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I Conf∅Ωδ
: set of configurations, i.e. collections of loops in Ωδ;
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linking two boundary

points a and b in Ωδ. Similarly, the partition function
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More rigorously: assume that Ωδ are discrete approximations to a
given (smooth) domain Ω ⊂ C with two marked points a, b ∈ ∂Ω.

Physicists prediction (Nienhuis, 1980s): xcrit = 1/
√
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I For x < xcrit : (⋆) decays exponentially as δ → 0 ;
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Loop O(n) model: definition and [conjectural] critical point

Phase transition: given n ∈ [0, 2] and x ∈ (0,+∞), how the ratio

Za,b
Ωδ

Z∅
Ωδ

=

∑
ω∈Confa,bΩδ

x#edges(ω)n#loops(ω)∑
ω∈Conf∅Ωδ

x#edges(ω)n#loops(ω)
(⋆)

behaves as δ → 0, i.e. when Ωδ contains more and more grid cells?

Physicists prediction (Nienhuis, 1980s): xcrit = 1/
√

2+
√
2−n.

Rigorously known only in the following two particular cases:

I Ising model (n = 1):
phase transition at xcrit (back to 1940s) and α = 1

2 ;

I Self-Avoiding Walk (n = 0):
phase transition at xcrit (Duminil-Copin – Smirnov, 2010).
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fΩ(a, b) = fΩ′(φ(a), φ(b)) · |φ′(a)|α|φ′(b)|α .
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Loop O(n) model: [conjectural] conformal invariance at xcrit

II. Interfaces, loop ensembles:

For Dobrushin boundary condi-
tions, one expects that

γa,bΩδ
−→
δ→0

γa,bΩ .

The limit (random curve linking a
and b inside Ω) is [conjecturally]
conformally invariant:

φ(γa,bΩ )
(law)
= γ

φ(a),φ(b)
Ω′ .

For ∅ boundary conditions: the limit as δ → 0 of the whole
collection of loops in Ωδ (i.e., random loop ensemble in Ω) is
[conjecturally] invariant under conformal maps φ : Ω → Ω′.

NB: topology of convergence – ?: random curves/loop ensembles
= measures on the (metric) set of curves/loop ensembles
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of scaling limits + further assumptions on
their singularities (fusion rules, null-vectors,
...) ⇒ one of the conformal field theories
parameterized by a central charge c ∈ [0, 1].
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I. Correlations

General idea (in 2D): conformal covariance
of scaling limits + further assumptions on
their singularities (fusion rules, null-vectors,
...) ⇒ one of the conformal field theories
parameterized by a central charge c ∈ [0, 1].
Provided

c = 13−6(t+t−1), t = 4
κ = 1+ 1

π arccos n
2

is identified (Nienhuis, 1980s), one has:

I the set of scaling exponents (e.g., α = h2,1, β = 2h1,3);

I PDEs for the correlation functions;

I explicit formulae (‘small configurations’ or particular theories).
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NB: there are two setups

I full-plane C;
I general domains Ω ⊂ C, conformally

equivalent to the upper half-plane H.

Example: for the scaling limits of spin
correlations in the Ising model as δ → 0,
one [conjecturally] has ⟨σz1 . . . σzm⟩Ω =

⟨σφ(z1) . . . σφ(zk)⟩Ω′ ·
∏k

s=1 |φ′(zs)|
1
8 , with[

⟨σz1 . . . σzk ⟩C
]2

= Ck ·
∑

µ∈{±1}k :µ1+...+µk=0

∏
16s<m6k

|zs − zm|
µsµm

2

[
⟨σz1 . . . σzk ⟩

+
H
]2

= Ck ·
∏

16s6k
(2 Im zs)

− 1
4 ×

∑
µ∈{±1}k

∏
s<m

∣∣∣∣ zs−zm
zs−zm

∣∣∣∣µsµm2
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I. Correlations

NB: there are two setups

I full-plane C;
I general domains Ω ⊂ C, conformally

equivalent to the upper half-plane H.

Example: for the scaling limits of spin
correlations in the Ising model as δ → 0,
one can prove that ⟨σz1 . . . σzm⟩Ω =

⟨σφ(z1) . . . σφ(zk)⟩Ω′ ·
∏k

s=1 |φ′(zs)|
1
8 , with

[
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+
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= Ck ·
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Convergence Theorem: Ch.–Hongler–Izyurov, 2012
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II. Interfaces, loop ensembles

Question: What could be a good candidate
for the scaling limit of interfaces and loop
ensembles as δ → 0?

I Interfaces (e.g., generated by
Dobrushin boundary conditions):
SLEκ curves [c=13−6(κ4+

4
κ)]

In one line: non-self-intersecting 2D curves,
introduced by Schramm in 2000, are defined
dynamically via the classical Loewner evolu-
tion [1923] with a 1D Brownian motion in-
put, can be analyzed combining geometrical
complex analysis and stochastic calculus.
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II. Interfaces, loop ensembles

Question: What could be a good candidate
for the scaling limit of interfaces and loop
ensembles as δ → 0?

I Interfaces (e.g., Dobrushin b.c.);

I Loop ensembles (e.g., the collection
of all outermost loops for ∅ b.c.):

Ising model sample with free b.c.

c⃝Clément Hongler (EPFL)

Intuition: Distribution of loops should
be conformally invariant and satisfy the domain Markov property:
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Let D1 ⊂ D2 . Given the set of
loops from the CLE in D2 that
intersect D2\D1, the conditional
law of the remaining loops is an
independent CLE in each com-
ponent of the (interior of the)
complement of this set. c⃝ Scott Sheffield (MIT) & Wendelin Werner (ETH)
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Question: What could be a good candidate for the scaling limit of
the collection of all outermost loops for ∅ b.c.? Intuition: should
be conformally invariant and satisfy the domain Markov property:

Thm (Sheffield–Werner, 2012):

Provided loops do not touch
each other, the loop-soup con-
struction gives the only possi-
bility. This ensemble is called
CLEκ and consists of SLEκ-type
bubbles, where c=13−6(κ4+

4
κ).

c⃝ Scott Sheffield (MIT) & Wendelin Werner (ETH)

c⃝ Scott Sheffield (MIT) & Wendelin Werner (ETH)

Loop-soup construction:

• sample a (countable) set of
Brownian loops in D using some
conformally-friendly Poisson pro-
cess of intensity c ∈ [0, 1];

• fill the outermost clusters.



Predictions on scaling limits: correlations and loop ensembles

Conformal Field Theory

Assuming conformal co-
variance of correlation
functions appearing in
the limit, they should
form one of “algebraic
structures”, parameter-
ized by a central charge.

Lattice models
[e.g., loop O(n)]

Conformal Geometry

Assuming conformal in-
variance of curves and
loops appearing in the
limit, there exists a
unique family of “loop
ensembles”, parameter-
ized by an intensity.
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Deep interactions
‘in continuum’, cf.

M. Bauer, D. Bernard, Conformal field

theories of stochastic Loewner evolutions

(Comm. Math. Phys., 2003)

J. Cardy, SLE for theoretical physicists

(Ann. Phys., 2005)

[..........]
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M. Bauer, D. Bernard, Conformal field

theories of stochastic Loewner evolutions

(Comm. Math. Phys., 2003)

J. Cardy, SLE for theoretical physicists

(Ann. Phys., 2005)

[..........]

But can one prove that these beautiful ‘algebraic’ and ‘geometric’
structures indeed arise in the limit of some lattice model as δ → 0
(e.g., the Ising model, which contains a lot of integrability inside)?
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Conformal Field Theory

Assuming conformal co-
variance of correlation
functions appearing in
the limit, they should
form one of “algebraic
structures”, parameter-
ized by a central charge.

Ising model [2006–...]:

proofs of convergence
for re-scaled correlation
functions (fermions, en-
ergy densities, spins, ...)

Lattice models
[e.g., Ising]

Main tool:
discrete

holomorphic
functions

[Smirnov’06]

Conformal Geometry

Assuming conformal in-
variance of curves and
loops appearing in the
limit, there exists a
unique family of “loop
ensembles”, parameter-
ized by an intensity.

Ising model [2006–...]:

proofs of convergence
for interfaces and their
ensembles (various b.c.
and topologies)

[Ch., Duminil-Copin, Hongler, Izyurov, Kemppainen, Kytölä, ...]



Recent results on conformal invariance for the Ising model

Main tool: discrete holomorphic functions

Combinatorial definition:

F δ
a (z) :=

∑
ω∈Confa,zΩδ

x#edges(ω)e−
i
2
wind(a z)



Recent results on conformal invariance for the Ising model

Main tool: discrete holomorphic functions

Combinatorial definition:

F δ
a (z) :=

∑
ω∈Confa,zΩδ

x#edges(ω)e−
i
2
wind(a z)

• discrete fermions played a crucial role in
many aspects of the planar Ising model start-
ing with the very first derivations;

• existence of discrete holomorphic fields
provided a strong evidence for the CFT de-
scription of the scaling limit;



Recent results on conformal invariance for the Ising model

Main tool: discrete holomorphic functions

Combinatorial definition:
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wind(a z)

• discrete fermions played a crucial role in
many aspects of the planar Ising model start-
ing with the very first derivations;

• existence of discrete holomorphic fields
provided a strong evidence for the CFT de-
scription of the scaling limit;

;

• still, much (hard) work is needed to understand how to use
these structures for the rigorous analysis when Ωδ → Ω as δ → 0,
especially in rough domains formed by fractal interfaces.



Recent results on conformal invariance for the Ising model

Main tool: discrete holomorphic functions

• still, much (hard) work is needed to understand how to use
these structures for the rigorous analysis when Ωδ → Ω as δ → 0

Some papers/preprints (convergence of correlations):
• basic observables: [Smirnov ’06], universality: [Ch.,Smirnov ’09]
• energy density field: [Hongler,Smirnov ’10], [Hongler ’10]

• spinor version, some ratios of spin correlations: [Ch.,Izyurov ’11]
• spin field: [Ch.,Hongler,Izyurov ’12]

• mixed correlations in multiply-connected Ω’s [on the way]
• stress-energy tensor [Ch.,Glazman,Smirnov, on the way]

Some papers/preprints (convergence of interfaces):
• +/− b.c., weak topology: [Smirnov ’06], [Ch.,Smirnov ’09]

• +/free/− b.c. (dipolar SLE): [Hongler,Kytölä ’11]
• multiply-connected setups: [Izyurov ’13]

• strong topology (tightness of curves): [Kemppainen,Smirnov ’12],
[Ch.,Duminil-Copin,Hongler ’13], [Ch.,D.-C.,H.,K.,S. ’13]

• free b.c., exploration tree: [Benoist,Duminil-Copin,Hongler ’14]
• [on the way by smb]: full loop ensemble
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• choose a family of martingales w. r. t. the growing interface γδ
[there are many, e.g., Eab

Ωδ
[σz ] would do the job for +1/−1 b. c.];

• prove uniform convergence of the (re-scaled) quantities as δ → 0
[the one above (done in 2012) is not an optimal choice, there are
others that are easier to handle (first done in 2006–2009)];

• prove the convergence of γa,bΩδ
and recover the limiting law using

this family of martingales [some probabilistic techniques needed].
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Conformal exponent 1
8 : for any conformal map ϕ : Ω → Ω′,

• f[Ω,a](w) = f[Ω′,ϕ(a)](ϕ(w)) · (ϕ′(w))1/2 ;

• AΩ(z) = AΩ′(ϕ(z)) · ϕ′(z) + 1
8 · ϕ′′(z)/ϕ′(z) .
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Steps of the proof: • to find proper combinatorics in discrete;
• to handle tricky boundary conditions (Dirichlet for

∫
Re[f 2dz ]);

• to prove convergence, incl. near singularities [complex analysis];
• to recover the normalization of E+

Ωδ
[σz ] [probabilistic techniques].
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Other lattice models:

◦ E.g., convergence of the self-avoiding walk to SLE8/3


