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Critical Ising model on the square grid:
[S. Smirnov. Towards conformal invariance of 2D lattice models. Proceedings of the

international congress of mathematicians (ICM), Madrid, Spain, August 22�30, 2006.]

spin-Ising model

Interface → SLE3

as mesh → 0.

FK-Ising model

Interface → SLE16/3

as mesh → 0.



Main steps:
I. �Combinatorics�: Construction of the martingale observable
(�holomorphic fermion�) F δ

(Ωδ;aδ,bδ)
(zδ), zδ ∈ Ωδ, solving some

discrete boundary value problem such that
I F δ is discrete holomorphic (w.r.t. zδ) for all (Ωδ; aδ, bδ);
I F δ

(Ωδ\γδ[0,n];γδ(n),bδ)
is a martingale (for any �xed zδ)

w.r.t. the (discrete) interface γδ growing from aδ.
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III. �Probability�: ⇒ discrete interfaces converge to SLE (κ), where
κ : f(C+\SLEκ[0,t];SLEκ(t),∞)(z) is a martingale for all z ∈ C+.
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[R. Costa-Santos '06] Local weights
satisfying Y −∆ relation
naturally lead to the isoradial
embedding of the graph.

Isoradial embedding means that all faces can be inscribed into
circles of equal radii δ (the mesh of the �lattice�).



Isoradial graphs. Notations.

I isoradial graph Γ
(black vertices),

I dual isoradial graph Γ∗

(gray vertices);
I rhombic lattice

(Λ = Γ ∪ Γ∗,
blue edges)

I and the set ♦ = Λ∗

(white �diamonds�).

(♠): we assume that rhombi angles are

uniformly bounded away from 0 and π.



Critical Ising model on isoradial graphs.
[C.Mercat '01; V. Riva, J. Cardy '06;

C. Boutillier, B. deTili�ere '09; ...]

Z =
∑

config.

∏

wi 6=wj

tan
θij

2

Observable (discrete holomorphic martingale):

F δ(z) :=
Zconfig .:aÃz · e−

i
2
winding(aÃz)

Zconfig .:aÃb · e−
i
2
winding(aÃb)

, z ∈ ♦.



Riemann-Hilbert boundary value problem.
I F (z) is holomorphic in Ω;
I Im[F (ζ)(τ(ζ))

1
2 ] = 0 on the boundary ∂Ω \ {a};

I proper normalization at b:

I τ(b)
1
2 = +1;

I ∂H
∂y

∣∣
b

= F 2(b) = 1;
I H is nonnegative

everywhere in Ω.

Remark. F is well de�ned in rough domains via H = Im
∫

F 2dz
which is the imaginary part of the conformal mapping from
(Ω; a, b) onto the upper half-plane (C+;∞, 0) normalized at b.



Discrete complex analysis on isoradial graphs.
[R.J. Du�n '60s; C.Mercat '01; R. Kenyon '02;

A. Bobenko, C.Mercat, Yu. Suris '05 ...]

Di�erence operators ∆δ, ∂δ, ∂δ:
H : Λ → C;

∂δH(zs) :=
1

2

[
H(us)− H(u)

us − u
+

H(ws+1)− H(ws)

ws+1 − ws

]
;

∂δH(zs) :=
1

2
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∂δF (u) (= (∂δ)∗F (u)) :=

− i

2µδ
Γ(u)
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(ws+1 − ws)F (zs);

∂δH(zs) :=
1

2

[
H(us)− H(u)

us − u
+

H(ws+1)− H(ws)

ws+1 − ws

]
;

∆δH(u) := 4∂δ∂δH(u) =
1

µδ
Γ(u)

∑
us∼u

tan θs · [H(us)−H(u)].



Discrete complex analysis on isoradial graphs.

Corresponding random walk on Γ:

RW(t+1) = RW(t) + ξ
(t)
RW(t),

where ξ(t) are independent and

P(ξu = uk−u) =
tan θk∑n
s=1 tan θs

.

Then:

E[Re ξu] = E[Im ξu] = 0,

E[Re ξu Im ξu] = 0, E[(Re ξu)
2] = E[(Im ξu)

2] = δ2 · Tu

(where Tu =
Pn

s=1 sin 2θs
‹Pn

s=1 tan θs ).



Discrete complex analysis on isoradial graphs.

Convergence for discrete harmonic functions:

I The uniform (w.r.t. (a) shape of the simply-connected domain
Ωδ

Γ and (b) structure of the underlying isoradial graph)
C 1-convergence in the bulk of the basic objects of the discrete
potential theory to their continuous counterparts holds true.

(i) harmonic measure (exit probability) ωδ( · ; aδbδ; Ωδ
Γ)

of boundary arcs aδbδ ⊂ ∂Ωδ
Γ;

(ii) Green function G δ
Ωδ

Γ
( · ; v δ), v δ ∈ IntΩδ

Γ;

(iii) Poisson kernel Pδ( · ; v δ; aδ; Ωδ
Γ) =

ωδ( · ; {aδ}; Ωδ
Γ)

ωδ(v δ; {aδ}; Ωδ
Γ)
, aδ ∈ ∂Ωδ

Γ

normalized at the inner point v δ ∈ IntΩδ
Γ;

(iv) Poisson kernel Pδ
oδ( · ; aδ; Ωδ

Γ), aδ, oδ ∈ ∂Ωδ
Γ, normalized at the

boundary by the discrete analogue of the condition ∂
∂nP|oδ = −1.



Discrete complex analysis on isoradial graphs.

S-holomorphic functions:
We call F (de�ned on some subset of ♦)
s-holomorphic, if

Pr[F (z1) ; [i(w−u)]−
1
2 ]

= Pr[F (z2) ; [i(w−u)]−
1
2 ]

for any two neighbors z0 ∼ z1.
I implies standard discrete holomorphicity (i.e., ∂δF = 0);
I holds for observables in the critical Ising model;
I can be reformulated as �propagation equation� (or

Dotsenko-Dotsenko equation) for some discrete spinor de�ned
on the (double covering of) edges uw [cf. C.Mercat '01]



Discrete complex analysis on isoradial graphs.

Convergence for the �spin-Ising observable�:
(A) S-holomorphicity: F δ(z) is s-holomorphic inside Ωδ

♦.
(B) Boundary conditions: Im[F δ(ζ)(τ(ζ))

1
2 ] = 0 for all ζ ∈ ∂Ωδ

♦
except aδ, where τ(ζ) is the tangent vector at ζ oriented in the
counterclockwise direction (and τ(bδ)

1
2 = +1).

(C) Normalization at the target point: F δ(bδ) = 1.
Theorem (Ch.-Smirnov): After some re-normalization by
constants K δ ³ 1 (which depend on the structure of ♦δ but don't
depend on the shape of Ωδ), the solution of the discrete boundary
value problem (A)&(B)&(C) is uniformly close in the bulk to its
continuous counterpart f(Ωδ;aδ,bδ).



Namely, there exists ε(δ) = ε(δ, r ,R, s, t) such that for all
simply-connected discrete domains (Ωδ

♦; aδ, bδ) having �straight�
boundary near bδ and zδ ∈ Ωδ

♦ the following holds true:

if B(zδ, r) ⊂ Ωδ ⊂ B(zδ, R), then
|K δ · F δ(zδ)− f(Ωδ;aδ,bδ)(z

δ)| 6 ε(δ) → 0 as δ → 0

(uniformly w.r.t. the shape of Ωδ and the structure of ♦δ).
Technical remark: we assume that discrete domains Ωδ contain
some �xed rectangle [−s, s]× [0, t] and their boundaries near
target points bδ ≈ 0 approximate the straight segment [−s, s];
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Corollary (universality of the critical Ising model):
The convergence of interfaces of the critical spin-Ising (FK-Ising)
model to SLE3 (SLE16/3, respectively) holds true on isoradial
graphs independently on their particular structure.



S-holomorphicity of the observable in the spin-Ising model:
[bijection between pictures with interfaces ending at z1 ↔ at z2]

↔ ↔

↔ ↔



Two tricks:

I. Integration of F 2 (as on the square grid): If
F is s-holomorphic, then one can correctly
de�ne (up to an additive constant) the
function

H = Im
∫ δ

(F (z))2dδz by

H(u)−H(w) := 2δ·
∣∣∣Pr

[
F (zj) ; [i(w−u)]−

1
2

]∣∣∣
2
.

(i) for any neighboring v1, v2 ∈ Γ or v1, v2 ∈ Γ∗ one has

H(v2)− H(v1) = Im[(v2−v1)(F (1
2(v1+v2)))

2].

(ii) H is (discrete) subharmonic on Γ and superharmonic on Γ∗.



Two tricks:

II. �Boundary modi�cation�:
Let ζ ∈ ∂Ωδ

♦ ⊂ ♦ be a boundary
vertex and Im[F (ζ)τ(ζ)

1
2 ] = 0,

where τ(ζ) = w2−w1.
Then H(w2) = H(w1) (and so
H

∣∣
Γ∗ ≡ c on this part of ∂Ωδ

Γ∗).
How to deal with H

∣∣
Γ
?
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Remark. This trick allows us to avoid the using of Onsager's
magnetization estimate (as it was in the original Smirnov's proof).



Convergence of the observable (spin-case):

I. De�ne Hδ = Im
∫ δ
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� +∞ > Hδ
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Γ∗ = 0 on the boundary.
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(⇒ F δ ⇒ f , Hδ ⇒ h = Im

∫
f 2dz along some subsequence δk).
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IV. Keep track that h > 0 in Ω; h
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V. Obtain the uniform convergence using compactness arguments
(Carath�eodory topology on the set of simply-connected domains).



Critical Ising model on isoradial graphs:
spin-Ising model

Interface → SLE3.

FK-Ising model

Interface → SLE16/3.

Thank you!


