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Critical Ising model on the square grid:

[S. Smirnov. Towards conformal invariance of 2D lattice models. Proceedings of the

international congress of mathematicians (ICM), Madrid, Spain, August 22-30, 2006.]
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Main steps:
I. “Combinatorics™ Construction of the martingale observable
(“holomorphic fermion”) F(‘SQS;ag,bd)(z‘S), 20 € Q9, solving some
discrete boundary value problem such that
> F9is discrete holomorphic (w.r.t. 25) for all (Q5; a, b‘s);
> F((SQ‘s\v“[O,n];v‘s(n),b‘s) is a martingale (for any fixed z°)
w.r.t. the (discrete) interface v° growing from a°.
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discrete boundary value problem such that
> F9is discrete holomorphic (w.r.t. 25) for all (Q5; a, b‘s);
> F595\75[07n1;75(n)7b6) is a martingale (for any fixed z°)

w.r.t. the (discrete) interface v° growing from a°.

1. “Complex analysis™ F° is uniformly close (w.r.t. all possible
simply-connected domains, including those with rough boundaries)
to its continuous (conformally covariant) counterpart f(qs..0 po)
[solving the continuous version of the same boundary value problem]

I1l. “Probability™: = discrete interfaces converge to SLE(k), where
K1 e \SLE.[0,:SLE.(t),00)(2) is @ martingale for all z € C,.



More general lattices.
Y — A invariance.

ab bc
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ab bc [R. Costa-Santos '06] Local weights

satisfying Y — A relation

CA+B ABC+1 naturally lead to the isoradial
=g 1 embedding of the graph.

Isoradial embedding means that all faces can be inscribed into
circles of equal radii 6 (the mesh of the “lattice”).



Isoradial graphs. Notations.

| AV L N\

\ - > isoradial graph I’
/ ‘ (black vertices),
N ] » dual isoradial graph I'*

(gray vertices);

» rhombic lattice
(A=TUT*
blue edges)

» and the set = A*
(white “diamonds”).

o ( (M): we assume that rhombi angles are
Y \ uniformly bounded away from 0 and 7.




Critical Ising model on isoradial graphs.
[C. Mercat '01; V. Riva, J. Cardy '06;

C. Boutillier, B. de Tiliére '09; ...]

Z = Z Htan%

config. w;#w;

Observable (discrete holomorphic martingale):

— éwinding(awz)

Fd(Z) — Zconfig.:awz - € ;

Zconfig :a~b e~ 2Winding(a~b) ’



Riemann-Hilbert boundary value problem.

» F(z) is holomorphic in €;

> Im[F(C)(T(C))%] = 0 on the boundary 0Q \ {a};

> proper normalization at b:
> T(b)% = +1;

OH| _ _ 1.

> 6—y|b = F?(b) =1,
» H is nonnegative

everywhere in Q.

Remark. F is well defined in rough domains via H = Im [ F2dz
which is the imaginary part of the conformal mapping from
(2; a, b) onto the upper half-plane (C4; 00, 0) normalized at b.



Discrete complex analysis on isoradial graphs.
[R.J. Duffin '60s; C. Mercat '01; R. Kenyon '02; ou

A.Bobenko, C. Mercat, Yu. Suris '05 ...]
Difference operators A%, 9°,0°:

H:N\N—C;
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Difference operators A%, 9°,0°:

H:A— C: F:—C. u,, n

D) (= (@) F(u) =

i

— o D (Wer1 — we) F(2s);

2“?(u) zs~u u]
ot =3 [ )

— 1
°H ==
(2) 2 Us— T Weil — Ws

H(us) = H(u) | H(ws;1) = H(w)]
e |




Discrete complex analysis on
[R.J. Duffin '60s; C. Mercat '01; R. Kenyon '02;

A.Bobenko, C. Mercat, Yu. Suris '05 ...]
Difference operators A%, 9°,0°:

H:N—C; F:$ —C.

OF(u) (= (8°)F(u) =

24 (u)

Zs~u

O°H(z) :

Z(Wsﬂ — ws)F(zs);

isoradial graphs.
/’\MS+]
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Discrete complex analysis on
[R.J. Duffin '60s; C. Mercat '01; R. Kenyon '02;

A.Bobenko, C. Mercat, Yu. Suris '05 ...]
Difference operators A%, 9°,0°:

H:N—C; F:$ —C.

PFu) (= F(u)):

5,. )Z( s+1 —

2Mr(u Zomou
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isoradial graphs.
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Us

Zors \Ws1

= 1 [H(us) — H(u)

Us — u

A’ H(u) := 40°9°H(u)

:“r

+

H(wst1) — H(Ws)];

Wsi1 — Ws

Ztane [H(us)—H(u)].

us~u



Discrete complex analysis on isoradial graphs.

® Ust1

Corresponding random walk on I': S
/ s+l

\W s+1 U

RW(t+1) = RW(t) + §Rw (1)

where £(t) are independent and

tan 6y

Pl = t—u) = s
s=1 S

Then:
E[Re&,] = E[Im¢&,] =0,
E[Re&, Im¢,] =0, E[(Re gu)Z] = E[(Imgu)z] =62 Ty

(where T, = >7_;sin20s/>°7_; tan 6s).



Discrete complex analysis on isoradial graphs.

Convergence for discrete harmonic functions:

» The uniform (w.r.t. (a) shape of the simply-connected domain
Q% and (b) structure of the underlying isoradial graph)
Cl-convergence in the bulk of the basic objects of the discrete
potential theory to their continuous counterparts holds true.

(i) harmonic measure (exit probability) w®(-;a’b%; Q)
of boundary arcs a°b® C 9Q9;
(i) Green function Gg?( 2v9), v0 € Int QY

5(.- {407 Qb
(iii) Poisson kernel P°(-;v% a% Qf) = 55((‘/6';{{25}}'; eré))’ a’ € 00
normalized at the inner point vo € Int Q4:

(iv) Poisson kernel Pga( a%;Qf), a%, 0% € 992, normalized at the

boundary by the discrete analogue of the condition EP\O(; = -1



Discrete complex analysis on isoradial graphs.

S-holomorphic functions:

We call F (defined on some subset of )
s-holomorphic, if

Pr[F(z1): [i(w—u)]”
= Pr{F(z); [i((w—-u)]”

for any two neighbors zp ~ z;.

[T NI

]
]

w
w

> implies standard discrete holomorphicity (i.e., 3°F = 0);
> holds for observables in the critical Ising model,

> can be reformulated as “propagation equation” (or
Dotsenko-Dotsenko equation) for some discrete spinor defined
on the (double covering of) edges uw [cf. C.Mercat '01]



Discrete complex analysis on isoradial graphs.

Convergence for the “spin-Ising observable”:

(A) S-holomorphicity: F°(z) is s-holomorphic inside Q‘SO.

(B) Boundary conditions: Im[F‘S(C)(T(C))%] =0 forall € GQ‘SQ
except a°, where 7(C) is the tangent vector at ( oriented in the

counterclockwise direction (and T(ba)% =+1).
(C) Normalization at the target point: FO(b°) = 1.

Theorem (Ch.-Smirnov): After some re-normalization by
constants K% =< 1 (which depend on the structure of &9 but don't
depend on the shape of Q°), the solution of the discrete boundary
value problem (A)&(B)&(C) is uniformly close in the bulk to its

continuous counterpart fqs. 55 ps).-



Namely, there exists €(0) = (0, r, R, s, t) such that for all
simply-connected discrete domains (Q; a°, b°) having “straight”
boundary near b’ and z° € Q‘S<> the following holds true:

if B(z°,r) C Q% C B(2°,R), then
|K® - FO(2%) — f(Qé;a&’bé)(Z(S)| <eg(d) - 0asd—0
(uniformly w.r.t. the shape of Q° and the structure of {»°).

Technical remark: we assume that discrete domains Q° contain
some fixed rectangle [—s, s] x [0, t] and their boundaries near
target points b® ~ 0 approximate the straight segment [—s, s];



Namely, there exists €(0) = (0, r, R, s, t) such that for all
simply-connected discrete domains (Q; a°, b°) having “straight”
boundary near b’ and z° € Q% the following holds true:

if B(z°,r) C Q% C B(2°,R), then
|K® - FO(2%) — fiQ&;a67b6)(26)| <eg(d) - 0asd—0

(uniformly w.r.t. the shape of Q° and the structure of {»°).

Technical remark: we assume that discrete domains Q° contain
some fixed rectangle [—s, s] x [0, t] and their boundaries near
target points b® ~ 0 approximate the straight segment [—s, s];

Corollary (universality of the critical Ising model):

The convergence of interfaces of the critical spin-Ising

model to SLE3 holds true on isoradial
graphs independently on their particular structure.



S-holomorphicity of the observable in the spin-lsing model:

[bijection between pictures with interfaces ending at z; < at z]




Two tricks:

I. Integration of F2 (as on the square grid): If
F is s-holomorphic, then one can correctly
define (up to an additive constant) the
function

H:Im/é(F(z))zd‘sz by

H(u)—H(w) = 25. ’

Pr [ F(z): li(w—u)] 2]

(i) for any neighboring vi,v» €T or vi,v» € I'* one has
H(v2) — H(v1) = Im[(va—v1)(F(3(v1+v2)))?]-

(ii) H is (discrete) subharmonic on I and superharmonic on I'*.



Two tricks:

1. “Boundary modification”:

Let ¢ € 89% C <> be a boundary

vertex and Im[F(C)T(g)%] =0,
where 7(() = wo —wj.

Then H(wz) = H(wi) (and so
H|. = c on this part of 0Q2.).
How to deal with H‘r?
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Trick: Set formally H(u12) :== H(w12).
Then H‘r is still discrete subharmonic on the new graph (which still
has an isoradial structure) and H‘r = ¢ on the “modified” boundary.
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Trick: Set formally H(u12) :== H(w12).
Then H‘r is still discrete subharmonic on the new graph (which still
has an isoradial structure) and H‘r = ¢ on the “modified” boundary.

Remark. This trick allows us to avoid the using of Onsager's
magnetization estimate (as it was in the original Smirnov’s proof).



Convergence of the observable (spin-case):

I. Define H® = Im [°(F%(2))2d®z. Note that
— 400 > H°| = H|.. > 0;

— H‘S‘r is subharmonic, H°
— both H6|r =0 and H°

is superharmonic;

r*
r« = 0 on the boundary.
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Convergence of the observable (spin-case):

. Define H® = Imf %(2))2d%z. Note that

— 400> H|. > H|., > 0;

— H‘S‘r is subharmonic, H° r+ is superharmonic;
— both H‘s}r r« = 0 on the boundary.

Il. Prove that H° are uniformly bounded away from a
(Hint: normalization at b = boundedness in the bulk).

. Let Q° — Q as § — 0. Deduce that both {F%} and {H’}
are normal families on each compact subset of Q

(= F® = f, H® = h=1Im [ f?dz along some subsequence &;).
0. _ Ah(py _
IV. Keep track that h > 0 in ; h|89\{a} =0 and ny(b) =1.

V. Obtain the uniform convergence using compactness arguments
(Carathéodory topology on the set of simply-connected domains).



Critical Ising model on isoradial graphs:

spln Is:ng model FK-Ising model

Interface — SLEs. Interface — SLE¢3.

THANK YOU!



