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SCALAR vs MATRIX potentials [Agranovich-Marchenko '50s-60s]

Hip = =" + Vi [ acting in L2([0,+00); CY) ], 4(0) =0,
where V = V* 1 [0, +00) — CN*¥N [0 x|V(x)|dx < +oc.
Spectral data: scattering matrix S(z);

finite number of negative eigenvalues \; = —ka, j=1,..,m, and
normalizing matrices M} = M; > 0 (rankM; = multiplicity of ;).
Defined via U(x, z) which is a (“properly normalized”) solution of
HU = z2U, U(0,z) = 0, such that, as x — +oc:

U(x,z) = e — S(—z)e ™™ 4+ 0o(1), z>0;
U(x, —ikj) = e WIX[My + o(1)], j=1,..,m.
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> (1) S(z) = S(—z) = [S(—2)]7! is continuous on R,
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[m is the number of negative eigenvalues].
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Necessary and sufficient conditions. Scalar case:

> (1)

1—-5(0) logS(+0) — log S(400)
4 2mi

[m is the number of negative eigenvalues].
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What | am NOT going to discuss. Scattering on R :

SCALAR vs MATRIX potentials [Agranovich-Marchenko '50s-60s]

Necessary and sufficient conditions. Matrix case:

> (1) Fo(x) = £ [72(1-5(2))e*dz

» the equation —x( +f Fo(t+&)d¢ =0, —o0o < t <0,
has no non-trivial solutlon

» the equation x(t +f F(t+&)dé=0,0<t< +oo,
has no non-trivial solutlon F( ) =2, MPeIhlt 4 Fi(t);
» the number of linear independent solutions of the equation

t) + j:oo x(&)Fs(t+&)dE =0, 0 < t < +oo, is equal to
the sum of the ranks of the normalizing matrices My, ..., M,,.



Sturm-Liouville operators on [0, 1]:
L = =" + Ve [acting in L2([0,1];CN) ]
Dirichlet boundary conditions:
$(0) = (1) =0
Self-adjoint MATRIX potentials:

V(x) = [V(¥)]*, Ve L?([o,1];cN*N)



Sturm-Liouville operators on [0,1]:
L = =" + Ve [acting in L2([0,1];CN) ]
Dirichlet boundary conditions:
$(0) = (1) =0
Self-adjoint MATRIX potentials:
V(x) = [V(x)]*, Ve L3([o,1];cV*N)

> L has purely discrete spectrum A\y < Ao < A3 < ...;

» possible multiplicities are 1,2, .., N.
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If V = V* then M(\) = [M(A)]* and ImM(A) > 0 for A > 0.



Sturm-Liouville operators on [0,1]: Ly = —¢" + V4
Dirichlet boundary conditions: P(0)=1¢(1)=0
Self-adjoint MATRIX potentials: V = V* ¢ [%([0,1]; CV*N)

Weyl-Titchmarsh function:
Let ¢, x be the solutions of £ = A\ such that
{ ¢(0) =0, ¢'(0) = In,

x(1) =0, X'(1) = —In.

M(A) - M(/\7 V) = [Xlxil](ov)V V)
If V = V* then M(\) = [M(A)]* and ImM(A) > 0 for A > 0.

» Eigenvalues of L coincide with singularities of M.



scalar case. Characterization [Marchenko-Ostrovski '75]

The Weyl-Titchmarsh function m(\, v) is a meromorphic function
having simple poles at Dirichlet eigenvalues A,(v) and

res m )\7 n SC )\nj a

The sharp characterization of all scalar WeyI Titchmarsh functions
(equivalently, spectral data (An(v), gn(v))/ 2] ) that correspond to
potentials v € £2(0,1) (or other reasonable spaces) is available.



scalar case. Characterization [Marchenko-Ostrovski '75]

The Weyl-Titchmarsh function m(\, v) is a meromorphic function
having simple poles at Dirichlet eigenvalues A,(v) and

-1
res m(\, v) = —[gn(v {/ lo(x, An, v)[2dx

A=An(v)

The sharp characterization of all scalar WeyI Titchmarsh functions
(equivalently, spectral data (An(v), gn(v))/ 2] ) that correspond to
potentials v € £2(0,1) (or other reasonable spaces) is available.

Namely, the necessary and sufficient conditions are

M <A< A< ., (A — 720 — )i e, weR
and (mn-(2m%n% - g, — 1)) T € 2.

Actually, vo = fol v(x)dx.
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Matrix case. Spectral data.
> eigenvalues \1 < Ay < .. < Ay < ... (and multiplicities ks);
> residues of M: —res yox,M()\) = B, = BX >0, rankB,, = k,

Ba - ag(;lpaa
where

» P, :CN — &, C CNis an orthogonal projector
(rankP, =dim &, = k)
. . ; . " . o
> g, is a positive quadratic form in &, ("normalizing matrix")

Equivalent definition:

o = Ker (1, Aa, V) = {h €CV o = o( Aa, V)h € Ker(ﬁ—)\a)} ,

1
<wo¢;h17wa;h2>L2([071];CN) = <h17gah2>ga , 8a = Pa |:/O [CP*CP](X, Aas V)dx:| p;



Matrix case. Spectral data.
> eigenvalues \1 < Ay < .. < Ay < ... (and multiplicities ks);
> residues of M: —res x—x, M(\) = B, = B > 0, rankB,, = k,

Ba - ag(;lpaa
where

» P, :CN — &, C CNis an orthogonal projector
(rankP, =dim &, = k)
. . ; . " . o
> g, is a positive quadratic form in &, ("normalizing matrix")

Uniqueness Theorem: [M. M. Malamud '05, V. A. Yurko '06]

The matrix-valued function M(X) (or, equivalently, the
collection of spectral data (Ao, Pa, 80)123) determines
the potential uniquely.



Isospectral Flows.
[D.Ch., E.K.: Parametrization of the isospectral set for the vector-valued Sturm-Liouville problem.

J. Funct. Anal. 241(1), 359-373 (2006). arXiv:math.SP/0607810]

Fix some admissible spectrum {\y}o>1 (and multiplicities k)
and all the residues B, = P,g;'P,, a # 3, except one. Then:

> ggs can be changed arbitrarily [M. Jr. Jodeit; B. M. Levitan 98]

> Pg can be changed almost arbitrarily:
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[D.Ch., E.K.: Parametrization of the isospectral set for the vector-valued Sturm-Liouville problem.

J. Funct. Anal. 241(1), 359-373 (2006). arXiv:math.SP/0607810]
Fix some admissible spectrum {\y}o>1 (and multiplicities k)
and all the residues B, = P,g;'P,, a # 3, except one. Then:
> ggs can be changed arbitrarily [M. Jr. Jodeit; B. M. Levitan 98]
> Pg can be changed almost arbitrarily:
There exists the “forbidden subspace” F, dim Fz = N—kg,
which is uniquely determined by the spectrum and (Ea)azs
such that all “deformations” Pg — Pg Fpn RanPﬁ = {0}
are permitted (the new potential is constructed explicitly).



Isospectral Flows.
[D.Ch., E.K.: Parametrization of the isospectral set for the vector-valued Sturm-Liouville problem.

J. Funct. Anal. 241(1), 359-373 (2006). arXiv:math.SP/0607810]

Fix some admissible spectrum {\y}o>1 (and multiplicities k)
and all the residues B, = P,g;'P,, a # 3, except one. Then:

> ggs can be changed arbitrarily [M. Jr. Jodeit; B. M. Levitan 98]

> Pg can be changed almost arbitrarily:
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Toy example (discrete version). Block Jacobi matrices.

[A.l.Aptekarev, E.M.Nikishin '83: The scattering problem for a discrete Sturm-Liouville operator;

J.Briining, D.Ch., E.K.: Remark on finite matrix-valued Jacobi operators, arXiv:math/0607809]

Let by, = bp, ap = a, > 0 be N x N matrices and

b1 dai 0 0 0

ai‘ b2 ar 0 0
J=1 ..

0 0 a5 bp—1 an-1

0 0 0 ar_q b

> o(T): M <A< < Am, ki+k+--+ km = Nn;



Toy example (discrete version). Block Jacobi matrices.

[A.l.Aptekarev, E.M.Nikishin '83: The scattering problem for a discrete Sturm-Liouville operator;

J.Briining, D.Ch., E.K.: Remark on finite matrix-valued Jacobi operators, arXiv:math/0607809]

Let by, = bp, ap = a, > 0 be N x N matrices and

b1 dai 0 0 0
ai‘ b2 ar 0 0
0 ... 0 a5, bp—1 an-1
0 0 0 &, b,

> o(T): M <A< < Am, ki+k+--+ km = Nn;
> residues of the (rational) M-function:

Xnt+1:=0, xn:=1, 3:;—1pr1 + bpXp + apXptr1 = A Xp,

Bs = Psg. 'Ps = — res M(X),  M(A) = —[x1xg 1(N).-



Toy example (discrete version). Block Jacobi matrices.
[A.l.Aptekarev, E.M.Nikishin '83: The scattering problem for a discrete Sturm-Liouville operator;

J.Briining, D.Ch., E.K.: Remark on finite matrix-valued Jacobi operators, arXiv:math/0607809]

Let by, = bp, ap = a, > 0 be N x N matrices and

b1 a1 0 0 0

a b2 ar 0 0
J=1 .. .

0 0 a5 bp—1 an-1

0 0 0 &, b,

> o(T): M <A< < Am, ki+ ky + -+ kp = Nn;
> (Xs, Bs)T 4, Bs = Psgs_lPs, rankPs = ks, should be such that

there exists no (nontrivial) vector-valued polynomial
F:C—CN degF<n-1: PsF(A\s)=0,s=1,..m.



Main result: [D.Ch., E.K. '08]

For all v < v? < .. < V2 the mapping V — (A, Pa, 84)127 is a

bijection between the set of potentials
V=V* e L%([0,1];CN*N) . fol V(x)dx = diag{v, 2, .., vy}

and the class of spectral data satisfying (A)-(C):
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For all v < v? < .. < V2 the mapping V — (A, Pa, 84)127 is a

bijection between the set of potentials
V=V* e L%([0,1];CN*N) . fol V(x)dx = diag{v, 2, .., vy}

and the class of spectral data satisfying (A)-(C):

(A) The spectrum is asymptotically simple, i.e., 3a® > 0,n® > 1:
ki + k3 + ..+ k3o = N(n°—1) and kS =1 forall a > a®+1.

It allows us to define the double-indexing (n,j), n>n°, j=1,.., N,
instead of the single-indexing a>a°. Namely, we set

)‘nJ = >\a°+N(n—n°)+jv 8nj = ga°+N(n—n°)+j etc. for n> n°.



Main result: [D.Ch., E.K. '08]
o0

For all v < v? < .. < V2 the mapping V — (A, Pa, 84)127 is a
bijection between the set of potentials

V=V* e L%([0,1];CN*N) . fol V(x)dx = diag{v, 2, .., vy}

and the class of spectral data satisfying (A)-(C):

(A) The spectrum is asymptotically simple.

(B) The asymptotics of spectral data in {?~sense hold true:
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For all v < v? < .. < V2 the mapping V — (A, Pa, 84)127 is a

bijection between the set of potentials
V=V* e L%([0,1];CN*N) . fol V(x)dx = diag{v, 2, .., vy}

and the class of spectral data satisfying (A)-(C):

(A) The spectrum is asymptotically simple.
(B) The asymptotics of spectral data in £2—sense hold true.
(C) The collection (A ; Pa) 2] satisfies the following property:
Let £ : C — CN be an entire vector-valued function such
that £(\)=O(el™VAl) a5 |A| - 0o and ¢ € L2(IR+)
If Po&(Aa)=0 for all a>1, then &(N\) =



(C) £:C—CN, ¢(\)=0(e™VA) as |A| = oo and € € L2(R,).
If Po&(Aa)=0 for all a«>1, then £(\) =0.

Remarks [concerning (C)]:

» Trivial in the scalar case (due to the Paley-Wiener theory).
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If Po&(Aa)=0 for all a«>1, then £(\) =0.

Remarks [concerning (C)]:

» Trivial in the scalar case (due to the Paley-Wiener theory).

» Nontrivial in the vector-valued case; describes all “forbidden
subspaces” Fg (restrictions £5 N F3 = {0}) simultaneously.



(C) £:C — CN, ¢(A\)=0(e™VAl) a5 |A| = 00 and € € L2(RY).
If Po&(Aa)=0 for all a«>1, then £(\) =0.

Remarks [concerning (C)]:

» Trivial in the scalar case (due to the Paley-Wiener theory).

» Nontrivial in the vector-valued case; describes all “forbidden
subspaces” Fg (restrictions £5 N F3 = {0}) simultaneously.

» Equivalent to the following (if all A, > 0):

Let P, = hyh},, where h, = (hgl); o h,(lk(’)) and

hg) € CN are orthonormal. Then the vector-valued
functions ei"mthg), =1,.., ky, a>1, together with
the constant vectors €2, .., €%, span L2([—1,1]; CN).



(C) £:C — CN, ¢(A\)=0(e™VAl) a5 |A| = 00 and € € L2(RY).
If Po&(Aa)=0 for all «>1, then &(\) =

Remarks [concerning (C)]:

> (C) can be rewritten explicitly, if P,; = PJQ for all n > m+1:

(C%) plf')l \b- 14) X.. W~ xo-vz, > )&mvz e
Ry

s k3
lo"« - al ey
= "’MF d ue e_(—- FCJ

Fro Lec o"’ﬁ

) o
(]



> (C) can be rewritten explicitly, if P,; = PJQ for all n > m+1:

(C{tl) E.L ')l \o.. 4, 4) 5‘«. ) xo-vz,l) )&n,»'z e

T — pe p Tp: Pj’ "
loL«Q nu?l-\!aglul/ C
SIS A/ ue e.t—JN" J

Fro Lec o"’ﬁ

To T1 Tm-1
Tom—1 Tm ... Tom—

where

Tk = Z,\a<>\,,,+1,1 F(Aa)PaF(Aa) - )\I& =Ty,

F(\) = diagj—1 {H: m+1(]' o /\n,j)} '



Proof. Asymptotics.

> (1) (Anj—m2m? = vP) %50 € €2,
(2) (mn- (272n%gn;—1))12%, € £2

>
> (3) (’Pnu_PO‘)+OO<> € 2,

are simple corollaries of our assumption v < v < ...

0.
< Vi



Proof. Asymptotics.

> (1) (nj=m?m* =), 200 € 2,
> (2) (mn- (2m2n?g,;—1)) 1%, € 2,

> (3) (I1Pnj—PP)nche € 2,

are simple corollaries of our assumption v < v < ... < v{;

> (4) (- [/ Py InD)a5e € 02

follows from the analysis of the sum Z)\a:‘)\a_ﬂznqzo(l) B,
(which behaves better then the individual residues).
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Proof. Asymptotics.

(2) (n- (272n2gn;— 1)), € 12,
(3) (IPnj—PPDzre € 22,
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>
>
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Let H,=
Then

ﬁ (hn71; e hn,N) =S,U,, S,= 5:;, U:; = Un_1

(2)&(3)&(4) & { &‘{, ];')_ i S



Proof. Asymptotics.
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(3) (1Pnj—=P})ae € €2,
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>
>

Bnj = Pndgn Pnj, Pnj=(:hnj)hn: <thver> > 0.

Let H,= ﬁ (hna;-ihon) = SpUn, S =S5, Uy = Ut
Then ( |) )
U,—1 o €07,
(2)&(3)&(4) @{ (- |Sem TN, € 2.
Note:

5 H H* = 27r2n2 (Bn,1+---+Bn,N)-



Proof. Inverse problem. Main steps. [Trubowitz's approach]
Consider some ()\g, Pﬁ,gg);ﬁol satisfying (A)—(C).
» Construct some (special) diagonal potential V° such that

o(V0) = {)\ﬁOY 20 (counting with multiplicities);

a=1
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[and so this mapping is the local surjection near W = 0];



Proof. Inverse problem. Main steps. [Trubowitz's approach]
Consider some ()\g, Pﬁ,gg);ﬁol satisfying (A)—(C).

» Construct some (special) diagonal potential V° such that
o(V0) = {\4}+ (counting with multiplicities);

a=1
» Do the analysis on the isospectral set near V/°
[which is given by ranky(1, /\i, VO W) =N — k];
» Check that the Fréchet derivative of the mapping
W — (Pa, 84)225 at W =0 is invertible
[and so this mapping is the local surjection near W = 0];

» Find some realization of the “tail”, i.e., some point

(ﬁa,ga)gg in the image and [large enough] . such that

'Ba:Pﬁ and ga:gg for all @ > ay;

[0}



Proof. Inverse problem. Main steps. [Trubowitz's approach]
Consider some (A%, Pg,ga) 1 satisfying (A)—-(C).

» Construct some (special) diagonal potential V° such that
a(V0) = {)\ﬁ 129 (counting with multiplicities);
» Do the analysis on the isospectral set near V/°
[which is given by ranky(1, /\i, VO W) =N — k];

» Check that the Fréchet derivative of the mapping
W — (Pa, 84)225 at W =0 is invertible
[and so this mapping is the local surjection near W = 0];

» Find some realization of the “tail”, i.e., some point

(ﬁa,ga)gg in the image and [large enough] . such that

'Ba:Pﬁ and §a_gg for all @ > ay;

[0}

» Use a finite number of isospectral flows to modify ( Oé,ga)



Related questions:

> Borg type results (re-parametrization for this class of
meromorphic functions). In the scalar case one can use zeros
of m(\, v) (i.e., the spectrum of the mixed boundary value
problem ¢(0) = 0, 1/(1) = 0) instead of the normalizing
constants g,. How many spectra does one need (in the
vector-valued case) to determine the potential uniquely?



Related questions:

» Borg type results

> Geometry: splitting of eigenvalues (topology of isospectral
manifolds essentially depends on the multiplicities k).



Related questions:

» Borg type results
> Geometry: splitting of eigenvalues

» Degenerate mean potential VO looking for “nice” parameters
(structure and asymptotics of the additional spectral data are
simpler to describe, if the spectrum is asymptotically simple).

If v0is a multiple eigenvalue of VO, then the regularization
Bn,(vo) = Z{)\a near m2n2+v0} Ba;

D”v(VO) = Z{)\a near w2n2+v0} )‘OcBa;

seems promising.



Related questions:

vV v v Y

Borg type results
Geometry: splitting of eigenvalues
Degenerate mean potential V°: looking for “nice” parameters

Other classes of potentials:
Recently, Ya.V.Mikityuk and N.S.Trush (Lviv) announced the
result for the class W, ! [using M.G.Krein's approach].



Related questions:

» Borg type results

> Geometry: splitting of eigenvalues

» Degenerate mean potential VO looking for “nice” parameters
» Other classes of potentials
>

Other (separated but non-Dirichlet) boundary conditions
[smth. in S.Matveenko's talk on Wednesday, Aug 5]



Related questions:

» Borg type results
Geometry: splitting of eigenvalues

Degenerate mean potential V°: looking for “nice” parameters

>

>

» Other classes of potentials

» Other (separated but non-Dirichlet) boundary conditions
>

[?] Some revision of the 1D inverse scattering problems with
matrix potentials

THANK YOU!



