Weyl-Titchmarsh functions of vector-valued Sturm-Liouville operators on $[0,1]$

Dmitry Chelkak (St.Petersburg)

D. Chelkak, E. Korotyaev: Weyl-Titchmarsh functions of vector-valued Sturm-Liouville operators on the unit interval
arXiv:0808.2547; J. Funct. Anal. 257, 1546-1588 (2009)
International Conference in Spectral Theory dedicated to the memory of M.Sh.Birman

St.Petersburg, August 3, 2009

What I am NOT going to discuss. Scattering on \mathbb{R}_{+}:
SCALAR vs MATRIX potentials [Agranovich-Marchenko '50s-60s]

What I am NOT going to discuss. Scattering on \mathbb{R}_{+}:
SCALAR vs MATRIX potentials [Agranovich-Marchenko '50s-60s]

$$
\begin{aligned}
& \quad \mathcal{H} \psi=-\psi^{\prime \prime}+V \psi \quad\left[\text { acting in } L^{2}\left([0,+\infty) ; \mathbb{C}^{N}\right)\right], \quad \psi(0)=0, \\
& \text { where } V=V^{*}:[0,+\infty) \rightarrow \mathbb{C}^{N \times N}, \quad \int_{0}^{+\infty} x|V(x)| d x<+\infty
\end{aligned}
$$

What I am NOT going to discuss. Scattering on \mathbb{R}_{+}:
$\underline{S C A L A R}$ vs MATRIX potentials [Agranovich-Marchenko '50s-60s]

$$
\mathcal{H} \psi=-\psi^{\prime \prime}+V \psi \quad\left[\operatorname{acting} \text { in } L^{2}\left([0,+\infty) ; \mathbb{C}^{N}\right)\right], \quad \psi(0)=0
$$

where $V=V^{*}:[0,+\infty) \rightarrow \mathbb{C}^{N \times N}, \quad \int_{0}^{+\infty} x|V(x)| d x<+\infty$.
Spectral data: scattering matrix $S(z)$; finite number of negative eigenvalues $\lambda_{j}=-k_{j}^{2}, j=1, . ., m$, and normalizing matrices $M_{j}^{*}=M_{j} \geq 0\left(\operatorname{rank} M_{j}=\right.$ multiplicity of $\left.\lambda_{j}\right)$.

What I am NOT going to discuss. Scattering on \mathbb{R}_{+}:
$\underline{S C A L A R}$ vs MATRIX potentials [Agranovich-Marchenko '50s-60s]

$$
\mathcal{H} \psi=-\psi^{\prime \prime}+V \psi \quad\left[\operatorname{acting} \text { in } L^{2}\left([0,+\infty) ; \mathbb{C}^{N}\right)\right], \quad \psi(0)=0
$$

where $V=V^{*}:[0,+\infty) \rightarrow \mathbb{C}^{N \times N}, \quad \int_{0}^{+\infty} x|V(x)| d x<+\infty$.
Spectral data: scattering matrix $S(z)$; finite number of negative eigenvalues $\lambda_{j}=-k_{j}^{2}, j=1, . ., m$, and normalizing matrices $M_{j}^{*}=M_{j} \geq 0\left(\operatorname{rank} M_{j}=\right.$ multiplicity of $\left.\lambda_{j}\right)$.

Defined via $U(x, z)$ which is a ("properly normalized") solution of $\mathcal{H} U=z^{2} U, U(0, z)=0$, such that, as $x \rightarrow+\infty$:

$$
\begin{aligned}
& U(x, z)=e^{i z x}-S(-z) e^{-i z x}+o(1), \quad z>0 \\
& U\left(x,-i k_{j}\right)=e^{-\left|k_{j}\right| x}\left[M_{k}+o(1)\right], \quad j=1, . ., m .
\end{aligned}
$$

What I am NOT going to discuss. Scattering on \mathbb{R}_{+}:
SCALAR vs MATRIX potentials [Agranovich-Marchenko '50s-60s]
Necessary and sufficient conditions. Scalar case:

- (I) $S(z)=\overline{S(-z)}=[S(-z)]^{-1}$ is continuous on \mathbb{R},

$$
\begin{gathered}
F_{s}(x)=F_{s}^{*}(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}(1-S(z)) e^{i z x} d z, \quad x \in \mathbb{R} \\
\quad F_{s} \in L^{1}+\left(L^{2} \cap L^{\infty}\right), \quad \int_{0}^{+\infty} x\left|F_{s}^{\prime}(x)\right| d x<+\infty
\end{gathered}
$$

What I am NOT going to discuss. Scattering on \mathbb{R}_{+}:
$\underline{S C A L A R}$ vs MATRIX potentials [Agranovich-Marchenko '50s-60s]
Necessary and sufficient conditions. Scalar case:

- (I) $S(z)=\overline{S(-z)}=[S(-z)]^{-1}$ is continuous on \mathbb{R},

$$
\begin{gathered}
F_{s}(x)=F_{s}^{*}(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}(1-S(z)) e^{i z x} d z, \quad x \in \mathbb{R} \\
\quad F_{s} \in L^{1}+\left(L^{2} \cap L^{\infty}\right), \quad \int_{0}^{+\infty} x\left|F_{s}^{\prime}(x)\right| d x<+\infty
\end{gathered}
$$

- (II)

$$
m+\frac{1-S(0)}{4}=\frac{\log S(+0)-\log S(+\infty)}{2 \pi i}
$$

[m is the number of negative eigenvalues].

What I am NOT going to discuss. Scattering on \mathbb{R}_{+}:
$\underline{\text { SCALAR }}$ vs MATRIX potentials [Agranovich-Marchenko '50s-60s]
Necessary and sufficient conditions. Scalar case:

- (II)

$$
m+\frac{1-S(0)}{4}=\frac{\log S(+0)-\log S(+\infty)}{2 \pi i}
$$

[m is the number of negative eigenvalues].

What I am NOT going to discuss. Scattering on \mathbb{R}_{+}:
$\underline{S C A L A R}$ vs MATRIX potentials [Agranovich-Marchenko '50s-60s]
Necessary and sufficient conditions. Matrix case:

- (II) $F_{s}(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}(1-S(z)) e^{i z x} d z$
- the equation $-x(t)+\int_{-\infty}^{0} x(\xi) F_{s}(t+\xi) d \xi=0,-\infty<t \leq 0$, has no non-trivial solution;
- the equation $x(t)+\int_{0}^{+\infty} x(\xi) F(t+\xi) d \xi=0,0 \leq t<+\infty$, has no non-trivial solution, $F(t)=\sum_{j=1}^{m} M_{j}^{2} e^{-\left|k_{j}\right| t}+F_{s}(t)$;
- the number of linear independent solutions of the equation $x(t)+\int_{0}^{+\infty} x(\xi) F_{s}(t+\xi) d \xi=0,0 \leq t<+\infty$, is equal to the sum of the ranks of the normalizing matrices M_{1}, \ldots, M_{m}.

Sturm-Liouville operators on $[\mathbf{0 , 1]}$:

$$
\mathcal{L} \psi=-\psi^{\prime \prime}+V \psi \quad\left[\text { acting in } L^{2}\left([0,1] ; \mathbb{C}^{N}\right)\right]
$$

Dirichlet boundary conditions:

$$
\psi(0)=\psi(1)=0
$$

Self-adjoint MATRIX potentials:

$$
V(x)=[V(x)]^{*}, \quad V \in L^{2}\left([0,1] ; \mathbb{C}^{N \times N}\right)
$$

Sturm-Liouville operators on $[\mathbf{0 , 1]}$:

$$
\mathcal{L} \psi=-\psi^{\prime \prime}+V \psi \quad\left[\operatorname{acting} \text { in } L^{2}\left([0,1] ; \mathbb{C}^{N}\right)\right]
$$

Dirichlet boundary conditions:

$$
\psi(0)=\psi(1)=0
$$

Self-adjoint MATRIX potentials:

$$
V(x)=[V(x)]^{*}, \quad V \in L^{2}\left([0,1] ; \mathbb{C}^{N \times N}\right)
$$

- \mathcal{L} has purely discrete spectrum $\lambda_{1}<\lambda_{2}<\lambda_{3}<\ldots$;
- possible multiplicities are $1,2, . ., N$.

Sturm-Liouville operators on [0, 1]: $\mathcal{L} \psi=-\psi^{\prime \prime}+V \psi$
Dirichlet boundary conditions: $\quad \psi(0)=\psi(1)=0$
Self-adjoint MATRIX potentials: $V=V^{*} \in L^{2}\left([0,1] ; \mathbb{C}^{N \times N}\right)$

Sturm-Liouville operators on [0, 1]: $\mathcal{L} \psi=-\psi^{\prime \prime}+V \psi$
Dirichlet boundary conditions: $\quad \psi(0)=\psi(1)=0$
Self-adjoint MATRIX potentials: $V=V^{*} \in L^{2}\left([0,1] ; \mathbb{C}^{N \times N}\right)$
Weyl-Titchmarsh function:
Let φ, χ be the solutions of $\mathcal{L} \psi=\lambda \psi$ such that
$\left\{\begin{array}{l}\varphi(0)=0, \varphi^{\prime}(0)=I_{N}, \\ \chi(1)=0, \chi^{\prime}(1)=-I_{N} .\end{array}\right.$

$$
M(\lambda)=M(\lambda, V):=\left[\chi^{\prime} \chi^{-1}\right](0, \lambda, V)
$$

If $V=V^{*}$, then $M(\lambda)=[M(\bar{\lambda})]^{*}$ and $\operatorname{Im} M(\lambda) \geq 0$ for $\lambda \geq 0$.

Sturm-Liouville operators on [0, 1]: $\mathcal{L} \psi=-\psi^{\prime \prime}+V \psi$
Dirichlet boundary conditions: $\quad \psi(0)=\psi(1)=0$
Self-adjoint MATRIX potentials: $V=V^{*} \in L^{2}\left([0,1] ; \mathbb{C}^{N \times N}\right)$
Weyl-Titchmarsh function:
Let φ, χ be the solutions of $\mathcal{L} \psi=\lambda \psi$ such that
$\left\{\begin{array}{l}\varphi(0)=0, \varphi^{\prime}(0)=I_{N}, \\ \chi(1)=0, \chi^{\prime}(1)=-I_{N} .\end{array}\right.$

$$
M(\lambda)=M(\lambda, V):=\left[\chi^{\prime} \chi^{-1}\right](0, \lambda, V)
$$

If $V=V^{*}$, then $M(\lambda)=[M(\bar{\lambda})]^{*}$ and $\operatorname{Im} M(\lambda) \geq 0$ for $\lambda \geq 0$.

- Eigenvalues of \mathcal{L} coincide with singularities of M.

Scalar case. Characterization.
The Weyl-Titchmarsh function $m(\lambda, v)$ is a meromorphic function having simple poles at Dirichlet eigenvalues $\lambda_{n}(v)$ and

$$
\operatorname{res}_{\lambda=\lambda_{n}(v)} m(\lambda, v)=-\left[g_{n}(v)\right]^{-1}=-\left[\int_{0}^{1}\left|\varphi\left(x, \lambda_{n}, v\right)\right|^{2} d x\right]^{-1}
$$

The sharp characterization of all scalar Weyl-Titchmarsh functions (equivalently, spectral data $\left.\left(\lambda_{n}(v), g_{n}(v)\right)_{n=1}^{+\infty}\right)$ that correspond to potentials $v \in \mathcal{L}^{2}(0,1)$ (or other reasonable spaces) is available.

Scalar case. Characterization.
The Weyl-Titchmarsh function $m(\lambda, v)$ is a meromorphic function having simple poles at Dirichlet eigenvalues $\lambda_{n}(v)$ and

$$
\underset{\lambda=\lambda_{n}(v)}{\operatorname{res}} m(\lambda, v)=-\left[g_{n}(v)\right]^{-1}=-\left[\int_{0}^{1}\left|\varphi\left(x, \lambda_{n}, v\right)\right|^{2} d x\right]^{-1}
$$

The sharp characterization of all scalar Weyl-Titchmarsh functions (equivalently, spectral data $\left.\left(\lambda_{n}(v), g_{n}(v)\right)_{n=1}^{+\infty}\right)$ that correspond to potentials $v \in \mathcal{L}^{2}(0,1)$ (or other reasonable spaces) is available.
Namely, the necessary and sufficient conditions are

$$
\begin{array}{cl}
\lambda_{1}<\lambda_{2}<\lambda_{3}<\ldots, \quad & \left(\lambda_{n}-\pi^{2} n^{2}-v_{0}\right)_{n=1}^{+\infty} \in \ell^{2}, \quad v_{0} \in \mathbb{R} \\
\text { and } & \left(\pi n \cdot\left(2 \pi^{2} n^{2} \cdot g_{n}-1\right)\right)_{n=1}^{+\infty} \in \ell^{2} .
\end{array}
$$

Actually, $v_{0}=\int_{0}^{1} v(x) d x$.

Matrix case. Spectral data.

- eigenvalues $\lambda_{1}<\lambda_{2}<. .<\lambda_{\alpha}<\ldots$ (and multiplicities k_{α});
- residues of $M:-\operatorname{res}_{\lambda=\lambda_{\alpha}} M(\lambda)=B_{\alpha}=B_{\alpha}^{*} \geq 0, \operatorname{rank} B_{\alpha}=k_{\alpha}$

Matrix case. Spectral data.

- eigenvalues $\lambda_{1}<\lambda_{2}<. .<\lambda_{\alpha}<\ldots$ (and multiplicities k_{α});
- residues of $M:-\operatorname{res}_{\lambda=\lambda_{\alpha}} M(\lambda)=B_{\alpha}=B_{\alpha}^{*} \geq 0, \operatorname{rank} B_{\alpha}=k_{\alpha}$

$$
B_{\alpha}=P_{\alpha} g_{\alpha}^{-1} P_{\alpha}
$$

where

- $P_{\alpha}: \mathbb{C}^{N} \rightarrow \mathcal{E}_{\alpha} \subset \mathbb{C}^{N}$ is an orthogonal projector $\left(\operatorname{rank} P_{\alpha}=\operatorname{dim} \mathcal{E}_{\alpha}=k_{\alpha}\right)$
- g_{α} is a positive quadratic form in \mathcal{E}_{α} ("normalizing matrix")

Matrix case. Spectral data.

- eigenvalues $\lambda_{1}<\lambda_{2}<. .<\lambda_{\alpha}<\ldots$ (and multiplicities k_{α});
- residues of $M:-\operatorname{res}_{\lambda=\lambda_{\alpha}} M(\lambda)=B_{\alpha}=B_{\alpha}^{*} \geq 0, \operatorname{rank} B_{\alpha}=k_{\alpha}$

$$
B_{\alpha}=P_{\alpha} g_{\alpha}^{-1} P_{\alpha}
$$

where

- $P_{\alpha}: \mathbb{C}^{N} \rightarrow \mathcal{E}_{\alpha} \subset \mathbb{C}^{N}$ is an orthogonal projector $\left(\operatorname{rank} P_{\alpha}=\operatorname{dim} \mathcal{E}_{\alpha}=k_{\alpha}\right)$
- g_{α} is a positive quadratic form in \mathcal{E}_{α} ("normalizing matrix")

Equivalent definition:

$$
\begin{gathered}
\mathcal{E}_{\alpha}=\operatorname{Ker} \varphi\left(1, \lambda_{\alpha}, V\right)=\left\{h \in \mathbb{C}^{N}: \psi_{\alpha ; h}=\varphi\left(\cdot, \lambda_{\alpha}, V\right) h \in \operatorname{Ker}\left(\mathcal{L}-\lambda_{\alpha}\right)\right\}, \\
\left\langle\psi_{\alpha ; h_{1},}, \psi_{\alpha ; h_{2}}\right\rangle_{L^{2}\left([0,1] ; \mathbb{C}^{N}\right)}=\left\langle h_{1}, g_{\alpha} h_{2}\right\rangle_{\mathcal{E}_{\alpha}}, \quad g_{\alpha}=p_{\alpha}\left[\int_{0}^{1}\left[\varphi^{*} \varphi\right]\left(x, \lambda_{\alpha}, V\right) d x\right] p_{\alpha}^{*}
\end{gathered}
$$

Matrix case. Spectral data.

- eigenvalues $\lambda_{1}<\lambda_{2}<. .<\lambda_{\alpha}<\ldots$ (and multiplicities k_{α});
- residues of $M:-\operatorname{res}_{\lambda=\lambda_{\alpha}} M(\lambda)=B_{\alpha}=B_{\alpha}^{*} \geq 0, \operatorname{rank} B_{\alpha}=k_{\alpha}$

$$
B_{\alpha}=P_{\alpha} g_{\alpha}^{-1} P_{\alpha}
$$

where

- $P_{\alpha}: \mathbb{C}^{N} \rightarrow \mathcal{E}_{\alpha} \subset \mathbb{C}^{N}$ is an orthogonal projector $\left(\operatorname{rank} P_{\alpha}=\operatorname{dim} \mathcal{E}_{\alpha}=k_{\alpha}\right)$
- g_{α} is a positive quadratic form in \mathcal{E}_{α} ("normalizing matrix")

Uniqueness Theorem:
[M. M. Malamud '05, V. A. Yurko '06]
The matrix-valued function $M(\lambda)$ (or, equivalently, the collection of spectral data $\left.\left(\lambda_{\alpha}, P_{\alpha}, g_{\alpha}\right)_{\alpha=1}^{+\infty}\right)$ determines the potential uniquely.

Isospectral Flows.

[D.Ch., E.K.: Parametrization of the isospectral set for the vector-valued Sturm-Liouville problem.
J. Funct. Anal. 241(1), 359-373 (2006). arXiv:math.SP/0607810]

Fix some admissible spectrum $\left\{\lambda_{\alpha}\right\}_{\alpha \geq 1}$ (and multiplicities k_{α}) and all the residues $B_{\alpha}=P_{\alpha} g_{\alpha}^{-1} P_{\alpha}, \alpha \neq \beta$, except one. Then:

- g_{β} can be changed arbitrarily [M. Jr. Jodeit; B. M. Levitan '98]
- P_{β} can be changed almost arbitrarily:

Isospectral Flows.

[D.Ch., E.K.: Parametrization of the isospectral set for the vector-valued Sturm-Liouville problem.
J. Funct. Anal. 241(1), 359-373 (2006). arXiv:math.SP/0607810]

Fix some admissible spectrum $\left\{\lambda_{\alpha}\right\}_{\alpha \geq 1}$ (and multiplicities k_{α}) and all the residues $B_{\alpha}=P_{\alpha} g_{\alpha}^{-1} P_{\alpha}, \alpha \neq \beta$, except one. Then:

- g_{β} can be changed arbitrarily [M. Jr. Jodeit; B. M. Levitan '98]
- P_{β} can be changed almost arbitrarily:

There exists the "forbidden subspace" $\mathcal{F}_{\beta}, \operatorname{dim} \mathcal{F}_{\beta}=N-k_{\beta}$, which is uniquely determined by the spectrum and $\left(\mathcal{E}_{\alpha}\right)_{\alpha \neq \beta}$ such that all "deformations" $P_{\beta} \mapsto \widetilde{P}_{\beta}: \mathcal{F}_{\beta} \cap \operatorname{Ran} \widetilde{P}_{\beta}=\{0\}$ are permitted (the new potential is constructed explicitly).

Isospectral Flows.

[D.Ch., E.K.: Parametrization of the isospectral set for the vector-valued Sturm-Liouville problem.
J. Funct. Anal. 241(1), 359-373 (2006). arXiv:math.SP/0607810]

Fix some admissible spectrum $\left\{\lambda_{\alpha}\right\}_{\alpha \geq 1}$ (and multiplicities k_{α}) and all the residues $B_{\alpha}=P_{\alpha} g_{\alpha}^{-1} P_{\alpha}, \alpha \neq \beta$, except one. Then:

- g_{β} can be changed arbitrarily [M. Jr. Jodeit; B. M. Levitan '98]
- P_{β} can be changed almost arbitrarily:

Toy example (discrete version). Block Jacobi matrices.
[A.I.Aptekarev, E.M.Nikishin '83: The scattering problem for a discrete Sturm-Liouville operator; J.Brüning, D.Ch., E.K.: Remark on finite matrix-valued Jacobi operators, arXiv:math/0607809]

Let $b_{p}^{*}=b_{p}, a_{p}=a_{p}^{*}>0$ be $N \times N$ matrices and

$$
\mathcal{J}=\left(\begin{array}{cccccc}
b_{1} & a_{1} & 0 & 0 & \ldots & 0 \\
a_{1}^{*} & b_{2} & a_{2} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 0 & a_{n-2}^{*} & b_{n-1} & a_{n-1} \\
0 & \ldots & 0 & 0 & a_{n-1}^{*} & b_{n}
\end{array}\right) .
$$

- $\sigma(\mathcal{J}): \lambda_{1}<\lambda_{2}<\cdots<\lambda_{m}, \quad k_{1}+k_{2}+\cdots+k_{m}=N n ;$

Toy example (discrete version). Block Jacobi matrices.
[A.I.Aptekarev, E.M.Nikishin '83: The scattering problem for a discrete Sturm-Liouville operator; J.Brüning, D.Ch., E.K.: Remark on finite matrix-valued Jacobi operators, arXiv:math/0607809]

Let $b_{p}^{*}=b_{p}, a_{p}=a_{p}^{*}>0$ be $N \times N$ matrices and

$$
\mathcal{J}=\left(\begin{array}{cccccc}
b_{1} & a_{1} & 0 & 0 & \ldots & 0 \\
a_{1}^{*} & b_{2} & a_{2} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 0 & a_{n-2}^{*} & b_{n-1} & a_{n-1} \\
0 & \ldots & 0 & 0 & a_{n-1}^{*} & b_{n}
\end{array}\right)
$$

- $\sigma(\mathcal{J}): \lambda_{1}<\lambda_{2}<\cdots<\lambda_{m}, \quad k_{1}+k_{2}+\cdots+k_{m}=N n ;$
- residues of the (rational) M-function:

$$
\begin{aligned}
\chi_{n+1} & :=0, \chi_{n}:=I, a_{p-1}^{*} \chi_{p-1}+b_{p} \chi_{p}+a_{p} \chi_{p+1}=\lambda \cdot \chi_{p} \\
B_{s} & =P_{s} g_{s}^{-1} P_{s}:=-\underset{\lambda=\lambda_{s}}{\operatorname{res}} M(\lambda), \quad M(\lambda):=-\left[\chi_{1} \chi_{0}^{-1}\right](\lambda) .
\end{aligned}
$$

Toy example (discrete version). Block Jacobi matrices.
[A.I.Aptekarev, E.M.Nikishin '83: The scattering problem for a discrete Sturm-Liouville operator;
J.Brüning, D.Ch., E.K.: Remark on finite matrix-valued Jacobi operators, arXiv:math/0607809]

Let $b_{p}^{*}=b_{p}, a_{p}=a_{p}^{*}>0$ be $N \times N$ matrices and

$$
\mathcal{J}=\left(\begin{array}{cccccc}
b_{1} & a_{1} & 0 & 0 & \ldots & 0 \\
a_{1}^{*} & b_{2} & a_{2} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 0 & a_{n-2}^{*} & b_{n-1} & a_{n-1} \\
0 & \ldots & 0 & 0 & a_{n-1}^{*} & b_{n}
\end{array}\right)
$$

- $\sigma(\mathcal{J}): \lambda_{1}<\lambda_{2}<\cdots<\lambda_{m}, \quad k_{1}+k_{2}+\cdots+k_{m}=N n$;
- $\left(\lambda_{s}, B_{s}\right)_{s=1}^{m}, B_{s}=P_{s} g_{s}^{-1} P_{s}, \operatorname{rank} P_{s}=k_{s}$, should be such that there exists no (nontrivial) vector-valued polynomial $F: \mathbb{C} \rightarrow \mathbb{C}^{N}, \operatorname{deg} F \leq n-1: \quad P_{s} F\left(\lambda_{s}\right)=0, s=1, \ldots, m$.

Main result: [D.Ch., E.K. ${ }^{\text {o }}$ 08

For all $v_{1}^{0}<v_{2}^{0}<. .<v_{n}^{0}$ the mapping $V \mapsto\left(\lambda_{\alpha}, P_{\alpha}, g_{\alpha}\right)_{\alpha=1}^{+\infty}$ is a bijection between the set of potentials

$$
V=V^{*} \in L^{2}\left([0,1] ; \mathbb{C}^{N \times N}\right): \quad \int_{0}^{1} V(x) d x=\operatorname{diag}\left\{v_{1}^{0}, v_{2}^{0}, . ., v_{N}^{0}\right\}
$$

and the class of spectral data satisfying (A)-(C):

Main result: [D.Ch., E.K. '08]

For all $v_{1}^{0}<v_{2}^{0}<. .<v_{n}^{0}$ the mapping $V \mapsto\left(\lambda_{\alpha}, P_{\alpha}, g_{\alpha}\right)_{\alpha=1}^{+\infty}$ is a bijection between the set of potentials

$$
V=V^{*} \in L^{2}\left([0,1] ; \mathbb{C}^{N \times N}\right): \quad \int_{0}^{1} V(x) d x=\operatorname{diag}\left\{v_{1}^{0}, v_{2}^{0}, . ., v_{N}^{0}\right\}
$$

and the class of spectral data satisfying $(A)-(C)$:
(A) The spectrum is asymptotically simple, i.e., $\exists \alpha^{\diamond} \geq 0, n^{\diamond} \geq 1$:

$$
k_{1}^{\diamond}+k_{2}^{\diamond}+. .+k_{\alpha^{\diamond}}^{\diamond}=N\left(n^{\diamond}-1\right) \quad \text { and } \quad k_{\alpha}^{\diamond}=1 \text { for all } \alpha \geq \alpha^{\diamond}+1 .
$$

It allows us to define the double-indexing $(n, j), n \geq n^{\diamond}, j=1, . ., N$, instead of the single-indexing $\alpha>\alpha^{\diamond}$. Namely, we set

$$
\lambda_{n, j}=\lambda_{\alpha^{\diamond}+N\left(n-n^{\diamond}\right)+j}, \quad g_{n, j}=g_{\alpha^{\diamond}+N\left(n-n^{\diamond}\right)+j} \text { etc. for } n \geq n^{\diamond}
$$

Main result: [D.Ch., E.K. '08]

For all $v_{1}^{0}<v_{2}^{0}<. .<v_{n}^{0}$ the mapping $V \mapsto\left(\lambda_{\alpha}, P_{\alpha}, g_{\alpha}\right)_{\alpha=1}^{+\infty}$ is a bijection between the set of potentials

$$
V=V^{*} \in L^{2}\left([0,1] ; \mathbb{C}^{N \times N}\right): \quad \int_{0}^{1} V(x) d x=\operatorname{diag}\left\{v_{1}^{0}, v_{2}^{0}, . ., v_{N}^{0}\right\}
$$

and the class of spectral data satisfying (A)-(C):
(A) The spectrum is asymptotically simple.
(B) The asymptotics of spectral data in ℓ^{2}-sense hold true:

$$
\begin{array}{ll}
\left(\lambda_{n, j}-\pi^{2} n^{2}-v_{j}^{0}\right)_{n=n^{\diamond}}^{+\infty} \in \ell^{2}, \quad\left(\pi n \cdot\left(2 \pi^{2} n^{2} g_{n, j}-1\right)\right)_{n=n^{\diamond}}^{+\infty} \in \ell^{2}, \\
\left(\left|P_{n, j}-P_{j}^{0}\right|\right)_{n=n^{\diamond}}^{+\infty} \in \ell^{2} \quad \text { and } \quad\left(\pi n \cdot\left|\sum_{j=1}^{N} P_{n, j}-I_{N}\right|\right)_{n=n^{\diamond}}^{+\infty} \in \ell^{2} .
\end{array}
$$

Main result: [D.Ch., Е.к. '08]

For all $v_{1}^{0}<v_{2}^{0}<. .<v_{n}^{0}$ the mapping $V \mapsto\left(\lambda_{\alpha}, P_{\alpha}, g_{\alpha}\right)_{\alpha=1}^{+\infty}$ is a bijection between the set of potentials

$$
V=V^{*} \in L^{2}\left([0,1] ; \mathbb{C}^{N \times N}\right): \quad \int_{0}^{1} V(x) d x=\operatorname{diag}\left\{v_{1}^{0}, v_{2}^{0}, . ., v_{N}^{0}\right\}
$$

and the class of spectral data satisfying (A)-(C):
(A) The spectrum is asymptotically simple.
(B) The asymptotics of spectral data in ℓ^{2}-sense hold true.
(C) The collection $\left(\lambda_{\alpha} ; P_{\alpha}\right)_{\alpha=1}^{+\infty}$ satisfies the following property: Let $\xi: \mathbb{C} \rightarrow \mathbb{C}^{N}$ be an entire vector-valued function such that $\xi(\lambda)=O\left(e^{\mid \operatorname{Im} \sqrt{\lambda \mid}}\right)$ as $|\lambda| \rightarrow \infty$ and $\xi \in L^{2}\left(\mathbb{R}_{+}\right)$.

If $P_{\alpha} \xi\left(\lambda_{\alpha}\right)=0$ for all $\alpha \geq 1, \quad$ then $\xi(\lambda) \equiv 0$.

$$
\text { (C) } \xi: \mathbb{C} \rightarrow \mathbb{C}^{N}, \xi(\lambda)=O\left(e^{|\operatorname{Im} \sqrt{\lambda}|}\right) \text { as }|\lambda| \rightarrow \infty \text { and } \xi \in L^{2}\left(\mathbb{R}_{+}\right) .
$$

$$
\text { If } P_{\alpha} \xi\left(\lambda_{\alpha}\right)=0 \text { for all } \alpha \geq 1, \text { then } \xi(\lambda) \equiv 0 .
$$

Remarks [concerning (C)]:

- Trivial in the scalar case (due to the Paley-Wiener theory).
(C) $\xi: \mathbb{C} \rightarrow \mathbb{C}^{N}, \xi(\lambda)=O\left(e^{|\operatorname{Im} \sqrt{\lambda}|}\right)$ as $|\lambda| \rightarrow \infty$ and $\xi \in L^{2}\left(\mathbb{R}_{+}\right)$.

$$
\text { If } P_{\alpha} \xi\left(\lambda_{\alpha}\right)=0 \text { for all } \alpha \geq 1 \text {, then } \xi(\lambda) \equiv 0 \text {. }
$$

Remarks [concerning (C)]:

- Trivial in the scalar case (due to the Paley-Wiener theory).
- Nontrivial in the vector-valued case; describes all "forbidden subspaces" \mathcal{F}_{β} (restrictions $\mathcal{E}_{\beta} \cap \mathcal{F}_{\beta}=\{0\}$) simultaneously.
(C) $\xi: \mathbb{C} \rightarrow \mathbb{C}^{N}, \xi(\lambda)=O\left(e^{|\operatorname{Im} \sqrt{\lambda}|}\right)$ as $|\lambda| \rightarrow \infty$ and $\xi \in L^{2}\left(\mathbb{R}_{+}\right)$.

$$
\text { If } P_{\alpha} \xi\left(\lambda_{\alpha}\right)=0 \text { for all } \alpha \geq 1 \text {, then } \xi(\lambda) \equiv 0 .
$$

Remarks [concerning (C)]:

- Trivial in the scalar case (due to the Paley-Wiener theory).
- Nontrivial in the vector-valued case; describes all "forbidden subspaces" \mathcal{F}_{β} (restrictions $\mathcal{E}_{\beta} \cap \mathcal{F}_{\beta}=\{0\}$) simultaneously.
- Equivalent to the following (if all $\lambda_{\alpha}>0$):

Let $P_{\alpha}=h_{\alpha} h_{\alpha}^{*}$, where $h_{\alpha}=\left(h_{\alpha}^{(1)} ; . . ; h_{\alpha}^{\left(k_{\alpha}\right)}\right)$ and $h_{\alpha}^{(j)} \in \mathbb{C}^{N}$ are orthonormal. Then the vector-valued functions $e^{ \pm i \sqrt{\lambda_{\alpha}} t} h_{\alpha}^{(j)}, j=1, . ., k_{\alpha}, \alpha \geq 1$, together with the constant vectors $e_{1}^{0}, . ., e_{N}^{0}$ span $L^{2}\left([-1,1] ; \mathbb{C}^{N}\right)$.
(C) $\xi: \mathbb{C} \rightarrow \mathbb{C}^{N}, \xi(\lambda)=O\left(e^{|\operatorname{Im} \sqrt{\lambda}|}\right)$ as $|\lambda| \rightarrow \infty$ and $\xi \in L^{2}\left(\mathbb{R}_{+}\right)$.

$$
\text { If } P_{\alpha} \xi\left(\lambda_{\alpha}\right)=0 \text { for all } \alpha \geq 1 \text {, then } \xi(\lambda) \equiv 0 \text {. }
$$

Remarks [concerning (C)]:

- (C) can be rewritten explicitly, if $P_{n, j}=P_{j}^{0}$ for all $n \geq m+1$:

- (C) can be rewritten explicitly, if $P_{n, j}=P_{j}^{0}$ for all $n \geq m+1$:

$$
\mathcal{T}=\left(\begin{array}{cccc}
T_{0} & T_{1} & \ldots & T_{m-1} \\
T_{1} & T_{2} & \ldots & T_{m} \\
\ldots & \ldots & \ldots & \ldots \\
T_{m-1} & T_{m} & \ldots & T_{2 m-2}
\end{array}\right)=\mathcal{T}^{*}>0
$$

where

$$
\begin{gathered}
T_{k}=\sum_{\lambda_{\alpha}<\lambda_{m+1,1}} F\left(\lambda_{\alpha}\right) P_{\alpha} F\left(\lambda_{\alpha}\right) \cdot \lambda_{\alpha}^{k}=T_{k}^{*} \\
F(\lambda) \equiv \operatorname{diag}_{j=1, . ., N}\left\{\prod_{n=m+1}^{+\infty}\left(1-\frac{\lambda}{\lambda_{n, j}}\right)\right\}
\end{gathered}
$$

Proof. Asymptotics.

- (1) $\left(\lambda_{n, j}-\pi^{2} n^{2}-v_{j}^{0}\right)_{n=n^{\circ}}^{+\infty} \in \ell^{2}$,
- (2) $\left(\pi n \cdot\left(2 \pi^{2} n^{2} g_{n, j}-1\right)\right)_{n=n^{\circ}}^{+\infty} \in \ell^{2}$,
- (3) $\left(\left|P_{n, j}-P_{j}^{0}\right|\right)_{n=n^{\diamond}}^{+\infty} \in \ell^{2}$,
are simple corollaries of our assumption $v_{1}^{0}<v_{2}^{0}<\ldots<v_{N}^{0}$;

Proof. Asymptotics.

- (1) $\left(\lambda_{n, j}-\pi^{2} n^{2}-v_{j}^{0}\right)_{n=n^{\diamond}}^{+\infty} \in \ell^{2}$,
- (2) $\left(\pi n \cdot\left(2 \pi^{2} n^{2} g_{n, j}-1\right)\right)_{n=n^{\circ}}^{+\infty} \in \ell^{2}$,
- (3) $\left(\left|P_{n, j}-P_{j}^{0}\right|\right)_{n=n^{\circ}}^{+\infty} \in \ell^{2}$,
are simple corollaries of our assumption $v_{1}^{0}<v_{2}^{0}<\ldots<v_{N}^{0}$;
- (4) $\left(\pi n \cdot\left|\sum_{j=1}^{N} P_{n, j}-I_{N}\right|\right)_{n=n^{\diamond}}^{+\infty} \in \ell^{2}$
follows from the analysis of the sum $\sum_{\lambda_{\alpha}:\left|\lambda_{\alpha}-\pi^{2} n^{2}\right|=O(1)} B_{\alpha}$ (which behaves better then the individual residues).

Proof. Asymptotics.

- (2) $\left(\pi n \cdot\left(2 \pi^{2} n^{2} g_{n, j}-1\right)\right)_{n=n^{\diamond}}^{+\infty} \in \ell^{2}$,
- (3) $\left(\left|P_{n, j}-P_{j}^{0}\right|\right)_{n=n^{\diamond}}^{+\infty} \in \ell^{2}$,
- (4) $\left(\pi n \cdot\left|\sum_{j=1}^{N} P_{n, j}-I_{N}\right|\right)_{n=n^{\diamond}}^{+\infty} \in \ell^{2}$.

Equivalent description (technical trick):

$$
B_{n, j}=P_{n, j} g_{n, j}^{-1} P_{n, j}, \quad P_{n, j}=\left\langle\cdot, h_{n, j}\right\rangle h_{n, j}:\left\langle h_{n, j}, e_{j}^{0}\right\rangle>0 .
$$

Let $\quad H_{n}=\frac{1}{\sqrt{2} \pi n}\left(h_{n, 1} ; \ldots ; h_{n, N}\right)=S_{n} U_{n}, \quad S_{n}=S_{n}^{*}, U_{n}^{*}=U_{n}^{-1}$.
Then

Proof. Asymptotics.

- (2) $\left(\pi n \cdot\left(2 \pi^{2} n^{2} g_{n, j}-1\right)\right)_{n=n^{\diamond}}^{+\infty} \in \ell^{2}$,
- (3) $\left(\left|P_{n, j}-P_{j}^{0}\right|\right)_{n=n^{\circ}}^{+\infty} \in \ell^{2}$,
- (4) $\left(\pi n \cdot\left|\sum_{j=1}^{N} P_{n, j}-I_{N}\right|\right)_{n=n^{\diamond}}^{+\infty} \in \ell^{2}$.

Equivalent description (technical trick):

$$
B_{n, j}=P_{n, j} g_{n, j}^{-1} P_{n, j}, \quad P_{n, j}=\left\langle\cdot, h_{n, j}\right\rangle h_{n, j}:\left\langle h_{n, j}, e_{j}^{0}\right\rangle>0 .
$$

Let $\quad H_{n}=\frac{1}{\sqrt{2} \pi n}\left(h_{n, 1} ; \ldots ; h_{n, N}\right)=S_{n} U_{n}, \quad S_{n}=S_{n}^{*}, U_{n}^{*}=U_{n}^{-1}$.
Then

$$
(2) \&(3) \&(4) \Leftrightarrow\left\{\begin{array}{l}
\left(\left|U_{n}-I\right|\right)_{n=n^{\diamond}}^{+\infty} \in \ell^{2}, \\
\left(\pi n \cdot\left|S_{n}-I\right|\right)_{n=n^{\diamond}}^{+\infty} \in \ell^{2} .
\end{array}\right.
$$

Proof. Asymptotics.

- (2) $\left(\pi n \cdot\left(2 \pi^{2} n^{2} g_{n, j}-1\right)\right)_{n=n^{\diamond}}^{+\infty} \in \ell^{2}$,
- (3) $\left(\left|P_{n, j}-P_{j}^{0}\right|\right)_{n=n^{\circ}}^{+\infty} \in \ell^{2}$,
- (4) $\left(\pi n \cdot\left|\sum_{j=1}^{N} P_{n, j}-I_{N}\right|\right)_{n=n^{\circ}}^{+\infty} \in \ell^{2}$.

Equivalent description (technical trick):

$$
B_{n, j}=P_{n, j} g_{n, j}^{-1} P_{n, j}, \quad P_{n, j}=\left\langle\cdot, h_{n, j}\right\rangle h_{n, j}:\left\langle h_{n, j}, e_{j}^{0}\right\rangle>0 .
$$

Let $\quad H_{n}=\frac{1}{\sqrt{2} \pi n}\left(h_{n, 1} ; \ldots ; h_{n, N}\right)=S_{n} U_{n}, \quad S_{n}=S_{n}^{*}, U_{n}^{*}=U_{n}^{-1}$.
Then

$$
(2) \&(3) \&(4) \Leftrightarrow\left\{\begin{array}{l}
\left(\left|U_{n}-I\right|\right)_{n=n^{\diamond}}^{+\infty} \in \ell^{2} \\
\left(\pi n \cdot\left|S_{n}-I\right|\right)_{n=n^{\diamond}}^{+\infty} \in \ell^{2} .
\end{array}\right.
$$

Note:

$$
S_{n}^{2}=H_{n} H_{n}^{*}=\frac{1}{2 \pi^{2} n^{2}}\left(B_{n, 1}+\ldots+B_{n, N}\right) .
$$

Proof. Inverse problem. Main steps. [Trubowitz's approach]
Consider some $\left(\lambda_{\alpha}^{\sharp}, P_{\alpha}^{\sharp}, g_{\alpha}^{\sharp}\right)_{\alpha=1}^{+\infty}$ satisfying (A)-(C).

- Construct some (special) diagonal potential V^{0} such that $\sigma\left(V^{0}\right)=\left\{\lambda_{\alpha}^{\sharp}\right\}_{\alpha=1}^{+\infty}$ (counting with multiplicities);

Proof. Inverse problem. Main steps. [Trubowitz's approach]
Consider some $\left(\lambda_{\alpha}^{\sharp}, P_{\alpha}^{\sharp}, g_{\alpha}^{\sharp}\right)_{\alpha=1}^{+\infty}$ satisfying (A)-(C).

- Construct some (special) diagonal potential V^{0} such that $\sigma\left(V^{0}\right)=\left\{\lambda_{\alpha}^{\sharp}\right\}_{\alpha=1}^{+\infty}$ (counting with multiplicities);
- Do the analysis on the isospectral set near V^{0} [which is given by $\operatorname{rank} \varphi\left(1, \lambda_{\alpha}^{\sharp}, V^{0}+W\right)=N-k_{\alpha}$];

Proof. Inverse problem. Main steps. [Trubowitz's approach]
Consider some $\left(\lambda_{\alpha}^{\#}, P_{\alpha}^{\sharp}, g_{\alpha}^{\sharp}\right)_{\alpha=1}^{+\infty}$ satisfying (A)-(C).

- Construct some (special) diagonal potential V^{0} such that $\sigma\left(V^{0}\right)=\left\{\lambda_{\alpha}^{\sharp}\right\}_{\alpha=1}^{+\infty}$ (counting with multiplicities);
- Do the analysis on the isospectral set near V^{0} [which is given by $\operatorname{rank} \varphi\left(1, \lambda_{\alpha}^{\sharp}, V^{0}+W\right)=N-k_{\alpha}$];
- Check that the Fréchet derivative of the mapping $W \mapsto\left(P_{\alpha}, g_{\alpha}\right)_{a=1}^{+\infty}$ at $W=0$ is invertible [and so this mapping is the local surjection near $W=0$];

Proof. Inverse problem. Main steps. [Trubowitz's approach]
Consider some $\left(\lambda_{\alpha}^{\sharp}, P_{\alpha}^{\sharp}, g_{\alpha}^{\sharp}\right)_{\alpha=1}^{+\infty}$ satisfying (A)-(C).

- Construct some (special) diagonal potential V^{0} such that $\sigma\left(V^{0}\right)=\left\{\lambda_{\alpha}^{\sharp}\right\}_{\alpha=1}^{+\infty}$ (counting with multiplicities);
- Do the analysis on the isospectral set near V^{0} [which is given by $\operatorname{rank} \varphi\left(1, \lambda_{\alpha}^{\sharp}, V^{0}+W\right)=N-k_{\alpha}$];
- Check that the Fréchet derivative of the mapping $W \mapsto\left(P_{\alpha}, g_{\alpha}\right)_{a=1}^{+\infty}$ at $W=0$ is invertible [and so this mapping is the local surjection near $W=0$];
- Find some realization of the "tail", i.e., some point $\left(\widetilde{P}_{\alpha}, \widetilde{g}_{\alpha}\right)_{\alpha=1}^{+\infty}$ in the image and [large enough] α_{*} such that

$$
\widetilde{P}_{\alpha}=P_{\alpha}^{\sharp} \text { and } \widetilde{g}_{\alpha}=g_{\alpha}^{\sharp} \text { for all } \alpha>\alpha_{*} ;
$$

Proof. Inverse problem. Main steps. [Trubowitz's approach]
Consider some $\left(\lambda_{\alpha}^{\sharp}, P_{\alpha}^{\sharp}, g_{\alpha}^{\sharp}\right)_{\alpha=1}^{+\infty}$ satisfying (A)-(C).

- Construct some (special) diagonal potential V^{0} such that $\sigma\left(V^{0}\right)=\left\{\lambda_{\alpha}^{\sharp}\right\}_{\alpha=1}^{+\infty}$ (counting with multiplicities);
- Do the analysis on the isospectral set near V^{0} [which is given by $\operatorname{rank} \varphi\left(1, \lambda_{\alpha}^{\sharp}, V^{0}+W\right)=N-k_{\alpha}$];
- Check that the Fréchet derivative of the mapping $W \mapsto\left(P_{\alpha}, g_{\alpha}\right)_{a=1}^{+\infty}$ at $W=0$ is invertible [and so this mapping is the local surjection near $W=0$];
- Find some realization of the "tail", i.e., some point $\left(\widetilde{P}_{\alpha}, \widetilde{g}_{\alpha}\right)_{\alpha=1}^{+\infty}$ in the image and [large enough] α_{*} such that

$$
\widetilde{P}_{\alpha}=P_{\alpha}^{\sharp} \text { and } \widetilde{g}_{\alpha}=g_{\alpha}^{\sharp} \text { for all } \alpha>\alpha_{*} \text {; }
$$

- Use a finite number of isospectral flows to modify $\left(\widetilde{P}_{\alpha}, \widetilde{g}_{\alpha}\right)_{\alpha=1}^{\alpha_{*}}$.

Related questions:

- Borg type results (re-parametrization for this class of meromorphic functions). In the scalar case one can use zeros of $m(\lambda, v)$ (i.e., the spectrum of the mixed boundary value problem $\left.\psi^{\prime}(0)=0, \psi(1)=0\right)$ instead of the normalizing constants g_{n}. How many spectra does one need (in the vector-valued case) to determine the potential uniquely?

Related questions:

- Borg type results
- Geometry: splitting of eigenvalues (topology of isospectral manifolds essentially depends on the multiplicities k_{α}).

Related questions:

- Borg type results
- Geometry: splitting of eigenvalues
- Degenerate mean potential V^{0} : looking for "nice" parameters (structure and asymptotics of the additional spectral data are simpler to describe, if the spectrum is asymptotically simple). If v^{0} is a multiple eigenvalue of V^{0}, then the regularization

$$
\begin{aligned}
B_{n,\left(v^{0}\right)} & :=\sum_{\left\{\lambda_{\alpha} \text { near } \pi^{2} n^{2}+v^{0}\right\}} B_{\alpha} ; \\
D_{n,\left(v^{0}\right)} & :=\sum_{\left\{\lambda_{\alpha} \text { near } \pi^{2} n^{2}+v^{0}\right\}} \lambda_{\alpha} B_{\alpha} ;
\end{aligned}
$$

seems promising.

Related questions:

- Borg type results
- Geometry: splitting of eigenvalues
- Degenerate mean potential V^{0} : looking for "nice" parameters
- Other classes of potentials: Recently, Ya.V.Mikityuk and N.S.Trush (Lviv) announced the result for the class W_{2}^{-1} [using M.G.Krein's approach].

Related questions:

- Borg type results
- Geometry: splitting of eigenvalues
- Degenerate mean potential V^{0} : looking for "nice" parameters
- Other classes of potentials
- Other (separated but non-Dirichlet) boundary conditions [smth. in S.Matveenko's talk on Wednesday, Aug 5]

Related questions:

- Borg type results
- Geometry: splitting of eigenvalues
- Degenerate mean potential V^{0} : looking for "nice" parameters
- Other classes of potentials
- Other (separated but non-Dirichlet) boundary conditions
- [?] Some revision of the 1D inverse scattering problems with matrix potentials
Thank you!

