all *x*_{uv} are equal to each other.

Lenz-Ising model: phase transition (e.g., on \mathbb{Z}^2)

E.g., Dobrushin boundary conditions: +1 on (ab) and -1 on (ba):

- Ising (1925): no phase transition in 1D \rightsquigarrow doubts about 2+D;
- Peierls (1936): existence of the phase transition in 2D;
- Kramers-Wannier (1941): $x_{self-dual} = \sqrt{2} 1 = tan(\frac{1}{2} \cdot \frac{\pi}{4});$
- Onsager (1944): sharp phase transition at $x_{crit} = \sqrt{2} 1$.

• scaling exponent $\frac{1}{8}$ for the magnetization [Kaufman-Onsager(1948), Yang(1952)] $\lim_{n\to\infty} \mathbb{E}[\sigma_0\sigma_{2n}] \sim \operatorname{cst} \cdot |\mathbf{x} - \mathbf{x}_{\operatorname{crit}}|^{\frac{1}{4}}, \mathbf{x} \uparrow \mathbf{x}_{\operatorname{crit}}$ [Wu (1966), correlations at $\mathbf{x} = \mathbf{x}_{\operatorname{crit}}$] $\mathbb{E}[\sigma_0\sigma_{2n}] = (\frac{2}{\pi})^n \prod_{s=1}^{n-1} (1 - \frac{1}{4s^2})^{s-n}$ $\sim \operatorname{cst} \cdot (2n)^{-\frac{1}{4}}, n \to \infty$

 $x = x_{\rm crit}$

Remark: "modern" proofs (Fourier transform applied to full-plane observables) take several pages only.

[see arXiv:1605.09035]. Similarly, "explicit" computations can be done in the "layered" case [Ch.–Hongler, still in preparation], i.e. when all interactions are the same in each of the zig-zag columns.

• scaling exponent $\frac{1}{8}$ for the magnetization [Kaufman-Onsager(1948), Yang(1952)] $\lim_{n\to\infty} \mathbb{E}[\sigma_0\sigma_{2n}] \sim \operatorname{cst} \cdot |\mathbf{x} - \mathbf{x}_{\operatorname{crit}}|^{\frac{1}{4}}, \mathbf{x} \uparrow \mathbf{x}_{\operatorname{crit}}$ [Wu (1966), correlations at $\mathbf{x} = \mathbf{x}_{\operatorname{crit}}$] $\mathbb{E}[\sigma_0\sigma_{2n}] = (\frac{2}{\pi})^n \prod_{s=1}^{n-1} (1 - \frac{1}{4s^2})^{s-n}$ $\sim \operatorname{cst} \cdot (2n)^{-\frac{1}{4}}, n \to \infty$

 $x = x_{\rm crit}$

Theorem (layered half-plane): [Ch.-Hongler] $\mathbb{E}_{i\mathbb{H}_{\diamond}}^{+}[\sigma_{-2n}] = \frac{\det H_{n}[t^{1/2}\mu]}{(\det H_{n}[\mu] \det H_{n}[t\mu])^{1/2}},$ where $\det H_{n}[\mu] := \det \left[\int_{0}^{1} t^{i+j}\mu(dt)\right]_{i,j=0}^{n-1}$ and μ is the spectral measure of the Jacobi matrix $\langle y, Wy \rangle = \sum_{n \ge 0} (a_{2n}a_{2n+1}y_n - b_{2n+1}b_{2n+2}y_{n+1})^2.$

[Notation: $a_k = \cos \theta_k$, $b_k = \sin \theta_k$, where $x_k = \tan \frac{1}{2} \theta_k$ is the interaction constant in the k-th zig-zag column]

- scaling exponent $\frac{1}{8}$ for the magnetization [Kaufman–Onsager(1948), Yang(1952)] $\lim_{n\to\infty} \mathbb{E}[\sigma_0 \sigma_{2n}] \sim \mathbf{cst} \cdot |\mathbf{x} - \mathbf{x}_{\rm crit}|^{\frac{1}{4}}, \mathbf{x} \uparrow \mathbf{x}_{\rm crit}$ [Wu (1966), correlations at $x = x_{crit}$] \rightsquigarrow as $\Omega_{\delta} \rightarrow \Omega$, it should be $\mathbb{E}_{\Omega_{\delta}}[\sigma_{\mu}] \simeq \delta^{\frac{1}{8}}$.
- Existence of scaling limits as $\Omega_{\delta} \rightarrow \Omega$: $x = x_{\rm crit}$ [Ch.–Hongler–Izyurov, arXiv:1202.2838] $\delta^{-\frac{n}{2}}$ \mathbb{F} $[\sigma \sigma] > /\sigma \sigma$

Remark. Basing on this, one can study the convergence of random fields $(\delta^{-\frac{1}{8}}\sigma_{\mu})_{\mu\in\Omega}$ to a (non-Gaussian!) limit as $\delta \rightarrow 0$ [Camia–Garban–Newman '13, Furlan–Mourrat '16]

- scaling exponent $\frac{1}{8}$ for the magnetization [Kaufman–Onsager(1948), Yang(1952)] $\lim_{n\to\infty} \mathbb{E}[\sigma_0 \sigma_{2n}] \sim \mathbf{cst} \cdot |\mathbf{x} - \mathbf{x}_{\rm crit}|^{\frac{1}{4}}, \mathbf{x} \uparrow \mathbf{x}_{\rm crit}$ [Wu (1966), correlations at $x = x_{crit}$] \rightsquigarrow as $\Omega_{\delta} \rightarrow \Omega$, it should be $\mathbb{E}_{\Omega_{\delta}}[\sigma_{\mu}] \simeq \delta^{\frac{1}{8}}$.
- Existence of scaling limits as $\Omega_{\delta} \rightarrow \Omega$: [Ch.–Hongler–Izyurov, arXiv:1202.2838] $\delta^{-\frac{n}{8}} \cdot \mathbb{E}_{\Omega_s}[\sigma_{u_1} \dots \sigma_{u_n}] \rightarrow \langle \sigma_{u_1} \dots \sigma_{u_n} \rangle_{\Omega}$

 $x = x_{\rm crit}$

- $= \langle \sigma_{\varphi(\mu_1)} \dots \sigma_{\varphi(\mu_n)} \rangle_{\varphi(\Omega)} \cdot$
- Instead of correlation functions, one can study convergence of curves (e.g., domain walls generated by Dobrushin boundary conditions) and loop ensembles (either outermost or nested) to conformally invariant limits: SLE(3)'s and CLE(3).

• Partition function $\mathcal{Z} = \sum_{\sigma \in \{\pm 1\}^{V(G^*)}} \prod_{e = \langle uv \rangle: \sigma_u \neq \sigma_v} x_{uv}$

• There exist various representations of the 2D Ising model via dimers on an auxiliary graph: e.g. 1-to- $2^{|V(G)|}$ correspondence of $\{\pm 1\}^{V(G^*)}$ with dimers on **this** G_F

• Partition function $\mathcal{Z} = \sum_{\sigma \in \{\pm 1\}^{V(G^*)}} \prod_{e = \langle uv \rangle: \sigma_u \neq \sigma_v} x_{uv}$

• There exist various representations of the 2D Ising model via dimers on an auxiliary graph: e.g. 1-to- $2^{|V(G)|}$ correspondence of $\{\pm 1\}^{V(G^*)}$ with dimers on **this** G_F

• Kasteleyn's theory: $\mathcal{Z} = Pf[K]$ [K = -K^T is a weighted adjacency matrix of G_F]

• Partition function $\mathcal{Z} = \sum_{\sigma \in \{\pm 1\}^{V(G^*)}} \prod_{e = \langle uv \rangle: \sigma_u \neq \sigma_v} x_{uv}$

• There exist various representations of the 2D Ising model via dimers on an auxiliary graph: e.g. 1-to- $2^{|V(G)|}$ correspondence of $\{\pm 1\}^{V(G^*)}$ with dimers on **this** G_F

• Kasteleyn's theory: $\mathcal{Z} = Pf[K]$ [K = -K^T is a weighted adjacency matrix of G_F]

• Kac-Ward formula (1952-...,1999-...): $\mathcal{Z}^2 = \det[\mathrm{Id}-\mathbf{T}],$ $T_{e,e'} = \begin{cases} \exp[\frac{i}{2}\mathrm{wind}(e,e')] \cdot (x_e x_{e'})^{1/2} & e' \\ 0 &$

[is equivalent to the Kasteleyn theorem for dimers on G_F]

• Partition function $\mathcal{Z} = \sum_{\sigma \in \{\pm 1\}^{V(G^*)}} \prod_{e = \langle uv \rangle: \sigma_u \neq \sigma_v} x_{uv}$

• There exist various representations of the 2D Ising model via dimers on an auxiliary graph: e.g. 1-to- $2^{|V(G)|}$ correspondence of $\{\pm 1\}^{V(G^*)}$ with dimers on **this** G_F

• Kasteleyn's theory: $\mathcal{Z} = Pf[K]$ [K = -K^T is a weighted adjacency matrix of G_F]

• Energy density field: note that $\mathbb{P}[\sigma_{e^{\sharp}}\sigma_{e^{\flat}} = -1] = |K_{e,\overline{e}}^{-1}|$.

• Local relations for the entries $\mathbf{K}_{a,e}^{-1}$ and $\mathbf{K}_{a,c}^{-1}$ of the inverse Kasteleyn (or the inverse Kac–Ward) matrix: (an equivalent form of) the identity $\mathbf{K} \cdot \mathbf{K}^{-1} = \mathbf{Id}$

Fermionic observables: combinatorial definition [Smirnov'00s]

For an oriented edge a and a midedge z_e (similarly, for a corner c),

$$F_{G}(a, z_{e}) := \overline{\eta}_{a} \sum_{\omega \in \operatorname{Conf}_{G}(a, z_{e})} \left[e^{-\frac{i}{2} \operatorname{wind}(a \rightsquigarrow z_{e})} \prod_{\langle uv \rangle \in \omega} x_{uv} \right]$$

where η_a denotes the (once and forever fixed) square root of the direction of a.

• The factor $e^{-\frac{i}{2}\text{wind}(a \rightsquigarrow z_e)}$ does not depend on the way how ω is split into nonintersecting loops and a path $a \rightsquigarrow z_e$.

• Via dimers on
$$G_F$$
: $F_G(a, c) = \overline{\eta}_c K_{c,a}^{-1}$
 $F_G(a, z_e) = \overline{\eta}_e K_{e,a}^{-1} + \overline{\eta}_{\overline{e}} K_{\overline{e},a}^{-1}$

Fermionic observables: combinatorial definition [Smirnov'00s]

For an oriented edge a and a midedge z_e (similarly, for a corner c),

$$F_{G}(a, z_{e}) := \overline{\eta}_{a} \sum_{\omega \in \operatorname{Conf}_{G}(a, z_{e})} \left[e^{-\frac{i}{2} \operatorname{wind}(a \rightsquigarrow z_{e})} \prod_{\langle uv \rangle \in \omega} x_{uv} \right]$$

where η_a denotes the (once and forever fixed) square root of the direction of *a*.

• Local relations: at criticality, can be thought of as a special form of discrete Cauchy–Riemann equations.

• Boundary conditions $F(a, z_e) \in \overline{\eta}_{\overline{e}} \mathbb{R}$ (\overline{e} is oriented outwards) uniquely determine F as a solution to an appropriate discrete Riemann-type boundary value problem.

→ Scaling limit of fermions [Smirnov'06, Ch.–Smirnov'09] and of energy densities [Hongler–Smirnov, Hongler'10]

Derivatives of spin correlations \leftrightarrow fermions on double-covers

- spin configurations on G*
 ↔→ domain walls on G
 ↔→ dimers on G_F
- Kasteleyn's theory: $\boldsymbol{\mathcal{Z}} = Pf[\mathbf{K}]$

[$\mathbf{K}\!=\!-\mathbf{K}^{\top}$ is a weighted adjacency matrix of $\textit{G}_{\textit{F}}$]

• Claim:

 $\mathbb{E}[\sigma_{u_1}\ldots\sigma_{u_n}] = \frac{\Pr[\mathbf{K}_{[u_1,\ldots,u_n]}]}{\Pr[\mathbf{K}]},$

where $\mathbf{K}_{[u_1,...,u_n]}$ is obtained from **K** by changing the sign of its entries on slits linking u_1, \ldots, u_n (and, possibly, u_{out}) pairwise.

Derivatives of spin correlations \leftrightarrow fermions on double-covers

- spin configurations on G*
 ↔→ domain walls on G
 ↔→ dimers on G_F
- Kasteleyn's theory: $\boldsymbol{\mathcal{Z}} = Pf[\mathbf{K}]$

[$\mathbf{K}\!=\!-\mathbf{K}^{\top}$ is a weighted adjacency matrix of $\textit{G}_{\textit{F}}$]

• Claim: $\mathbb{E}[\sigma_{u_1} \dots \sigma_{u_n}] = \frac{\Pr[\mathbf{K}_{[u_1, \dots, u_n]}]}{\Pr[\mathbf{K}]},$

where $\mathbf{K}_{[u_1,...,u_n]}$ is obtained from **K** by changing the sign of its entries on slits linking u_1, \ldots, u_n (and, possibly, u_{out}) pairwise.

More invariant way: double-covers branching over $u_1, ..., u_n$.

• If one shifts u_1 to a neighboring face \tilde{u}_1 , the "spatial derivative" $\frac{\mathbb{E}[\sigma_{\tilde{u}_1}\sigma_{u_2}...\sigma_{u_n}]}{\mathbb{E}[\sigma_{u_1}\sigma_{u_2}...\sigma_{u_n}]}$ can be expressed via the entries of $\mathbf{K}_{[u_1,...,u_n]}^{-1}$.

Scaling limits via Riemann-type b.v.p.'s [arXiv:1605.09035]

- Three local primary fields:
 1, σ (spin), ε (energy density);
 Scaling exponents: 0, 1/8, 1.
- **Theorem:** [Hongler–Smirnov, Hongler'10] If $\Omega_{\delta} \rightarrow \Omega$ and $e_k \rightarrow z_k$ as $\delta \rightarrow 0$, then

$$\delta^{-n} \cdot \mathbb{E}^+_{\Omega_{\delta}}[\varepsilon_{e_1} \dots \varepsilon_{e_n}] \xrightarrow[\delta \to 0]{} \mathcal{C}^n_{\varepsilon} \cdot \langle \varepsilon_{z_1} \dots \varepsilon_{z_n} \rangle^+_{\Omega}$$

where $\mathcal{C}_{arepsilon}$ is a lattice-dependent constant,

$$\langle \varepsilon_{z_1} \dots \varepsilon_{z_n} \rangle_{\Omega}^+ = \langle \varepsilon_{\varphi(z_1)} \dots \varepsilon_{\varphi(z_n)} \rangle_{\Omega'}^+ \cdot \prod_{s=1}^n |\varphi'(u_s)|$$

for any conformal mapping $\varphi:\Omega\to \Omega',$ and

$$\langle \varepsilon_{z_1} \dots \varepsilon_{z_n} \rangle_{\mathbb{H}}^+ = i^n \cdot \operatorname{Pf} \left[(z_s - z_m)^{-1} \right]_{s,m=1}^{2n}, \quad z_s = \overline{z}_{2n+1-s}.$$

• **Ingredients:** convergence of **basic fermionic observables** (via Riemann-type b.v.p.) and (built-in) **Pfaffian formalism**

Scaling limits via Riemann-type b.v.p.'s [arXiv:1605.09035]

- Three local primary fields:
 1, σ (spin), ε (energy density);
 Scaling exponents: 0, 1/8, 1.
- **Theorem:** [Ch.–Hongler–Izyurov'12] If $\Omega_{\delta} \rightarrow \Omega$ as $\delta \rightarrow 0$, then

$$\boldsymbol{\delta}^{-\frac{n}{8}} \cdot \mathbb{E}^{+}_{\Omega_{\delta}}[\sigma_{u_{1}} \dots \sigma_{u_{n}}] \xrightarrow{\delta \to 0} \mathcal{C}^{n}_{\sigma} \cdot \langle \boldsymbol{\sigma}_{u_{1}} \dots \boldsymbol{\sigma}_{u_{n}} \rangle^{+}_{\Omega}$$

where \mathcal{C}_{σ} is a lattice-dependent constant,

$$\langle \sigma_{u_1} \dots \sigma_{u_n} \rangle_{\Omega}^+ = \langle \sigma_{\varphi(u_1)} \dots \sigma_{\varphi(u_n)} \rangle_{\Omega'}^+ \cdot \prod_{s=1}^n |\varphi'(u_s)|^{\frac{1}{8}}$$

for any conformal mapping $\varphi:\Omega\to \Omega',$ and

$$\left[\left\langle \boldsymbol{\sigma}_{\boldsymbol{u}_{1}} \dots \boldsymbol{\sigma}_{\boldsymbol{u}_{n}} \right\rangle_{\mathbb{H}}^{+}\right]^{2} = \prod_{1 \leqslant s \leqslant n} (2 \operatorname{Im} u_{s})^{-\frac{1}{4}} \times \sum_{\beta \in \{\pm 1\}^{n}} \prod_{s < m} \left| \frac{u_{s} - u_{m}}{u_{s} - \overline{u}_{m}} \right|^{\frac{\beta_{s} \beta_{m}}{2}}$$

• Another approach (full plane): "exact bosonization" [J. Dubédat'11]

Scaling limits via Riemann-type b.v.p.'s [arXiv:1605.09035]

- Three local primary fields:
 1, σ (spin), ε (energy density);
 Scaling exponents: 0, 1/8, 1.
- Theorem: [Ch.–Hongler–Izyurov'12] If $\Omega_{\delta} \rightarrow \Omega$ as $\delta \rightarrow 0$, then

$$\boldsymbol{\delta}^{-\frac{n}{8}} \cdot \mathbb{E}^{+}_{\Omega_{\delta}}[\sigma_{u_{1}} \ldots \sigma_{u_{n}}] \xrightarrow[\delta \to 0]{} \mathcal{C}^{n}_{\sigma} \cdot \langle \boldsymbol{\sigma}_{\boldsymbol{u}_{1}} \ldots \boldsymbol{\sigma}_{\boldsymbol{u}_{n}} \rangle^{+}_{\Omega}$$

E.g., to handle $\mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{\widetilde{u}}]/\mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{u}]$, one should consider the following b.v.p.: $\circ g(z^{\sharp}) \equiv -g(z^{\flat})$, branches over u; $\circ \operatorname{Im} \left[g(\zeta) \sqrt{\tau(\zeta)} \right] = 0$ for $\zeta \in \partial \Omega$; $\circ g(z) = \frac{(2i)^{-1/2}}{\sqrt{z-u}} [1+2\mathcal{A}_{\Omega}(u)(z-u)+...]$

• Conformal covariance: $\mathcal{A}_{\Omega}(z) = \mathcal{A}_{\Omega'}(\phi(z)) \cdot \phi'(z) + \frac{1}{8} \cdot \frac{\phi''(z)}{\phi'(z)}$.

$\sigma-\mu$ formalism [Kadanoff–Ceva'71]

• Given (an even number of) vertices $v_1, ..., v_m$, consider the Ising model on a double-cover $G^{[v_1,...,v_m]}$ ramified at each of $v_1, ..., v_m$ with the spin-flip symmetry constrain $\sigma_{u^{\sharp}} = -\sigma_{u^{\flat}}$ if u^{\sharp} and u^{\flat} lie over the same face of G. Let

 $:= \mathbb{E}_{C[v_1,\ldots,v_m]}[\sigma_{u_1}\ldots\sigma_{u_n}] \cdot \mathcal{Z}_{C}^{[v_1,\ldots,v_m]}/\mathcal{Z}_{C}.$

 $\langle \mu_{v_1} \dots \mu_{v_m} \sigma_{u_1} \dots \sigma_{u_n} \rangle_G$

[two disorders inserted]

[by definition, the (formal) correlator $\langle \mu_{v_1}...\mu_{v_m}\sigma_{u_1}...\sigma_{u_n}\rangle_G$ changes the sign when one of u_k goes around of one of v_s]

$\sigma-\mu$ formalism [Kadanoff–Ceva'71]

• Given (an even number of) vertices $v_1, ..., v_m$, consider the Ising model on a double-cover $G^{[v_1,...,v_m]}$ ramified at each of $v_1, ..., v_m$ with the spin-flip symmetry constrain $\sigma_{u^{\sharp}} = -\sigma_{u^{\flat}}$ if u^{\sharp} and u^{\flat} lie over the same face of G. Let

 $:= \mathbb{E}_{\mathcal{C}^{[v_1,\ldots,v_m]}}[\sigma_{u_1}\ldots\sigma_{u_n}] \cdot \mathcal{Z}_{\mathcal{C}}^{[v_1,\ldots,v_m]}/\mathcal{Z}_{\mathcal{C}}.$

 $\langle \mu_{v_1} \dots \mu_{v_m} \sigma_{\mu_1} \dots \sigma_{\mu_n} \rangle_G$

[two disorders inserted]

• For a corner c lying in the face u(c) near the vertex v(c), set $\psi_c := \delta^{\frac{1}{2}} (u(c) - v(c))^{-\frac{1}{2}} \mu_{v(c)} \sigma_{u(c)}$. Provided $v(c_p) \neq v(c_q)$,

 \rightsquigarrow the same fermions $\langle \psi_{c_1} ... \psi_{c_{2k}} \rangle_G = \Pr[\langle \psi_{c_p} \psi_{c_q} \rangle_G]_{p,q=1}^{2k}$, this also works in presence of other spins and/or disorders.

Scaling limits via Riemann-type b.v.p.'s: more fields

[Ch.–Hongler–Izyurov '17 (to appear soon...)]

• Convergence of mixed correlations: spins (σ), disorders (μ), fermions (ψ), energy densities (ε) (in multiply connected domains Ω , with mixed fixed/free boundary conditions \mathfrak{b}) to conformally covariant limits, which can be defined via solutions to appropriate Riemann-type boundary value problems in Ω .

• Standard CFT fusion rules

$$\begin{array}{ll} \sigma\mu \rightsquigarrow \frac{1}{2}(\overline{\eta}\psi + \eta\psi^{\star}), & \psi\sigma \rightsquigarrow \mu, & \psi\mu \rightsquigarrow \sigma, \\ \frac{i}{2}\psi\psi^{\star} \rightsquigarrow \varepsilon, & \sigma\sigma \rightsquigarrow 1 + \frac{1}{2}\varepsilon, & \mu\mu \rightsquigarrow 1 - \frac{1}{2}\varepsilon \end{array}$$

can be deduced directly from the analysis of these b.v.p.'s

[cf. the invited session talk by Izyurov (on Monday...)]

Scaling limits via Riemann-type b.v.p.'s: more fields

[Ch.–Hongler–Izyurov '17 (to appear soon...)]

• Convergence of **mixed correlations: spins** (σ), **disorders** (μ), **fermions** (ψ), **energy densities** (ε) (in multiply connected domains Ω , with mixed fixed/free boundary conditions \mathfrak{b}) to conformally covariant limits, which can be defined via solutions to appropriate Riemann-type boundary value problems in Ω .

• Standard CFT fusion rules, e.g. $\sigma \sigma \rightsquigarrow 1 + \varepsilon$:

$$\langle \sigma_{u'}\sigma_{u...}\rangle_{\Omega}^{\mathfrak{b}} = |u'-u|^{-\frac{1}{4}} \left[\langle ...\rangle_{\Omega}^{\mathfrak{b}} + \frac{1}{2} |u'-u| \langle \varepsilon_{u...}\rangle_{\Omega}^{\mathfrak{b}} + \ldots \right],$$

can be deduced directly from the analysis of these b.v.p.'s

• More CFT: stress-energy tensor [Ch.-Glazman-Smirnov'16]; Virasoro algebra on local fields [Hongler-Kytölä-Viklund('13-17)]

<u>Question</u>: What could be a good candidate for the *scaling limit of loops* surrounding clusters (e.g., with "+" b.c.)?

<u>Intuition</u>: Distribution of loops should (a) be conformally invariant (b) satisfy the domain Markov property:

given the loops intersecting $D_2 \setminus D_1$, the remaining ones form an independent CLE in each component of the complement.

critical Ising sample with free b.c., © C. Hongler

<u>Question</u>: What could be a good candidate for the *scaling limit of loops* surrounding clusters (e.g., with "+" b.c.)?

<u>Intuition</u>: Distribution of loops should (a) be conformally invariant (b) satisfy the domain Markov property:

given the loops intersecting $D_2 \setminus D_1$, the remaining ones form an independent CLE in each component of the complement.

critical Ising sample with free b.c., © C. Hongler

Loop-soup construction:

• sample a (countable) set of Brownian loops using some natural conformally-friendly Poisson process of intensity *c*.

<u>Question</u>: What could be a good candidate for the *scaling limit of loops* surrounding clusters (e.g., with "+" b.c.)?

<u>Intuition</u>: Distribution of loops should (a) be conformally invariant (b) satisfy the domain Markov property:

given the loops intersecting $D_2 \setminus D_1$, the remaining ones form an independent CLE in each component of the complement.

critical Ising sample with free b.c., \bigcirc C. Hongler

Loop-soup construction:

 sample a (countable) set of Brownian loops using some natural conformally-friendly Poisson process of intensity c.
 fill the outermost clusters

<u>Question</u>: What could be a good candidate for the *scaling limit of loops* surrounding clusters (e.g., with "+" b.c.)?

<u>Intuition</u>: Distribution of loops should (a) be conformally invariant (b) satisfy the domain Markov property:

given the loops intersecting $D_2 \setminus D_1$, the remaining ones form an independent CLE in each component of the complement.

critical Ising sample with free b.c., \bigcirc C. Hongler

Thm [Sheffield–Werner'10]:

provided that loops do not touch each other, (a) and (b) imply that CLE has the law of loop-soup boundaries for some intensity $c \in (0, 1]$.

<u>Question</u>: What could be a good candidate for the *scaling limit of loops* surrounding clusters (e.g., with "+" b.c.)?

Theorem [Benoist – Hongler'16]:

The limit of critical spin-Ising clusters is a (nested) CLE corresponding to $c = \frac{1}{2}$.

• The intensity in the loop-soup construction coincide with the central charge in the CFT formalism for correlations.

critical Ising sample with free b.c., \bigcirc C. Hongler

Loop-soup construction:

 sample a (countable) set of Brownian loops using some natural conformally-friendly Poisson process of intensity c.
 fill the outermost clusters

<u>Question</u>: What could be a good candidate for the *scaling limit of loops* surrounding clusters (e.g., with "+" b.c.)?

Theorem [Benoist – Hongler'16]:

The limit of critical spin-Ising clusters is a (nested) CLE corresponding to $c = \frac{1}{2}$.

 This is the tip of the iceberg, which is built upon a work of many people. Preliminary results ['06 – '16] include:

critical Ising sample with free b.c., \bigcirc C. Hongler

Convergence of individual curves (via martingale observables) for both spin- and FK-representations of the model [Smirnov'06, Ch. – Smirnov, Hongler – Kytölä / Izyurov, Kemppainen – Smirnov]
 Uniform RSW-type bounds [Ch. – Duminil-Copin – Hongler] based on discrete complex analysis estimates in rough domains.

Convergence of correlations → convergence of interfaces [see Ch. – Duminil-Copin – Hongler – Kemppainen – Smirnov '13]

• <u>"Martingale observables"</u>: choose a function $M_{\Omega_{\delta}}(z), z \in \Omega_{\delta}$, such that $M_{\Omega_{\delta} \setminus \gamma_{\delta}[0,n]}(z)$ is a martingale wrt the filtration $\mathcal{F}_n := \sigma(\gamma_{\delta}[0,n])$.

Example: $\mathbb{E}_{\Omega_{\delta}}[\sigma_z]$.

• Convergence of observables: prove uniform (wrt Ω_{δ}) convergence of the (re-scaled) martingales $M_{\Omega_{\delta}}(z)$ to $M_{\Omega}(z)$ as $\delta \to 0$.

<u>Remark</u>: technically, $\mathbb{E}_{\Omega_{\delta}}[\sigma_z]$ is (by far) <u>not</u> an optimal choice of a martingale: e.g., fermionic observables are much easier to handle [Smirnov'06; Ch. – Smirnov'09; Izyurov'14]

Convergence of correlations → **convergence of interfaces** [see Ch. – Duminil-Copin – Hongler – Kemppainen – Smirnov '13]

- <u>"Martingale observables"</u>: choose a function $M_{\Omega_{\delta}}(z), z \in \Omega_{\delta}$, such that $M_{\Omega_{\delta} \setminus \gamma_{\delta}[0,n]}(z)$ is a martingale
- <u>Convergence of observables</u>: prove uniform (wrt Ω_{δ}) convergence of the (re-scaled) martingales $M_{\Omega_{\delta}}(z)$

• RSW-type crossing estimates \Rightarrow tightness of the family $(\gamma_{\delta})_{\delta \to 0}$:

[Aizenmann – Burchard (1999), Kemppainen – Smirnov '12];

• Crossings in rectangles: [Duminil-Copin-Hongler-Nolin '09];

- \circ Rough domains: [Ch. '12 \rightsquigarrow Ch. Duminil-Copin Hongler '13]
- Identification of subsequential limits: for each $\gamma = \lim_{\delta_k \to 0} \gamma_{\delta_k}$, the quantities $M_{\Omega \setminus \gamma[0,t]}(z)$ are martingales wrt $\mathcal{F}_t := \sigma(\gamma[0,t])$.
- conformal covariance of $M_\Omega \Rightarrow$ conformal invariance of γ

[see Ch. – Duminil-Copin – Hongler – Kemppainen – Smirnov '13]

- "Martingale observables"
- Convergence of observables
- Uniform RSW-type estimates
 control of "pinning points" arising along the exploration

Convergence and conformal invariance of the loop ensemble

• "Exploration" [Hongler-Kytölä'11; Benoist-Duminil-Copin-Hongler'14; Benoist-Hongler'16] iteratively switching between spin- and FK(=random-cluster)representations of the Ising model.

Related work: [Kempainnen-Smirnov '15-'16]

Thm: [Ch-DC-H] Uniformly wrt Ω and boundary conditions,

$$\mathbb{P}^{\mathrm{FK}}_{\Omega}[(\mathsf{ab})\leftrightarrow(\mathsf{cd})]\in[\eta(\mathrm{L}),1-\eta(\mathrm{L})],$$

where L is the effective resistance of $(\Omega; (ab), (cd))$.

FK-representation of the Ising model: sample a Bernoulli percolation with parameter $1-x_{crit}$ on edges of spin clusters.

- **Basic ingredients:** second moment method, FKG inequality and estimates of point-to-wired arc connection events via fermionic observables and then discrete harmonic functions.
- **But.** How to handle triple connections $x \leftrightarrow y \leftrightarrow \varpi$?

"Strong" RSW-type theory for the critical (FK-)Ising model ["toolbox" arXiv:1212.6205 & Duminil-Copin – Hongler – Nolin'09 → Ch. – Duminil-Copin – Hongler'13]

• "Surgery": given x, y (and ϖ), to construct ϖ_x, ϖ_y such that

$$\begin{split} & Z_{RW}[x\leftrightarrow\varpi] \asymp Z_{RW}[x\leftrightarrow\varpi_x] \cdot Z_{RW}[\varpi_x\leftrightarrow\varpi], \\ & Z_{RW}[y\leftrightarrow\varpi] \asymp Z_{RW}[y\leftrightarrow\varpi_y] \cdot Z_{RW}[\varpi_y\leftrightarrow\varpi] \end{split}$$
(with uniform wrt everything(!) constants in \asymp estimates) and $& Z_{RW}[\varpi_x\leftrightarrow\varpi] \asymp Z_{RW}[(xy)\leftrightarrow\varpi] \asymp Z_{RW}[\varpi_y\leftrightarrow\varpi]. \end{split}$

"Strong" RSW-type theory for the critical (FK-)Ising model ["toolbox" arXiv:1212.6205 & Duminil-Copin – Hongler – Nolin'09 → Ch. – Duminil-Copin – Hongler'13]

• "Surgery": given x, y (and ϖ), to construct ϖ_x, ϖ_y such that

$$\mathbf{Z}_{\mathrm{RW}}[x \leftrightarrow \varpi] \asymp \mathbf{Z}_{\mathrm{RW}}[x \leftrightarrow \varpi_x] \cdot \mathbf{Z}_{\mathrm{RW}}[\varpi_x \leftrightarrow \varpi].$$

• Remark. Note that for the effective resistances one would have

$$\mathbf{L}[x \leftrightarrow \varpi] \asymp \mathbf{L}[x \leftrightarrow \varpi_x] + \mathbf{L}[\varpi_x \leftrightarrow \varpi].$$

[see <code>arXiv:1212.6205</code> for all that and more, e.g. $m L symp \log(1+Z_{RW}^{-1})$]

• Spin field vs nested CLE(3): is there a way to couple them so that one (of them) is a deterministic function of the other?

Can one construct correlation functions of other CFT fields from CLE(3)? E.g., energy field $\leftrightarrow \rightarrow$ "occupation density"?

 Massive SLE(3) curves: fix m ∈ ℝ and let x = x_{crit}+mδ. This breaks the conformal invariance (∂f - imf = 0) but one can consider correlations and interfaces in a fixed domain as δ → 0.

Similarly to mLERW computations from [Makarov-Smirnov'09],

 $dg_{t}(z) = \frac{2dt}{g_{t}(z) - \xi_{t}}, \quad d\xi_{t} = \sqrt{3} \, dB_{t} + 3 \, \frac{\partial}{\partial a_{t}} \log \mathcal{F}_{\Omega_{t}}^{(m)}(a_{t}, b) \, dt,$ $\mathcal{F}_{\Omega_{t}}^{(m)}(a_{t}, b) = [\langle \psi^{(m)}(a_{t})\psi^{(m)}(b)\rangle_{\Omega_{t}} / \langle \psi(a_{t})\psi(b)\rangle_{\Omega_{t}}]^{1/2}$ $\rightsquigarrow 3 \, \frac{\partial}{\partial a_{t}} \log \mathcal{F}_{\Omega_{t}}^{(m)}(a_{t}, b) \text{ is a quite non-trivial functional of } \xi[0, t].$ A priori, even the existence of SDE solutions is unclear...

- Spin field vs nested CLE(3): is there a way to couple them so that one (of them) is a deterministic function of the other?
- Massive SLE(3) curves: fix m ∈ ℝ and let x = x_{crit} + mδ. This breaks the conformal invariance (∂f - imf = 0) but one can consider correlations and interfaces in a fixed domain as δ → 0.
- Super-critical regime: interfaces should converge to SLE(6)...
 Is it true that mSLE(3)→ SLE(6) as m→ +∞?

• Renormalization

fixed $x > x_{\rm crit}, \ \delta \rightarrow 0$

$$(x - x_{\rm crit}) \cdot \delta^{-1} \to \infty$$

x = 1

 $x = x_{\rm crit}$

- Spin field vs nested CLE(3): is there a way to couple them so that one (of them) is a deterministic function of the other?
- Massive SLE(3) curves: fix m ∈ ℝ and let x = x_{crit}+mδ. This breaks the conformal invariance (∂f - imf = 0) but one can consider correlations and interfaces in a fixed domain as δ → 0.
- Super-critical regime: interfaces should converge to SLE(6)...
 Is it true that mSLE(3)→ SLE(6) as m→ +∞?

• Renormalization

fixed x > x_{\rm crit}, \delta \rightarrow 0

$$(x - x_{\rm crit}) \cdot \delta^{-1} \to \infty$$

THANK YOU!

x = 1

 $x = x_{\rm crit}$