Weyl-Titchmarsh functions of vector-valued Sturm-Liouville operators on [0, 1]

Dmitry Chelkak (St. Petersburg)

D. Chelkak, E. Korotyaev: Weyl-Titchmarsh functions of vector-valued Sturm-Liouville operators on the unit interval arXiv:0808.2547; J. Funct. Anal. **257**, 1546–1588 (2009)

INTERNATIONAL CONFERENCE IN SPECTRAL THEORY DEDICATED TO THE MEMORY OF M.SH.BIRMAN

St.Petersburg, August 3, 2009

<u>SCALAR</u> vs <u>MATRIX</u> potentials [Agranovich-Marchenko '50s-60s]

<u>SCALAR</u> vs <u>MATRIX</u> potentials [Agranovich-Marchenko '50s–60s]

$$\begin{aligned} \mathcal{H}\psi &= -\psi'' + V\psi \quad [\text{ acting in } L^2([0,+\infty);\mathbb{C}^N)], \quad \psi(0) = 0, \\ \text{where } V &= V^*: [0,+\infty) \to \mathbb{C}^{N \times N}, \quad \int_0^{+\infty} x |V(x)| dx < +\infty. \end{aligned}$$

<u>SCALAR</u> vs <u>MATRIX</u> potentials [Agranovich-Marchenko '50s–60s]

$$\mathcal{H}\psi = -\psi'' + V\psi$$
 [acting in $L^2([0, +\infty); \mathbb{C}^N)$], $\psi(0) = 0$,
where $V = V^* : [0, +\infty) \to \mathbb{C}^{N \times N}$, $\int_0^{+\infty} x |V(x)| dx < +\infty$.

 $\begin{array}{ll} \underline{Spectral \ data}: & scattering \ matrix \ S(z); \\ \hline \text{finite number of } negative \ eigenvalues \ \lambda_j = -k_j^2, \ j = 1, ..., m, \ \text{and} \\ normalizing \ matrices \ M_j^* = M_j \geq 0 \ (\mathrm{rank} M_j = \mathrm{multiplicity \ of} \ \lambda_j). \end{array}$

<u>SCALAR</u> vs <u>MATRIX</u> potentials [Agranovich-Marchenko '50s-60s]

$$\begin{aligned} \mathcal{H}\psi &= -\psi'' + V\psi \quad [\text{ acting in } L^2([0,+\infty);\mathbb{C}^N)], \quad \psi(0) = 0, \\ \text{where } V &= V^*: [0,+\infty) \to \mathbb{C}^{N \times N}, \quad \int_0^{+\infty} x |V(x)| dx < +\infty. \end{aligned}$$

Spectral data: scattering matrix S(z); finite number of negative eigenvalues $\lambda_j = -k_j^2$, j = 1, ..., m, and normalizing matrices $M_j^* = M_j \ge 0$ (rank M_j = multiplicity of λ_j). Defined via U(x, z) which is a ("properly normalized") solution of

 $\mathcal{H}U = z^2 U, \ U(0, z) = 0$, such that, as $x \to +\infty$:

$$egin{aligned} U(x,z) &= e^{izx} - S(-z)e^{-izx} + o(1), \quad z > 0; \ U(x,-ik_j) &= e^{-|k_j|x}[M_k + o(1)], \quad j = 1,..,m. \end{aligned}$$

<u>SCALAR</u> vs <u>MATRIX</u> potentials [Agranovich-Marchenko '50s–60s]

Necessary and sufficient conditions. Scalar case:

► (1)
$$S(z) = \overline{S(-z)} = [S(-z)]^{-1}$$
 is continuous on \mathbb{R} ,

$$F_s(x) = F_s^*(x) = rac{1}{2\pi} \int_{-\infty}^{+\infty} (1-S(z))e^{izx}dz, \quad x \in \mathbb{R},$$

$$F_s \in L^1 + (L^2 \cap L^\infty), \quad \int_0^{+\infty} x |F'_s(x)| dx < +\infty;$$

<u>SCALAR</u> vs <u>MATRIX</u> potentials [Agranovich-Marchenko '50s–60s]

Necessary and sufficient conditions. Scalar case:

► (I)
$$S(z) = \overline{S(-z)} = [S(-z)]^{-1}$$
 is continuous on \mathbb{R} ,

$$F_s(x) = F_s^*(x) = rac{1}{2\pi} \int_{-\infty}^{+\infty} (1-S(z))e^{izx}dz, \quad x \in \mathbb{R},$$

$$F_s \in L^1 + (L^2 \cap L^\infty), \quad \int_0^{+\infty} x |F'_s(x)| dx < +\infty;$$

► (II) $m + \frac{1 - S(0)}{4} = \frac{\log S(+0) - \log S(+\infty)}{2\pi i}$ [*m* is the number of negative eigenvalues].

<u>SCALAR</u> vs <u>MATRIX</u> potentials [Agranovich-Marchenko '50s-60s]

Necessary and sufficient conditions. Scalar case:

(11)

$$m + \frac{1 - S(0)}{4} = \frac{\log S(+0) - \log S(+\infty)}{2\pi i}$$
[*m* is the number of negative eigenvalues].

<u>SCALAR</u> vs <u>MATRIX</u> potentials [Agranovich-Marchenko '50s-60s]

Necessary and sufficient conditions. Matrix case:

• (II)
$$F_s(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (1 - S(z)) e^{izx} dz$$

- ► the equation $-x(t) + \int_{-\infty}^{0} x(\xi) F_s(t+\xi) d\xi = 0, -\infty < t \le 0$, has no non-trivial solution;
- ► the equation $x(t) + \int_0^{+\infty} x(\xi)F(t+\xi)d\xi = 0, 0 \le t < +\infty$, has no non-trivial solution, $F(t) = \sum_{j=1}^m M_j^2 e^{-|k_j|t} + F_s(t)$;
- ▶ the number of linear independent solutions of the equation $x(t) + \int_0^{+\infty} x(\xi) F_s(t+\xi) d\xi = 0, 0 \le t < +\infty$, is equal to the sum of the ranks of the normalizing matrices $M_1, ..., M_m$.

Sturm-Liouville operators on [0, 1]:

 $\mathcal{L}\psi = -\psi'' + V\psi$ [acting in $L^2([0,1]; \mathbb{C}^N)$]

Dirichlet boundary conditions:

$$\psi(\mathbf{0})=\psi(\mathbf{1})=\mathbf{0}$$

Self-adjoint MATRIX potentials:

$$V(x) = [V(x)]^*, \quad V \in L^2([0,1]; \mathbb{C}^{N \times N})$$

Sturm-Liouville operators on [0, 1]:

 $\mathcal{L}\psi = -\psi'' + V\psi$ [acting in $L^2([0,1]; \mathbb{C}^N)$]

Dirichlet boundary conditions:

$$\psi(\mathsf{0})=\psi(\mathsf{1})=\mathsf{0}$$

Self-adjoint MATRIX potentials:

$$V(x) = [V(x)]^*, \quad V \in L^2([0,1]; \mathbb{C}^{N \times N})$$

L has purely discrete spectrum λ₁ < λ₂ < λ₃ < ...;
 possible <u>multiplicities</u> are 1, 2, .., N.

Sturm-Liouville operators on [0, 1]: $\mathcal{L}\psi = -\psi'' + V\psi$ Dirichlet boundary conditions: $\psi(0) = \psi(1) = 0$ Self-adjoint MATRIX potentials: $V = V^* \in L^2([0, 1]; \mathbb{C}^{N \times N})$ Sturm-Liouville operators on [0, 1]: $\mathcal{L}\psi = -\psi'' + V\psi$ Dirichlet boundary conditions: $\psi(0) = \psi(1) = 0$ Self-adjoint MATRIX potentials: $V = V^* \in L^2([0, 1]; \mathbb{C}^{N \times N})$

Weyl-Titchmarsh function:

Let φ, χ be the solutions of $\mathcal{L}\psi = \lambda\psi$ such that $\begin{cases}
\varphi(0) = 0, & \varphi'(0) = I_N, \\
\chi(1) = 0, & \chi'(1) = -I_N.
\end{cases}$

$$M(\lambda) = M(\lambda, V) := [\chi' \chi^{-1}](0, \lambda, V).$$

If $V = V^*$, then $M(\lambda) = [M(\overline{\lambda})]^*$ and $\operatorname{Im} M(\lambda) \ge 0$ for $\lambda \ge 0$.

Sturm-Liouville operators on [0, 1]: $\mathcal{L}\psi = -\psi'' + V\psi$ Dirichlet boundary conditions: $\psi(0) = \psi(1) = 0$ Self-adjoint MATRIX potentials: $V = V^* \in L^2([0, 1]; \mathbb{C}^{N \times N})$

Weyl-Titchmarsh function:

Let φ, χ be the solutions of $\mathcal{L}\psi = \lambda\psi$ such that $\begin{cases}
\varphi(0) = 0, & \varphi'(0) = I_N, \\
\chi(1) = 0, & \chi'(1) = -I_N.
\end{cases}$

$$M(\lambda) = M(\lambda, V) := [\chi' \chi^{-1}](0, \lambda, V).$$

If $V = V^*$, then $M(\lambda) = [M(\overline{\lambda})]^*$ and $\operatorname{Im} M(\lambda) \ge 0$ for $\lambda \ge 0$.

Eigenvalues of L coincide with singularities of M.

Scalar case. Characterization.

The Weyl-Titchmarsh function $m(\lambda, v)$ is a meromorphic function having simple poles at Dirichlet eigenvalues $\lambda_n(v)$ and

$$\operatorname{res}_{\lambda=\lambda_n(v)} m(\lambda, v) = -[g_n(v)]^{-1} = -\left[\int_0^1 |\varphi(x, \lambda_n, v)|^2 dx\right]^{-1}$$

The sharp characterization of all scalar Weyl-Titchmarsh functions (equivalently, spectral data $(\lambda_n(v), g_n(v))_{n=1}^{+\infty}$) that correspond to potentials $v \in \mathcal{L}^2(0, 1)$ (or other reasonable spaces) is available.

Scalar case. Characterization.

The Weyl-Titchmarsh function $m(\lambda, v)$ is a meromorphic function having simple poles at Dirichlet eigenvalues $\lambda_n(v)$ and

$$\operatorname{res}_{\lambda=\lambda_n(v)} m(\lambda, v) = -[g_n(v)]^{-1} = -\left[\int_0^1 |\varphi(x, \lambda_n, v)|^2 dx\right]^{-1}$$

The sharp characterization of all scalar Weyl-Titchmarsh functions (equivalently, spectral data $(\lambda_n(v), g_n(v))_{n=1}^{+\infty}$) that correspond to potentials $v \in \mathcal{L}^2(0, 1)$ (or other reasonable spaces) is available.

Namely, the necessary and sufficient conditions are

$$\begin{split} \lambda_1 < \lambda_2 < \lambda_3 < \dots, \qquad & (\lambda_n - \pi^2 n^2 - v_0)_{n=1}^{+\infty} \in \ell^2, \quad v_0 \in \mathbb{R} \\ & \text{and} \qquad & (\pi n \cdot (2\pi^2 n^2 \cdot g_n - 1))_{n=1}^{+\infty} \in \ell^2. \end{split}$$

Actually, $v_0 = \int_0^1 v(x) dx$.

- eigenvalues $\lambda_1 < \lambda_2 < ... < \lambda_{\alpha} < ...$ (and multiplicities k_{α});
- ▶ residues of M: $\operatorname{res}_{\lambda = \lambda_{\alpha}} M(\lambda) = B_{\alpha} = B_{\alpha}^* \ge 0$, $\operatorname{rank} B_{\alpha} = k_{\alpha}$

- eigenvalues $\lambda_1 < \lambda_2 < ... < \lambda_{\alpha} < ...$ (and multiplicities k_{α});
- ► residues of M: $\operatorname{res}_{\lambda = \lambda_{\alpha}} M(\lambda) = B_{\alpha} = B_{\alpha}^* \ge 0$, $\operatorname{rank} B_{\alpha} = k_{\alpha}$

$$B_{\alpha}=P_{\alpha}g_{\alpha}^{-1}P_{\alpha},$$

where

- ► $P_{\alpha} : \mathbb{C}^N \to \mathcal{E}_{\alpha} \subset \mathbb{C}^N$ is an orthogonal projector $(\operatorname{rank} P_{\alpha} = \dim \mathcal{E}_{\alpha} = k_{\alpha})$
- g_{α} is a positive quadratic form in \mathcal{E}_{α} ("normalizing matrix")

- eigenvalues $\lambda_1 < \lambda_2 < ... < \lambda_{\alpha} < ...$ (and multiplicities k_{α});
- ► residues of M: $\operatorname{res}_{\lambda = \lambda_{\alpha}} M(\lambda) = B_{\alpha} = B_{\alpha}^* \ge 0$, $\operatorname{rank} B_{\alpha} = k_{\alpha}$

$$B_{\alpha}=P_{\alpha}g_{\alpha}^{-1}P_{\alpha},$$

where

 P_α: C^N → E_α ⊂ C^N is an orthogonal projector (rankP_α = dim E_α = k_α)
 g_α is a positive quadratic form in E_α ("normalizing matrix")

Equivalent definition:

$$\begin{split} \mathcal{E}_{\alpha} &= \operatorname{Ker} \varphi(\mathbf{1}, \lambda_{\alpha}, V) = \left\{ h \in \mathbb{C}^{N} : \psi_{\alpha;h} = \varphi(\cdot, \lambda_{\alpha}, V)h \in \operatorname{Ker}(\mathcal{L} - \lambda_{\alpha}) \right\}, \\ \left\langle \psi_{\alpha;h_{1}}, \psi_{\alpha;h_{2}} \right\rangle_{L^{2}([0,1];\mathbb{C}^{N})} &= \left\langle h_{1}, g_{\alpha}h_{2} \right\rangle_{\mathcal{E}_{\alpha}}, \qquad g_{\alpha} = p_{\alpha} \left[\int_{0}^{1} [\varphi^{*}\varphi](x, \lambda_{\alpha}, V) dx \right] p_{\alpha}^{*} \end{split}$$

- eigenvalues $\lambda_1 < \lambda_2 < ... < \lambda_{\alpha} < ...$ (and multiplicities k_{α});
- ► residues of M: $\operatorname{res}_{\lambda = \lambda_{\alpha}} M(\lambda) = B_{\alpha} = B_{\alpha}^* \ge 0$, $\operatorname{rank} B_{\alpha} = k_{\alpha}$

$$B_{\alpha}=P_{\alpha}g_{\alpha}^{-1}P_{\alpha},$$

where

- ► $P_{\alpha} : \mathbb{C}^N \to \mathcal{E}_{\alpha} \subset \mathbb{C}^N$ is an orthogonal projector $(\operatorname{rank} P_{\alpha} = \dim \mathcal{E}_{\alpha} = k_{\alpha})$
- g_{α} is a positive quadratic form in \mathcal{E}_{α} ("normalizing matrix")

Uniqueness Theorem: [M. M. Malamud '05, V. A. Yurko '06]

The matrix-valued function $M(\lambda)$ (or, equivalently, the collection of spectral data $(\lambda_{\alpha}, P_{\alpha}, g_{\alpha})_{\alpha=1}^{+\infty}$) determines the potential uniquely.

Isospectral Flows.

[D.Ch., E.K.: Parametrization of the isospectral set for the vector-valued Sturm-Liouville problem.

J. Funct. Anal. 241(1), 359-373 (2006). arXiv:math.SP/0607810]

Fix some admissible spectrum $\{\lambda_{\alpha}\}_{\alpha \geq 1}$ (and multiplicities k_{α}) and all the residues $B_{\alpha} = P_{\alpha}g_{\alpha}^{-1}P_{\alpha}$, $\alpha \neq \beta$, except one. Then:

- \blacktriangleright g_{eta} can be changed *arbitrarily* [M. Jr. Jodeit; B. M. Levitan '98]
- P_{β} can be changed *almost arbitrarily*:

Isospectral Flows.

[D.Ch., E.K.: Parametrization of the isospectral set for the vector-valued Sturm-Liouville problem.

J. Funct. Anal. 241(1), 359-373 (2006). arXiv:math.SP/0607810]

Fix some admissible spectrum $\{\lambda_{\alpha}\}_{\alpha \geq 1}$ (and multiplicities k_{α}) and all the residues $B_{\alpha} = P_{\alpha}g_{\alpha}^{-1}P_{\alpha}$, $\alpha \neq \beta$, except one. Then:

- \blacktriangleright g_{eta} can be changed *arbitrarily* [M. Jr. Jodeit; B. M. Levitan '98]
- ► P_{β} can be changed *almost arbitrarily*: There exists the "forbidden subspace" \mathcal{F}_{β} , dim $\mathcal{F}_{\beta} = N - k_{\beta}$, which is uniquely determined by the spectrum and $(\mathcal{E}_{\alpha})_{\alpha \neq \beta}$ such that all "deformations" $P_{\beta} \mapsto \widetilde{P}_{\beta}$: $\mathcal{F}_{\beta} \cap \operatorname{Ran}\widetilde{P}_{\beta} = \{0\}$ are permitted (the new potential is constructed *explicitly*).

Isospectral Flows.

[D.Ch., E.K.: Parametrization of the isospectral set for the vector-valued Sturm-Liouville problem.

J. Funct. Anal. 241(1), 359-373 (2006). arXiv:math.SP/0607810]

Fix some admissible spectrum $\{\lambda_{\alpha}\}_{\alpha \geq 1}$ (and multiplicities k_{α}) and all the residues $B_{\alpha} = P_{\alpha}g_{\alpha}^{-1}P_{\alpha}$, $\alpha \neq \beta$, except one. Then:

- g_{β} can be changed *arbitrarily* [M. Jr. Jodeit; B. M. Levitan '98]
- P_{β} can be changed *almost arbitrarily*:

Toy example (discrete version). Block Jacobi matrices.

[A.I.Aptekarev, E.M.Nikishin '83: The scattering problem for a discrete Sturm-Liouville operator;
 J.Brüning, D.Ch., E.K.: Remark on finite matrix-valued Jacobi operators, arXiv:math/0607809]

Let $b_{
ho}^*=b_{
ho},\;a_{
ho}=a_{
ho}^*>0$ be N imes N matrices and

$$\mathcal{J} = \begin{pmatrix} b_1 & a_1 & 0 & 0 & \dots & 0 \\ a_1^* & b_2 & a_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & a_{n-2}^* & b_{n-1} & a_{n-1} \\ 0 & \dots & 0 & 0 & a_{n-1}^* & b_n \end{pmatrix}$$

► $\sigma(\mathcal{J})$: $\lambda_1 < \lambda_2 < \cdots < \lambda_m$, $k_1 + k_2 + \cdots + k_m = Nn$;

Toy example (discrete version). Block Jacobi matrices.

[A.I.Aptekarev, E.M.Nikishin '83: The scattering problem for a discrete Sturm-Liouville operator;
 J.Brüning, D.Ch., E.K.: Remark on finite matrix-valued Jacobi operators, arXiv:math/0607809]

Let $b_{
ho}^*=b_{
ho}$, $a_{
ho}=a_{
ho}^*>0$ be N imes N matrices and

$$\mathcal{J} = \begin{pmatrix} b_1 & a_1 & 0 & 0 & \dots & 0 \\ a_1^* & b_2 & a_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & a_{n-2}^* & b_{n-1} & a_{n-1} \\ 0 & \dots & 0 & 0 & a_{n-1}^* & b_n \end{pmatrix}$$

► $\sigma(\mathcal{J}): \lambda_1 < \lambda_2 < \cdots < \lambda_m, \qquad k_1 + k_2 + \cdots + k_m = Nn;$ ► residues of the (rational) M-function: $\chi_{n+1} := 0, \ \chi_n := I, \ a_{p-1}^* \chi_{p-1} + b_p \chi_p + a_p \chi_{p+1} = \lambda \cdot \chi_p,$ $B_s = P_s g_s^{-1} P_s := - \mathop{\mathrm{res}}_{\lambda = \lambda_s} M(\lambda), \quad M(\lambda) := -[\chi_1 \chi_0^{-1}](\lambda).$

Toy example (discrete version). Block Jacobi matrices.

[A.I.Aptekarev, E.M.Nikishin '83: The scattering problem for a discrete Sturm-Liouville operator;
 J.Brüning, D.Ch., E.K.: Remark on finite matrix-valued Jacobi operators, arXiv:math/0607809]

Let $b_{p}^{*}=b_{p}$, $a_{p}=a_{p}^{*}>0$ be N imes N matrices and

• $\sigma(\mathcal{J}): \lambda_1 < \lambda_2 < \cdots < \lambda_m, \qquad k_1 + k_2 + \cdots + k_m = Nn;$ • $(\lambda_s, B_s)_{s=1}^m, B_s = P_s g_s^{-1} P_s, \operatorname{rank} P_s = k_s, \text{ should be such that}$

there exists no (nontrivial) vector-valued polynomial $F : \mathbb{C} \to \mathbb{C}^N$, deg $F \le n-1$: $P_s F(\lambda_s) = 0$, s = 1, ..., m.

For all $v_1^0 < v_2^0 < .. < v_n^0$ the mapping $V \mapsto (\lambda_\alpha, P_\alpha, g_\alpha)_{\alpha=1}^{+\infty}$ is a **bijection** between the set of potentials

 $V = V^* \in L^2([0,1]; \mathbb{C}^{N \times N}): \int_0^1 V(x) dx = \text{diag}\{v_1^0, v_2^0, ..., v_N^0\}$

and the class of spectral data satisfying (A)-(C):

For all $v_1^0 < v_2^0 < .. < v_n^0$ the mapping $V \mapsto (\lambda_\alpha, P_\alpha, g_\alpha)_{\alpha=1}^{+\infty}$ is a **bijection** between the set of potentials

 $V = V^* \in L^2([0,1]; \mathbb{C}^{N \times N}): \int_0^1 V(x) dx = \text{diag}\{v_1^0, v_2^0, ..., v_N^0\}$

and the class of spectral data satisfying (A)–(C):

(A) The spectrum is asymptotically simple, i.e., $\exists \alpha^{\diamond} \geq 0, n^{\diamond} \geq 1$:

$$k_1^\diamond+k_2^\diamond+\ldots+k_{\alpha^\diamond}^\diamond=\textit{N}(\textit{n}^\diamond-1) \quad \text{and} \quad k_\alpha^\diamond=1 \ \text{ for all } \alpha\geq\alpha^\diamond+1.$$

It allows us to define the double-indexing (n, j), $n \ge n^{\diamond}$, j = 1, ..., N, instead of the single-indexing $\alpha > \alpha^{\diamond}$. Namely, we set

$$\lambda_{n,j} = \lambda_{\alpha^{\diamond} + N(n-n^{\diamond}) + j}, \ g_{n,j} = g_{\alpha^{\diamond} + N(n-n^{\diamond}) + j} \ \text{etc. for } n \ge n^{\diamond}.$$

For all $v_1^0 < v_2^0 < .. < v_n^0$ the mapping $V \mapsto (\lambda_\alpha, P_\alpha, g_\alpha)_{\alpha=1}^{+\infty}$ is a **bijection** between the set of potentials

 $V = V^* \in L^2([0,1]; \mathbb{C}^{N \times N}): \int_0^1 V(x) dx = \text{diag}\{v_1^0, v_2^0, ..., v_N^0\}$

and the class of spectral data satisfying (A)-(C):

(A) The spectrum is asymptotically simple.
(B) The asymptotics of spectral data in l²-sense hold true:

$$\begin{array}{ll} (\lambda_{n,j} - \pi^2 n^2 - v_j^0)_{n=n^{\diamond}}^{+\infty} \in \ell^2, & (\pi n \cdot (2\pi^2 n^2 g_{n,j} - 1))_{n=n^{\diamond}}^{+\infty} \in \ell^2, \\ (|P_{n,j} - P_j^0|)_{n=n^{\diamond}}^{+\infty} \in \ell^2 & \text{and} & (\pi n \cdot |\sum_{j=1}^N P_{n,j} - I_N|)_{n=n^{\diamond}}^{+\infty} \in \ell^2. \end{array}$$

For all $v_1^0 < v_2^0 < .. < v_n^0$ the mapping $V \mapsto (\lambda_\alpha, P_\alpha, g_\alpha)_{\alpha=1}^{+\infty}$ is a **bijection** between the set of potentials

 $V = V^* \in L^2([0,1]; \mathbb{C}^{N \times N}): \int_0^1 V(x) dx = \text{diag}\{v_1^0, v_2^0, ..., v_N^0\}$

and the class of spectral data satisfying (A)-(C):

- (A) The spectrum is *asymptotically simple*.
- (B) The asymptotics of spectral data in ℓ^2 -sense hold true.
- (C) The collection $(\lambda_{\alpha}; P_{\alpha})_{\alpha=1}^{+\infty}$ satisfies the following property:

Let $\xi : \mathbb{C} \to \mathbb{C}^N$ be an entire vector-valued function such that $\xi(\lambda) = O(e^{|\operatorname{Im}\sqrt{\lambda}|})$ as $|\lambda| \to \infty$ and $\xi \in L^2(\mathbb{R}_+)$. If $P_{\alpha}\xi(\lambda_{\alpha}) = 0$ for all $\alpha \ge 1$, then $\xi(\lambda) \equiv 0$.

Remarks [concerning (C)]:

▶ Trivial in the scalar case (due to the Paley-Wiener theory).

Remarks [concerning (C)]:

- ► Trivial in the scalar case (due to the Paley-Wiener theory).
- Nontrivial in the vector-valued case; describes all "forbidden subspaces" *F_β* (restrictions *E_β* ∩ *F_β* = {0}) simultaneously.

Remarks [concerning (C)]:

- ▶ Trivial in the scalar case (due to the Paley-Wiener theory).
- Nontrivial in the vector-valued case; describes all "forbidden subspaces" *F_β* (restrictions *E_β* ∩ *F_β* = {0}) simultaneously.

• Equivalent to the following (if all $\lambda_{\alpha} > 0$):

Let
$$P_{\alpha} = h_{\alpha}h_{\alpha}^{*}$$
, where $h_{\alpha} = (h_{\alpha}^{(1)}; ...; h_{\alpha}^{(k_{\alpha})})$ and $h_{\alpha}^{(j)} \in \mathbb{C}^{N}$ are orthonormal. Then the vector-valued functions $e^{\pm i\sqrt{\lambda_{\alpha}t}}h_{\alpha}^{(j)}$, $j = 1, ..., k_{\alpha}$, $\alpha \ge 1$, together with the constant vectors $e_{1}^{0}, ..., e_{N}^{0}$ span $L^{2}([-1, 1]; \mathbb{C}^{N})$.

Remarks [concerning (C)]:

▶ (C) can be rewritten *explicitly*, if $P_{n,j} = P_j^0$ for all $n \ge m+1$:

▶ (C) can be rewritten *explicitly*, if $P_{n,j} = P_j^0$ for all $n \ge m+1$:

where

$$egin{aligned} & T_k = \sum_{\lambda_lpha < \lambda_{m+1,1}} F(\lambda_lpha) P_lpha F(\lambda_lpha) \cdot \lambda_lpha^k = T_k^* \, , \ & F(\lambda) \equiv ext{diag}_{j=1,..,N} \left\{ \prod_{n=m+1}^{+\infty} (1 - rac{\lambda}{\lambda_{n,j}})
ight\}. \end{aligned}$$

• (1)
$$(\lambda_{n,j} - \pi^2 n^2 - v_j^0)_{n=n^{\diamond}}^{+\infty} \in \ell^2$$
,
• (2) $(\pi n \cdot (2\pi^2 n^2 g_{n,j} - 1))_{n=n^{\diamond}}^{+\infty} \in \ell^2$,
• (3) $(|P_{n,j} - P_j^0|)_{n=n^{\diamond}}^{+\infty} \in \ell^2$,

are simple corollaries of our assumption $v_1^0 < v_2^0 < ... < v_N^0$;

• (1)
$$(\lambda_{n,j} - \pi^2 n^2 - v_j^0)_{n=n^{\diamond}}^{+\infty} \in \ell^2$$
,
• (2) $(\pi n \cdot (2\pi^2 n^2 g_{n,j} - 1))_{n=n^{\diamond}}^{+\infty} \in \ell^2$,
• (3) $(|P_{n,j} - P_j^0|)_{n=n^{\diamond}}^{+\infty} \in \ell^2$,

are simple corollaries of our assumption $v_1^0 < v_2^0 < ... < v_N^0$;

► (4)
$$(\pi n \cdot |\sum_{j=1}^{N} P_{n,j} - I_N|)_{n=n^\diamond}^{+\infty} \in \ell^2$$

follows from the analysis of the sum $\sum_{\lambda_{\alpha}:|\lambda_{\alpha}-\pi^2n^2|=O(1)} B_{\alpha}$ (which behaves better then the individual residues).

• (2)
$$(\pi n \cdot (2\pi^2 n^2 g_{n,j} - 1))_{n=n^{\diamond}}^{+\infty} \in \ell^2$$
,
• (3) $(|P_{n,j} - P_j^0|)_{n=n^{\diamond}}^{+\infty} \in \ell^2$,
• (4) $(\pi n \cdot |\sum_{j=1}^N P_{n,j} - I_N|)_{n=n^{\diamond}}^{+\infty} \in \ell^2$.

Equivalent description (technical trick):

$$B_{n,j} = P_{n,j}g_{n,j}^{-1}P_{n,j}, \quad P_{n,j} = \langle \cdot, h_{n,j} \rangle h_{n,j} : \langle h_{n,j}, e_j^0 \rangle > 0.$$

Let $H_n = \frac{1}{\sqrt{2\pi n}} (h_{n,1}; ...; h_{n,N}) = S_n U_n, \quad S_n = S_n^*, \ U_n^* = U_n^{-1}.$
Then

• (2)
$$(\pi n \cdot (2\pi^2 n^2 g_{n,j} - 1))_{n=n^{\diamond}}^{+\infty} \in \ell^2$$
,
• (3) $(|P_{n,j} - P_j^0|)_{n=n^{\diamond}}^{+\infty} \in \ell^2$,
• (4) $(\pi n \cdot |\sum_{j=1}^N P_{n,j} - I_N|)_{n=n^{\diamond}}^{+\infty} \in \ell^2$.

Equivalent description (technical trick):

$$B_{n,j} = P_{n,j}g_{n,j}^{-1}P_{n,j}, \quad P_{n,j} = \langle \cdot, h_{n,j} \rangle h_{n,j} : \langle h_{n,j}, e_j^0 \rangle > 0.$$

Let $H_n = \frac{1}{\sqrt{2}\pi n} (h_{n,1}; ...; h_{n,N}) = S_n U_n, \quad S_n = S_n^*, \ U_n^* = U_n^{-1}.$
Then $(|U_n - I|)_{-\infty}^{+\infty} \in \ell^2.$

• (2)
$$(\pi n \cdot (2\pi^2 n^2 g_{n,j} - 1))_{n=n^{\diamond}}^{+\infty} \in \ell^2$$
,
• (3) $(|P_{n,j} - P_j^0|)_{n=n^{\diamond}}^{+\infty} \in \ell^2$,
• (4) $(\pi n \cdot |\sum_{j=1}^N P_{n,j} - I_N|)_{n=n^{\diamond}}^{+\infty} \in \ell^2$.

Equivalent description (technical trick):

$$B_{n,j} = P_{n,j}g_{n,j}^{-1}P_{n,j}, \quad P_{n,j} = \langle \cdot, h_{n,j} \rangle h_{n,j} : \quad \langle h_{n,j}, e_j^0 \rangle > 0.$$

et $H_n = \frac{1}{\sqrt{2\pi n}} (h_{n,1}; ...; h_{n,N}) = S_n U_n, \quad S_n = S_n^*, \quad U_n^* = U_n^{-1}.$
Then

<u>Note</u>:

L

$$S_n^2 = H_n H_n^* = \frac{1}{2\pi^2 n^2} (B_{n,1} + \dots + B_{n,N}).$$

• Construct some (special) diagonal potential V^0 such that $\sigma(V^0) = \{\lambda_{\alpha}^{\sharp}\}_{\alpha=1}^{+\infty}$ (counting with multiplicities);

- Construct some (special) diagonal potential V^0 such that $\sigma(V^0) = \{\lambda_{\alpha}^{\sharp}\}_{\alpha=1}^{+\infty}$ (counting with multiplicities);
- Do the analysis on the isospectral set near V⁰ [which is given by rankφ(1, λ[♯]_α, V⁰ + W) = N − k_α];

- Construct some (special) diagonal potential V^0 such that $\sigma(V^0) = \{\lambda_{\alpha}^{\sharp}\}_{\alpha=1}^{+\infty}$ (counting with multiplicities);
- Do the analysis on the isospectral set near V⁰ [which is given by rankφ(1, λ[♯]_α, V⁰ + W) = N − k_α];
- Check that the *Fréchet derivative* of the mapping
 W → (P_α, g_α)^{+∞}_{a=1} at W = 0 is invertible
 [and so this mapping is the local surjection near W = 0];

- Construct some (special) diagonal potential V^0 such that $\sigma(V^0) = \{\lambda_{\alpha}^{\sharp}\}_{\alpha=1}^{+\infty}$ (counting with multiplicities);
- Do the analysis on the isospectral set near V⁰ [which is given by rankφ(1, λ[♯]_α, V⁰ + W) = N − k_α];
- Check that the *Fréchet derivative* of the mapping W → (P_α, g_α)^{+∞}_{a=1} at W = 0 is invertible [and so this mapping is the local surjection near W = 0];
- Find some realization of the "tail", i.e., some point (P̃_α, g̃_α)^{+∞}_{α=1} in the image and [large enough] α_∗ such that

$$\widetilde{P}_{\alpha} = P_{\alpha}^{\sharp} \text{ and } \widetilde{g}_{\alpha} = g_{\alpha}^{\sharp} \text{ for all } \alpha > \alpha_*;$$

- Construct some (special) diagonal potential V^0 such that $\sigma(V^0) = \{\lambda_{\alpha}^{\sharp}\}_{\alpha=1}^{+\infty}$ (counting with multiplicities);
- Do the analysis on the isospectral set near V⁰ [which is given by rankφ(1, λ[♯]_α, V⁰ + W) = N − k_α];
- Check that the Fréchet derivative of the mapping
 W → (P_α, g_α)^{+∞}_{a=1} at W = 0 is invertible
 [and so this mapping is the local surjection near W = 0];
- ▶ Find some *realization of the "tail"*, i.e., some point $(\widetilde{P}_{\alpha}, \widetilde{g}_{\alpha})_{\alpha=1}^{+\infty}$ in the image and [large enough] α_* such that

$$\widetilde{P}_{\alpha} = P_{\alpha}^{\sharp} \text{ and } \widetilde{g}_{\alpha} = g_{\alpha}^{\sharp} \text{ for all } \alpha > \alpha_*;$$

• Use a finite number of isospectral flows to modify $(\widetilde{P}_{\alpha}, \widetilde{g}_{\alpha})_{\alpha=1}^{\alpha_*}$.

Borg type results (re-parametrization for this class of meromorphic functions). In the scalar case one can use zeros of m(λ, ν) (i.e., the spectrum of the mixed boundary value problem ψ'(0) = 0, ψ(1) = 0) instead of the normalizing constants g_n. How many spectra does one need (in the vector-valued case) to determine the potential uniquely?

- ► Borg type results
- Geometry: splitting of eigenvalues (topology of isospectral manifolds essentially depends on the multiplicities k_α).

- Borg type results
- Geometry: splitting of eigenvalues
- Degenerate mean potential V⁰: looking for "nice" parameters (structure and asymptotics of the additional spectral data are simpler to describe, if the spectrum is asymptotically simple). If v⁰ is a multiple eigenvalue of V⁰, then the regularization

$$B_{n,(v^0)} := \sum_{\{\lambda_{\alpha} \text{ near } \pi^2 n^2 + v^0\}} B_{\alpha};$$
$$D_{n,(v^0)} := \sum_{\{\lambda_{\alpha} \text{ near } \pi^2 n^2 + v^0\}} \lambda_{\alpha} B_{\alpha};$$

seems promising.

- Borg type results
- Geometry: splitting of eigenvalues
- ▶ Degenerate mean potential V⁰: looking for "nice" parameters
- Other classes of potentials: Recently, Ya.V.Mikityuk and N.S.Trush (Lviv) announced the result for the class W₂⁻¹ [using M.G.Krein's approach].

- Borg type results
- Geometry: splitting of eigenvalues
- ▶ Degenerate mean potential V⁰: looking for "nice" parameters
- Other classes of potentials
- Other (separated but non-Dirichlet) boundary conditions [smth. in S.Matveenko's talk on Wednesday, Aug 5]

- Borg type results
- Geometry: splitting of eigenvalues
- ▶ Degenerate mean potential V⁰: looking for "nice" parameters
- Other classes of potentials
- Other (separated but non-Dirichlet) boundary conditions
- [?] Some revision of the 1D inverse scattering problems with matrix potentials

THANK YOU!