FROM 2D LATTICE MODELS TO CONFORMAL GEOMETRY AND CFT

DMITRY CHELKAK (UNIVERSITÉ DE GENÈVE & Steklov Institute, St.Petersburg)

SWISSMAP GENERAL MEETING ENGELBERG, SEPTEMBER 8, 2015

FROM 2D LATTICE MODELS TO CONFORMAL GEOMETRY AND CFT

OUTLINE:

- Loop O(n) model: phase transition and *conjectural* conformal invariance in the limit
- Predictions on scaling limits: correlations and loop ensembles
- Recent *results* on conformal invariance for the Ising model
- Research routes

© Clément Hongler (EPFL)

- Ω_δ: discrete domain, i.e. a (simply connected) subset of the honeycomb grid with mesh size δ;
- $\operatorname{Conf}_{\Omega_{\delta}}^{\varnothing}$: set of *configurations*, i.e. collections of loops in Ω_{δ} ;

- Ω_δ: discrete domain, i.e. a (simply connected) subset of the honeycomb grid with mesh size δ;
- $\operatorname{Conf}_{\Omega_{\delta}}^{\varnothing}$: set of *configurations*, i.e. collections of loops in Ω_{δ} ;

► Probabilities: $\mathbb{P}(\omega) = [\mathcal{Z}_{\Omega_{\delta}}^{\varnothing}]^{-1} \cdot x^{\#\text{edges}(\omega)} n^{\#\text{loops}(\omega)}$, where $\mathcal{Z}_{\Omega_{\delta}}^{\varnothing} = \sum_{\omega \in \text{Conf}_{\Omega_{\delta}}^{\varnothing}} x^{\#\text{edges}(\omega)} n^{\#\text{loops}(\omega)}$

is the partition function of the model;

- Ω_δ: discrete domain, i.e. a (simply connected) subset of the honeycomb grid with mesh size δ;
- $\operatorname{Conf}_{\Omega_{\delta}}^{\varnothing}$: set of *configurations*, i.e. collections of loops in Ω_{δ} ;
- $\operatorname{Conf}_{\Omega_{\delta}}^{a,b}$: configurations with *Dobrushin boundary conditions*:

collections of loops plus a path $\gamma_{\Omega_{\delta}}^{a,b}$ linking two boundary points a and b in Ω_{δ} . Similarly, the partition function $\mathcal{Z}_{\Omega_{\delta}}^{a,b}$ is

$$\sum_{\omega \in \operatorname{Conf}_{\Omega_{\delta}}^{a,b}} x^{\#\operatorname{edges}(\omega)} n^{\#\operatorname{loops}(\omega)}$$

- Ω_δ: discrete domain, i.e. a (simply connected) subset of the honeycomb grid with mesh size δ;
- $\operatorname{Conf}_{\Omega_{\delta}}^{\varnothing}$: set of *configurations*, i.e. collections of loops in Ω_{δ} ;

► Probabilities:
$$\mathbb{P}(\omega) = [\mathcal{Z}_{\Omega_{\delta}}^{\varnothing}]^{-1} \cdot x^{\#\text{edges}(\omega)} n^{\#\text{loops}(\omega)}$$
, where
 $\mathcal{Z}_{\Omega_{\delta}}^{\varnothing} = \sum_{\omega \in \text{Conf}_{\Omega_{\delta}}^{\varnothing}} x^{\#\text{edges}(\omega)} n^{\#\text{loops}(\omega)}$

is the partition function of the model;

• $\operatorname{Conf}_{\Omega_{\delta}}^{a,b}$: configurations with *Dobrushin boundary conditions*: collections of loops plus a *path* $\gamma_{\Omega_{\delta}}^{a,b}$ linking two boundary points *a* and *b* in Ω_{δ} . Similarly, the partition function

$$\mathcal{Z}_{\Omega_{\delta}}^{a,b} = \sum_{\omega \in \operatorname{Conf}_{\Omega_{\delta}}^{a,b}} x^{\#\operatorname{edges}(\omega)} n^{\#\operatorname{loops}(\omega)}.$$

$$\frac{\mathcal{Z}_{\Omega_{\delta}}^{a,b}}{\mathcal{Z}_{\Omega_{\delta}}^{\varnothing}} = \frac{\sum_{\omega \in \operatorname{Conf}_{\Omega_{\delta}}^{a,b}} x^{\#\operatorname{edges}(\omega)} n^{\#\operatorname{loops}(\omega)}}{\sum_{\omega \in \operatorname{Conf}_{\Omega_{\delta}}^{\varnothing}} x^{\#\operatorname{edges}(\omega)} n^{\#\operatorname{loops}(\omega)}}$$
(*)

behaves as $\delta \rightarrow 0$, i.e. when Ω_{δ} contains more and more grid cells?

$$\frac{Z_{\Omega_{\delta}}^{a,b}}{Z_{\Omega_{\delta}}^{\varnothing}} = \frac{\sum_{\omega \in \operatorname{Conf}_{\Omega_{\delta}}^{a,b}} x^{\#\operatorname{edges}(\omega)} n^{\#\operatorname{loops}(\omega)}}{\sum_{\omega \in \operatorname{Conf}_{\Omega_{\delta}}^{\varnothing}} x^{\#\operatorname{edges}(\omega)} n^{\#\operatorname{loops}(\omega)}} \qquad (\star)$$

behaves as $\delta \to 0$, i.e. when Ω_{δ} contains more and more grid cells? <u>Informally</u>: how expensive is to have a long path (or a long loop)? <u>More rigorously</u>: assume that Ω_{δ} are discrete approximations to a given (smooth) domain $\Omega \subset \mathbb{C}$ with two marked points $a, b \in \partial \Omega$.

$$\frac{Z_{\Omega_{\delta}}^{a,b}}{Z_{\Omega_{\delta}}^{\varnothing}} = \frac{\sum_{\omega \in \operatorname{Conf}_{\Omega_{\delta}}^{a,b}} x^{\#\operatorname{edges}(\omega)} n^{\#\operatorname{loops}(\omega)}}{\sum_{\omega \in \operatorname{Conf}_{\Omega_{\delta}}^{\varnothing}} x^{\#\operatorname{edges}(\omega)} n^{\#\operatorname{loops}(\omega)}} \qquad (\star)$$

behaves as $\delta \to 0$, i.e. when Ω_{δ} contains more and more grid cells? Informally: how expensive is to have a long path (or a long loop)? More rigorously: assume that Ω_{δ} are discrete approximations to a given (smooth) domain $\Omega \subset \mathbb{C}$ with two marked points $a, b \in \partial \Omega$.

Physicists prediction (Nienhuis, 1980s): $x_{crit} = 1/\sqrt{2+\sqrt{2-n}}$.

• For $x < x_{crit}$: (*) decays exponentially as $\delta \rightarrow 0$;

• For $x = x_{\text{crit}}$: $(\star) \sim \text{const} \cdot \delta^{2\alpha}$ with $\alpha = \frac{1}{4} + \frac{3}{4\pi} \arccos \frac{n}{2}$;

For $x > x_{\text{crit}}$: $(\star) \sim \text{const} \cdot \delta^{2\widetilde{\alpha}}$ with $\widetilde{\alpha} = \frac{1}{4} - \frac{3}{4\pi} \arccos \frac{n}{2}$.

$$\frac{Z_{\Omega_{\delta}}^{a,b}}{Z_{\Omega_{\delta}}^{\varnothing}} = \frac{\sum_{\omega \in \operatorname{Conf}_{\Omega_{\delta}}^{a,b}} x^{\#\operatorname{edges}(\omega)} n^{\#\operatorname{loops}(\omega)}}{\sum_{\omega \in \operatorname{Conf}_{\Omega_{\delta}}^{\varnothing}} x^{\#\operatorname{edges}(\omega)} n^{\#\operatorname{loops}(\omega)}} \qquad (\star)$$

behaves as $\delta \rightarrow$ 0, i.e. when Ω_{δ} contains more and more grid cells?

Physicists prediction (Nienhuis, 1980s): $x_{crit} = 1/\sqrt{2+\sqrt{2-n}}$.

Rigorously known only in the following two particular cases:

- Ising model (n = 1): phase transition at x_{crit} (back to 1940s) and α = ¹/₂;
- Self-Avoiding Walk (n = 0): phase transition at x_{crit} (Duminil-Copin – Smirnov, 2010).

I. Quantities: Let Ω_{δ} be a discrete approximation to a (smooth) domain $\Omega \subset \mathbb{C}$ and $a, b \in \partial \Omega$. Denote [wishful thinking]

$$f_{\Omega}(a,b) := \lim_{\delta o 0} \, \delta^{-2lpha} \cdot \mathcal{Z}^{a,b}_{\Omega_{\delta}} / \mathcal{Z}^{arnothing}_{\Omega_{\delta}} \, .$$

.

[Conjectural] invariance under conformal transforms $\varphi : \Omega \rightarrow \Omega'$:

$$f_{\Omega}(a,b) = f_{\Omega'}(\varphi(a),\varphi(b))$$

Loop O(n) model: [conjectural] conformal invariance at x_{crit}

I. Quantities: Let Ω_{δ} be a discrete approximation to a (smooth) domain $\Omega \subset \mathbb{C}$ and $a, b \in \partial \Omega$. Denote [wishful thinking]

$$f_{\Omega}(a,b) := \lim_{\delta o 0} \, \delta^{-2lpha} \cdot \mathcal{Z}^{a,b}_{\Omega_{\delta}} / \mathcal{Z}^{arnothing}_{\Omega_{\delta}} \, .$$

[Conjectural] covariance under conformal transforms $\varphi : \Omega \rightarrow \Omega'$:

$$f_{\Omega}(a,b) = f_{\Omega'}(\varphi(a),\varphi(b)) \cdot |\varphi'(a)|^{\alpha} |\varphi'(b)|^{\alpha}$$

.

I. Quantities: Let Ω_{δ} be a discrete approximation to a (smooth) domain $\Omega \subset \mathbb{C}$ and $a, b \in \partial \Omega$. Denote [wishful thinking]

$$f_{\Omega}(a,b) := \lim_{\delta o 0} \, \delta^{-2lpha} \cdot \mathcal{Z}^{a,b}_{\Omega_{\delta}} / \mathcal{Z}^{arnothing}_{\Omega_{\delta}} \, .$$

[Conjectural] covariance under conformal transforms $\varphi : \Omega \rightarrow \Omega'$:

$$f_{\Omega}(a,b) = f_{\Omega'}(\varphi(a),\varphi(b)) \cdot |\varphi'(a)|^{\alpha} |\varphi'(b)|^{\alpha}$$

Another example: for an edge e_{δ} , let $\varepsilon(e_{\delta}) := \mathbf{1}[e_{\delta} \in \omega]$. Let $e_{1,\delta}, ..., e_{m,\delta}$ approximate a collection of points $e_1, ..., e_m \in \Omega$. Denote

$$\langle \varepsilon(e_1) \dots \varepsilon(e_m) \rangle_{\Omega}^{\varnothing} := \lim_{\delta \to 0} \mathbb{E}_{\Omega_{\delta}}^{\varnothing} [\varepsilon(e_{1,\delta}) \dots \varepsilon(e_{m,\delta})]$$

I. Quantities: Let Ω_{δ} be a discrete approximation to a (smooth) domain $\Omega \subset \mathbb{C}$ and $a, b \in \partial \Omega$. Denote [wishful thinking]

$$f_{\Omega}(a,b) := \lim_{\delta o 0} \, \delta^{-2lpha} \cdot \mathcal{Z}^{a,b}_{\Omega_{\delta}} / \mathcal{Z}^{arnothing}_{\Omega_{\delta}} \, .$$

[Conjectural] covariance under conformal transforms $\varphi : \Omega \rightarrow \Omega'$:

$$f_{\Omega}(a,b) = f_{\Omega'}(\varphi(a),\varphi(b)) \cdot |\varphi'(a)|^{\alpha} |\varphi'(b)|^{\alpha}$$

Another example: for an edge e_{δ} , let $\varepsilon(e_{\delta}) := \mathbf{1}[e_{\delta} \in \omega] - \varepsilon_{\text{inf.vol.}}$. Let $e_{1,\delta}, ..., e_{m,\delta}$ approximate a collection of points $e_1, ..., e_m \in \Omega$. Denote

$$\langle \varepsilon(e_1) \dots \varepsilon(e_m) \rangle_{\Omega}^{\varnothing} := \lim_{\delta \to 0} \delta^{-m\beta} \cdot \mathbb{E}_{\Omega_{\delta}}^{\varnothing} [\varepsilon(e_{1,\delta}) \dots \varepsilon(e_{m,\delta})]$$

I. Quantities: Let Ω_{δ} be a discrete approximation to a (smooth) domain $\Omega \subset \mathbb{C}$ and $a, b \in \partial \Omega$. Denote [wishful thinking]

$$f_\Omega(a,b) \ := \ \lim_{\delta o 0} \, \delta^{-2lpha} \cdot \mathcal{Z}^{a,b}_{\Omega_\delta} / \mathcal{Z}^arnotline _{\Omega_\delta} \, .$$

[Conjectural] covariance under conformal transforms $\varphi : \Omega \to \Omega'$:

$$f_{\Omega}(a,b) = f_{\Omega'}(\varphi(a),\varphi(b)) \cdot |\varphi'(a)|^{\alpha} |\varphi'(b)|^{\alpha}$$

Another example: for an edge e_{δ} , let $\varepsilon(e_{\delta}) := \mathbf{1}[e_{\delta} \in \omega] - \varepsilon_{\text{inf.vol.}}$. Let $e_{1,\delta}, ..., e_{m,\delta}$ approximate a collection of points $e_1, ..., e_m \in \Omega$. Denote [wishful thinking, $\beta = 2(\pi - \arccos \frac{n}{2})/(\pi + \arccos \frac{n}{2})$]

$$\langle \varepsilon(e_1) \dots \varepsilon(e_m) \rangle_{\Omega}^{\varnothing} := \lim_{\delta \to 0} \delta^{-m\beta} \cdot \mathbb{E}_{\Omega_{\delta}}^{\varnothing} [\varepsilon(e_{1,\delta}) \dots \varepsilon(e_{m,\delta})]$$

I. Quantities: Let Ω_{δ} be a discrete approximation to a (smooth) domain $\Omega \subset \mathbb{C}$ and $a, b \in \partial \Omega$. Denote [wishful thinking]

$$f_\Omega(a,b) \ := \ \lim_{\delta o 0} \, \delta^{-2lpha} \cdot \mathcal{Z}^{a,b}_{\Omega_\delta} / \mathcal{Z}^arnotline _{\Omega_\delta} \, .$$

[Conjectural] covariance under conformal transforms $\varphi : \Omega \to \Omega'$:

$$f_{\Omega}(a,b) = f_{\Omega'}(\varphi(a),\varphi(b)) \cdot |\varphi'(a)|^{\alpha} |\varphi'(b)|^{\alpha}$$

Another example: for an edge e_{δ} , let $\varepsilon(e_{\delta}) := \mathbf{1}[e_{\delta} \in \omega] - \varepsilon_{\text{inf.vol.}}$. Let $e_{1,\delta}, ..., e_{m,\delta}$ approximate a collection of points $e_1, ..., e_m \in \Omega$. Denote [wishful thinking, $\beta = 2(\pi - \arccos \frac{n}{2})/(\pi + \arccos \frac{n}{2})$]

$$\begin{aligned} \langle \varepsilon(e_1) \dots \varepsilon(e_m) \rangle_{\Omega}^{\varnothing} &:= \lim_{\delta \to 0} \delta^{-m\beta} \cdot \mathbb{E}_{\Omega_{\delta}}^{\varnothing} [\varepsilon(e_{1,\delta}) \dots \varepsilon(e_{m,\delta})] \\ &= \langle \varepsilon(\varphi(e_1)) \dots \varepsilon(\varphi(e_m)) \rangle_{\Omega'}^{\varnothing} \cdot \prod_{s=1}^{m} |\varphi'(e_s)|^{\beta} \end{aligned}$$

II. Interfaces, loop ensembles:

For Dobrushin boundary conditions, one expects that

$$\gamma_{\Omega_{\delta}}^{\boldsymbol{a},\boldsymbol{b}} \xrightarrow[\delta \to 0]{} \gamma_{\Omega}^{\boldsymbol{a},\boldsymbol{b}}.$$

The limit (*random curve* linking *a* and *b* inside Ω) is [conjecturally] *conformally invariant*:

$$arphi(\gamma^{\mathsf{a},\mathsf{b}}_{\Omega}) \stackrel{(\mathrm{law})}{=} \gamma^{\varphi(\mathsf{a}),\varphi(\mathsf{b})}_{\Omega'}$$

II. Interfaces, loop ensembles:

For Dobrushin boundary conditions, one expects that

$$\gamma_{\Omega_{\delta}}^{\boldsymbol{a},\boldsymbol{b}} \xrightarrow[\delta \to 0]{} \gamma_{\Omega}^{\boldsymbol{a},\boldsymbol{b}}.$$

The limit (*random curve* linking *a* and *b* inside Ω) is [conjecturally] *conformally invariant*:

$$\varphi(\gamma_{\Omega}^{\boldsymbol{a},\boldsymbol{b}}) \stackrel{(\mathrm{law})}{=} \gamma_{\Omega'}^{\varphi(\boldsymbol{a}),\varphi(\boldsymbol{b})}$$

For \varnothing boundary conditions: the limit as $\delta \to 0$ of the whole collection of loops in Ω_{δ} (i.e., *random loop ensemble* in Ω) is [conjecturally] invariant under conformal maps $\varphi : \Omega \to \Omega'$. <u>NB</u>: topology of convergence – ?: random curves/loop ensembles = measures on the (metric) set of curves/loop ensembles

I. Correlations

General idea (in 2D): conformal covariance of scaling limits + further assumptions on their singularities (fusion rules, null-vectors, ...) \Rightarrow one of the conformal field theories parameterized by a central charge $c \in [0, 1]$.

I. Correlations

General idea (in 2D): conformal covariance of scaling limits + further assumptions on their singularities (fusion rules, null-vectors, ...) \Rightarrow one of the conformal field theories parameterized by a central charge $c \in [0, 1]$. Provided

$$c = 13{-}6(t{+}t^{-1}), \quad t = rac{4}{\kappa} = 1{+}rac{1}{\pi} \arccos rac{n}{2}$$

is identified (Nienhuis, 1980s), one has:

- the set of scaling exponents (e.g., $\alpha = h_{2,1}$, $\beta = 2h_{1,3}$);
- PDEs for the correlation functions;
- explicit formulae ('small configurations' or particular theories).

I. Correlations

General idea (in 2D): conformal covariance of scaling limits + further assumptions on their singularities (fusion rules, null-vectors, ...) \Rightarrow one of the conformal field theories parameterized by a central charge $c \in [0, 1]$.

- \underline{NB} : there are two setups
 - ▶ full-plane C;
 - general domains Ω ⊂ C, conformally equivalent to the upper half-plane H.

I. Correlations

- $\underline{\mathsf{NB}}$: there are two setups
 - ▶ full-plane C;
 - ▶ general domains Ω ⊂ C, conformally equivalent to the upper half-plane Ⅲ.

 $\begin{array}{ll} \underline{\text{Example:}} & \text{for the scaling limits of spin} \\ \hline \text{correlations in the Ising model as } \delta \to 0, \\ \text{one [conjecturally] has } \langle \sigma_{z_1} \dots \sigma_{z_m} \rangle_{\Omega} & = \\ \langle \sigma_{\varphi(z_1)} \dots \sigma_{\varphi(z_k)} \rangle_{\Omega'} \cdot \prod_{s=1}^k |\varphi'(z_s)|^{\frac{1}{8}}, \text{ with} \end{array}$

$$\begin{bmatrix} \langle \sigma_{z_1} \dots \sigma_{z_k} \rangle_{\mathbb{C}} \end{bmatrix}^2 = \mathcal{C}^k \sum_{\mu \in \{\pm 1\}^k : \mu_1 + \dots + \mu_k = 0} \prod_{1 \leq s < m \leq k} |z_s - z_m|^{\frac{\mu_s \mu_m}{2}} \\ \begin{bmatrix} \langle \sigma_{z_1} \dots \sigma_{z_k} \rangle_{\mathbb{H}}^+ \end{bmatrix}^2 = \mathcal{C}^k \cdot \prod_{1 \leq s \leq k} (2 \operatorname{Im} z_s)^{-\frac{1}{4}} \times \sum_{\mu \in \{\pm 1\}^k} \prod_{s < m} \left| \frac{z_s - z_m}{z_s - \overline{z}_m} \right|^{\frac{\mu_s \mu_m}{2}} \end{bmatrix}$$

I. Correlations

- <u>NB</u>: there are two setups
 - ► full-plane C;
 - ▶ general domains Ω ⊂ C, conformally equivalent to the upper half-plane Ⅲ.

 $\begin{array}{ll} \underline{\text{Example:}} & \text{for the scaling limits of spin} \\ \hline \text{correlations in the Ising model as } \delta \to 0, \\ \text{one } & \text{can prove that } \langle \sigma_{z_1} \dots \sigma_{z_m} \rangle_{\Omega} = \\ \langle \sigma_{\varphi(z_1)} \dots \sigma_{\varphi(z_k)} \rangle_{\Omega'} \cdot \prod_{s=1}^k |\varphi'(z_s)|^{\frac{1}{8}}, \text{ with} \end{array}$

$$\left[\left\langle \sigma_{z_1} \dots \sigma_{z_k} \right\rangle_{\mathbb{H}}^+\right]^2 = \mathcal{C}^k \cdot \prod_{1 \leqslant s \leqslant k} (2 \operatorname{Im} z_s)^{-\frac{1}{4}} \times \sum_{\mu \in \{\pm 1\}^k} \prod_{s < m} \left| \frac{z_s - z_m}{z_s - \overline{z}_m} \right|^{\frac{\mu_s \mu_m}{2}}$$

Convergence Theorem: Ch.-Hongler-Izyurov, 2012

II. Interfaces, loop ensembles

<u>Question</u>: What could be a good candidate for the scaling limit of interfaces and loop ensembles as $\delta \rightarrow 0$?

© Clément Hongler (EPFL)

II. Interfaces, loop ensembles

<u>Question</u>: What could be a good candidate for the scaling limit of interfaces and loop ensembles as $\delta \rightarrow 0$?

 Interfaces (e.g., generated by Dobrushin boundary conditions): SLE_κ curves [c=13-6(^κ/₄+⁴/_κ)]

<u>In one line</u>: non-self-intersecting 2D curves, *introduced by Schramm in 2000*, are defined dynamically via the classical Loewner evolution [1923] with a 1D Brownian motion input, can be analyzed combining *geometrical complex analysis* and *stochastic calculus*.

II. Interfaces, loop ensembles

<u>Question</u>: What could be a good candidate for the scaling limit of interfaces and loop ensembles as $\delta \rightarrow 0$?

- Interfaces (e.g., Dobrushin b.c.);
- ► Loop ensembles (e.g., the collection of all outermost loops for Ø b.c.):

Ising model sample with free b.c.

©Clément Hongler (EPFL)

<u>Intuition</u>: Distribution of loops should be conformally invariant and satisfy the domain Markov property: <u>Question</u>: What could be a good candidate for the scaling limit of the collection of all outermost loops for \emptyset b.c.? <u>Intuition</u>: should be conformally invariant and satisfy the domain Markov property:

Let $D_1 \subset D_2$. Given the set of loops from the CLE in D_2 that intersect $D_2 \setminus D_1$, the conditional law of the remaining loops is an independent CLE in each component of the (interior of the) complement of this set.

© Scott Sheffield (MIT) & Wendelin Werner (ETH)

<u>Question</u>: What could be a good candidate for the scaling limit of the collection of all outermost loops for \emptyset b.c.? <u>Intuition</u>: should be conformally invariant and satisfy the domain Markov property:

Let $D_1 \subset D_2$. Given the set of loops from the CLE in D_2 that intersect $D_2 \setminus D_1$, the conditional law of the remaining loops is an independent CLE in each component of the (interior of the) complement of this set.

© Scott Sheffield (MIT) & Wendelin Werner (ETH)

© Scott Sheffield (MIT) & Wendelin Werner (ETH)

Loop-soup construction:

- sample a (countable) set of Brownian loops in D using some conformally-friendly Poisson process of intensity $c \in [0, 1]$;
- fill the outermost clusters.

<u>Question</u>: What could be a good candidate for the scaling limit of the collection of all outermost loops for \emptyset b.c.? <u>Intuition</u>: should be conformally invariant and satisfy the domain Markov property:

Thm (Sheffield–Werner, 2012):

Provided loops do not touch each other, the loop-soup construction gives the only possibility. This ensemble is called CLE_{κ} and consists of SLE_{κ} -type bubbles, where $c = 13 - 6(\frac{\kappa}{4} + \frac{4}{\kappa})$.

© Scott Sheffield (MIT) & Wendelin Werner (ETH)

© Scott Sheffield (MIT) & Wendelin Werner (ETH)

Loop-soup construction:

- sample a (countable) set of Brownian loops in D using some conformally-friendly Poisson process of intensity $c \in [0, 1]$;
- fill the outermost clusters.

Conformal Field Theory

Assuming conformal covariance of correlation functions appearing in the limit, they should form one of "algebraic structures", parameterized by a central charge. Lattice models [e.g., loop O(n)]

Conformal Geometry

Assuming conformal invariance of curves and loops appearing in the limit, there exists a unique family of "loop ensembles", parameterized by an intensity.

Deep interactions 'in continuum', cf.

M. Bauer, D. Bernard, Conformal field theories of stochastic Loewner evolutions (Comm. Math. Phys., 2003)
J. Cardy, SLE for theoretical physicists (Ann. Phys., 2005)

[.....]

Deep interactions 'in continuum', cf.

M. Bauer, D. Bernard, Conformal field theories of stochastic Loewner evolutions (Comm. Math. Phys., 2003) J. Cardy, SLE for theoretical physicists

(Ann. Phys., 2005)

But can one prove that these beautiful 'algebraic' and 'geometric' structures indeed arise in the limit of some lattice model as $\delta \rightarrow 0$ (e.g., the lsing model, which contains a lot of integrability inside)?

[.....]

Conformal Field Theory

Assuming conformal covariance of correlation functions appearing in the limit, they should form one of "algebraic structures", parameterized by a central charge.

Conformal Geometry

Assuming conformal invariance of curves and loops appearing in the limit, there exists a unique family of "loop ensembles", parameterized by an intensity.

Conformal Field Theory

Assuming conformal covariance of correlation functions appearing in the limit, they should form one of "algebraic structures", parameterized by a central charge.

Ising model [2006–…]:

proofs of convergence for re-scaled correlation functions (fermions, energy densities, spins, ...)

Conformal Geometry

Assuming conformal invariance of curves and loops appearing in the limit, there exists a unique family of "loop ensembles", parameterized by an intensity.

Ising model [2006–…]:

proofs of convergence for interfaces and their ensembles (various b.c. and topologies)

Conformal Field Theory

Assuming conformal covariance of correlation functions appearing in the limit, they should form one of "algebraic structures", parameterized by a central charge.

Ising model [2006–…]:

proofs of convergence for re-scaled correlation functions (fermions, energy densities, spins, ...)

<u>Main tool</u>: discrete holomorphic functions

[Smirnov'06]

Conformal Geometry

Assuming conformal invariance of curves and loops appearing in the limit, there exists a unique family of "loop ensembles", parameterized by an intensity.

Ising model [2006-...]:

proofs of convergence for interfaces and their ensembles (various b.c. and topologies)

[Ch., Duminil-Copin, Hongler, Izyurov, Kemppainen, Kytölä, ...]

<u>Main tool</u>: discrete holomorphic functions Combinatorial definition:

$$F^{\delta}_{a}(z) := \sum_{\omega \in \operatorname{Conf}_{\Omega_{\delta}}^{a,z}} x^{\#\operatorname{edges}(\omega)} e^{-\frac{i}{2}\operatorname{wind}(a \rightsquigarrow z)}$$

<u>Main tool</u>: discrete holomorphic functions Combinatorial definition:

$$F^{\delta}_{a}(z) := \sum_{\omega \in \operatorname{Conf}_{\Omega_{\delta}}^{a,z}} x^{\#\operatorname{edges}(\omega)} e^{-\frac{i}{2}\operatorname{wind}(a \rightsquigarrow z)}$$

• discrete fermions played a crucial role in many aspects of the planar lsing model starting with the very first derivations;

• existence of discrete holomorphic fields provided a strong evidence for the CFT description of the scaling limit;

<u>Main tool</u>: discrete holomorphic functions Combinatorial definition:

$$F^{\delta}_{a}(z) := \sum_{\omega \in \operatorname{Conf}_{\Omega_{\delta}}^{a,z}} x^{\#\operatorname{edges}(\omega)} e^{-\frac{i}{2}\operatorname{wind}(a \rightsquigarrow z)}$$

• discrete fermions played a crucial role in many aspects of the planar lsing model starting with the very first derivations;

• existence of discrete holomorphic fields provided a strong evidence for the CFT description of the scaling limit;

• still, much (hard) work is needed to understand how to use these structures for the rigorous analysis when $\Omega_{\delta} \rightarrow \Omega$ as $\delta \rightarrow 0$, especially in rough domains formed by fractal interfaces.

Main tool: discrete holomorphic functions

• still, much (hard) work is needed to understand how to use these structures for the rigorous analysis when $\Omega_{\delta} \rightarrow \Omega$ as $\delta \rightarrow 0$

Some papers/preprints (convergence of correlations):

- basic observables: [Smirnov '06], universality: [Ch.,Smirnov '09]
- energy density field: [Hongler, Smirnov '10], [Hongler '10]
- spinor version, some ratios of spin correlations: [Ch., Izyurov '11]
- spin field: [Ch., Hongler, Izyurov '12]
- mixed correlations in multiply-connected Ω's [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]

Some papers/preprints (convergence of interfaces):

- +/- b.c., weak topology: [Smirnov '06], [Ch., Smirnov '09]
- +/free/- b.c. (dipolar SLE): [Hongler,Kytölä '11]
- multiply-connected setups: [Izyurov '13]

- free b.c., exploration tree: [Benoist, Duminil-Copin, Hongler '14]
- [on the way by smb]: full loop ensemble

Main tool: discrete holomorphic functions

• work is needed to understand how to use these structures for the rigorous analysis when $\Omega_{\delta} \rightarrow \Omega$ as $\delta \rightarrow 0$

Some papers/preprints (convergence of correlations):

- basic observables: [Smirnov '06], universality: [Ch.,Smirnov '09]
- energy density field: [Hongler, Smirnov '10], [Hongler '10]
- spinor version, some ratios of spin correlations: [Ch., Izyurov '11]
- spin field: [Ch., Hongler, Izyurov '12]
- mixed correlations in multiply-connected Ω's [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]

Some papers/preprints (convergence of interfaces):

- +/- b.c., weak topology: [Smirnov '06], [Ch., Smirnov '09]
- +/free/- b.c. (dipolar SLE): [Hongler,Kytölä '11]
- multiply-connected setups: [Izyurov '13]
- strong topology (tightness of curves): [Kemppainen,Smirnov '12], [Ch.,Duminil-Copin,Hongler '13], [Ch.,D.-C.,H.,K.,S. '13]
- free b.c., exploration tree: [Benoist, Duminil-Copin, Hongler '14]
- . [on the way by smb]: full loop ensemble

Main tool: discrete holomorphic functions

• work is needed to understand how to use these structures for the rigorous analysis when $\Omega_{\delta} \rightarrow \Omega$ as $\delta \rightarrow 0$

Some papers/preprints (convergence of correlations):

- basic observables: [Smirnov '06], universality: [Ch.,Smirnov '09]
- energy density field: [Hongler, Smirnov '10], [Hongler '10]
- spinor version, some ratios of spin correlations: [Ch., Izyurov '11]
- spin field: [Ch., Hongler, Izyurov '12]
- mixed correlations in multiply-connected Ω's [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]

Some papers/preprints (convergence of interfaces):

- +/- b.c., weak topology: [Smirnov '06], [Ch., Smirnov '09]
- +/free/- b.c. (dipolar SLE): [Hongler,Kytölä '11]
- multiply-connected setups: [Izyurov '13]

- free b.c., exploration tree: [Benoist, Duminil-Copin, Hongler '14]
- [on the way by smb]: full loop ensemble

Main tool: discrete holomorphic functions

• work is needed to understand how to use these structures for the rigorous analysis when $\Omega_{\delta} \rightarrow \Omega$ as $\delta \rightarrow 0$

Some papers/preprints (convergence of correlations):

- basic observables: [Smirnov '06], universality: [Ch.,Smirnov '09]
- energy density field: [Hongler, Smirnov '10], [Hongler '10]
- spinor version, some ratios of spin correlations: [Ch., Izyurov '11]
- spin field: [Ch., Hongler, Izyurov '12]
- mixed correlations in multiply-connected Ω's [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]

Some papers/preprints (convergence of interfaces):

- +/- b.c., weak topology: [Smirnov '06], [Ch., Smirnov '09]
- +/free/- b.c. (dipolar SLE): [Hongler,Kytölä '11]
- multiply-connected setups: [Izyurov '13]

- free b.c., exploration tree: [Benoist, Duminil-Copin, Hongler '14]
- [on the way by smb]: full loop ensemble

Main tool: discrete holomorphic functions

• work is needed to understand how to use these structures for the rigorous analysis when $\Omega_{\delta} \rightarrow \Omega$ as $\delta \rightarrow 0$

Some papers/preprints (convergence of correlations):

- basic observables: [Smirnov '06], universality: [Ch.,Smirnov '09]
- energy density field: [Hongler, Smirnov '10], [Hongler '10]
- spinor version, some ratios of spin correlations: [Ch., Izyurov '11]
- spin field: [Ch., Hongler, Izyurov '12]
- mixed correlations in multiply-connected Ω's [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]

Some papers/preprints (convergence of interfaces):

- +/- b.c., weak topology: [Smirnov '06], [Ch., Smirnov '09]
- +/free/- b.c. (dipolar SLE): [Hongler,Kytölä '11]
- multiply-connected setups: [Izyurov '13]
- strong topology (tightness of curves): [Kemppainen,Smirnov '12], [Ch.,Duminil-Copin,Hongler '13], [Ch.,D.-C.,H.,K.,S. '13]
- free b.c., exploration tree: [Benoist, Duminil-Copin, Hongler '14]
- [on the way by smb]: full loop ensemble

Main tool: discrete holomorphic functions

• work is needed to understand how to use these structures for the rigorous analysis when $\Omega_{\delta} \rightarrow \Omega$ as $\delta \rightarrow 0$

Some papers/preprints (convergence of correlations):

- basic observables: [Smirnov '06], universality: [Ch.,Smirnov '09]
- energy density field: [Hongler, Smirnov '10], [Hongler '10]
- spinor version, some ratios of spin correlations: [Ch., Izyurov '11]
- spin field: [Ch., Hongler, Izyurov '12]
- mixed correlations in multiply-connected Ω's [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]

Some papers/preprints (convergence of interfaces):

- +/- b.c., weak topology: [Smirnov '06], [Ch.,Smirnov '09]
- +/free/- b.c. (dipolar SLE): [Hongler, Kytölä '11]
- multiply-connected setups: [Izyurov '13]

- free b.c., exploration tree: [Benoist, Duminil-Copin, Hongler '14]
- [on the way by smb]: full loop ensemble

Main tool: discrete holomorphic functions

• work is needed to understand how to use these structures for the rigorous analysis when $\Omega_{\delta} \rightarrow \Omega$ as $\delta \rightarrow 0$

Some papers/preprints (convergence of correlations):

- basic observables: [Smirnov '06], universality: [Ch.,Smirnov '09]
- energy density field: [Hongler, Smirnov '10], [Hongler '10]
- spinor version, some ratios of spin correlations: [Ch., Izyurov '11]
- spin field: [Ch., Hongler, Izyurov '12]
- mixed correlations in multiply-connected Ω's [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]

Some papers/preprints (convergence of interfaces):

- +/- b.c., weak topology: [Smirnov '06], [Ch., Smirnov '09]
- +/free/- b.c. (dipolar SLE): [Hongler,Kytölä '11]
- multiply-connected setups: [Izyurov '13]

- free b.c., exploration tree: [Benoist,Duminil-Copin,Hongler '14]
- [on the way by smb]: full loop ensemble

Main tool: discrete holomorphic functions

• work is needed to understand how to use these structures for the rigorous analysis when $\Omega_{\delta} \rightarrow \Omega$ as $\delta \rightarrow 0$

Some papers/preprints (convergence of correlations):

- basic observables: [Smirnov '06], universality: [Ch.,Smirnov '09]
- energy density field: [Hongler, Smirnov '10], [Hongler '10]
- spinor version, some ratios of spin correlations: [Ch., Izyurov '11]
- spin field: [Ch., Hongler, Izyurov '12]
- mixed correlations in multiply-connected Ω's [on the way]
- stress-energy tensor [Ch., Glazman, Smirnov, on the way]

Some papers/preprints (convergence of interfaces):

- +/- b.c., weak topology: [Smirnov '06], [Ch., Smirnov '09]
- +/free/- b.c. (dipolar SLE): [Hongler,Kytölä '11]
- multiply-connected setups: [Izyurov '13]

- free b.c., exploration tree: [Benoist, Duminil-Copin, Hongler '14]
- [on the way by smb]: full loop ensemble

Strategy of proving the convergence of correlation functions:

• <u>in discrete</u>: encode quantities of interest as particular values of a discrete holomorphic function (observable) F^{δ} that solves some discrete b.v.p. ['magic': a priori, it is not clear why such F^{δ} exist];

Strategy of proving the convergence of correlation functions:

- <u>in discrete</u>: encode quantities of interest as particular values of a discrete holomorphic function (observable) F^{δ} that solves some discrete b.v.p. ['magic': a priori, it is not clear why such F^{δ} exist];
- <u>discrete \rightarrow continuum</u>: prove convergence (as $\delta \rightarrow 0$) of F^{δ} to the solution f of the similar continuous b.v.p. [(hard) work to be done];

Strategy of proving the convergence of correlation functions:

• <u>in discrete</u>: encode quantities of interest as particular values of a discrete holomorphic function (observable) F^{δ} that solves some discrete b.v.p. ['magic': a priori, it is not clear why such F^{δ} exist];

• <u>discrete \rightarrow continuum</u>: prove convergence (as $\delta \rightarrow 0$) of F^{δ} to the solution f of the similar continuous b.v.p. [(hard) work to be done];

• <u>continuum \rightarrow discrete</u>: decipher the limit of discrete quantities from the convergence $F^{\delta} \rightarrow f$ [e.g., coefficients at singularities].

Strategy of proving the convergence of correlation functions:

 in discrete: encode quantities of interest as particular values of a discrete holomorphic function (observable) F^δ that solves some discrete b.v.p. ['magic': a priori, it is not clear why such F^δ exist];
 discrete → continuum: prove convergence (as δ → 0) of F^δ to the

• <u>discrete \rightarrow continuum</u>: prove convergence (as $\delta \rightarrow 0$) of F to the solution f of the similar continuous b.v.p. [(hard) work to be done];

• <u>continuum→discrete</u>: decipher the limit of discrete quantities from the convergence $F^{\delta} \rightarrow f$ [e.g., coefficients at singularities].

Strategy of proving the convergence of interfaces:

• choose a family of martingales w.r.t. the growing interface γ_{δ} [there are many, e.g., $\mathbb{E}_{\Omega_{\delta}}^{ab}[\sigma_{z}]$ would do the job for +1/-1 b.c.];

Strategy of proving the convergence of correlation functions:

 in discrete: encode quantities of interest as particular values of a discrete holomorphic function (observable) F^δ that solves some discrete b.v.p. ['magic': a priori, it is not clear why such F^δ exist];
 discrete→continuum: prove convergence (as δ → 0) of F^δ to the

solution *f* of the similar continuous b.v.p. [(hard) work to be done]; • continuum→discrete: decipher the limit of discrete quantities

• <u>continuum a discrete</u>: decipier the limit of discrete quantities from the convergence $F^{\delta} \rightarrow f$ [e.g., coefficients at singularities].

Strategy of proving the convergence of interfaces:

• choose a family of martingales w.r.t. the growing interface γ_{δ} [there are many, e.g., $\mathbb{E}_{\Omega_{\delta}}^{ab}[\sigma_{z}]$ would do the job for +1/-1 b.c.];

• prove uniform convergence of the (re-scaled) quantities as $\delta \rightarrow 0$ [the one above (done in 2012) is <u>not</u> an optimal choice, there are others that are easier to handle (first done in 2006–2009)];

Strategy of proving the convergence of correlation functions:

 <u>in discrete</u>: encode quantities of interest as particular values of a discrete holomorphic function (observable) F^δ that solves some discrete b.v.p. ['magic': a priori, it is not clear why such F^δ exist];
 <u>discrete→continuum</u>: prove convergence (as δ → 0) of F^δ to the

solution f of the similar continuous b.v.p. [(hard) work to be done]; • <u>continuum \rightarrow discrete</u>: decipher the limit of discrete quantities from the convergence $F^{\delta} \rightarrow f$ [e.g., coefficients at singularities].

Strategy of proving the convergence of interfaces:

• choose a family of martingales w.r.t. the growing interface γ_{δ} [there are many, e.g., $\mathbb{E}_{\Omega_{\delta}}^{ab}[\sigma_{z}]$ would do the job for +1/-1 b.c.];

• prove uniform convergence of the (re-scaled) quantities as $\delta \rightarrow 0$ [the one above (done in 2012) is <u>not</u> an optimal choice, there are others that are easier to handle (first done in 2006–2009)];

• prove the convergence of $\gamma_{\Omega_{\delta}}^{a,b}$ and recover the limiting law using this family of martingales [some probabilistic techniques needed].

Example: to handle $\mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{z}]$, one should consider the following b.v.p.:

• $f(w^*) \equiv -f(w)$, branches around z;

• Im
$$\left[f(\zeta)\sqrt{n(\zeta)}\right] = 0$$
 for $\zeta \in \partial \Omega$;

•
$$f(w) = \frac{1}{\sqrt{w-z}} + \dots$$

Example: to handle $\mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{z}]$, one should consider the following b.v.p.:

- $f(w^*) \equiv -f(w)$, branches around z;
- Im $\left[f(\zeta)\sqrt{n(\zeta)}\right] = 0$ for $\zeta \in \partial \Omega$;
- $f(w) = \frac{1}{\sqrt{w-z}} + \dots$

Claim: For $\Omega_{\delta} \rightarrow \Omega$ as $\delta \rightarrow 0$,

• $\delta^{-1} \log \left[\mathbb{E}^+_{\Omega_{\delta}}[\sigma_{z+\delta}] / \mathbb{E}^+_{\Omega_{\delta}}[\sigma_z] \right] \to \operatorname{Re}[\mathcal{A}_{\Omega}(z)];$ • $\delta^{-1} \log \left[\mathbb{E}^+_{\Omega_{\delta}}[\sigma_{z+i\delta}] / \mathbb{E}^+_{\Omega_{\delta}}[\sigma_z] \right] \to -\operatorname{Im}[\mathcal{A}_{\Omega}(z)].$

Example: to handle $\mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{z}]$, one should consider the following b.v.p.:

- $f(w^*) \equiv -f(w)$, branches around z;
- Im $\left[f(\zeta)\sqrt{n(\zeta)}\right] = 0$ for $\zeta \in \partial \Omega$;
- $f(w) = \frac{1}{\sqrt{w-z}} + \mathcal{A}_{\Omega}(z) \cdot 2\sqrt{w-z} + \dots$

Claim: For $\Omega_{\delta} \rightarrow \Omega$ as $\delta \rightarrow 0$,

• $\delta^{-1} \log \left[\mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{z+\delta}] / \mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{z}] \right] \to \operatorname{Re}[\mathcal{A}_{\Omega}(z)];$ • $\delta^{-1} \log \left[\mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{z+i\delta}] / \mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{z}] \right] \to -\operatorname{Im}[\mathcal{A}_{\Omega}(z)].$

Example: to handle $\mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{z}]$, one should consider the following b.v.p.:

- $f(w^*) \equiv -f(w)$, branches around *z*;
- Im $\left[f(\zeta)\sqrt{n(\zeta)}\right] = 0$ for $\zeta \in \partial \Omega$;
- $f(w) = \frac{1}{\sqrt{w-z}} + \mathcal{A}_{\Omega}(z) \cdot 2\sqrt{w-z} + \dots$

Claim: For $\Omega_{\delta} \rightarrow \Omega$ as $\delta \rightarrow 0$,

• $\delta^{-1} \log \left[\mathbb{E}^{+}_{\Omega_{\delta}}[\sigma_{z+\delta}] / \mathbb{E}^{+}_{\Omega_{\delta}}[\sigma_{z}] \right] \to \operatorname{Re}[\mathcal{A}_{\Omega}(z)];$ • $\delta^{-1} \log \left[\mathbb{E}^{+}_{\Omega_{\delta}}[\sigma_{z+i\delta}] / \mathbb{E}^{+}_{\Omega_{\delta}}[\sigma_{z}] \right] \to -\operatorname{Im}[\mathcal{A}_{\Omega}(z)].$

Conformal exponent $\frac{1}{8}$: for any conformal map $\phi : \Omega \to \Omega'$,

• $f_{[\Omega,a]}(w) = f_{[\Omega',\phi(a)]}(\phi(w)) \cdot (\phi'(w))^{1/2};$ • $\mathcal{A}_{\Omega}(z) = \mathcal{A}_{\Omega'}(\phi(z)) \cdot \phi'(z) + \frac{1}{8} \cdot \phi''(z)/\phi'(z).$

Example: to handle $\mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{z}]$, one should consider the following b.v.p.:

- $f(w^*) \equiv -f(w)$, branches around z;
- Im $\left[f(\zeta)\sqrt{n(\zeta)}\right] = 0$ for $\zeta \in \partial \Omega$;
- $f(w) = \frac{1}{\sqrt{w-z}} + \mathcal{A}_{\Omega}(z) \cdot 2\sqrt{w-z} + \dots$

Claim: For $\Omega_{\delta} \rightarrow \Omega$ as $\delta \rightarrow 0$,

• $\delta^{-1} \log \left[\mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{z+\delta}] / \mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{z}] \right] \to \operatorname{Re}[\mathcal{A}_{\Omega}(z)];$ • $\delta^{-1} \log \left[\mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{z+i\delta}] / \mathbb{E}_{\Omega_{\delta}}^{+}[\sigma_{z}] \right] \to -\operatorname{Im}[\mathcal{A}_{\Omega}(z)].$

Steps of the proof: • to find proper combinatorics in discrete;

- to handle tricky boundary conditions (Dirichlet for $\int \operatorname{Re}[f^2 dz]$);
- to prove convergence, incl. near singularities [complex analysis];
- to recover the normalization of $\mathbb{E}^+_{\Omega_{\delta}}[\sigma_z]$ [probabilistic techniques].

Research routes for convergence of 2D lattice models Ising model:

• Better understanding at criticality: more CFT fields, Virasoro algebra at the lattice level, 'geometrical' observables and height functions, multiply connected domains and Riemann surfaces, etc.

• Near-critical (massive) regime $x - x_{crit} = m \cdot \delta$: convergence of correlations, massive SLE₃ curves and loop ensembles, etc.

Research routes for convergence of 2D lattice models Ising model:

• Better understanding at criticality: more CFT fields, Virasoro algebra at the lattice level, 'geometrical' observables and height functions, multiply connected domains and Riemann surfaces, etc.

• Near-critical (massive) regime $x - x_{crit} = m \cdot \delta$: convergence of correlations, massive SLE₃ curves and loop ensembles, etc.

• Super-critical regime: e.g., convergence of interfaces to SLE_6 curves for all fixed $x > x_{crit}$ [known only for x = 1 (percolation)]

• Renormalization (not nearest-neighbor interactions)

[recent progress for the energy density field due to Giuliani, Greenblatt and Mastropietro, arXiv:1204.4040]

Research routes for convergence of 2D lattice models Ising model:

• Better understanding at criticality: more CFT fields, Virasoro algebra at the lattice level, 'geometrical' observables and height functions, multiply connected domains and Riemann surfaces, etc.

• Near-critical (massive) regime $x - x_{crit} = m \cdot \delta$: convergence of correlations, massive SLE₃ curves and loop ensembles, etc.

• Super-critical regime: e.g., convergence of interfaces to SLE_6 curves for all fixed $x > x_{crit}$ [known only for x = 1 (percolation)]

• Renormalization (not nearest-neighbor interactions)

[recent progress for the energy density field due to Giuliani, Greenblatt and Mastropietro, arXiv:1204.4040]

Other lattice models:

 \circ E.g., convergence of the self-avoiding walk to ${\rm SLE}_{8/3}$