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Hψ = −ψ′′ + Vψ [ acting in L2([0, +∞);CN) ], ψ(0) = 0,

where V = V ∗ : [0, +∞) → CN×N ,
∫ +∞
0 x |V (x)|dx < +∞.

Spectral data: scattering matrix S(z);
�nite number of negative eigenvalues λj = −k2

j , j = 1, ..,m, and
normalizing matrices M∗

j = Mj ≥ 0 (rankMj = multiplicity ofλj).
De�ned via U(x , z) which is a (�properly normalized�) solution of
HU = z2U, U(0, z) = 0, such that, as x → +∞:

U(x , z) = e izx − S(−z)e−izx + o(1), z > 0;

U(x ,−ikj) = e−|kj |x [Mk + o(1)], j = 1, ..,m.
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What I am NOT going to discuss. Scattering on R+:

SCALAR vs MATRIX potentials [Agranovich-Marchenko '50s�60s]

Necessary and su�cient conditions. Matrix case:
I (II) Fs(x) = 1

2π

∫ +∞
−∞ (1−S(z))e izxdz

I the equation −x(t) +
∫ 0

−∞ x(ξ)Fs(t + ξ)dξ = 0, −∞ < t ≤ 0,
has no non-trivial solution;

I the equation x(t) +
∫ +∞
0

x(ξ)F (t + ξ)dξ = 0, 0 ≤ t < +∞,
has no non-trivial solution, F (t) =

∑m
j=1 M2

j e−|kj |t + Fs(t);
I the number of linear independent solutions of the equation

x(t) +
∫ +∞
0

x(ξ)Fs(t + ξ)dξ = 0, 0 ≤ t < +∞, is equal to
the sum of the ranks of the normalizing matrices M1, ..., Mm.
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I L has purely discrete spectrum λ1 < λ2 < λ3 < . . . ;
I possible multiplicities are 1, 2, .., N.
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Self-adjoint MATRIX potentials: V = V ∗ ∈ L2([0, 1];CN×N)

Weyl-Titchmarsh function:
Let ϕ, χ be the solutions of Lψ = λψ such that{

ϕ(0) = 0, ϕ′(0) = IN ,
χ(1) = 0, χ′(1) = −IN .

M(λ) = M(λ,V ) := [χ′χ−1](0, λ, V ).

If V = V ∗, then M(λ) = [M(λ)]∗ and ImM(λ) ≥ 0 for λ ≥ 0.

I Eigenvalues of L coincide with singularities of M.



Scalar case. Characterization. [Marchenko-Ostrovski '75]

The Weyl-Titchmarsh function m(λ, v) is a meromorphic function
having simple poles at Dirichlet eigenvalues λn(v) and

res
λ=λn(v)

m(λ, v) = −[gn(v)]−1 = −
[∫ 1

0
|ϕ(x , λn, v)|2dx

]−1

The sharp characterization of all scalar Weyl-Titchmarsh functions
(equivalently, spectral data (λn(v), gn(v))+∞n=1 ) that correspond to
potentials v ∈ L2(0, 1) (or other reasonable spaces) is available.
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The Weyl-Titchmarsh function m(λ, v) is a meromorphic function
having simple poles at Dirichlet eigenvalues λn(v) and

res
λ=λn(v)

m(λ, v) = −[gn(v)]−1 = −
[∫ 1

0
|ϕ(x , λn, v)|2dx

]−1

The sharp characterization of all scalar Weyl-Titchmarsh functions
(equivalently, spectral data (λn(v), gn(v))+∞n=1 ) that correspond to
potentials v ∈ L2(0, 1) (or other reasonable spaces) is available.
Namely, the necessary and su�cient conditions are

λ1 < λ2 < λ3 < ..., (λn − π2n2 − v0)
+∞
n=1 ∈ `2, v0 ∈ R

and (πn · (2π2n2 · gn − 1))+∞n=1 ∈ `2.

Actually, v0 =
∫ 1
0 v(x)dx .
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I residues of M: − res λ=λαM(λ) = Bα = B∗α ≥ 0, rankBα = kα

Bα = Pαg−1
α Pα,

where
I Pα : CN → Eα ⊂ CN is an orthogonal projector

(rankPα = dim Eα = kα)
I gα is a positive quadratic form in Eα ("normalizing matrix")

Equivalent de�nition:

Eα = Ker ϕ(1, λα, V ) =
n
h ∈ CN : ψα;h = ϕ(·, λα, V )h ∈ Ker(L−λα)

o
,

˙
ψα;h1

, ψα;h2

¸
L2([0,1];CN )

= 〈h1, gαh2〉Eα
, gα = pα

»Z 1

0
[ϕ∗ϕ](x , λα, V )dx

–
p∗α



Matrix case. Spectral data.
I eigenvalues λ1 < λ2 < .. < λα < ... (and multiplicities kα);
I residues of M: − res λ=λαM(λ) = Bα = B∗α ≥ 0, rankBα = kα

Bα = Pαg−1
α Pα,

where
I Pα : CN → Eα ⊂ CN is an orthogonal projector

(rankPα = dim Eα = kα)
I gα is a positive quadratic form in Eα ("normalizing matrix")

Uniqueness Theorem: [M. M. Malamud '05, V. A. Yurko '06]

The matrix-valued function M(λ) (or, equivalently, the
collection of spectral data (λα, Pα, gα)+∞α=1) determines
the potential uniquely.



Isospectral Flows.
[D.Ch., E.K.: Parametrization of the isospectral set for the vector-valued Sturm-Liouville problem.

J. Funct. Anal. 241(1), 359�373 (2006). arXiv:math.SP/0607810]

Fix some admissible spectrum {λα}α≥1 (and multiplicities kα)
and all the residues Bα = Pαg−1

α Pα, α 6= β, except one. Then:
I gβ can be changed arbitrarily [M. Jr. Jodeit; B. M. Levitan '98]

I Pβ can be changed almost arbitrarily:
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and all the residues Bα = Pαg−1

α Pα, α 6= β, except one. Then:
I gβ can be changed arbitrarily [M. Jr. Jodeit; B. M. Levitan '98]

I Pβ can be changed almost arbitrarily:
There exists the �forbidden subspace� Fβ , dimFβ = N−kβ ,
which is uniquely determined by the spectrum and (Eα)α 6=β

such that all �deformations� Pβ 7→ P̃β : Fβ ∩ RanP̃β = {0}
are permitted (the new potential is constructed explicitly).
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Toy example (discrete version). Block Jacobi matrices.
[A.I.Aptekarev, E.M.Nikishin '83: The scattering problem for a discrete Sturm-Liouville operator;

J.Br�uning, D.Ch., E.K.: Remark on �nite matrix-valued Jacobi operators, arXiv:math/0607809]

Let b∗p = bp, ap = a∗p > 0 be N × N matrices and

J =




b1 a1 0 0 ... 0
a∗1 b2 a2 0 ... 0
... ... ... ... ... ...
0 ... 0 a∗n−2 bn−1 an−1

0 ... 0 0 a∗n−1 bn




.

I σ(J ): λ1 < λ2 < · · · < λm, k1 + k2 + · · ·+ km = Nn;
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J =




b1 a1 0 0 ... 0
a∗1 b2 a2 0 ... 0
... ... ... ... ... ...
0 ... 0 a∗n−2 bn−1 an−1

0 ... 0 0 a∗n−1 bn




.

I σ(J ): λ1 < λ2 < · · · < λm, k1 + k2 + · · ·+ km = Nn;
I residues of the (rational) M-function:

χn+1 := 0, χn := I , a∗p−1χp−1 + bpχp + apχp+1 = λ · χp,

Bs = Psg
−1
s Ps := − res

λ=λs

M(λ), M(λ) := −[χ1χ
−1
0 ](λ).



Toy example (discrete version). Block Jacobi matrices.
[A.I.Aptekarev, E.M.Nikishin '83: The scattering problem for a discrete Sturm-Liouville operator;

J.Br�uning, D.Ch., E.K.: Remark on �nite matrix-valued Jacobi operators, arXiv:math/0607809]

Let b∗p = bp, ap = a∗p > 0 be N × N matrices and

J =




b1 a1 0 0 ... 0
a∗1 b2 a2 0 ... 0
... ... ... ... ... ...
0 ... 0 a∗n−2 bn−1 an−1

0 ... 0 0 a∗n−1 bn




.

I σ(J ): λ1 < λ2 < · · · < λm, k1 + k2 + · · ·+ km = Nn;
I (λs , Bs)

m
s=1, Bs = Psg

−1
s Ps , rankPs = ks , should be such that

there exists no (nontrivial) vector-valued polynomial
F : C→ CN , deg F ≤ n−1: PsF (λs) = 0, s = 1, ...,m.



Main result: [D.Ch., E.K. '08]

For all v0
1 < v0

2 < .. < v0
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2 , .., v0
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and the class of spectral data satisfying (A)�(C):
(A) The spectrum is asymptotically simple, i.e., ∃α¦ ≥ 0, n¦ ≥ 1:

k¦1 + k¦2 + .. + k¦α¦ = N(n¦−1) and k¦α = 1 for all α ≥ α¦+1.

It allows us to de�ne the double-indexing (n, j), n≥n¦, j =1, ..,N,
instead of the single-indexing α>α¦. Namely, we set

λn,j = λα¦+N(n−n¦)+j , gn,j = gα¦+N(n−n¦)+j etc. for n≥n¦.
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bijection between the set of potentials

V =V ∗ ∈ L2([0, 1];CN×N) :
∫ 1
0 V (x)dx = diag{v0

1 , v0
2 , .., v0

N}

and the class of spectral data satisfying (A)�(C):
(A) The spectrum is asymptotically simple.
(B) The asymptotics of spectral data in `2�sense hold true.
(C) The collection (λα ; Pα)+∞α=1 satis�es the following property:

Let ξ : C→ CN be an entire vector-valued function such
that ξ(λ)=O(e |Im

√
λ|) as |λ| → ∞ and ξ ∈ L2(R+).

If Pαξ(λα)=0 for all α≥1, then ξ(λ) ≡ 0.
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If Pαξ(λα)=0 for all α≥1, then ξ(λ) ≡ 0.

Remarks [concerning (C)]:
I Trivial in the scalar case (due to the Paley-Wiener theory).
I Nontrivial in the vector-valued case; describes all �forbidden

subspaces� Fβ (restrictions Eβ ∩ Fβ = {0}) simultaneously.
I Equivalent to the following (if all λα > 0):

Let Pα = hαh∗α, where hα = (h
(1)
α ; .. ; h

(kα)
α ) and

h
(j)
α ∈ CN are orthonormal. Then the vector-valued

functions e±i
√

λαth
(j)
α , j = 1, .., kα, α≥1, together with

the constant vectors e0
1 , .., e0

N span L2([−1, 1] ;CN).
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I (C) can be rewritten explicitly, if Pn,j = P0
j for all n ≥ m+1:

T =




T0 T1 ... Tm−1

T1 T2 ... Tm

... ... ... ...
Tm−1 Tm ... T2m−2


 = T ∗ > 0,

where

Tk =
∑

λα<λm+1,1
F (λα)PαF (λα) · λk

α = T ∗
k ,

F (λ) ≡ diagj=1,..,N

{∏+∞
n=m+1(1− λ

λn,j
)
}

.
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follows from the analysis of the sum
∑

λα:|λα−π2n2|=O(1) Bα

(which behaves better then the individual residues).
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Proof. Asymptotics.
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−1
n,j Pn,j , Pn,j = 〈·, hn,j〉hn,j : 〈hn,j , e

0
j 〉 > 0.

Let Hn = 1√
2πn

(hn,1; ...; hn,N) = SnUn, Sn = S∗n , U∗
n = U−1

n .
Then

(2)&(3)&(4) ⇔
{

(|Un−I |)+∞n=n¦ ∈ `2,
(πn · |Sn−I |)+∞n=n¦ ∈ `2.

Note:
S2

n = HnH
∗
n = 1

2π2n2 (Bn,1 + ... + Bn,N) .
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Proof. Inverse problem. Main steps. [Trubowitz's approach]

Consider some (λ]
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α}+∞
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[which is given by rankϕ(1, λ]
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I Check that the Fr�echet derivative of the mapping
W 7→ (Pα, gα)+∞a=1 at W = 0 is invertible
[and so this mapping is the local surjection near W = 0];

I Find some realization of the �tail�, i.e., some point
(P̃α, g̃α)+∞α=1 in the image and [large enough] α∗ such that

P̃α = P]
α and g̃α = g ]

α for all α > α∗;

I Use a �nite number of isospectral �ows to modify (P̃α, g̃α)α∗
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Related questions:

I Borg type results (re-parametrization for this class of
meromorphic functions). In the scalar case one can use zeros
of m(λ, v) (i.e., the spectrum of the mixed boundary value
problem ψ′(0) = 0, ψ(1) = 0) instead of the normalizing
constants gn. How many spectra does one need (in the
vector-valued case) to determine the potential uniquely?



Related questions:

I Borg type results
I Geometry: splitting of eigenvalues (topology of isospectral

manifolds essentially depends on the multiplicities kα).



Related questions:

I Borg type results
I Geometry: splitting of eigenvalues
I Degenerate mean potential V 0: looking for �nice� parameters

(structure and asymptotics of the additional spectral data are
simpler to describe, if the spectrum is asymptotically simple).
If v0 is a multiple eigenvalue of V 0, then the regularization

Bn,(v0) :=
∑
{λα near π2n2+v0} Bα;

Dn,(v0) :=
∑
{λα near π2n2+v0} λαBα;

seems promising.



Related questions:

I Borg type results
I Geometry: splitting of eigenvalues
I Degenerate mean potential V 0: looking for �nice� parameters
I Other classes of potentials:

Recently, Ya.V.Mikityuk and N.S.Trush (Lviv) announced the
result for the class W−1

2 [using M.G.Krein's approach].
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I Borg type results
I Geometry: splitting of eigenvalues
I Degenerate mean potential V 0: looking for �nice� parameters
I Other classes of potentials
I Other (separated but non-Dirichlet) boundary conditions

[smth. in S.Matveenko's talk on Wednesday, Aug 5]



Related questions:

I Borg type results
I Geometry: splitting of eigenvalues
I Degenerate mean potential V 0: looking for �nice� parameters
I Other classes of potentials
I Other (separated but non-Dirichlet) boundary conditions
I [?] Some revision of the 1D inverse scattering problems with

matrix potentials

Thank you!


