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FOREWORD

The Seminars/Conferences “Days on Diffraction” are annually held since 1968 in late May or
in June by the Faculty of Physics of St.-Petersburg State University, St.-Petersburg Branch of the
Steklov’s Mathematical Institute and Euler International Mathematical Institute of the Russian Aca-
demy of Sciences.

This booklet contains the abstracts of 154 talks to be presented at oral and poster sessions in
4 days of the Conference. Author index can be found on the last page.

The full texts of selected talks will be published in the Proceedings of the Conference. The texts in
LATEX format are due by September 15, 2010 to e-mail iva---@list.ru. Format file and instructions
can be found on the Seminar Web site at http://eimi.imi.ras.ru/~dd/submission.php. The final
judgement on accepting the paper for the Proceedings will be made by the Organizing Committee
following the recommendations of the referees.

We are as always pleased to see in St.-Petersburg active researchers in the field of Diffraction
Theory from all over the world.

Organizing Committee
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OBITUARY

Vladimir Sergeevitch Buldyrev, whose role
was essential in transforming the diffraction
theory into an important force of mathemat-
ical physics in the second half of the 20th
century, died on 5 April 2010, after a two-
month illness. His 80th birthday we cele-
brated at “Diffraction Days 2009”.

Vladimir Sergeevitch was a Professor in
the Department of Higher Mathematics and
Mathematical Physics, Faculty of Physics of
the St. Petersburg State University, where

his teaching career lasted for more than 60 years. He was the key figure in sustaining the department
as a center for research and the training of several generations of mathematical physicists who were
to go on to pursue successful research and teaching careers. It must be added that the initiation of
the “Diffraction Days” conferences is undeniably connected with his name.

Vladimir Sergeevitch was the author and coauthor of many pioneering works in the field of the
mathematical theory of diffraction. His studies of the ‘whispering gallery’ and ‘jumping ball’ modes
had resulted in proposing the so-called ‘infinitesimal ray method’ and the technique of investigation of
the ray stability based on the first approximation. Along with the boundary layer approach originated
by V. A. Fock, these techniques opened a new era in the diffraction theory lasting up to the present.

More than twenty students got their PhD degree under Buldyrev’s supervision; six of them became
professors later on. He wrote four monographs and textbooks, the best known of which is “Asymptotic
Methods in Short Wave Diffraction Problems” co-authored with V. M. Babich and translated into
English. The State Prize of the USSR and the St. Petersburg University Prize are among of his
awards.
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THE 80TH BIRTHDAY OF V. M. BABICH

Vassily Mikhailovich Babich is a dominant
figure in the St. Petersburg school of mathe-
matical physics, not only for his outstanding
original contributions to theory of wave prop-
agation and asymptotic methods, but also for
his personal influence in creating world fa-

mous centre for studies in the field of mathematical theory of wave phenomena. The diffraction
theory community will celebrate his 80th birthday on 13 June 2010.

Almost 60 years ago, Vassily Mikhailovich graduated from the Leningrad State University, where
his teachers were G. I. Petrashen’ and S. G. Mikhlin, and in 1954 he began his own teaching career
at his Alma mater (the Department of Mathematics and Mechanics, and the Department of Physics).
Since 1967 V. M. Babich heads the Laboratory for Mathematical Problems in Geophysics at the
Steklov Mathematical Institute in St. Petersburg (PDMI).

This year, Vassily Mikhailovich co-chairs his 43d “Days on Diffraction”, and his name irrevocably
connected with this annual conference. His weekly seminar at the PDMI has an undisputed reputation
for high-level talks. Together with several his colleagues, V. M. Babich was awarded a Soviet State
prize for a series of works concerned with the application of the ray method to propagation of seismic
waves. In 1998, he was awarded the V. A. Fock prize for his studies of asymptotic methods in diffraction
theory.

In order to characterise the level of scientific contributions made by V. M. Babich, we restrict
ourselves to mentioning his brilliant paper on waves in anisotropic media (it was reprinted in a leading
international geophysics journal 33 years after the original publication). It seems that this was the
first use in mathematical physics of a technique based on application of the Finsler space.

We wish Vassily Mikhailovich good health and many happy returns of 13 June!
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Eric Séré, A. Chambolle, C. Zanini
Traveling water waves: a global variational approach . . . . . . . . . . . . . . . . . . . 72



DAYS on DIFFRACTION’2010 9

A. V. Shanin
Weinstein’s problem with double set of screens: Matrix Wiener-Hopf approach and
ODE approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

K. S. Shaposhnikov
Use of eigenfunctions of integral operator with weakly singular kernel for a magneto-
static problem solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

V. M. Shelkovich
Multidimensional zero-pressure gas dynamics with the energy conservation law . . . . 73

Ilya A. Shereshevskii, Igor M. Nefedov
The numerical method for 2D Helmholtz equation in complicated regions . . . . . . . 74

Yu. A. Shpolyanskiy, A. N. Berkovsky
Temporal and spectral evolution of electric field and complex envelope of few-cycle light
pulses experiencing paraxial self-focusing in transparent media . . . . . . . . . . . . . 74

V. A. Sloushch
Discrete spectrum of periodic Schrodinger operator with non-constant metric in the
case of non-negative perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Alexandr S. Slusarenko, Galina N. Dyakova
On a method of metrological self assurance in a problem of control of orbital complexes 76

Oleg Soldatenko
Active protection from noise propagation in cylindrical waveguide . . . . . . . . . . . . 76

Euan A. Spence
Coercivity of boundary integral operators in high frequency scattering . . . . . . . . . 76

Olga Strizhenko, Maxim Kolmakov
Simulation of a laminar flow in a porous medium . . . . . . . . . . . . . . . . . . . . . 77

I. Sukharevsky, A. Altintas, Ye. Ryabokon
PO/GTD method for 3D modeling of the aperture antenna with a radome . . . . . . . 77

Ye. Ryabokon, I. Sukharevsky, A. Altintas
Correction of bore-sight errors induced by a radome . . . . . . . . . . . . . . . . . . . 77

Juan Sumaya-Martinez, M. Mayorga-Rojas, O. Olmos-Lopez
A novel Fisher information criterion to study electromagnetic resonances in lamellar
gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Juan Sumaya-Martinez, M. Mayorga-Rojas, O. Olmos-Lopez
Near field spectrum in the neighborhood of a subwavelength metallic slit at resonant
wavelengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

M. Sh. Birman, T. A. Suslina
Homogenization of nonstationary periodic equations . . . . . . . . . . . . . . . . . . . 78

D. E. Syresin, T. V. Zharnikov, V. V. Tyutekin
Properties of quasi-Rayleigh waves near cylindrical cavity subject to surface impedance
load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Azat M. Tagirdzhanov
”Complex source” in two-dimensional real space . . . . . . . . . . . . . . . . . . . . . 80

V. A. Topunov
Surface acoustic waves in a rotating solid . . . . . . . . . . . . . . . . . . . . . . . . . 81

Ekaterina E. Ushakova, Svetlana N. Kurilkina
Super short Bessel beam Ffrmation by axicon . . . . . . . . . . . . . . . . . . . . . . . 82



10 DAYS on DIFFRACTION’2010

Piergiorgio L. E. Uslenghi
Exact radiation from an antenna on an oblate metallic spheroid coated with layers of
isorefractive and anti-isorefractive materials . . . . . . . . . . . . . . . . . . . . . . . . 83

Andrei B. Utkin
Modal representation of transient waves constrained by an elliptical cylinder . . . . . . 84

Valery Yu. Valyaev, Andrey V. Shanin
Derivation of modified Smyshlyaev’s formulae using integral transform of Kontorovich-
Lebedev type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Nadezhda K. Vdovicheva, Ilya A. Shereshevskii
The numerical calculation of eigen modes of rectangular electrodynamic waveguide with
metal partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Juha H. Videman
Existence of edge waves along periodic structures . . . . . . . . . . . . . . . . . . . . . 86

N. F. Yashina, T. M. Zaboronkova
Instability of electromagnetic surface waves guided by the hiral column . . . . . . . . . 86

Vasyl V. Yatsyk
Resonance scattering and generation of the third harmonic by the diffraction of a plane
wave on cubically polarisable dielectric layered structure . . . . . . . . . . . . . . . . . 87

Dmitrii D. Zakharov, Alexander V. Kaptsov
Resonance properties of wave propagation in the heterogeneous composites with nematic
coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Dmitrii D. Zakharov
High order asymptotics of the near field, radiated by a normal or angled beam fluid
couple ultrasonic transducer, into an elasic plate or a half-space . . . . . . . . . . . . . 89

V.V. Zalipaev
Semiclassical analysis of conductance fluctuations in open electronic resonators . . . . 89

Mounir G. Zeitouny, Moxi Cui, Nandini Bhattacharya, Hendrik P. Urbach, Steven A. van
den Berg, Augustus J. E. M. Janssen
Stationary phase based asymptotic analysis of inter-pulse interference from a frequency
comb source in dispersive media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

M. G. Zhuchkova, D. P. Kouzov
Flexural-gravity wave scattering by heterogeneities in an elastic plate floating on water 92

SPECIAL SECTION: METAMATERIALS 93
Andrea Alu, Nader Engheta

The paradox of zero forward-scattering in relation with the optical theorem . . . . . . 93

Andrea Alu, Stanislav Maslovski
A simplified analytical model for receiving wire antennas consistent with power conser-
vation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Anton P. Anzulevich, Vasiliy D. Buchelnikov, Igor V. Bychkov
Microwave heat of copper powder with varying particle size . . . . . . . . . . . . . . . 95

Christos Argyropoulos, Efthymios Kallos, Yang Hao
FDTD Mmdelling of transformation electromagnetic based devices . . . . . . . . . . . 96

Pavel A. Belov, Sergei Yu. Kosulnikov, Atiqur Rahman
Optimal parameters of metallic nanorods arrays for subwavelength imaging . . . . . . 97

Valery Butylkin, Galina Kraftmakher, Valery Mal’tsev
Nonreciprocal transmission of surface microwaves along “ferrite-grating of resonant el-
ements” metasandwiches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



DAYS on DIFFRACTION’2010 11

A. V. Chebykin, A. A. Orlov, P. A. Belov
Nonlocal homogenization theory of multilayered metal-dielectric nanostructured meta-
materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Dmitry N. Chigrin, Christian Kremers, Sergei V. Zhukovsky
Metallic nanorods dimer: from optical nano-antennas to planar chiral metamaterials . 100

Johan Christensen
Acoustic metamaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Mariana Dalarsson, Martin Norgren
Lossy wave propagation through graded interfaces between RHM and LHM media . . 102

V. T. Erofeenko, S. V. Maly
Investigation of electrodynamic properties of multilayer structures from biisotropic ma-
terials by means of nonlocal bilateral boundary conditions . . . . . . . . . . . . . . . . 102

D. Felbacq, A. Cabuz, G. Bouchitté
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The diffraction and dispersion of waves in the space-periodic structure
with the 2-dimentional electronic gas

Valeriy A. Abdulkadyrov

The Usikov’s Institute of Radiophysics and Electronics of the NASU,
12 Proskura str., Kharkov-61085, Ukraine
e-mail: abdulkad@ire.kharkov.ua

The last years, characterized by increased attention to the various physical phenomena in the
electron gas in semiconductor structures. The plasma oscillations in the semiconductor are propagated
at frequencies of terahertz range[1-2].

1. The diffraction grating is needed to ensure a radiating mode. The problem of the electromagnetic
wave on the semiconductor structure with a diffraction grating is solved in a rigorous formulation
method [3].The field is obtained from the joint of Maxwell’s equations and the hydrodynamic equations
of the semiconductor plasma. Fields substituted into the boundary conditions on all interfaces. The
system of functional equations obtained from the boundary relations. The system of linear algebraic
equations was obtained from the application of the method [3].The amplitudes of the reflected and
transmitted waves are obtained in analytical form by solving the reduced system of linear algebraic
equations. The reflection (transmittion) coefficient signal is investigated in a wide frequency range of
the parameters of the structure.
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Figure : The electodynamic model under study.

2. Within the framework of general electrodynamical formalism of spatially bounded plasma media
and the rigorous solution of the boundary problem using the method [3] there has been obtained a
characteristic equation of the system.
det
{ |n|

n L
n
mξm − δmn

}
= 0, where m,n =0,±1,±2, ...;Ln

m = V n
m − Rm

V n
σ

Rσ
; δmn- the Kroneker symbol ;

ξn = 1 + i |χα+n|
χα+n · |n|

n · ψn1

√
χ2

(χα+n)2 − 1; χ = l
λ ;V n

m,V n
σ ,Rm,Rσ , are defined in [3] ψn1-is function of

the physical and geometrical parameters. The conductivity of plasmons can be obtained. σ(ω, kxn) =
iωνσ0

(
ω′2 + iνω′ − ω2

p + VTknz

)−1 ;ωp-plasma frequency, ν-is a phenomenological electron scattering
rate. σ0 = e2Ns/m

∗ν; Ns-is the areal density of electrons.

References

[1] T. Ando, A. Fowler, and F. Stern, Reviews of Modern Physics, vol. 54, no.2, April 1982.

[2] V.A. Abdulkadyrov , Electromagnetic waves and electronic systems, vol. 12, 2006, p. 30-51.

[3] V.P. Shestopalov, L.N. Litvinenko, S.A. Masalov, and V.G. Sologub. Wave diffraction on gratings.
Kharkov, University, 1973.



14 DAYS on DIFFRACTION’2010

New approach to solution of sine-Gordon
equation with variable amplitude

E. L. Aero, A. N. Bulygin, Yu. V. Pavlov

Institute of Problems in Mechanical Engineering, RAS, St.Petersburg, Russia
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A new approach to solution of sine-Gordon (SG) equation with variable amplitude

∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
− 1
v2

∂2U

∂t2
= n(x, y, z, t) sinU (1)

is represented. The SG equation appears in many branches of modern natural sciences. It describes
deformation of a nonlinear crystal lattice, the orientation structure of liquid crystal (LC), surface
metric, etc. In present time there are many effective methods for SG equation solution. However
the main methods have been developed for case n(x, y, z, t) = const. It is strong limited the domains
of the SG equation application. So in mechanics of nonlinear crystal lattice the case n = const
describes deformation of ideal lattice by a homogeneous stress field. The deformation of real lattice
with structure defects (dislocations, disclinations) by nonhomogeneous stress field is described by SG
equation with n �= const. In mechanics of LC the case n = const models of the axes orientation by
a homogeneous electromagnetic field. For nonhomogeneous fields n �= const. In differential geometry
SG equation with n = const describes the metrics of Chebyshev nets on a surface with constant
curvature [1]. If the curvature is changing then n �= const. It is clear from these examples, that the
domains of SG equation applications are extended if one find the solutions of SG equation with a
variable amplitude.

A new approach to SG equation with n �= const is found on the next results:
1. If function ϕ(x, y, z, t) obeys simultaneously to equations

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
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− 1
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(
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)2

+
(
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)2

− 1
v2

(
∂ϕ

∂t

)2

= n(x, y, z, t) , (2)

then U = 4 arc tg eϕ(x,y,z,t) is a solution of (1).
2. If function ϕ(x, y, z, t) obeys simultaneously to equations

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
− 1
v2

∂2ϕ

∂t2
= n(x, y, z, t) ,

(
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+
(
∂ϕ

∂y

)2

+
(
∂ϕ

∂z

)2

− 1
v2

(
∂ϕ

∂t

)2

= 0 , (3)

then U = 2 arc tg eϕ(x,y,z,t) is a solution of (1).
A solutions of Eqs. (2), (3) can be found by method of construction of functionally-invariant

solutions of differential equations [2–5]. New solutions of SG equation with n = const are found and
the approach to constructing of SG equation solution with variable amplitude are represented.
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Transition radiation of a charge moving in a
waveguide with semi-bounded cold plasma

T. Yu. Alekhina, A. V. Tyukhtin

Radiophysics Department, Physical Faculty, Saint-Petersburg State University, Russia
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Review of papers into the problems of transition radiation in a waveguide shows that such study
even in the case of relatively simple media has not been carried out sufficiently. Authors [1 - 3] mainly
paid attention to formulation and research of the energy characteristics but the electromagnetic field
structure has not been analyzed. However, information about this structure is of significance for the
accelerator physics and other areas concerning the charge particles detection and diagnostic of the
particles beams. In present paper the investigation of the electromagnetic field of a charge moving
in the waveguide along its axis through the boundary between vacuum and cold plasma is under
consideration. Such problem is of great interest because transition radiation can be studied per se in
the absence of Vavilov-Cherenkov radiation in both media.

The analytical solution of this problem is found for the case of arbitrary homogeneous isotropic
dispersive media. The electromagnetic field components in both media are presented as decompositions
in infinite series of normal modes [4]. Each of modes is Fourier integral with respect to frequency. The
electromagnetic field components have two summands: “forced” field being equal to the field of the
charge in unbounded medium and “free” field connected with influence of the boundary (it includes
transition radiation). The “free” field in vacuum and cold plasma is the main object of this research
carried out with two methods: analytical and computational.

In the analytical way, asymptotic expressions for the electromagnetic field components of each
mode are obtained with the steepest descend technique [5]. Such analysis is performed with methods
of the function theory of a complex variable and drawn the conclusions concerning important physical
phenomena. Studying of singularities of integrands in a complex plane educes the different structure
of the electromagnetic fields in vacuum and cold plasma. In vacuum, along with the saddle points
contribution, there are also the poles contribution and the cuts contribution which can be named
“surface standing wave” and “lateral standing wave” correspondingly. Both these types of waves exist
near the boundary only. In plasma, instead of the cuts contribution, there is another poles contribution
which is “plasma oscillation” exponentially decreasing with the distance from the border. The saddle
points contribution is given space transition radiation both in vacuum and in plasma.

In the second method, the exact integral representations are used. Efficient algorithm based on
certain transformation of the initial integration path in the complex plane is developed (earlier such
an algorithm was used for the “forced” field [6]). The field is computed both before and behind wave
front for arbitrary distances. The behavior of the field components depending on distance and time
is explored for different velocities of the charge motion and different radiuses of the waveguide. Some
important physical effects are noted. So, considerable increasing and concentration of the field near
the wave front in plasma is noted for the case of ultra-relativistic particle.

In conclusion, it should be noticed that procedures developed in present paper can be useful for
investigation of the field structure in the waveguide with different media, e.g. media with negative
refraction index (some energetic characteristics for such problem were considered in [7]).
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On the concept ”pseudofunction” and its application to
construct mathematical expressions for waves concentrated in

small neighborhood of points, curves and surfaces

V. M. Babich

Steklov Mathematical Institute, Fontanka 27, 191011, St.Petersburg, Russia
e-mail: babichpdmi.ras.ru

Formal power series coefficients of which are smooth functions of some parameters are pseudofunc-
tion in our terminology. It is possible to develop some version of differential and integral calculus of
pseudofunctions. This ”calculus” gives the possibility to construct asymptotic expressions for high-
frequency waves concentrated in small neighborhood of points, curves, surfaces. We shall consider
Rayleigh waves concentrated in a small neighborhood of a moving curve as an example of the appli-
cation of the ”calculus”.
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Spectral estimates for periodic fourth order operators
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We consider the operator H = d4dt4 + ddtpddt + q with 1-periodic coefficients on the real line.
The spectrum of H is absolutely continuous and consists of intervals separated by gaps. We describe
the spectrum of this operator in terms of the Lyapunov function, which is analytic on a two-sheeted
Riemann surface. On each sheet the Lyapunov function has the standard properties of the Lyapunov
function for the scalar case. We describe the spectrum of H in terms of periodic, antiperiodic eigen-
values, and so-called resonances. We prove that 1) the spectrum of H at high energy has multiplicity
two, 2) the asymptotics of the periodic, antiperiodic eigenvalues and of the resonances are determined
at high energy, 3) for some specific p the spectrum of H has an infinite number of gaps, 4) the spec-
trum of H has small spectral band (near the beginner of the spectrum) with multiplicity 4 and its
asymptotics are determined as p→ 0, q = 0.
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Solving problems of elastic ring dynamics by the
generalized method of eigenoscillations

M. A. Basarab
Bauman Moscow State Technical University,
105005, Vtoraya Baumanskaya St., 5, Moscow, Russia
e-mail: bmic@mail.ru

The ring resonator gyroscope (RRG) belongs to the class of Coriolis vibratory gyroscopes and is
used as a sensitive element in navigational systems [1]. The principle of its operation is based on
the use of inertial properties of standing waves excited in the elastic ring. Ring resonators dynamics
is described by the partial differential equation of the 2nd order with respect to time and the 6th
order with respect to the spatial variable (angle). For imperfect ring resonators the this equation
has variable coefficients and it is impossible in the general case to obtain its solution analytically.
Therefore, numerical approaches should be applied. For the first time, in this report the application
of the generalized method of eigenoscillations (GME) [2] for solving differential equations of dynamics
of perfect and imperfect elastic rings is proposed.

The GME, as applied to solving a wide class of internal and external diffraction problems, is a
further development of the method of eigenfrequencies. Some modifications of the GME are known,
namely, the k-method (the eigenfrequency method), the e-method (eigenvalue in the equation), the
w-method (eigenvalues in the impedance boundary condition), the r-method (eigenvalues in the con-
jugation condition), and the s-method (eigenvalues in the infinity condition). From the point of view
of numerical analysis, the GME is based on a solution of some auxiliary eigenvalue problem. Here, the
unknown solution is expanded in a series with respect to a proper system of basic functions, whose un-
determined coefficients are found by one of variational or projective methods (Ritz, Bubnov-Galerkin,
the least squares, etc.). The basic functions must satisfy definite requirements, in particular, boundary
conditions of the original problem (periodic boundary conditions in our case). Some novel numerical
approaches for solving boundary-value problems in complex-shaped domains with using the GME are
based on the R-functions theory [3].

Results of numerical experiments demonstrate effectiveness of application of the GME for solving
some problems of elastic ring dynamics.
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Modeling of magnetic gap by energy balance method

K. N. Bayramkulov

Southern Scientific Centre of RAS, Rostov-on-Don, Russia

Kirchhoff electric circuit networks (KECN) are widely applied as mathematical models of elec-
trotechnical devices. One of the most universal methods to construct KECN is the method of power
balance [1]. In order in computer modeling the computation area is divided into elements, and then
equivalent KECN is constructed for each element of discretization. On this element we suppose mag-
netic capacity is constant. In practice we often solve problems with small magnetic gaps. But we can
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solve such problems without increasing of discretization. In this case we have elements of discretiza-

tion with nonconstant magnetic capacity µ =
{
µ− on ∆S1\∆S0;
µ+ on ∆S0.

We can modeling this elements by

energy balance method.

In the case shown on fig.1,a we have By = const, Hx = const on ∆S1. By using ψ, B̄ = [gradψ,ēz]
we construct model of this element. The model is shown on fig.1,c, here

r01 = µ−
2

∆l2
∆l1

− αβ
2∆l21

(µ− − µ+), r02 = µ−
2

∆l1
∆l2

− αβ
2∆l22

(µ− − µ+) ,

ik =
∫

∆lk

H̄ [ēz, n̄] dl, k = 1, 2.

In the case shown on fig.1,b we have Bx = const, Hy = const on ∆S1 and then doing the same
operations.
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Dynamics of convecting elastic solids

Atul Bhaskar
School of Engineering Sciences, Aeronautics & Astronautics, University of Southampton,
Highfield, Southampton, SO17 1BJ, U.K.

The dynamics of a class of convecting elastic media is considered. On the basis of an appropriate
variational principle, the general field equation governing small oscillations is derived. The variational
formulation demands (i) conservations of mass, (ii) conservation of energy, and (iii) conservation of
the identity of particles. Of these, conservation of mass needs to be satisfied explicitly as a constraint.
This is achieved by constraining the classical mechanical Lagrangian using a Lagrange multiplier with
the continuity equation. Hamilton’s principle modified for a control volume in this way then leads to
the equation of motion for small oscillations of convecting gyroelastic solids.

The mathematical structure of the field equation thus derived is examined. The origins of the
‘gyroscopic’ and the ‘centrifugal’ effects are traced. These can be associated with various terms in
the expression for the Lagrangian density. In particular, terms in the kinetic energy density that are
independent the velocity field, those that are linear in the velocity field and those that are quadratic in
the velocity field are associated with the centrifugal, gyroscopic, and inertia terms in the equation of
motion respectively. A close mathematical analogy between the dynamics of this class of continua and
the dynamics of discrete gyroscopic-centrifugal systems having fixed material particles is noted. The
free vibration problem is posed in its generality. An appropriate Rayleigh quotient is defined. The
stationarity associated with the quotient can potentially be used for computational work. Illustrative
examples and applications are discussed.
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Resonance mode patterns in the paraxial
volume of a quasi-optical electron accelerator

Ya. L. Bogomolov, E. S. Semenov, A. D. Yunakovsky

Institute of Applied Physics, RAS, Nizhny Novgorod, Russia

One of the versions of the accelerating structure intended for a future electron-positron collider
comprises a periodic set of coaxial metallic discs with radial corrugation, which is exposed to a quasi-
cylindrical electromagnetic wave convergent onto the structure axis [1]. Forming of a resonance electric
field with the longitudinal component synchronous to accelerating particles in the paraxial volume is
investigated.

For 3D azimuth-symmetrical case the structure considered is governed by a scalar equation of
Helmholtz type for the azimuthal component of a magnetic field. The longitudinal and radial com-
ponents of the electric field can be expressed in terms of the magnetic component. The boundary
conditions reflect ideal conductivity (current absence) on the metal surface as well as symmetry and
periodicity of the structure.

The problem is solved using the discrete source method. The solution is sought in the form of
a linear combination of Green’s functions of the operator in an enveloping rectangular domain. The
boundary conditions are assumed to be satisfied exactly at individual points of the boundary, which
yields a set of homogeneous linear algebraic equations (SHLAE) in the coefficients determining the
strength of the sources. The numerical algorithm for obtaining the boundary profile parameters for
which the matrix of the SHLAE has zero eigenvalue is based on the procedure of singular decomposition
of matrices [2].

To obtain stable fields of the skew-symmetric type required, various configurations of the paraxial
volume are considered. In addition to the traditional elliptic profiles, configurations of a resonant type
[2] that form an electric field with the longitudinal component synchronous with injected electrons
are considered. A comparative analysis of fields in the accelerating structure of an electron-positron
collider in cases of the paraxial volume boundaries of the two types, including with an elliptic and
resonant shape, shows the better properties of the latter system with respect to forming of an electric
field pattern synchronous to injected electrons as well as their higher stability with respect to small
perturbations of the boundary profile.

This work was partially supported by the RFBR grant 09-01-00705.
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On the spectrum of two-dimensional periodic
operator with a localized perturbation
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We consider a two-dimensional periodic operator on the plane with a localized perturbation. The
perturbation is described by an abstract operator acting from L2(R2) in a weighted Sobolev space.
We study the structure and the asymptotic behavior of the spectrum of such operator.
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Let x = (x1, x2) and � be Cartesian coordinates and the unit cube in R2. By Cβ
per(�) we denote the

space of �-periodic functions belonging to Hölder space Cβ(�). In L2(R2) we introduce the operator
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+ i
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where aij = aij(x) ∈ C1+β
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per(�) for some β ∈ (0, 1),
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As the domain of H0 we choose W 2
2 (R2). Let χ1, χ2 be non-negative real functions such that
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χ2 = lim
|x|→∞

∂χ2

∂xi
= lim

|x|→∞
∂2χ2

∂xi∂xj
= 0.

We introduce a weighted Sobolev space W 2
2 (R2, χ2

1dx) with the norm

‖u‖2
W 2

2 (R2,χ2
1d x) :=

2∑
i,j=1

‖χ1uxixj‖2
L2(R2) +

2∑
i=1

‖χ1uxi‖2
L2(R2) + ‖χ1u‖2

L2(R2).

By ε we indicate a small positive parameter, and L(0)
ε is an arbitrary operator from W 2

2 (R2, χ2
1dx) in

L2(R2) bounded uniformly in ε. We let Lε := χ2L(0)
ε , and Hε := H0 − εLε is an operator in L2(R2)

with the domain W 2
2 (R2). The operator Hε but not necessary symmetric since we do not assume this

property for Lε.
The main aim is to study the behavior of the spectrum of Hε as ε → +0. We prove that the

essential spectrum is stable and independent of Lε, while the residual one is empty. The part of the
point spectrum separated from the essential spectrum is countable and consists of the eigenvalues of
finite multiplicities. We prove the convergence theorems for these eigenvalues. We show that under
the considered perturbation there can be isolated eigenvalues emerging from the edges of the gaps in
the essential spectrum. We prove necessary and sufficient conditions for such eigenvalues to exist and
to be absent. In the case of existence we obtain the first terms of the asymptotic expansions of these
eigenvalues.
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Comparison of vectorial laser beams radiation
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The action of laser beams on neutral atoms, ions and molecules is of great interests during last
decades [1, 2]. The mean radiation force is due to interaction between electric field of laser beam and
an atom. If the interaction scheme is two-level then spatial distributions of laser beam intensity and
phase plays main role in force distribution. If magnetic sublevels of ground and exited states are taken
into consideration spatial distribution of laser beam polarization also important.
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In [3–5], an approach to designing electromagnetic fields, based on the use of plane-wave superposi-
tions, differentiable manifolds, and the group of rotation, is presented. The approach provides a broad
spectrum of tools to design laser beams with built-in symmetry properties of electric and magnetic
fields and allows to govern the distribution of beams energy densities, phases and polarizations.

In this work we use density-matrix method [1, 6] to calculate radiation force of vectorial laser beam
designed by above approach. We discuss the difference between radiation force of the same laser beam
acting on two-level and (1+3)-level neutral atoms.
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Radiation pressure of vectorial laser beams on (1+3)-level atoms
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Laser beams are known to exert a radiation pressure on neutral atoms, ions and molecules thereby
affect their translational motion [1, 2]. Subject to interaction scheme between an atom and electrical
field of laser beam different characteristics of latter play the main role. Thus two-level interaction
scheme implies the key role of intensity and phase spatial distribution of laser beam. When magnetic
sublevels of ground and exited states are taken into consideration laser beam polarization distribution
also important.

In present work the translational motion of (1+3)-level atoms in vectorial laser beams is considered.
Beam electric field is taken in the form [3, 4, 5]

E(r, t) = E0

∫
F

Bu(b)
[
ei(k(b)·(r−rp(b))−ωt)E(b) + c.c.

]
dFB, (1)

where functions u(b), k(b), E(b), rp(b) are defined on manifold FB and describe the distributions of
intensity, wave vector, polarization and initial phase of partial plane wave respectively, ω is radiation
frequency.

Radiation force on an atom is characterized by the atom state, that can be described by atomic
density-matrix ρab(r). Based on the density-matrix approach [1, 6] one can derive that density-matrix
of (1+3)-level atom in field (1) obeys the following system of equations

v
∂

∂r
ρeσ1eσ2

=iAσ1(r)χg0eσ2
− iBσ2(r)χeσ1g0 − 2γρeσ1eσ2

v
∂

∂r
χeσ1g0 =iAσ1(r)ρg0g0 −

∑
σ2

iAσ2(r)ρeσ1eσ2
− (γ − i∆)χeσ1g0

(2)
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∑
σ

ρeσeσ + ρg0g0 = 1, χeσ1g0 = e−i∆tρeσ1g0 , ραβ = ρ∗βα,

Aσ(r, t) = (Bσ(r, t))∗ = Ω
∫
F

BEσ(b)u(b)ei(k(b)·(r−rp(b))dFB,

where σ = 0,±1, subscripts g0 and eσ denote ground and exited levels respectively, Eσ(b) are circular
components of vector E(b), ∆ is laser detuning, Ω is Rabi frequency, 2γ is spontaneous emission rate.

The investigation of stationary solution of system (2) in the case of light field periodical in prop-
agation direction is carried out. Influence of spatial distribution of intensity, phase and polarization
on radiation force and therefore translational motion of atom is studied.
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Composite model for generalized Chebyshev oscillator
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Representations of the Chebyshev algebra, i.e. generalized oscillator algebra, generated by Jacobi
matrix for ”non-standard” Chebyshev polynomials are considered. Unlike the Jacobi matrix for stan-
dard Chebyshev polynomials, in a considered case on the main diagonal of such matrix there stands
a periodically repeating sequence of N complex numbers. In the report on example N=3 we consider
connection of representations of this algebra with representations of N algebras for standard Cheby-
shev oscillators. In our talk the polynomials generated by considered Jacobi matrix will be constructed
together with the solution of the related moments problem. The carrier of the constructed measure
is located on the system of the rays going through the beginning of a complex plane and symmetric
under 2π

3 −rotations.
This investigation is partially supported by RFBR grant No 09-01-00504-a.
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Dynamic equations for an orthotropic plate

Anders Boström, Karl Mauritsson, Peter Folkow

Department of Applied Mechanics, Chalmers University of Technology, SE-412 96 Göteborg,
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There are a lot of dynamic plate equations derived in the literature, both for isotropic and
anisotropic materials. Here a recently developed approach is used to derive such equations for an
orthotropic plate in a very systematic way. The equations can be given to any order in the thickness
and they are believed to be asymptotically correct to the given order.

Consider a plate of thickness 2h with traction-free faces. Introduce a coordinate system with the
origin in the middle of the plate and the z axis normal to the plate. The density of the plate is ρ and
the stiffness constants of the orthotropic material are cIJ in standard abbreviated indices. Consider
the antisymmetric (bending) motion of the plate. Then the displacement components can be expanded
as

u1(x, y, z, t) = zu1(x, y, t) + z3u3(x, y, t) + . . . ,

u2(x, y, z, t) = zv1(x, y, t) + z3v3(x, y, t) + . . . ,

u3(x, y, z, t) = w0(x, y, t) + z2w2(x, y, t) + . . . .

Insertion of these expansions into the 3D equations of motion, the x component leads to the following
recursion relation

un+2 =
1

(n+ 1)(n + 2)c55
[ρ∂2

t un − c11∂
2
xun − c66∂

2
yun − c126∂x∂yvn − (n+ 1)c135∂xwn+1],

for n = 1, 3, . . ., and similarly for the other two components. Here the stiffness constants c126 = c12+c66
and c135 = c12 + c55 enter. Used recursively these equations can be used to eliminate all expansion
functions except w0, u1 and v1. This is really the crucial point of the method, and it is noted that no
approximations or truncations are performed so far.

The boundary conditions on the faces of the plate remain. Inserting the displacement expansions,
eliminating all but the three lowest order expansion functions and truncating to order h3, the x
component of the boundary condition gives the first plate equation

c55(u1 + ∂xw0) +
h2

2
[
ρ∂2

t u1 + (β133c135 − c11)∂2
xu1 − c66∂

2
yu1

+ (β133c234 − c126)∂x∂yv1 − β133ρ∂
2
t ∂xw0 + β133c55∂

3
xw0 + β133c44∂x∂

2
yw0

]
= 0.

Here c234 = c23 + c44 and β133 = c13/c33. The y component gives a similar equation with the changes
u1 ⇔ v1 , indices 1 ⇔ 2 and indices 4 ⇔ 5. The z component gives

h[ρ∂2
tw0 − c55(∂xu1 + ∂2

xw0) − c44(∂yv1 + ∂2
yw0)]

+
h3

6c33

[
ρ2∂4

tw0 − c13c55∂
4
xw0 − c23c44∂

4
yw0 − (c55 − c13)ρ∂2

t ∂
2
xw0

− (c44 − c23)ρ∂2
t ∂

2
yw0 − (c13c44 + c23c55)∂2

x∂
2
yw0 − (c33 + c135)ρ∂2

t ∂xu1

− (c33 + c234)ρ∂2
t ∂yv1 + (c11c33 − c13c135)∂3

xu1 + (c22c33 − c23c234)∂3
yv1

+ [c33(c126 + c66) − c23c135]∂x∂
2
yu1 + [c33(c126 + c66) − c13c234]∂2

x∂yv1
]

= 0.

The three plate equations resemble the classical Mindlin equations. However, the Mindlin equations
omit the last three w0 terms in the first equation and all the h3 terms in the last equation. Furthermore,
the Mindlin equations have smaller changes in some of the coefficients and also include the shear
correction factor.

By a variational approach the method also gives the boundary conditions that are to be satis-
fied along edges of the plate. To illustrate the accuracy of the method the dispersion relation and
displacement and stress components are compared with other methods and exact 3D calculations.
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Wave dynamics of non-harmonic internal gravity wave
in stratified ocean

Vitaly V. Bulatov, Yuriy V. Vladimirov
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We consider the problem of reconstructing non-harmonic internal gravity wave packets generated
by a source moving in a stratified ocean. The solution is proposed in terms of modes, propagating
independently at the adiabatic approximation, and described as a non-integral degree series of a small
parameter characterizing the stratified medium. A specific form of the wave packets, which can be
parameterized in terms of model functions, e.g. Airy functions or Fresnel functions, depends on a
local behavior of the dispersion curves of individual wave mode. We modified the space-time ray
method, which belongs to the class of geometrical optics methods. The key point of the proposed
technique is the possibility to derive the asymptotic representation of the solution in terms of a
non-integral degree series of the some small parameter ε. Specifically, we are looking for a solution
W as the sum of modes propagating independently (the adiabatic approximation), namely: W =
A(εx, εy, z, εt)R0(σ) + εαB(εx, εy, z, εt)R1(σ) + . . ., R′

i+1(σ) = R(σ), σ ≡ (S(εx, εy, εt)/aε)α , where
σ is on the order of one, and the functions S,A are to be found. The function R0(σ) is expressed in
terms of Airy functions (shelf zone) or the Fresnel integrals (deep ocean).

The explicit form of the asymptotic solution was determined based on the principles of local-
ity and asymptotic behavior of the solution in case of a stationary and horizontally homogeneous
medium. The wave packet phase is calculated from the corresponding eikonal equations that are
numerically solved along the characteristic curves. Specifically, the eikonal equation is defined as:
∂2A
∂z2 + |k|2(N2(z,x,y)

ω2 − 1)A = 0, k(ω, x, y) = −∇S, ω = ∂S
∂t , |∇S|2 = |k|2, N2(z, x, y) — Brent-Vaisala

frequency. The wave packet amplitudes A are determined from the energy conservation laws along
the characteristic curves: d

dt ln(DA2 ∂K
∂ω K

−1) = 0, where K(ω, x, y) = |k|2 and D is the Jacobian de-
terminant to define transformation from the ray coordinates into the Cartesian ones.

Our modification of the geometrical optics method allows us to describe the wave field structure
both far from and at the vicinity of the wave front. This work solved the problem of describing
the evolution of the non-harmonic packets of the internal gravity waves in a layer of an arbitrary
stratified medium of varying depth with a non-stationary, horizontally non-uniform density. We show
that it is possible to observe some peculiarities in the wave field structure, depending on the shape of
ocean floor, water stratification and the trajectory of a moving source. Numerical analyses that are
performed using typical ocean parameters reveal that actual dynamics of the internal gravity waves
are strongly influenced by nonstationarity and horizontal inhomogeneity.

Radio coverage simulation for three-dimensional urban
environment using physical optics, physical theory of

diffraction and the near-to-far-field transformation method

A. Chrysostomou, I. Zorbas, E. Papkelis, P. Frangos

Division of Information Transmission Systems and Materials Technology, School of Electrical
and Computer Engineering, National Technical University of Athens,
9, Iroon Polytechniou Str., 157 80 Zografou, Athens, Greece
e-mail: ariadnichryso@yahoo.gr, pfrangos@central.ntua.gr

The objective of this paper is the presentation of a three-dimensional (3-D) model which simu-
lates the electromagnetic propagation in outdoor urban areas for GSM frequencies (900 - 1800 MHz),
through the combination of separate propagation mechanisms. The simulation results of each propa-
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gation mechanism are analyzed in order to derive its particular contribution to the total received field.
The mechanisms considered for evaluation at each receiver point of the three-dimensional space

are the Line-of-Sight (LOS), scattered and diffracted fields. The scattered field is calculated using the
Physical Optics method, while the diffracted field is calculated using the Physical Theory of diffraction
(PTD). In particular, for the calculation of the diffracted field the method of Mitzner’s Incremental
Length Diffraction Coefficients is applied, which is an extension of Ufimtsev’s Physical Theory of
Diffraction. An additional simulation is performed, in order to define the contribution of ground
reflection to the total received field, which is based on Image Theory.

In order to compute the scattered field from a particular building wall, we use the ‘Near to Far Field
Transformation’ method. Specifically, we perform segmentation of the scattering surface into an appro-
priate number of small rectangles (cells), when the receiving antenna is located in the near or Fresnel
zone of the scatterers. By such a subdivision of the electrically large scatterer, an observation point
which is originally located in the near or Fresnel zone of the scatterer, is then transferred to the far re-
gion of the smaller cells. The same method is also applied for the calculation of the diffracted field from
the buildings’ wedges which are not in the far field area. This allows us to apply the far-field equations
for small segments of the wedge and integrate the results to calculate the diffracted field from the wedge.

The simulation is implemented by creating a software tool for the modeling of the 3-D space, which
is created in Matlab environment. We create a 3-D model including buildings of rectangular shape
and subsequently we apply a specially designed shadowing algorithm to define the illuminated areas
of the outdoor urban space according to the given position of the transmitter. These illuminated areas
are categorized in three distinct groups. The first group includes illuminated facets of the existing
buildings. These facets are considered as the input for the algorithm that applies the Image Theory to
calculate the scattered field. The second group includes illuminated wedges of existing buildings. For
each of these wedges we apply the formulae for diffraction which yields the diffracted field according
to the Physical Theory of Diffraction. The third group includes all the illuminated points which do
not belong to the first two groups, and takes into account only the LOS propagation mechanism.

The results of these simulations indicate the importance of scattering and diffraction as mechanisms
of electromagnetic propagation in mobile telecommunications coverage in dense urban environments.
In addition they provide a satisfactory radio-coverage prediction for three-dimensional space taking
into account the difference in height between the transmitter and the receiver. They are also found to
provide accurate radio coverage diagrams in different model configurations, also revealing the partic-
ular contribution of each propagation mechanism for several geometries of the urban scene.
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On violation of Rayleigh law of scattering in case
of subsurface deterministic inhomogeneity
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The problem of Rayleigh wave scattering by near-surface three-dimensional deterministic inho-
mogeneity of isotropic solid is solved in Born (Rayleigh-Born) approximation of perturbation theory.
Inhomogeneity is described by arbitrary function factorized in three coordinates. Expressions for
displacement field and intensity in scattered Rayleigh wave, asymptotic expressions for intensity in
Rayleigh limit λ 	 L (λ is wavelength, L is characteristic size of inhomogeneity) are derived. It is
shown, that inhomogeneity structure (its form-factor) strongly influences on frequency dependence of
scattered Rayleigh wave intensity in Rayleigh limit, giving rise to violation of Rayleigh law of scat-
tering (law about proportionality of scattered Rayleigh wave intensity to the fifth power of frequency
I ∼ ω5). Connection between topological characteristics of inhomogeneity and frequency dependence
and value of scattered Rayleigh wave intensity in Rayleigh limit is established. It is obtained, that
frequency dependence of intensity can have form I ∼ ω5+2n, where n = 0, 1, 2, 3 . . . It is shown, that
variation of dimension of inhomogeneity symmetry determined by zeroing of topological characteris-
tics of inhomogeneity results in additional variation of scattered Rayleigh wave intensity frequency
dependence in Rayleigh limit. It is obtained, that imposition of cylindrical symmetry on coordinate
dependence of inhomogeneity structure gives rise to new effect in connection between frequency de-
pendence of intensity and topological characteristic of inhomogeneity in plane of cylindrical symmetry:
topological characteristics only of even order influence on intensity and its frequency dependence. It
is found, that inhomogeneity structure strongly influences on the scattering angular distribution form
in Rayleigh limit. Zeroing of topological characteristics of certain order results in violation of the
angular isotropy of Rayleigh scattering indicatrix and in appearance of Rayleigh scattering indicatrix
zeroes in angular of scattering. Increasing of dimension of inhomogeneity symmetry defined by ze-
roing of the inhomogeneity topological characteristics gives rise to increasing of scattering indicatrix
zeroes number. At variation of wavelength indicatrix zeroes defined by the inhomogeneity structure
in direction perpendicular to the surface move in scattering angular. Indicatrix zeroes defined by the
inhomogeneity structure in the plane parallel to the surface do not move. Position of arised Rayleigh
scattering indicatrix zeroes depends on inhomogeneity form and on its location with respect to the
incident Rayleigh wave direction of propagation. Only forbidden forward scattering direction is fixed.
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Oscillations of scattering in Rayleigh limit
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The problem of Rayleigh wave scattering is solved in Born (Rayleigh-Born) approximation of
perturbation theory (in roughness amplitude) for three-dimensional deterministic (not statistical)
roughness x3 =f(x1, x2)=δ0f0(x�), x� =

√
x2

1+x2
2 of isotropic solid occupying half-space x3 �0, where

f0(x�) =
im∑

i=i0

a
(p)
i Φn(i)+1(x�); Φn(i)+1(x�) =

m
n(i)+1∑
m=1

f1(m)ψ(i)
0 (m)fθ(

x�

d
,
(m− 1)
mn(i)+1

,
m

mn(i)+1

); (1)

mn(i)+1 = 2n(i)
; n(i) = 0, 1, 2, 3, . . . ; fθ(x, a, b) = 1 for a � x � b and 0 for x < a, x > b; f1(m) =

(−1)km , where δi,k - Kronecker symbol; km is found from equation m − 1 =
∑km

k=1 2lk , k1 = 0,
m > 1, integers lk, k = 1, 2, 3, . . . , km are so, that 0 � l1 < l2 < l3 < . . . < lkm, i.e. km is sum

of digits in the binary representation of the number m − 1; ψ(i)
0 (m) = q

(i)
1 m

p
(i)
1 +p

(i)
2

n(i)+1
(x�/d − (m −

1)/mn(i)+1)p
(i)
1 (m/mn(i)+1 − x�/d)p

(i)
2 ; q(i)1 = (p(i)

1 + p
(i)
2 )p

(i)
1 +p

(i)
2 /(p(i)

1

p
(i)
1
p
(i)
2

p
(i)
2 ); p(i)

1 , p
(i)
2 = 0, 1, 2, . . .;

n(i) is order of the i - th partial roughness spatial statistical symmetry.
It is found, that in all range of wave-lengths, i.e. from d/λ̄� 1 up to d/λ̄	 1 (λ̄ = λ/(2π)) inten-

sity of scattered Rayleigh wave vertical component I3 = I
(0)
3 /x� at big distances from the roughness

is defined by the formula I(0)
3 = (A(0)δ0)2I(R)

3 /d, where indicatrix of scattering I(R)
3 is

I
(R)
3 =

(
Φ(P )

z (z)
)2 (kRd)5

8πR2
2

β2 c
4
R

c4t
A2

2(x3)(1 − cosϕs)2(γ + cosϕs)2;

Φ(P )
z =

im∑
i=i0

a
(p)
i Φ(z)

n(i)+1
; z = kRd

√
2(1 − cosϕs); (2)

Φ(z)

n(i)+1
(z) = (−1)p

(i)
1

2πq(i)1

z

(p
(i)
1 +p

(i)
2∑

i1=0

1
zi1

m
n(i)+1∑
m=1

D
(2;i)
mi1

Ji1+1(z(n(i)+1)
m ) −

−

[
(p

(i)
1 +p

(i)
2 −1)/2

]∑
i2=0

D
(1)
i2

z2i2+1

m
n(i)+1∑
m=1

C
(5;i)
m(2i2+1)

(
Ji2+1(z(n(i)+1)

m )Hi2(z(n(i)+1)
m )−Hi2+1(z(n(i)+1)

m )Ji2(z(n(i)+1)
m )

))
, (3)

where A(0) is amplitude of incident Rayleigh wave x1-component; kR, cR-it’s wave-vector and velocity;
cl,t-velocities of bulk longitudinal and transverse waves; ϕs-angle of scattering; {α, β} =

√
1 − c2R/c

2
l,t

respectively, γ = 1 − c2R/(2c
2
t ); αβ = γ2 - Rayleigh wave dispersion equation; R2 = (α2 + β2 + 2γ4 −

4γ3)/γ2; A2(x3) = αe−αkRx3 − (γ/β)e−βkRx3; Jm(x),Hm(x) - Bessel and Struve functions of order m
respectively; [. . .] - integer part of a number;

a
(p)
i = a

(p0)
i /

(
C

(P )
i (n(i))

)1/2
; C(P )

i (n(i)) = Cn(i)

πβ2

2R2
2

c4R
c4t
A2

2(x3)
(
P (i)
)2

(γ+cosϕs)2(1−cosϕs)
2

[
n(i)

2

]
+2

;

Ci1
p1

=
p1!

i1!(p1 − i1)!
; z(n(i))

m = mz/mn(i) ; Cn(i) =

((
2
[

n(i)

2

]
+ 1
)

!
)2

22
[

n(i)

2

] ([
n(i)

2

]
!
)4

; q(i)pk =
q
(i)
1

n(i)!m(n(i)+k)

n(i)+1

;
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p
(i)
qk = p

(i)
1 + p

(i)
2 + k; M (i)

j =

m
n(i)+1∑
m=1

(−1)kmmn(i)+j;

P (i) =


q
(i)
p1

p
(i)
1 !p

(i)
2 !

p
(i)
q1 !

M
(i)
0 , n(i) − odd

q
(i)
p2

p
(i)
1 !p

(i)
2 !

p
(i)
q1 !

(
1

(n(i)+1)
M

(i)
1 − (p

(i)
2 +1)

p
(i)
q2

M
(i)
0

)
, n(i) − even

;D(2;i)
mi1

=
p
(i)
1 +p

(i)
2∑

j=2i1

D
(0;i)
mji1

;

C
(5;i)
mj =

m

mn(i)+1

C
(3;i)
mj ;C(1;i)

mj = C
(i)
mjm

j

n(i)+1
/mj ; D(1)

n1
= (−1)n1+1π

2
((2n1 + 1)!!)2;

D
(0;i)
mji1

= (−1)j+i1 j!!
(j − 2i1)!!

(
m

mn(i)+1

)j+1−i1

C
(3;i)
mj ; C(i)

mj =

min{j; p(i)
1 }∑

Ci1

p
(i)
1

Cj−i1

p
(i)
2

mi1+p
(i)
2 (m− 1)p

(i)
1 −i1

i1 = max{0; j − p
(i)
2 }

.

C
(3;i)
mj = (−1)kmC

(1;i)
mj − (1 − δm,m

n(i)+1
)(−1)km+1C

(1;i)
(m+1)j ;

If (p(i)
1 + p

(i)
2 ) = 0, then the second term in (3) is absent. (1)-(3) give oscillations of I(R)

3 in Rayleigh
limit d/λ̄� 1 (Fig.1-6).

Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6

{p(i)
1 = 0; p(i)

2 = 0; n(i) = 2i} for Fig. 1–6. Fig. 1, 2: {i0 = 0; im = 0; a(p0)
i = 1}. Fig. 3, 4:

{i0 = 0; im = 1; a(p0)
i = 1}. Fig. 5, 6: {i0 = 0; im = 2; a(p0)

0 = 4.7; a
(p0)
i = 20 for i = 1, 2};

x3 = 0, ϕs = π/2, Poisson coefficient σ = 0.25 everywhere.
These oscillations (Fig. 4, 6) are violation of Rayleigh law (Fig. 2) of scattering.

Abstract approach and explicit asymptotic solutions of 2-D wave
equation with variable velocity and localized right-hand side

S. Yu. Dobrokhotov
A.Ishlinski Institute for Problems in Mechanics of Russian Academy of Sciences and Moscow
Institute of Physics and Technology, Moscow, Russia
e-mail: dobr@ipmnet.ru

We consider the Cauchy problem for the inhomogeneous wave equation wave equation with a
variable velocity and perturbation in a form of a right hand side localized in space (near the origin) and
in time. In particular, this problem is connected with the question about the creation of the tsunami
and Rayleigh waves. Using the abstract operator theory we show that the solution is separated into
two parts: the transient one which localized in the neighborhood of the origin and decreases in time
and the propagating part one, which propagates in the space like the wave created by the momentary
“equivalent source”. We present several examples covering wide range of perturbation resulting in
quite explicit formulas expressing solutions in terms of the error function of the complex argument.

This work was done together with V.E.Nazaikinskii and B.Tirozzi and supported by RFBR grant
08-01-00726.
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Asymptotics of the solution to the mixed boundary elliptic problem

Aleksandr A. Ershov

Russia
e-mail: ale10919@yandex.ru

The following two-dimension problem is considered: equation ∆u = f(x) in some domain G ∈ R2

with piecewise smooth boundary. The boundary condition is following: the derivative on a normal
is equal zero everywhere, except a small segment γ, where function u(x) is given. The length of the
segment equal to a small parameter ε. The problem is to find the asymptotics of the solution u(x, ε)
as ε→ 0. The full asymptotic expansion was constructed and proved.

Generalized solution to the light scattering
problem for axisymmetric particles

V. G. Farafonov

St.Petersburg State University of Aerospace Instrumentation, Russia

V. B. Il’in, A. A. Vinokurov

Pulkovo Astronomical Observatory, Russia

We consider scattering of a plane wave by an axisymmetric particle. Our approach is based on
electromagnetic field expansions in terms of spherical/spheroidal wave functions and involves ideas of
the separation of variables (SVM), extended boundary condition (EBCM) and point-matching (PMM)
methods [1-3]. These methods were never considered together because of essentially different light
scattering problem formulations applied. However, as they use the same field expansions expressions
of all scatterer characteristics in the SVM, EBCM, and PMM are similar. The methods differ in
the way of determination of unknown field expansion coefficients, which leads to different systems of
linear algebraic equations relative to these coefficients. We study the relation of the methods when
spherical/spheroidal basis is utilized. From a practical point of view, the approach suggested allows
one to calculate optical properties of different shape scatterers, including strongly flattened/elongated
layered ones with surface ripples.
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The nonstationary problem of membrane vibrations,
partially submerged into the layer of liquid

George V. Filippenko

Institute of Mechanical Engineering, Vasilievsky Ostrov, Bolshoy Prospect 61,
St.Petersburg, 199178, Russia
e-mail: g.filippenko@gmail.com

The problem of oscillations of elastic constructions partially submerged into the water is one of
the actual problems of modern techniques. Ships, oil platforms, sea airports are the examples of such
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bodies. However the exact calculation of such bodies vibrations is rather complicated. So it is useful
to explore the possible oscillations in these objects taking as an example more simple mechanical
systems.

The aim of this work is to analyze oscillations problem of the rather simple mechanical model of
this class - the membrane partially submerged into liquid, build the solution for forced vibrations and
analyze the streams of energy in the system membrane-liquid. The problem of forced oscillations of
the membrane partially submerged into the layer of liquid is considered in the rigorous mathematical
statement.
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Absolute continuity of the spectrum of the periodic Schrödinger
operator in a layer and in a smooth multidimensional cylinder

N. Filonov

St.Petersburg Department of V. A. Steklov Institute of Mathematics, RAS, Russia

I. Kachkovskiy

St.Petersburg State University, Faculty of Physics, Chair of Higher Mathematics and Math-
ematical Physics, Russia

We study the Schrödinger operator H = −∆ + V in a d-dimensional cylinder

Ξ = U × Rm ⊂ Rd, d = k +m, m ≥ 1, k ≥ 2,

where U ⊂ Rk is a bounded domain, ∂U ∈ C∞. The potential is assumed to be periodic with respect
to a lattice Γ in Rm:

V (x, y + l) = V (x, y), l ∈ Γ, (x, y) ∈ Ξ.

We establish sufficient conditions on the potential V for the spectrum of H to be absolutely continuous.
The results are expressed in terms of V ∈ Lp(U × Ω), where Ω is an elementary cell of Γ. Various
boundary conditions on ∂U × Rm are studied.

In the case of a plane-parallel layer (k = 1) the established sufficient condition is p > d/2 for d � 3.
In the case of a cylinder (k � 2) and d = 3, 4 the condition is also p > d/2. Finally, for k � 2 and
d � 5 we assume p > d− 2.

The proofs of both cases are based on the Thomas scheme [4], the operator is decomposed into
a Floquet-Bloch-Gelfand direct integral. In the case of a layer we then use Sogge [2] spectral cluster
Lp-estimates of an elliptic operator on a compact manifold without boundary, having modified them
for the case of a product M × [0, a]. In the case of a cylinder we use an analogous result for manifolds
with boundary, derived by Smith and Sogge [1] using Strichartz estimates for the wave equation.
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On laplacian in domain perforated along the boundary

R. Gadyl’shin

Bashkir State Pedagogical University, Ufa, Russia
e-mail: gadylshin@yandex.ru

We consider a boundary value problem for Laplace operator in a domain perforated along the
boundary. On the internal boundary we impose homogenous Neumann boundary condition, while on
the boundary of the cavities we impose Dirichlet one. We construct the asymptotic expansions for the
eigenvalues of this problem converging to simple eigenvalue of the limiting (homogenized) problem.
We show that an eigenvalue of the original problem is strictly less that the corresponding eigenvalue
of the limiting problem. This is a joint work with G. Chechkin and Yu. Koroleva.

The work is partially supported by RFBR (09-01-00530), by the grant of the President of Russia
for Leading Scientific School (NSh-6249.2010.1).

Smith-Purcell radiation resonant regimes in open type
waveguide on tori sequence in relativistic diffraction generator

Olga V. Gallyamova, Alexandr I. Slepkov, Jana A. Granit

Physics Department, M.V. Lomonosov Moscow State University, Russia
e-mail: olga1glm@googlemail.com

In the present work the numerically studies of the multiwave mechanisms of interaction between
tubular electron beam and fields of super-dimensional axisymmetric periodical slow-wave structures
(SWS) on the sequence of tori in output section of relativistic diffraction generator are discussed.
The main phenomenon that determines the action of this type of generator of long-pulsed high power
coherent microwave radiation in the centimeter and millimeter wavelengths range is the Smith-Purcell
radiation.

The problem of Smith-Purcell radiation detection consists in definition of a resultant field being
the sum of proper field of moving charges (grazing field) and field scattered on the periodic obstacles
(in this work in form of tori sequence). The assumption of axial symmetry of system permits us
to consider only axisymmetric modes of E0n- type. This approach to the problem of diffraction on
slowing axially symmetric periodic structure is a numeric realisation of rigorous solution of a diffraction
problem of proper radiation of relativistic tubular electron beam modulated on frequency ω on periodic
obstacles of axisymmetric SWS. It evolves the construction of a source function (Green function) for
free space. Maxwell equations with boundary conditions for perfectly conducting surface are reduced
to surface Fredholm integral equation of second kind in Hφ considering the axisymmetric mode. Its
fundamental solution is represented as the azimuthal integral depending on the distance between the
point of observation and the integrating point and then solved numerically using conjugate operator
formalism [1].

Since the periodic form of a surface of axisymmetric slowing down structure is typical for devices of
relativistic diffraction electronics it permitted us to consider by reduction of surface integral equation
to system of linear equations its matrix as a block Toeplitz matrix and thus to use an efficient algorithm
for computational solution. The surface currents derived this way as a result of solving of Toeplitz
matrix equation are used for pointing out the fields inside the whole bulk of periodic structure as
the second step of the problem of Smith-Parcel radiation detection solution. This integral equation
method can be used for investigations of radiation generation resonance regimes on smooth and even
noncontinuous surfaces.

In the report the flux energy directions as a correspondence of rings number and the correlation
between different geometrical parameters of tori sequence are presented and proved. Some common
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detailed formulae, in particular for continuous sinusoidally corrugated surface, can be found in [2].
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Efficient surface integral algorithms for three
dimensional electromagnetic scattering

M. Ganesh
Department of Mathematics & Computer Sciences, Colorado School of Mines,
Golden, CO 80401, USA
e-mail: mganesh@mines.edu

S. C. Hawkins

Department of Mathematics, Macquarie University, NSW 2109, Australia

Many important physical processes involve scattering of electromagnetic waves by ensembles of
deterministic and stochastic particles.

In particular, for applications such as light scattering in (i) the atmospheric sciences, with con-
figurations consisting of computer models of atmospheric ice crystals and dust particles with rough
non-convex surfaces having unique stochastic description; (ii) medical diagnostics involving, for ex-
ample, several red blood cells; (iii) electromagnetic scattering by surfaces with conical singularities
(for example well known benchmark targets: cone-sphere, NASA Almond, ogive) and in several other
classes of wave propagation problems, it is efficient to develop algorithms that directly incorporate
local mapping properties of each obstacle in the configuration and use such mappings to reduce the
computational complexity.

In this work, we discuss high-order spectral-Galerkin surface integral algorithms with specific focus
on simulating the scattering of electromagnetic waves by a collection particles arising from specific
applications discussed above.

Calculation of synthetic seismograms by
summation of gaussian beams of a given width

M. A. Geyer

Saint-Petersburg State University, Physics faculty, Department of Physics of Earth, Labo-
ratory of Seismology, Russia
e-mail: mgeyer@mail.ru

The function Gϕ(s, n), describing behavior of Gaussian beams [1], [2] in 2D-case, can be written
in a following form

Gϕ(s, n) ∼ exp
(
− n2

L2(s)

)
exp
(
iωτ(s)

(
1 +

1
2τ(s)

K(s)n2

))
,

K(s) = Re

(
P (s)
Q(s)

)
, L(s) =

(
ω

2
Im

(
P (s)
Q(s)

))−1/2

,
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Q(s) = z1q1(s) + z2q2(s), P (s) = z1p1(s) + z2p2(s), Z = (z1, z2),

where (s, n) – curvilinear coordinates of a receiver M , τ(s) – eikonal, ω – wave frequency and

W (s) =
(
q1(s) q2(s)
p1(s) p2(s)

)
– fundamental solutions of the elastodynamic equations. It is well known [1] that the function Gϕ(s, n)
is rather sensitive to a choice of the initial parameters Z, which determine a form of Gaussian beams.
To get a correct solution it is very important to choose an adequate Z. This can be done on basis of
the following conditions. Firstly, it is obviously necessary to specify Z in such a way that the width
L to be narrow enough as that allows limiting only to rays sufficiently closed to point M where the
solution is sought. This reduces the time of calculations. Secondly, it is natural to construct the
Gaussian beams so that the function Gϕ(s, n) would have a minimum of oscillations as it leads to
increase of accuracy of sum of the Gaussian beams. In this study a special procedure for choice of the
initial parameters Z is suggested. This procedure, satisfying both of the above requirements, allows us
to construct Gaussian beams with any beforehand given width L0 and simultaneously with the least
number of oscillations of Gϕ(s, n) on basis of the following equations

q1(s) �= 0
e = − q2(s)

q1(s)
− iω det W (0)

2q2
1(s)

L2
0

Z = (e, 1)

or


q2(s) �= 0
e = − q1(s)

q2(s)
+ iω det W (0)

2q2
2(s)

L2
0

Z = (1, e)

=⇒


k = 1, 2
Q(s) = ∓iω det W (0)

2qk(s) L2
0

P (s)
Q(s) = pk(s)

qk(s) + i 2
ωL2

0
,

As consistent with [2], q1 and q2 can not be equal zero simultaneously, therefore initial parameters Z
can be always defined from the above system. If the both solutions qk(k = 1, 2) do not equal zero, we
can pick out such pair qk, pk that minimizes the factor

(
1 + 1

2τ(s)
pk(s)
qk(s)n

2
)

that gives the least number
of oscillations of the function Gϕ(s, n) of Gaussian beams for this L0.

The initial parameters defined in such a way are individual for each ray, even for the system of
incident-reflected (transmitted) rays. Moreover, it is shown that using such procedure for choice of
these parameters it is possible to construct Gaussian beams with any beforehand given width. From
the physical point of view it is quite reasonable to set this width equal to the wave length, however it
can be specified in any others ways, for example, as related to the geometrical spreading.

The program for calculating of synthetic seismograms is written on basis of summation of Gaus-
sian beams with fixed width. Numerical modeling shows that synthetic seismograms calculated by
summation of the Gaussian beams are regular in the regions where the ray method fails, such as the
caustics, vicinity of critical ray, etc. Examples of synthetic seismograms for 2D and 3D structures in
inhomogeneous media with smooth interfaces calculated by the suggested approach for construction of
the Gaussian beams are presented. Various possible applications of Gaussian beams to seismological
problems of practical importance are outlined.
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Diffraction by a dielectric wedge: theory and experiments

Thierry Gilles

Ecole Royale Militaire, Laboratoire d’Electromagnétisme Appliqué (LEMA)
Avenue de la Renaissance 30, 1000 Bruxelles, Belgium
e-mail: thierry.gilles@rma.ac.be

The exact analytical solution to the diffraction of an electromagnetic wave by a perfectly con-
ducting wedge of infinite extent has been found by Mac Donald [1] more than one century ago. A
similar solution for the dielectric wedge is not yet available to date, despite several attempts over the
last decades, that turned out to be flawed [2][3]. The diffraction on finite-sized objects with complex
shapes and made of various materials cannot be solved exactly. Approximate theories have been de-
veloped to cope with such real life objects. For example, to account for the multiple interactions of
radiowaves with buildings in urban areas, coverage prediction tools often rely on the Uniform Theory
of Diffraction (UTD) [4]. The UTD belongs to the family of asymptotic methods and is very accurate
in presence of perfectly conducting edges, thanks to the existence of the aforementioned exact canon-
ical solution [1]. In urban environment though, one encounters mostly dielectric structures. The lack
of exact canonical solution for the dielectric wedge led to heuristic modifications of the UTD [5]. We
review in this paper the strengths and limits of this heuristic theory and compare its predictions with
laboratory measurements.
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Trapped-mode, pass- and gap-band effects in waveguides with obstacles

Evgeny Glushkov, Natalia Glushkova, Mikhail Golub, Artem Eremin

Kuban State University, Krasnodar, Russia
e-mail: evg@math.kubsu.ru

In our presentation we focus at the resonance phenomena of a time-averaged oscillation ue−iωt

featured by the time-harmonic wave energy localization near the obstacles in the form of energy
vortices. These phenomena, which are also known as trapped-mode effects, are usually accompanied
by a sharp stopping of the wave energy flow along the waveguide and, consequently, in deep and
narrow gaps in the frequency plots of transmission coefficients. They are tightly connected with the
distribution of natural frequencies (resonance poles) ωn in the complex frequency plane ω. Specific
forms of energy localization are governed by the eigen-solutions un associated with the resonance poles
ωn, which are actually the spectral points of the related boundary-value problems. In ideally-elastic
structures certain combinations of obstacles may result in totally real poles.

The study is carried out for elastic layers with obstacles in the form of cracks, voids and inclusions
using analytically based computer models relying on wave expressions in terms of path Fourier inte-
grals, Green’s matrices for the laminate structures considered, and asymptotics for traveling waves
derived from those integrals. To get an inside into the mechanisms of the resonance effects of interest
a simplified one-dimensional waveguide model for a spring-supported string with point-wise defects
has also been considered.
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It was found that although a set of resonance poles ωn for a group of obstacles cannot be obtained
as a simple combination of poles corresponding to the individual obstacles taken alone (due to their
mutual wave interaction), the blocking properties of the group as a whole is determined in the main
by the stop-bands of its individual members. Therefore, it turned out to be possible to extend a
frequency stop range (gap band) by the use of an aperiodic system of a few obstacles (cracks) with
individual spectral points lying close to each other and to the real axis instead of the conventional use
of large periodic systems.

A further study of elastic waveguides with multiple defects has shown that inside gap bands there
might appear pass frequencies. In the transmission coefficient plots such pass modes look as narrow
peaks centered at frequencies ωp located closely to the resonance poles ωn : ωp ≈ Reωn. The number
of such pass frequencies ωp (and correspondingly of the transmission peaks) is proportional to the
number of obstacles N but they all are located in a limited frequency range; therefore, as N increases
the peaks fill in tightly this range forming pass band inside a wider gap band. As the number of
identical evenly spaced defects increases to infinity, the pass and gap bands become the same as that
obtained within the Bloch-Flocket theory. It is also shown that a slight disturbance of the defect’s
periodicity may considerably change the stop and transmission properties.

Lamb wave excitation, propagation and
diffraction in laminate composites with obstacles

E. Glushkov, N. Glushkova, A. Eremin

Kuban State University, Krasnodar, Russia

R. Lammering, M. Neumann

Helmut-Schmidt-University, Hamburg, Germany

Non-destructive inspection of plate-like structures based on ultrasonic Lamb waves requires theo-
retical and experimental investigations into elastic wave diffraction at defects of different kind (surface
cracks, notches, holes and so on) in isotropic and composite plates. Another important problem is to
choose suitable devices for the elastic wave actuation and registration. In recent years piezoceramics,
which could be applied both as input and output devices, became widespread since they are cheap,
easy to use and can also become an integrated part of a monitored structure.

In the course of research work a series of experimental measurements has been carried out ac-
companied by theoretical computer simulations which aimed at the investigation of piezo- electrically
induced Lamb wave propagation and diffraction at different surface obstacles. In the context of general
linear elasticity the transient displacements of a layered waveguide with surface obstacles are expressed
through their time-harmonic spectra that are obtained from the boundary value problems (BVPs) for
the full system of elastodynamic equations. The inci- dent and diffracted wave fields are modeled using
the integral and asymptotic representations in terms of Green’s matrix of the structure under consider-
ation. The distribution of unknown contact stresses under obstacles is obtained from the Wiener-Hopf
type integral equations using expansion in terms of specially constructed axially symmetric delta-like
functions. The experimental investigations have been performed with an isotropic aluminium plate of
1 mm thickness. Circular piezoactuators are used as a wave source while the data are recorded using
the laser-vibrometer technique. The following obstacles are used: permanent magnets placed from
both sides of the plate, pieces of steel glued to the aluminium plate and drops of molten solder placed
on the surface.

The comparison of theoretical and experimental results for the incident pulse propagation in the
plate without defects and for the Lamb waves diffracted by surface obstacles has shown a very good
coincidence. In view of further experimental investigations, the expansion of the theoretical model for
the case of anisotropic laminates is proposed and illustrated by numerical examples.

The work is supported by the grant of Ministry of Education and Science of Russia No. 2.1.1/1231
and the grant No. LA 1067/7 of the Deutsche Forschungsgemeinschaft (DFG). The authors are
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Spring boundary conditions and modeling of 2D wave
propagation in composites with imperfect interfaces
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Composite materials, owing to their intrinsic heterogeneity in properties, are often accompanied
by a damage occurrence such as void growth, micro-cracking and debonding between different phases.
In contrast to ”pure crack” implying stress-free faces of the crack it might be called ”delamination”,
the latter is just a partially debonded part of the interface. Wave diffraction by a delamination in an
elastic waveguide might be of a notably different properties compare to a crack, examples are included.
A damage (”delamination”) can be modeled as a set of cracks, by replacement of the thin layer with
a damage on a visco-elastic layer or using other approaches.

Baik and Thompson [1] used quasistatic approximation to simulate a real imperfect interface by
a distributed over the interface spring with mass. Distributed spring stiffnesses have been derived
from the equality of the transmission coefficients for transverse and longitudinal waves, accuracy of
the derived spring model at low frequencies have been also shown in [1], the same trick is used in the
present work to define value of spring stiffness. Spring boundary conditions have been also utilized by
Boström and Wickham to model partially closed crack in [2]. Some ideas from [2] concerns stiffness
estimation using ensemble average technique have been also utilized in [3] and in the present work.

Thus as a natural continuation of the work carried out in [3] on modeling of imperfect contact
between materials for SH problem is a model of an imperfect contact for in-plane problem which is pre-
sented here. A delamination is replaced by distributed springs (horizontal and vertical displacement),
where springs’ stiffnesses are defined by the properties of contacting materials and crack density. The
derivation of the stiffness is made in similar way, but here not only normally incident plane waves are
considered. Lamb wave diffraction on a crack and on a delamination in a layered waveguide is con-
sidered, corresponding integral equation is derived and solved using integral approach with Galerkine
scheme, appropriate transmission coefficients and resonance phenomena are compared [4].

The work is supported by the Ministry of Education and Science of Russian Federation (Project
No. 2.1.1/1231) which is gratefully acknowledged.
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Analysis of 2D photonic crystal slabs of any rod shape and
conductivity using a very fast conical integral equation method
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The boundary-integral-equation-based method [1,2] has been used to calculate the sensitive opti-
cal response of 2D photonic crystal slabs (PCS), including dielectric, absorbing, and high-conductive
rods of various boundary shapes. It turned out that a small number of collocation points per bound-
ary combined with a high convergence rate can provide adequate description of the dependence on
diffracted energy of multilayered band gaps illuminated at arbitrary incident and polarization angles.
The numerical results presented demonstrate the significant impact of rod shape on diffraction in
various PCS supporting polariton-plasmon excitation and other types of anomalies (i.e. waveguiding
anomalies, cavity modes, Fabry-Perot resonances, Rayleigh orders), particularly in the vicinity of res-
onances and at high filling ratios. The diffracted energy response calculated vs. array cell geometry
parameters was found to vary from a few percent up to a few hundred percent. Thus, the simple
effective medium theory cannot be applied to design and analysis of such PCS.

A comparison of dispersion curves of metallic subwavelength PCS performed in the visible and
near IR photon ranges revealed a very strong effect of nanowire form-factor and arrangement, both on
the position and amplitude of the energy peaks inside the plasmon resonances. The rectangular profile
of the rods appears to be most sensitive out of the shapes considered, because of its low symmetry
and strong dependence on absorption. The code developed and tested for different types of PCS is
found to be very accurate and fast and applicable to studies of complex periodic structures, including
almost perfectly-conductive rods, inclusions with edges, and multilayer gratings with any boundary
profiles operating with arbitrary incident radiation.
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Diffraction of high intensive acoustic wave in the stratified atmosphere

V. A. Gusev

Lomonosov’s Moscow State University, Physical Faculty, Department of Acoustics, Russia

The nonlinear wave equation and modified Khokhlov-Zabolotskaya type equation for high intensive
acoustics waves propagating in stratified atmosphere with inhomogeneous of sound speed is set up.
The geometrical acoustics approximation and modified Raley integral for this problem is suggested.
The profile distortion of broadband waves and waves with discontinuities is investigated. Time profiles
of the single impulse, dependencies of its peak amplitude and duration are obtained.
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Error estimates for Filon-Clenshaw-Curtis
rules for highly-oscillatory integrals

I. G. Graham

University of Bath, UK

The Filon-Clenshaw-Curtis rule approximates integrals of the form:

Ik(f) =

1∫
−1

f(x) exp(ikx)dx,

where the parameter k is often large, by replacing the slowly oscillatory function f(x) with its poly-
nomial interpolant PN (x) of degree N at the Clenshaw-Curtis nodes x = cos(jπ/N), for j = 0, . . . , N .
Thus

Ik(f) =

1∫
−1

PN (x) exp(ikx)dx.

It can be implemented in O(NlogN) time with FFT. In this talk, we present the error estimates for
the Filon-Clenshaw-Curtis rule that show explicitly the error dependance on the parameters k and
N and on the regularity of f . We also present a piecewise version of this rule which is useful when
the function f suffers from certain types of algebraic singularities, with the mesh refined locally near
the singularities, and for these we give optimal error estimates which are explicit in k, N and the
number of mesh subintervals. We also discuss the stable implementation of the rule when k is large
with respect to N and when N is large with respect to k and give numerical illustrations. The rules
are very useful for implementing hybrid asymptotic-numerical methods in high frequency scattering.
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The singular boundary problem for elliptic equation
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The singular boundary value for elliptic second order equation in the domain with some small holes
is considered. The most complicated case arises if dimension of domain is equal two: the rational
functions of logarithms of ε appear in asymptotic expansion. The uniform asymptotic expansion is
constructed up to any power of ε. In addition we studied the case when the domain contains many
small holes while the distance between them tends to zero.
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Seismic Migration in Terms of Locally Supported Wavelets

Maxim Ilyasov

Fraunhofer Institute for Industrial Mathematics (ITWM), Germany
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e-mail: ilyasov@itwm.fhg.de

Due to the increasing interest in renewable energy productions, geothermal energy is one of its main
representatives because of its independence of external factors like the climatic behavior. However,
the modeling of geothermal reservoirs is a difficult challenge for many scientific disciplines.

The first step in the chain of the deep geothermal energy exploration is the high resolution de-
termination of the fault patterns and its accompanying fractures in the deeper Earth’s underground.
Due to the huge success of wavelets in signal processing, noise reduction, etc and its possibility to
break complicate functions into many simple pieces at different scales and positions, that makes detec-
tion and interpretation of local events relevant in geothermal energy projects significantly easier, new
methods for exploration and modeling of deeper geothermal reservoirs based on a wavelet approach
are becoming available.

The construction of wavelet techniques for solving boundary value problem involving the Helmholtz
equation corresponding to regular surfaces dates back to Freeden and Mayer (2003). However, strate-
gies, applying for modeling the seismic wave propagation, concern usually to regular surfaces possessing
edges and corners.

For this reason, in this paper, the classical limit- and jump-relations for Helmholtz potential
operators, defined on regular surfaces by Freeden et al. (2003), is extended to regions with non-
smooth boundaries. According to the proposed limit- and jump-relations, locally supported wavelet
functions are constructed, that approximate the fundamental solution of the Helmholtz equation. In
addition, the wavelet functions regularize the singular integral representation of the Helmholtz type
boundary value problems, and approximate recursively the solution in regions with edges and corners.
In order to handle velocity models with strong lateral and vertical variations, the Born approximation
is applied.

Furthermore, it should be noted, that the contruction of wavelets allows the efficient and economical
implementation in form of a tree algorithm for the fast numerical computation.

Finally, several examples of seismic migration applied to synthetic data sets in frequency-space as
well as in time-space domain are presented, which define reflectors in the interior by data recorded on
the surface and by approximating velocity values given in the volume.
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On the extension of the wave based method
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Fraunhofer Institut für Techno– Wirtschaftsmathematik (ITWM),
Fraunhofer–Platz. 1, D-67663, Kaiserslautern, Germany
e-mail: jevgenijs.jegorovs@itwm.fraunhofer.de

In the end of 90ies of the twentieth century, a new numerical method has been developed for
steady–state acoustic analysis in bounded domains. This novel deterministic numerical technique is
based on the indirect Trefftz approach, cf. [11], and has been designed especially for mid–frequency
range cases. The reason is simple: neither Finite Element Methods (FEM), cf. [6], nor Statistical
Energy Analysis (SEA), cf. [5], cannot be applied exactly in this frequency range, cf. [1], [10], [9], [8],
[13], [12], [3], [4]. Some similar ideas have been used in 80ies by Prof. Dr. Willi Freeden et al to solve
exterior Dirichlet problems for the homogeneous Helmholtz equations. The main idea was to use an
interpolation method using metaharmonic splines to find solution of above mentioned problem in 3D
case from given discrete data, [2], [7].

The Finite Element Method usually is applicable in low–frequency cases, where the frequency limit
of the FEM is related to the growing number of finite elements required to describe the short wavelength
behavior at increasing frequencies. The SEA is a prediction method designed for the high frequency
range providing the averaged results which are based on the power balance relations. The classical
Wave Based Method (WBM) utilizes complex valued wave functions which have been used to expand
the dynamic pressure function and which a priori satisfy the homogeneous Helmholtz equation, [1],
[10]. Hence, no discretization of the domain is required and the sizes of appropriate governed matrices
are rather small. This, obviously, gives the possibility to touch the mid–frequency range. Moreover,
by using the natural basis functions, namely wave functions, we reduce certain ”numerical stress” of
the numerical approximation of the problem. This was exactly the ideology of Trefftz, who applied
basis functions which a priori exactly solve one or another differential equation, [11].

We present a little different wave functions, which allow to build, in general, real valued matri-
ces. Moreover, in classical wave based approach one assumes that the Helmholtz equation is either
homogeneous or has point source as the right hand side function. In this paper, we will consider also
non–homogeneous elliptic differential equations what allow to apply the wave based technique in a
much broad way, namely, we use non-uniform rational B-splines (NURBS) to treat the inhomogeneous
part. We would like to emphasize that the same Trefftz ideas can be applied to the Helmholtz, Pois-
son, Laplace or even to more general elliptic problems, where the so-called maximum principle can
be valid. Generally, in the classical steady–state acoustics maximum principle is not valid, however,
this does not play a big role here. We use this property here to separate so–called ”bad” elliptic
problems, where so far WBM was used, from ”good” ones. We present and discus the possibility to
extend and apply the ideas of the Wave Based Method in non–acoustics areas such as steady–state
temperature propagation, calculation of the velocity potential function of a liquid flux, calculation of
the light irradience in a liver tissue/tumor, etc.
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Diffraction of monochromatic electromagnetic waves
on 3D-dielectric bodies of arbitrary shapes

S. Kanaun
Mechanical Engineering Department, ITESM-CEM,
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The work is devoted to the problem of diffraction of monochromatic electromagnetic waves on
heterogeneous dielectric inclusions of arbitrary shapes. For the numerical solution of the problem,
an integral representation for the electromagnetic field in heterogeneous media is used. In result, the
problem is reduced to a volume integral equation for the electric field in the region occupied by the
inclusion. Existence and uniqueness of the solution of this equation was studied in [1]. Discretization
of this equation is carried out by Gaussian approximating functions. The theory of approximation
by the Gaussian and similar functions was developed in [2]. For these functions, the elements of the
matrix of the discretized problem are calculated in explicit analytical forms. For a regular grid of
approximating nodes, the matrix of the discretized problem proves to have the Toeplitz structure,
and the matrix-vector product with such matrices can be carried out by the Fast Fourier Transform
technique. The latter strongly accelerates the process of iterative solution of the disretized problem.
Numerical calculations for a medium with a spherical inclusion are compared with the exact (Mie)
solution for various wave lengths of the incident field and the contrasts in the properties of the medium
and the inclusion. The results of the calculations of the electric fields inside a cylindrical inclusion are
presented for various wave lengths and directions of the wave vector for the incident field. The inside
fields are used for the construction of the differential cross-sections of the considered inclusions.
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Elastic shell impact on a thin layer of water

Tatiana I. Khabakhpasheva
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The paper is concerned with a problem of elastic shell impact on a thin layer of an ideal in-
compressible liquid. Cases of a cylindrical shell (2D problem) and a spherical shell (antisymmetrical
problem) are considered. The shell initially touches the liquid free surface at a single point and then
penetrates the liquid layer at a constant vertical velocity (Fig. 1). The problem is coupled because
the liquid flow, the shape of the elastic shell and the geometry of the contact region between the
body and the liquid must be determined simultaneously. The liquid flow is analyze using Korobkin’s
approach [1], via the method of matched asymptotic expansions. In the framework of this approach
the flow region is subdivided into four complementary regions that exhibit different properties: the
region beneath the entering body surface, the jet root, the spray jet, and the outer region (Fig. 2). A
complete solution is obtained by matching the solutions within these four subdomains. The structural
analysis is based on the normal-mode method. The fluid-structure coupled analysis leads to a system
of nonlinear differential equations for the evolution of principal coordinates of the shell shape and the
fluid hydrodynamic pressure. The solution of this evolution system provides both the deformation
and stresses for the shell, the contact line between the shell and the liquid, and the liquid flow.

Fig. 1. Fig. 2.

A main result of the analysis is that shallow-water impact is more dangerous than deep-water
impact because stresses and the deformation of the shell increase as the thickness of the water layer
decreases. But starting from some relatively large depth of the water, maximal values of the stresses
and deflections remain constant with increasing water depth.

In the case of a flexible shell several distinct regimes of the impact process were found (Fig. 3).
For a high impact velocity the lower part of the shell flattens and the shell does not enter the water
(a), but it is possible also, that ”thin tongue” of the shell touch the bottom with high velocity (b).
For a moderate impact velocity the shell reaches the bottom and an effect of ”fluid capture” may
occur (c). For a low impact velocity the shell penetrates the liquid, but the size of the contact region
decreases before the shell reaches the bottom (d). This behavior corresponds to exit or ”reflection”
of the shell from the water layer. These intricate behaviour of the shell cannot be found if only the
first few modes of the vibratory motions of the shell are considered.

Fig. 3.
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Non-plane surface and interface elastic waves with arbitrary waveforms

Aleksei P. Kiselev

Steklov Mathematical Institute, St.Petersburg Department, Russia

Non-stationary non-plane waves in homogeneous elastic half-space and at a contact of two half-
spaces are discussed in a uniform manner. Rayleigh, Stoneley and Shölte-Gogoladze waves having
arbitrary time-dependencies are considered. The basic tools are integral representations of the wave-
fields employed earlier for time-harmonic regimes in [1] and “membrane equations” introduced first
by Achenbach [2]. The talk is based on [3].

A support from the RFBR grant 08-01-00511 is acknowledged.
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Exact Gaussian localized waves via paraxial solutions

Aleksei P. Kiselev

St.Petersburg Department of the Steklov Mathematical Institute, Russia

Alexandr B. Plachenov
Department of Mathematics, The Moscow Institute of Radio Engineering Electronics and
Automatics (Technical University), & Department of Mathematics, The St.-Petersburg State
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We describe a general simple procedure providing Bateman-type relatively undistorted exact so-
lutions of the wave equation uxx +uyy +uzz − c−2utt = 0. These are of the form u = gf(θ), where the
amplitude g = g(x, y, z, t) and the phase θ = θ(x, y, z, t) are fixed functions, while the waveform f is
an arbitrary function of one variable, see, e. g., [1,2]. Proper choices of f allow particular solutions,
which show highly localized beam-like and particlelike behavior. Here, we present solutions with gen-
eral Bateman-type phases θ depending on 6 complex parameters. Technically, the approach is based
on solutions of approximate paraxial ’parabolic equation’.
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Analysis of integro-differential operator of
equation for eddy currents in thin conductor

T. V. Kochubey

Southern Scientific Centre of RAS, Rostov-on-Don 344006, Russia

Many engineering problems require the simulation of stationary and quasi-stationary magnetic
fields in the presence of the conductive layers (cases, plates). Such layers are used expensivly as
protective shields, frames and load-bearing elements of electro technical and electrical survey devices.
One of the way for solving of these problems is the Integral Equation Method. Using this method
the boundary value problem can be reduced to the integro-differential equation for a second sources
density τ , which can be chosen, so that it is non zero only in the conductive layer. The integro-
differential equation will have features in each of all considering cases (transient state, steady state).
But the operator noted by T will be common for all these problems. This operator has the following
generalized form

(Tτ, ξ) o
W 1

2

= −µ0

4π

∫
Γ

∫
Γ

[nM , [nQ, gradsτ (Q)]]
rQM

dΓQ gradsξ (M) dΓM for ∀τ, ξ ∈
o
W 1

2 (Γ).

Here Γ is median surface of considering thin conductor,
o
W 1

2 (Γ) is a Hilbert space of complex-valued
functions with zero mean value on Γ. In this work we established that the operator T is linear, self-

adjoint, positive and completely continuose one in
o
W 1

2 (Γ). Taking into account these properties we
can solve the assigned problems by the most optimal way. For example, in transient state the solution
can be presented in analitical form using eigenfunctions of the operator T .

Singular nonlinear problems for self–similar solutions to the
steady–state boundary layer equations with zero pressure gradient

N. B. Konyukhova∗, A. I. Sukov∗∗, M. B. Soloviev∗

∗ Institution of Russian Academy of Sciences Dorodnicyn Computing Centre of RAS,
ul.Vavilova, 40, Moscow, 119333 Russia
∗∗Moscow State Technological University ”STANKIN”, Vadkovskii per., 3a, Moscow, 101472
Russia
e-mail: nadja@ccas.ru aisukov@online.ru solmb@mail.ru

We present an outline of papers [1,2] where results on singular Cauchy problems, smooth stable
manifolds of solutions and exponential parametric Lyapunov series are applied to correctly state and
analyze a singular ”initial–boundary” value problem (IBVP) for a third–order nonlinear ordinary
differential equation defined on the entire real axis. The problem arises in incomperssible viscous
fluid mechanics and describes self–similar solutions of boundary layer equation for a stream function
with zero pressure gradient (the case of a plane–parallel flow in a mixing layer). In [3,4] this problem
depending on self–similarity parameter m > 0 is given in the form

Φ′′′ + ΦΦ′′ − [(m− 1)/m](Φ′)2 = 0, −∞ < τ <∞, (1)

lim
τ→−∞Φ′(τ) = 0, (2)

Φ(0) = 0, (3)

lim
τ→∞Φ(τ)/τm = b, 0 < b is fixed; (4)
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it is erroneously considered as a three–point boundary value problem (BVP), since condition (2) is
not equivalent to one condition in a finite point. Condition (2) should be replaced by more accurate
limit condition

lim
τ→−∞ exp(−ετ){Φ(τ) + a,Φ′(τ),Φ′′(τ)} = {0, 0, 0} ∀ε : 0 < ε < a, (5)

which corresponds to a solution’s tending to stationary point (−a, 0, 0). For any fixed a > 0, it is
a pseudohyperbolic equilibrium point with one–dimensional stable separatrix in the phase space of
Eq.(1). Condition (5) for the solutions of (1) is equivalent to two nonlinear relations in a finite point
which specify a stable saddle separatrix. Thus, provided −∞ < τ ≤ 0, two–point BVP (1),(5),(3)
with parameter a > 0 is defined (as is shown in [1,2], for any fixed m ≥ 1/3 and a > 0 it is uniquely
solvable). The parameter a = a(b) is found from condition (4) when it is valid.

The approach of [1,2], different from rather complicated methods of [3,4], allowed us not only
to state the singular nonlinear IBVP more accurately, but also to analyze it in a more precise and
thorough way and suggest a simple numerical method to solve it. Constraints on parameter m required
for univalent solvability of IBVP (1),(5),(3),(4) for any fixed b > 0 where a = a(b) are given, namely
1/2 < m < ∞; two–sided estimates of the solution are deduced; its properties and the properties of
other solutions to Eq.(1) for different values of m > 0, due to their independent physical meaning, are
investigated; the results of numerical computations are given.

The authors acknowledge support from RFBR, project No. 08–01–00139.
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A class of localized solutions of the linear and nonlinear wave equations
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There is one main problem in the diffraction theory namely whether it is possible to build such
3D+1 diffraction (and dispersion) model that corresponds to the following experimental results: a)
at one diffraction length the spot of any spectrally limited laser pulse satisfies the Fresnel diffraction.
b) at several diffraction lengths one-two cycle optical pulses diffract semi-spherically. The linear
Diffraction - Dispersion Equation (DDE) governing the propagation in approximation up to second
order of dispersion is [1]:

−2ik0

(
∂A

∂z
+

1
vgr

∂A

∂t

)
= ∆A− 1 + β

v2
gr

∂2A

∂t2
, (1)
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where β = k”k0v
2 is a number counting the influence of the second order of dispersion. In vacuum

and dispesionless media is obtained also the following Diffraction Equation (DE) (v ∼ c):

−2ik0

(
∂V

∂z
+

1
c

∂V

∂t

)
= ∆V − 1

c2
∂2V

∂t2
. (2)

We solve DDE (1) and DE (2), applying spatial Fourier transformation to the amplitude functions
�xA and �xV . The fundamental solutions of the Fourier images Â and V̂ in (kx, ky, kz, t) space are
correspondingly:

Â = Â(kx, ky, kz , t = 0) exp
{
i

v

β + 1

(
k0 ±

√
k2
0 + (β + 1)

(
kx

2 + ky
2 + (kz

2 − 2k0kz)
))

t

}
, (3)

V̂ = V̂ (kx, ky, kz, t = 0) exp
{
ic

(
k0 ±

√
kx

2 + ky
2 + (kz − k0)2

)
t

}
. (4)

In air β � 2.1 × 10−5, DDE (1) is equal to DE (2), and at hundred diffraction lengths appear only
diffraction problems. We solve analytically the convolution problem (4) for initial Gaussian light bullet
of kind of V (x, y, z, t = 0) = exp

(−(x2 + y2 + z2)/2r20
)
. The solution is:

V (x, y, z, t) =
i

2r̂
exp
[
−k

2
0r

2
0

2
+ ik0(vt− z)

]
×{

i(vt + r̂) exp
[
− 1

2r20
(vt + r̂)2

]
erfc

[
i√
2r0

(vt + r̂)
]

(5)

−i(vt− r̂) exp
[
− 1

2r20
(vt− r̂)2

]
erfc

[
i√
2r0

(vt− r̂)
]}

where r̂ =
√
x2 + y2 + (z − ir20k0)2. The numerical solutions of the DDE (1) and the DE (2), as

well as the analytical solution (5) of DE (2), satisfy exactly the conditions a) and b) obtained in
the experiments with fs and attosecond pulses. Multiplying the solution (5) with the main phase, we
obtain also an exact solution of the wave equation E (x, y, z, t) = V (x, y, z, t) exp (i(k0z − ω0t)), where
ω0 and k0 are carrier frequency and carrier wave number in the wave packet:

∆E =
1
v2

∂2E

∂t2
, (6)

E(x, y, z, t) =
i

2r̂
exp
(
−k

2
0r

2
0

2

)
×{

i(vt + r̂) exp
[
− 1

2r20
(vt + r̂)2

]
erfc

[
i√
2r0

(vt + r̂)
]

(7)

−i(vt− r̂) exp
[
− 1

2r20
(vt− r̂)2

]
erfc

[
i√
2r0

(vt− r̂)
]}

.

One systematic study on different kinds of exact solutions and methods for solving the wave equation
(6) was performed recently in [2]. Here and also in [3] we suggest one new method: In the beginning,
we use the ansatz E (x, y, z, t) = V (x, y, z, t) exp (i(k0z − ω0t)) to separate the main phase and reduce
the wave equation to 3D+1 parabolic type one (2). Thus, one initial value problem can be solved and
exact (5) (or numerical) solutions of the corresponding amplitude equation (2) can be obtained . The
solution (5), multiplied with the main phase, gives an exact solution (7) of the wave equation (6).



DAYS on DIFFRACTION’2010 47

In nonlinear regime, when the offset frequency is included, the nonlinear amplitude equation for
nanosecond pulses in air can be transformed to:

∆B − ∂2B

∂t2
+ γ|B|2B = 0, (8)

where γ = B2
0n2k

2
0 is the nonlinear coefficient. After neglecting two small perturbation terms, the

corresponding amplitude equation for short femtosecond pulses can be reduced to:

∆C − ∂2C

∂t2
+ γC3 = 0. (9)

The different kind of the nonlinear part in Eq. (8) in respect to Eq. (9) is important. While
Eq. (8), governing ns and ps pulse dynamics, admits exact analytical solution with components
propagating in forward and backward direction, the Eq. (9) admits soliton solution propagating in
forward direction only. A partial soliton solution of Eq. (8) is B = sech(ln(r̂))/r̂, where γ = 2, and
we use a transformation of kind r̂ =

√
x2 + y2 + (z + a)2 − v2(t+ a/v)2. The solution separates the

initial pulse to two maximums propagating in forward and backward direction with group velocity.
The analytical solution of Eq. (9) is of the same kind: C = 1/(1+ r̃2), but with a new complex pseudo-
spherical radial vector r̃ =

√
x2 + y2 + (z + ia)2 − v2(t + ia/v)2. Thus, the fs solitons propagates in

forward direction only [4].
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Radial atomic functions in digital signal processing
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The class of radial basis functions with compact support on the basis of the theory of atomic
functions (AF) [1-9] is consider. As is known [2-9] AF are the solutions of functional differential
equations with shifted argument with compact support. The important thing is their smoothness and
high speed of convergence of bases on their basis.
Radial spherical atomic functions. Consider the following differential equation with shifted ar-
guments on the unit sphere: df(φ)

dφ = 2f (2φ+ π) − 2f (2φ− π). In [2] showed that its solution is the
function

ũp (φ) = 1
2π

∞∫
−∞

ejuφ
∞∏

k=1

sin(πu2−k)
πu2−k du.

Evidently that ũp (0) = 1 and sup p (ũp (φ)) = [−π, π]. The basic properties [2] of ũp (φ) functions are
following:
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ũp (φ) = ũp (−φ), max (ũp (φ)) = 1,
π∫

−π
ũp (φ) dφ = π.

The spectrum of functions is even real function, decreases rapidly. Function ũp (φ) are shown on
Figure a. Example of filtering of noised radial signal on interval [−π, π] are presented on Figure b,c.

a) b) c)

Figure : (a): function ũp (φ), (b): radial signal without (dotted line) with noise (solid line), (c): filtered
signal (solid line).

They have a compact support and infinitely differentiable. This allows to apply them in many
physical applications, improving existing and obtain new efficient algorithms for processing. They
can be used in solving boundary value problems of mathematical physics, antennas theory and the
nonlinear Schrödinger equation. On basis of these functions analytical and orthogonal radial wavelets
[1, 3-9] are constructed.
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New analytical WA-systems of Kravchenko functions
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In this report the new class of analytical WA-systems of Kravchenko functions on the basis
of the theory of atomic functions (AF) [1-9] are constructed and proof. The all wavelet condi-
tions [5-7] are satisfied exact. The expression for the wavelet function has the following form:
ψ (t) = w (t) {exp (iηt) −A (η)}, ψa,b (t) = 1√

|α|ψ
(

t−b
α

)
, where w (t) is AF [1-4], A (η) = ŵ(η)

ŵ(0) , α

is the dilatation variable and b is represents time shift (α, b are real). For example, for the AF

ha (t) we have A (η) =
∞∏

k=1

sinc
( η

ak

)
, and ψh (t) = ha (t)

{
exp (iηt) −

∞∏
k=1

sinc
( η

ak

)}
. Behavior of this

function and its spectra for a = 4, η = 2.5π are presented on Figure 1 a,b.

a)

b)

Figure : (a): function ψh (t), (b): its spectra for a = 4, η = 2.5π(solid line is real part, dashed line is
imaginary one).

The constructed wavelets have a compact support and they are infinitely differentiable. On their
basis the 2D and orthogonal wavelets are constructed.
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Atomic and R-functions in p-adic analysis theory
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The theory of atomic functions (AF) [1-4] which are the solutions with compact support of special
type of p-adic [5] functional differential equations (FDE) is considered. Uniqueness theorems are
formulated in which the uniqueness of their solutions and their application to boundary value problems
of mathematical physics. The solution of p-adic boundary value problems as shifts of corresponding
atomic functions is discussed. The theory of p-adic R-functions consisting in the following: on the
first stage basis system of real-valued R-functions of p-adic argument is introduced and on the second
stage reasonable total system of R-functions are described. Adelic formulas [5] linking p-adic with
real-valued R-functions are considered. Logical and differential properties of defined R-functions are
investigated.
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A new method of solution direct and inverse problems of quantum scattering theory [1-4] is con-
sidered on the basis of atomic functions (AF) and spectral operators theory [5-8]. Central idea a new
approach is the following:
• the finite solutions of functional-differential equations of n-variables with delay type are found by
means Heaviside operator method,
• the solutions of nonlinear Schrodinger equation is constructed of their shifts,
• the completeness and uniqueness theorems of such representation are proved.
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Hyperbolic systems with characteristics of variable multiplicity

Valeri V. Kucherenko
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Consider hyperbolic systems of the first order y let some characteristics roots of the system coincide
at a some set M in the extended phase space. When the wave front of the Cauchy problem permeate
this set M of multiplicity it generates the waves propagating by the all characteristics roots multiple at
the set M . Hence the waves propagate along ramified characteristics. Such ramification can provide cy-
cles in the case of multiplicity not less than three, and make the well-posedness of the hyperbolic system
dependent on low order terms. As an example the system of magneto hydrodynamics is considered.

Excitation of electromagnetic waves by a
pulsed ring current in a magnetoplasma
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Excitation of monochromatic waves by electromagnetic sources immersed in homogeneous and in-
homogeneous magnetized plasmas has received much careful study and there are many accounts of it
(see, e.g., [1, 2] and references therein). Over the past decade, there has been shown a substantial de-
gree of interest in the excitation and propagation of nonmonochromatic signals in a magnetoplasma [3,
4]. This interest has been motivated by the importance of transient wave phenomena for propagation
of whistler-mode waves through the magnetosphere and the ionosphere, as well as plasma diagnostics
using pulsed signals launched from antennas on spacecraft. Much previous theoretical work on the
subject applies to calculation of the fields due to various idealized pulsed current sources in a magne-
toplasma. However, there exists a very little theory of the energy characteristics of such sources. It is
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the purpose of the present paper to discuss the energy radiation characteristics of an electromagnetic
source in the form of a pulsed ring current immersed in a cold homogeneous magnetoplasma.

We consider a ring source whose axis of symmetry is aligned with an external static magnetic field.
The current of the source is either a pulse containing a few half-periods of a monochromatic oscillation,
or a single pulse without modulation. At first, we find the total field excited by such a source. To
describe the temporal behavior of the field, the Laplace transform technique is employed. The spatial
structure of the source-excited field is represented in the form of expansion over the eigenwaves of a
homogeneous magnetoplasma [2]. Then, using the field representation obtained, we derive a general
expression for the radiated energy and analyze its distribution over the spatial and frequency spectra
of the excited waves as a function of the source-current parameters. The emphasis has been placed on
the practically important case where the frequency spectrum of the source current is concentrated in
the whistler frequency range. It is shown that in this case, almost all of the energy emitted from the
source goes to the resonant part of that range, in which the whistler-mode refractive index surface has
unbounded branches corresponding to quasi-electrostatic waves. One of the most interesting results
obtained is that the radiated energy of a pulsed current that contains only a few half-periods of a
monochromatic oscillation with the frequency lying in the resonant part of the whistler range is very
close to the product of the current duration by the time-averaged radiated power of the corresponding
monochromatic source. It is shown that such behavior of the radiated energy is related to the features
of excitation of whistler-mode waves by the ring current in a magnetoplasma. In addition, conditions
have been determined under which the radiation characteristics of the ring current with one half-period
of a monochromatic oscillation and those of the same source with a realistic-shape single current pulse
of comparable duration turn out to be almost identical. Detailed numerical results will be reported for
the above-mentioned cases. The results obtained are shown to be useful for explanations of the data
of experiments on the excitation of whistler-mode waves by pulsed sources in magnetized plasmas.
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Nos. 08–02–97026-a, 09–02–00164-a, and 10-02-00363-a) and the Ministry of Education and Science
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Eigenvalues and eigenfunctions for
Steklov-Dirichlet problems in half-plane

Mateusz Kwaśnicki

Wroclaw University of Technology, Poland

The two-dimensional sloshing problem in in an infinite container Ω = R × (−∞, 0) covered by a
rigid dock B ⊆ R is the Steklov-Neumann spectral problem:

∇2u(x, y) = 0, x ∈ R, y < 0;
∂yu(x, 0) = µu(x, 0), x ∈ R \B;
∂yu(x, 0) = 0, x ∈ B,

where µ ≥ 0 is the spectral parameter. For semi-infinite dock B = (−∞, 0], an explicit formula for the
solution u(x, y) was given by Friedrichs and Lewy in 1947. For an infinite dock with a single aperture
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B = R \ (−1, 1), it is relatively easy to show that the eigenvalues µn are simple, and an asymptotic
expansion of the form µn = nπ

2 + π
8 + ...+ o( 1

n2 ) was given by A.M.J. Davis in 1970.
A similar Steklov-Dirichlet problem:

∇2v(x, y) = 0, x ∈ R, y < 0;
∂yv(x, 0) = νv(x, 0), x ∈ R \B;
v(x, 0) = 0, x ∈ B,

has recently attracted much attention for its applications in probability theory. I will discuss this
connection and the results of my joint paper Spectral properties of the Cauchy process on half-line and
interval with T. Kulczycki, J. Ma�lecki and A. Stós (arXiv:0906.3113). We derived an explicit formula
for v(x, y) when B = (−∞, 0] by solving a Riemann-Hilbert problem, a method applied by Friedrichs
and Lewy. For B = R \ (−1, 1), we proved simplicity of eigenvalues and an asymptotic formula
νn = nπ

2 − π
8 + O( 1

n). This required different methods than those used in the case of the sloshing
problem. We also applied standard numerical methods for estimation of eigenvalues to effectively find
numerical lower and upper bounds for eigenvalues.

Comparison of the T-matrix and the pattern equations methods

Alexander G. Kyurkchan, Nadezhda I. Smirnova
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e-mail: kyurkchan@yandex.ru

T-matrix method (TMM), proposed by Watermen more than forty years ago [1], is currently
commonly used for solving wave diffraction problems arising in optics, radiophysics, radio-astronomy,
etc. [2], [3]. T-matrix interrelates incident and scattered wave spherical basis expansion coefficients.
As such, T-matrix depends only on physics and geometric characteristics of scatterer and is absolutely
independent on propagation and polarization directions of the incident and scattered fields [2], [3].
Pattern equation method (PEM), for the first time proposed in paper [4], also allows obtaining the
solution of the diffraction problem in the form similar to TMM, but it is applicable at significantly
less stringent restrictions on scatterer geometry. So, it is of interest to compare these two methods.
In paper [5] it is shown, that TMM is correct only if the scatterer geometry belongs to the class of
Rayleigh bodies, i.e. such bodies that all wave field analytic continuation singularities are located
inside of the sphere inscribed in scatterer. Such class of geometries is particularly narrow. PEM
allows to obtain the rigorous diffraction problem solution (i.e. theoretically with any given accuracy)
for so called weakly non-convex bodies [4]. All convex bodies are part of this class. As an example,
let’s consider the diffraction problem for the plane wave with incident angle ϕ0 = 0 on Rayleigh ellipse

with semiaxis ka = 8, kc = 11. We calculate the scattering pattern as: g(ϕ) =
∞∑

n=−∞
cni

neinϕ. Let’s

denote gN (ϕ) - the scattering pattern, obtained by solving the truncated TMM or PEM algebraic
system (when its size is equal to 2N+1×2N +1). We calculate the difference between the patterns at
different N as ∆gmax

N1,N2
= max |gN1(ϕ) − gN2(ϕ)|. If ∆gmax

N1,N2
< 10−6, i.e. at least 7 significant digits

are agreeing in the patterns, we consider that adequate accuracy is achieved and there is no point to
increase N any more. Additionally, we assess the graphic overlap of patterns. The calculated values
of ∆gmax

N1,N2
at different N1, N2 for PEM and TMM are given in the table.

PEM TMM
∆gmax

10,15 4.7334279 · 10−1 4.7133309 · 10−1

∆gmax
15,20 6.0765886 · 10−4 1.1055532 · 10−2

∆gmax
20,25 3.3979730 · 10−7 1.7063574 · 10−4

∆gmax
25,30 2.4759473 · 10−11 1.6644684 · 10−6

∆gmax
30,35 8.3348103 · 10−14 3.2701861 · 10−6
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As it shows, the PEM has much higher convergence rate and allows obtaining twice as much accuracy
than TMM. In PEM we have reached the desired accuracy of 10−6 already at N = 20, whereas TMM
did not obtain the desired accuracy at all. The highest possible accuracy, which PEM provides for a
given scatterer is 8.3348103 · 10−14, but TMM achieves only 1.6644684 · 10−6. As it can be seen, at
N > 35 for PEM and at N > 25 for TMM the accuracy begins to decrease. This is caused by the
increase of special function calculation error, which eventually leads to the failure of the algorithm
(see [5]). At N = 25 the computation time of PEM is 10.779 seconds and TMM is 9.224 seconds. At
N = 60 the computation time of PEM is 50.136 seconds and TMM is 21.502 seconds. The comparison
of PEM and TMM demonstrate, that PEM is unconditionally superior than TMM in terms of accuracy
and applicability. The price for this is some increase of computation time. The averaging of scattering
characteristics by orientation of the particle is similarly simple in both PEM and TMM.
Acknowledgements. This work was supported by the Russian foundation of basic researches, project
N 09-02-00126.
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High-frequency upper and lower bounds for the
total cross section in scattering by obstacles

E. Lakshtanov

Department of Mathematics, Aveiro University, Aveiro 3810, Portugal
e-mail: lakshtanov@rambler.ru

We consider the scattering of plane waves by a bounded obstacle O ∈ R3 with a smooth boundary
∂O ∈ C2 and impedance boundary conditions. The scattered field u = u(r), r = (x, y, z) satisfies the
Helmholtz equation in Ω = R3\O and radiation conditions:{

∆u(r) + k2u(r) = 0, r ∈ Ω, k > 0,∫
|r|=R

∣∣∣∂u(r)
∂|r| − iku(r)

∣∣∣ dS = o(1), R→ ∞.
(1)

The Robin boundary condition holds at the boundary:

∂u

∂n
+ kγu = −

(
∂eik(r·α)

∂n
+ kγeik(r·α)

)
, r ∈ ∂Ω, (2)

where α∈S2 is the direction of the incident plane wave, n is the exterior normal for O (directed into
Ω).

In [3] one can find the theorem on the existence of the solution to the problem (1)-(2) with �γ ≥ 0.
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Let us recall that any solution of the problem (1) has the following asymptotic behavior at infinity:

u(r) = u∞ (θ)
eik|r|

|r| + o

(
1
|r|
)
, θ =

r

|r| , |r| → ∞. (3)

Function u∞ ∈ L2(S2) is called the scattering amplitude (it depends also on k and α), and the square
of its norm

σk(u) =
∫

S2

|u∞(θ)|2dS, (4)

is called the total cross-section.
Transport Cross Section equals to the full momentum transmitted to the obstacle:

σT
k (u) =

∫
S2

(1 − θ · α)|u∞(θ)|2dS, (5)

is called the total cross-section.
We present several lower and upper bounds for σk that are uniform for large k >> 1 both in the

case of �γ > 0 and in the case when γ ∈ R.
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Elastic wave scattering and inverse
scattering in anisotropic solid materials

Karl J. Langenberg, René Marklein, Klaus Mayer, A. Zimmer

Department of Electrical Engineering, University of Kassel,
Kassel 34121, Germany
e-mail: langenberg@uni-kassel.de

Linear Elastic waves in linear solid materials are solutions of the elastodynamic governing equa-
tions that are similar to Maxwells equations for electromagnetic waves relating first time derivatives of
field quantities to first spatial derivatives. Fundamental solutions come as plane waves for the homo-
geneous equations (no given sources) and Green functions for the inhomogenenous equations. Plane
waves already tell a lot about the particular existence of wave modes, in the case of elastic waves in
homogeneous anisotropic materials one quasi-pressure and two quasi-shear modes being orthogonal to
each other and exhibiting a phase velocity depending on the direction of the phase vector. Interesting
enough the direction of energy flow as given by the elastodynamic Poynting-vector is different from
the phase velocity as well as in magnitude and in direction. Analytic expressions for both can be given
for linear time-invariant homogeneous anisotropic instantaneously and locally reacting materials.

For scattering and inverse scattering purposes appropriate Green functions are required, unfortu-
nately no analytic expressions exist for neither kind of materials. Yet, applying discretization methods
to the governing equations a most interesting feature is observed: Band-limited time domain Huy-
gens elementary wavelets emanating from point sources exhibit the same spatial structure as the
energy velocity diagrams for plane waves. That way, standard time domain backpropagation imaging
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algorithms as developed for isotropic materials and non-destructive purposes can be, at least approx-
imately, extended to anisotropic materials. The same is true for Born-type scattering in the time
domain.

Alternatively, analytic Green function expressions in the frequency wave number domain can be
exploited to formulate diffraction tomographic inverse scattering algorithms as counterpart of time
domain backpropagation.

Results and examples will be given for a particular problem in non-destructive testing, i.e. the
integrity assessment of tendon ducts in concrete.

Non-stationary reflection of a nonlinear electromagnetic
wave from smoothly non-uniform isotropic plasmas

V. G. Lapin

State Architecture and Civil Construction University, Nizhny Novgorod, Russia
e-mail: lapin.vick@yandex.ru

The problem is considered about nonlinear interaction of the falling and reflected electromagnetic
waves with raised by them ion - sound waves in a non-uniform layer of isotropic plasmas. At the initial
moment of time plasma is free of disturbances and fills half -space with linear dependence of concen-
tration with height. The electromagnetic wave falls on the plasma- vacuum border in a direction of a
gradient of concentration. Such problem statement corresponds to ionosphere experiments condition
and is directed on explanation of the physical model of electromagnetic radiation propagating from
plasma. Previously we already investigated analytically some aspects of this interaction connected
to scattering of a probe pulse after short-term influence of a powerful wave on plasma (Lapin V.G.
Proceedings of ”Days on Diffraction’ 06”). However character of evolution of a powerful wave at long
time interaction has not been investigated. In the present message some results of research of these
phenomena with application of numerical methods are discussed.

Solutions of the equations for a field of an electromagnetic wave and plasma concentration distur-
bances by forced ion sound wave were investigated at z > −L :

∂2E

∂z2
− 2ik̂
Vg

· ∂E
∂t

+ k̂2E =
4πe2

mec2
nE;

∂2n

∂t2
− 2γ · ∂n

∂t
− V 2

g

∂2n

∂z2
=

ω2
p

16πω2Mi

∂2

∂z2
|E|2 ;

k̂2 =
ω2

c2
ε0; ε0 = 1 − ω2

ω2
p

(
1 +

iν

ω

)
= − z

L

(
1 +

iν

ω

)
.

Boundary conditions corresponded to falling of a
plane monochromatic wave on plasma (at z = −L) and
to attenuation of a wave field in over critical region (at
z > 0).

At the initial moment of time ion sound wave was ab-
sent n(z, t = 0) = 0, and the field of an electromagnetic
wave is expressed by Airy function (if collision frequency
ν = 0):

E(z, t = 0) = 2E0

√
π(kL)1/6·Ai((kL)2/3z/L); k = ω/c.

Calculation parameters correspond to the experi-
ments which were earlier carried out on ionosphere ex-
perimental facility “Sura” (Radiophysical research insti-
tute, Nyzhny Novgorod), and correspond to plasma of
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F- layer of ionosphere: ω/2π ≈ 6 · 106 Hertz, L = 50 km, ν/ω ≈ 10−3.
On the figure the initial stage is represented of evolution of amplitude of the electromagnetic

wave reflected by plasma. We see, that development of ion sound disturbances is accompanied by
reduction of reflection from a layer of plasma, and also to occurrence of impulses in the reflected field.
Qualitatively it is possible to explain these features of a field, involving results of our former researches
on multiple scattering of waves in the media with periodic structure.

Lieb-Thirring inequality for Schrödinger
operator with δ-potential on a loop

I. S. Lobanov, V. Yu. Lotoreichik, I. Yu. Popov

St. Petersburg State University of IT, Mechanics and Optics
e-mail: vladimir.lotoreichik@gmail.com

In the talk Lieb-Thirring type inequalities for Schrödinger operators with surface potentials will be
discussed. We consider two-dimensional Schrödinger operator with δ-potential supported by a closed
C2 curve Γ

Hα,Γ = −∆ − αδΓ(·).
with α > 0. The operator Hα,Γ has discrete negative spectrum. We compose Lieb-Thirring sums of
negative eigenvalues of Hα,Γ ∑

j≥1

|λj |γ , γ >
1
2
, (1)

and give an upper bound for such sums in terms of α, the geometry of Γ and the parameter γ itself.
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Angular dependence and field distribution in pressed wave

V. S. Makin
Research Institute for Complex Testing of Opto-Electronic Devices,
Sosnovy Bor City, Leningrad region, 188540, Russia
e-mail: makin@sbor.net

V. V. Trubaev
Moscow State University of Communication Ways,
Obraztsov str. 9, Moscow, 127994, Russia
e-mail: trubaev@iskratelecom.ru

It was shown earlier [1], that in conditions of surface electromagnetic wave (SEW) excitation
by input grating coupler the fields of generated wave are differed significantly from those of SEW.
This wave was named pressed wave (PW). PW field amplitudes are given by Fourier-integrals on
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x coordinate (the wave propagates x-axis direction). In this work we examine the dependence of
PW intensity as a function of laser beam incidence angle for number of values of grating width and
complex dielectric constant of metal. It is shown that if the width of grating relief Fourier-spectrum
is much more (the grating width is small enough) than the width of angular dependence curve for
infinite grating the angular dependence of PW intensity coincides with Fourier-spectrum of grating
relief. Otherwise the angular dependence of PW intensity is given by angular dependence curve for
infinite grating (note that infinite grating angular dependence is determined by complex dielectric
permittivity). In the intermediate case both factors contribute in angular dependence curve. The
calculated results are compared with experimental ones.

We also have calculated the distributions of field amplitudes versus z-coordinate (z axis is per-
pendicular to the metal surface). It is obtained that PW field amplitudes first decrease exponentially
(as for SEW) and then increases again, reach a maximum and then gradually decrease to zero. This
amplitude field behavior is consistent with the intensity distribution of near surface bulk radiation
observed in the experiment [2, 3]. The field distributions are also calculated as a function of the
grating width and complex dielectric permittivity of metal and the obtained results are discussed.

The work was partially supported by RFBR under grant No 09-02-00932a.
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Correlation functions of integrable spin chains with boundaries

Chihiro Matsui
Department of Physics, The University of Tokyo, Japan
CREST, JST, Japan

Various integrable systems, which belong to Uq(sl2)-symmetry, such as the sine (sinh)-Gordon
model and the XXZ model, have been studied. Calculation of correlation functions of them is one of
the most interesting topics in study of integrable systems.
The biggest problem in computation of correlation functions via the Bethe ansatz is how to deal with
sums which arise as a result of commutation relations among the monodromy matrix elements. The
induction method in respect to the total spin of a system and change of basis are well-known methods
to resolve this problem.
We derived multi-integral expressions of correlation functions for higher spin integrable systems. Fur-
thermore, it was showed that the number of terms in sums appeared in correlation functions of higher
spin integrable systems are reduced to that of spin 1/2 integrable systems by considering actions of
the Uq(sl2) algebra on irreducible subspaces in multiple tensor products.
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Shear viscosity like a consequence of angular
momentum relaxation at hydrodynamical description

German A. Maximov, Vladimir A. Larichev

Acoustical Institute, Shvernika str.,4, Moscow 117036, Russia

The generalized variational principle (GVP) was derived in the previous papers of the author
[1-3]. GVP combines Hamilton’s variational principle for dissipationless mechanics with Onsager’s
variational principle for dissipative thermodynamical systems. It was shown that the motion equations
of dissipative hydrodynamics can be derived on the basis of GVP. The shear and bulk viscosities can be
introduced into equations of disspative hydrodynamics by using of the Mandelshtam-Leontovich theory
of internal parameters [1,3]. This approach generalizes Navier-Stokes equation taking into account
viscosity relaxation phenomenon. Nevertheless there is a question about physical interpretation of the
used internal parameter.

It is shown in the report that the internal parameter responsible for shear viscosity can be inter-
preted as a consequence of relaxation of angular momentum of material points constituting mechanical
continuum. The rotational degree of freedom as independent variable appears additionally to the mean
mass displacement field. For the dissipationless case this approach leads to the well-known Cosserat
continuum. When dissipation prevails over inertion this approach describes local relaxation of angu-
lar momentum and corresponds to the sense of internal parameter. Frequency dependencies of wave
number of eigen modes propagating in the dissipative Cosserat continuum are considered in the report.
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On the phase shift in the Kuzmak-Whitham method
for nonlinear problems

D. S. Minenkov

A.Ishlinski Institute for Problems in Mechanics of RAS, Moscow, Russia
e-mail: minenkov ds@list.ru

We discuss asymptotic solutions in the form of Kuzmak-Whitham anzats for nonlinear oscillator,
wave equation, KdV equation etc. It is well known that in this case the leading term of asymptotic
solution could be presented in the form X(S(t,x)/h+f(x,t)),E(x,t),x,t)+O(h), where h¡¡1, the phase S
and the “slow varying” parameter E are found from the system of the “averaged” Whitham equations.
In nonlinear case the equation for the so called phase shift f(x,t) is obtained during an investigation
of the second correction to the leading term and the corresponding procedure is not uniform with
respect to a passage to a linear and a weak linear case. Our main observation is that combining the
phase shift f(x,t) with the phase S(t,x) and correcting E(x,t) one obtains the same averaged Whitham
equations, the difference is in a change of corresponding initial data.

This work was done together with S.Yu. Dobrokhotov and supported by RFBR grant 08-01-00726.
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Sound generated by impact on thin ice

M. A. Mironov, P. A. Pyatakov

Andreyev Acoustics Institute, 117036, 4, Shvernik, Moscow, Russia
e-mail: mironov@akin.ru

A. P. Pyatakov

Lomonosov Moscow State University, Leninskie gori, 119992, Moscow, Russia

At the times of the late of autumn or the early winter time when the thin layer of ice covers
the pond the beautiful and vivid acoustical effect can be observed. If one threw the small pebble or
sprig far from the pond’s bank the melodious quasitonal sound is generated. The farther the exciter
is thrown the longer the sound lasts. The thicker is the ice the lower is the frequency of tone. The
snow layer decreases, but does not suppress the effect. In the entry suggested the natural sounds will
be demonstrated, that were registered by dictaphone on the frozen forest pond near Moscow (with
the nice photo of the pond). The spectra and the spectrograms of the sounds will be given. The
appearance of the narrow frequency band sound, generated by the wideband source ( -shaped stroke)
and the lasting will be qualitatively and quantitatively explained. The analytical solution in the form
of double Fourier transformation will be analyzed by means of asymptotic decomposition.

Investigation of Rayleigh waves on free
curvilinear boundaries of elastic media

L. A. Molotkov, N. Ya. Kirpichnikova

St. Petersburg Branch of V.A.Steklov Mathematical Institute, Russia

Propagation of Rayleigh waves on free curvilinear boundary of homogeneous isotropic elastic
medium is considered. We consider these waves propagating along element and directrix of the cylin-
der surfaces and along meridian on the sphere. In these cases we construct the precise solutions of the
equations of the theory elasticity and use asymptotics of Hankel and Legendre functions. On the basis
of comparison of results, we make assumption about dependence of velocity of the Rayleigh wave on
the small curvature of route and on the small curvature in perpendicular direction.

The work was supported by RFBI ( grants 08-01-00511, 09-05- 00439 )

Surface water waves trapped near submerged cylindrical bodies

Oleg V. Motygin

Institute for Problems in Mechanical Engineering,
V.O., Bol’shoy pr., 61, 199178, St.Petersburg, Russia
e-mail: o.v.motygin@gmail.com

In the work we study the linear problem of surface wave theory which describes interaction (radia-
tion or diffraction phenomena) between an ideal unbounded fluid, having a free surface, and a system
of totally submerged cylindrical bodies of arbitrary cross-section. Namely, infinitely long horizontal
cylinders in oblique waves or cylinders spanning vertical walls of a channel are considered. It is also
assumed that the fluid motion is small-amplitude, irrotational, and harmonic in time. These assump-
tions lead to a two-dimensional boundary-value problem for a velocity potential u in a cross-section of
the fluid domain orthogonal to the generators of the cylinders. The potential u satisfies ∇2u−k2u = 0
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in the cross-section of the fluid domain, the condition ∂yu − νu = 0 on the averaged free surface
{y = 0} (y decreases with depth), Neumann condition on the surface of cylinders and a radiation
condition at infinity (see e.g. [1]).

Of interest here is the existence of so-called trapped modes, i.e. solutions to the homogeneous
problem (∂nu = 0 on the surface of bodies), corresponding to unforced oscillations of the fluid, localized
near the obstacles. The trapping can occur at isolated values of the spectral parameter ν, which
are treated as eigenvalues belonging to the discrete spectrum when ν < k and as point eigenvalues
embedded into the continuous spectrum when ν > k, while ν = k is the threshold frequency. A
good review on the subject is given in [1]; recent papers [2, 4] can also be mentioned. The existence
of trapped modes below the threshold is known for some geometries since 1951 (see [5]). In [2] the
existence of trapped modes for ν < k is proved for any number of totally submerged cylinders. Trapped
modes above the threshold for such geometries are only known for k = 0 (see [3] and references therein).

In this work we extend to the case k �= 0 the methods of [3], which are based on boundary integral
equations of potential theory, introduction of two compact self-adjoint operators and investigation of
some functionals on their eigenfunctions. Following [3], for k �= 0 a criterion of unique solvability of
the boundary-value problem is proved and applied for development of algorithms for detecting non-
uniqueness (existence of trapped modes) both below and above the threshold. The algorithms allow
us to seek trapped modes for given bodies of arbitrary shape (but above the threshold we demand that
geometry is symmetric with respect to a vertical line). Numerical realization and validity of numerical
results are discussed. A number of examples of trapped modes are found numerically: in particular,
we give first examples of non-uniqueness for totally submerged bodies when ν > k �= 0.
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Direct use of the far-field patterns in the multi-wave enclosure method

Gen Nakamura

Japan
e-mail: gnaka@math.sci.hokudai.ac.jp

The usual multi-wave enclosure method for the inverse scattering problem is done by transforming
it to the inverse boundary value problem. In this talk we will propose a method which directly use
the far-fields patterns. The key is to analyze the behavior of the reflected solutions of the complex
geometric solutions.
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Asymptotic solution of 2-D wave equation with
vanishing variable velocity and localized initial data

V. E. Nazaykinskii

A.Ishlinski Institute for Problems in Mechanics of RAS and Moscow Institute of Physics
and Technology, Moscow, Russia
e-mail: nazay@ipmnet.ru

In linear approximation we study amplitudes and profiles of waves near the beach generated by
the source localized in the neighborhood of the point q = (q1, q2) placed far from the beach. As a
model we use the special Cauchy problem for 2-D wave equation on the plane (x1, x2)

Utt = div
(
c2(x)gradU

)
= 0; U |t=0 = V ((x− q)/µ) = 0), Ut|t=0 = 0, µ� 1,

with the velocity c(x) vanishing on a certain smooth open line L on the plane (x1.x2) and the function
V (y1, y2) decaying at infinity. The asymptotic solutions are constructed by means of the Maslov
canonical operator modified for the localized asymptotics and singular Lagrangian manifolds.

This work was done together with S.Yu.Dobrokhotov and B.Tirozzi and supported by RFBR grant
08-01-00726.

On the existence of the fundamental modes of the wedge guide

Alexander I. Nazarov

St. Petersburg State University, Mathematics and Mechanics Faculty, Russia
e-mail: al.il.nazarov@gmail.com

German L. Zavorokhin

St.Petersburg State University, Physics Faculty, Russia
e-mail: germanzavorokhin@rambler.ru

The existence of waves propagating along the edge of the elastic wedge was established by many
authors (see, e.g.,[2,3,4]) at the physically rigorous level on the basis of numerical computations. The
mathematically rigorous proof for wedge with angles less than π/2 was presented by I.Kamotskii in
[1].

We amplify the I. Kamotskii’s result and prove the existence of the fundamental modes for some
range of angles greater than π/2.

The first author was supported by Grant NSh-4210.2010.1.
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Trapped modes in cranked and branched waveguides

Sergey A. Nazarov

Institute of Mechanical Engineering Problems, St-Petersburg, Russia

For a wide class of cracked and branched waveguides, the existence of trapped modes with frequen-
cies below the continuous spectrum is readily demonstrated by means of the variational method. A
tool to calculate the total multiplicity of the discrete spectrum is shown as well. A method to derive
asymptotic formulas for eigenvalues is explained. Several open questions are formulated. All these
resulted are mainly related to the case of the Dirichlet boundary condition, i.e. quantum waveguides
and acoustic waveguides with soft walls.

New results are presented about the asymptotics of eigenvalues embedded into the continuous
spectrum, that is for the Neumann boundary conditions which occur for acoustic waveguides with hard
walls and for water-wave problems in channels with vertical walls and straight bottom. The approach
is based on the notion of the augmented scattering matrix. Many open questions are formulated, too.

Analytical expansion of highly focused optical
beams into vector spherical harmonics

S. Orlov, U. Peschel, G. Leuchs

Max Planck Institute for the science of light,
Gunther-Scharowsky-Str. 1, Bau 24, 91058 Erlangen, Germany
e-mail: Sergejus.Orlovas@mpl.mpg.de

During the past decade numerous experimental and theoretical works have been undertaken to
characterize, elaborate and manipulate single nanoscaled objects. The metal nanoparticles are among
the hot topics of active research in nanoscience and related branches. The classical theory of linearly
polarized plane wave scattering on a sphere [1] was extended after the invention of the laser and
deviations from the classical theory were revealed. The first works have clearly demonstrated that the
optical response is strongly dependent on the particle location relative to the beam focus and differs
noticeably from that of plane wave irradiated.

The recently renowned interest in highly focused optical beams is mainly concerned with the
polarization state of the beam, which strongly influences the size of the focal spot [2]. In particular,
the role of azimuthal and radial polarization has been investigated [3]. The scalar complex source
beam (CSB) model leads to exact solutions of the wave equation [4]. It can be extended towards
vector diffraction theory to accurately describe linearly, radially and azimuthally polarized light [5].

The analytical expansion of linearly, azimuthally and radially polarized vigorous beam-type solu-
tions of the Maxwell equations into vector spherical harmonics is presented in this work. We report
on the dominance of the high order multipoles in the highly focused radially and azimuthally polar-
ized beams compared under similar conditions with their linearly polarized counterparts, see Fig .1.
Expansions of the vector complex source beams and beams obtained in the common high numerical
aperture systems are compared. The generalized Mie theory as one of the possible applications of
expansions is used to investigate a scattering of studied beams on a spherical golden nanoparticle. We
found that the optical response of the particle is lower for the radially polarized light than for the
linearly, when the energies of both beams are the same.

We also introduce expressions of the so-called “real” vector beams obtained in a variety of focusing
systems and the conditions under which the spatial extent of the analytical and “real” beams is the
same. To this end we compare the scattering of the analytical and “real” beams with the same spatial
extent on a golden spherical nanoparticle. The differences in the scattering of the analytical solutions
and high NA beams are discussed. We report on a good approximation of the high NA beams by their
vector complex source counterparts.
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Reconstruction of individual electric field components of the
highly focused optical beam by the Mie scattering scans

S. Orlov, U. Peschel, P. Banzer, G. Leuchs

Max Planck Institute for the science of light,
Gunther-Scharowsky-Str. 1, Bau 24, 91058 Erlangen, Germany
e-mail: Sergejus.Orlovas@mpl.mpg.de

The growing interest in extremely focused optical beams requires a proper treatment of the polar-
ization state of the beam, which strongly influences the size of the focal spot [1]. In particular, the
role of azimuthal and radial polarization has been investigated [2]: as the beam is focused sharper,
by high numerical aperture (NA) objectives, the symmetry of the focal spot is broken for a linearly
polarized beam and strong longitudinal components appear. Therefore, a precise characterization of
tightly focused laser beams is not just a challenge but is essential for further applications of such
beams.

Many beam characterization methods for are well known and established: a) a knife-edge method,
b) a point scan method, c) a slit method etc. Though quite different in their nature all those share
the common thing: their background is the scalar diffraction theory, so the precise characterization of
highly focused vector beams by the classical evaluation schemes is not a trivial and often a hard task.
For an example, the classical knife-edge method without optimization of material and knife parameters
can be quite polarization sensitive [3], thus introducing additional difficulties in the reconstruction of
the beam’s electric field.

The aim of our report is a detailed study on the implementation of the scattering of highly focused
various polarizations optical beams on a small metal sphere for the reconstruction of the individual
electric field components. We do investigate the beam profiling situations for two different detectors
numerical apertures either in the transmitted light or in the reflected. Our theoretical model is
based on the classical extended Mie scattering theory. We develop an algorithm, which enables us to
reconstruct the longitudinal and transverse components of the incident electric field, see Fig. 1. The
optimization questions are also discussed: we do investigate best NA choices in order to eliminate
the quadrupole response and develop the first order corrections to the algorithm. As a result, a good
reconstruction of the electric field is possible.
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Hodge-Helmholtz decompositions of weighted Sobolev spaces

Dirk Pauly

Faculty for Mathematics, University of Duisburg-Essen, Germany

We study Hodge-Helmholtz decompositions in nonsmooth exterior domains Ω ⊂ RN filled with in-
homogeneous and anisotropic media. We show decompositions of alternating differential forms of rank
q belonging to the weighted L2-space L2,q

s (Ω), s ∈ R, into irrotational and solenoidal q-forms. These
decompositions are essential tools, for example, in electro-magnetic theory for exterior domains, in
particular, to describe the low frequency asymptotic of time-harmonic electro-magnetic fields properly.

Explicit formulae for higher modes of a
nonplanar cavity with odd number of mirrors

Alexandr B. Plachenov
Department of Mathematics, The Moscow institute of radio engineering electronics and
automatics (technical university) & Department of Mathematics, The St.-Petersburg state
university of informational technologies, mechanics and optics, Russia
e-mail: a plachenov@mail.ru

For optical ring-type cavity with a nonplanar contour and alone focusing element (a curved mirror
or a lens), stability conditions were investigated and explicit formulae for the fundamental mode
were obtained in [1] using technique outlined in [2]–[5]. Unlike the traditional approach [6]–[8], these
formulae do not contain eigenvectors of a cavity’s monodromy matrix (i.e. round-trip ray matrix).
In this paper, on the contrary, the solution in question is used to find analytical expressions for
eigenvectors mentioned, to construct ladder operators and to obtain cavity’s higher modes in the case
of odd number of mirrors.
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Transient current source in two-layer medium:
time-domain version of Sommerfeld integral

Alexei Popov, Sergey Zapunidi

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave
Propagation IZMIRAN, 142190 Troitsk, Moscow region, Russia
e-mail: opov@izmiran.ru

Electromagnetic (EM) radiation from a dipole placed at the interface of two half-spaces with dif-
ferent dielectric permittivities was studied in a number of classical works focused at radio propagation
along the earth surface, e.g. [1-2]. Monochromatic radiation pattern of a line source lying at a plane
interface has been calculated in [3]. The problem of pulsed EM radiation is much less studied. An
analytical approach based on the Smirnov-Sobolev concept of functional-invariant solutions was devel-
oped in [4] in relation with seismic prospecting. In our paper, motivated by ground penetrating radar
research, we construct an elementary solution to a key 2D radiation problem: a line transient current
source lying at the interface between two homogeneous, non-dispersive dielectric media. The simplest
solution, corresponding to a special current pulse (Heavyside function), is a homogeneous function of
r =

√
x2 + z2 and s = ct of order −1: E(r, ϑ, s) = 1

r V (τ, ϑ).where τ = s/r , ϑ = arctan x/z . Our
reasoning is close to that of [4] but the method of constructing the solution is different. We start from
the transient Green function G(r, s) = (s2 − n2r2)−1/2

+ ≡ 1
r V0(τ) represented as a superposition of

pulsed plane waves of the same order of homogeneity:

V0(τ) = (τ2 − n2)−1/2
+ =

1
2π

∮
Γ0

dβ

τ − n cos (β − ϑ)
(1)

where the integration path circumvents the complex pole β0 = ϑ + iµ , coshµ = τ
n > 1. By general-

ization we look for a solution to our problem in the form

V (τ, ϑ) =
1

2π
Re


∫
Γβ

B(β)
τ−n cos(β−ϑ)dβ, |ϑ| < π

2∫
Γα

A(α)
τ+cos(α+ϑ) dα,

π
2 < ϑ < 3π

2

(2)

(time-domain version of the Sommerfeld-Malyuzhinets integral [5-6] ). It is assumed that the integra-
tion paths Γα,β contain the semi-strips

∣∣∣Re α
β

∣∣∣ < π
2 + δ1,

∣∣∣Im α
β

∣∣∣ > δ2 while the functions A(α), B(α)

are analytical and regular inside Γα,β. By satisfying matching conditions for V (τ, ϑ) and ∂V
∂ϑ (τ, ϑ) at

the interface |ϑ| = π/2 and ensuring the right solution behavior at τ → ∞ we come to the Snell law
n sinβ = sinα and obtain two pairs of functional equations for A(α) and B(α). As a result, we get
explicit formulae

A(α) = K
cosα

cosα+ n cos β(α)
, B(β) = K

n cosβ
cosα(β) + n cos β

(3)

and the integrals (2) are evaluated by residues. Analytic continuation describes all the wave field
singularities at the geometrical wavefronts.

The developed analytical method, being a time-domain analog of the Sommerfeld integral, can be
applied to more complicated problems: arbitrary pulse waveform, lossy media, wedge-shaped domains,
etc.

References

[1] A. Sommerfeld, V.A. Fock. Wireless telegraphy. In: Ph. Frank, R. Mieses. Differential and Integral
Equations of Mathematical Physics (in Russian, ed. L. Gurevich), h. 23. Leningrad - Moscow,
GosTechIzdat, 1937.



DAYS on DIFFRACTION’2010 67

[2] L.M. Brekhovskikh. Waves in Layered Media. Moscow, Nauka, 1957 (in Russian).

[3] N. Engheta, C.H. Papas, C. Elachi. Interface extinction and subsurface peaking of the radiation
pattern of a line source. Applied Physics, B26, pp. 231-238 (1981).

[4] L.P. Zaitsev, N.V. Zvolinskij. Study of the head wave arising on the interface between two elastic
media. Izvestia Acad. Sci. USSR, ser. Geograph. and Geophys. v. 15, No 1, pp. 20-39 (1951, in
Russian).

[5] V.A. Borovikov. Diffraction by Polygons and Polyhedrons. Moscow, Nauka, 1966 (in Russian).

[6] V.M. Babich, M.A. Lyalinov, V.E. Grikurov. Sommerfeld - Malyuzhinets Method in Diffraction
Problems. St. Petersburg, SPBGU, 2003 (in Russian).

Model of point-like opening for Maxwell operator

I. Yu. Popov, A. I. Trifanov

Saint-Petersburg State University of Information Technologies,Mechanics and Optics,
49 Kronverkskiy, St.-Petersburg, 197101, Russia

A model of interaction through the point orifice for Maxwell equations is discussed. Self-adjoint
Maxwell operator for domains with smooth boundary was suggested by M.Sh. Birman [1]:

M =
(

0 ε−1εpµ−1

−εp 0

)
.

Here ε(x), µ(x) are smooth, strictly positive, bounded functions of x ∈ R3, p = −i∂x is a momentum
operator and ε is Levi-Chivita tensor. For domains with ideal conducting boundary in the absence of
free charges and currents the following conditions are satisfied:

∂x(εE) = 0, ∂xB = 0, γτE = 0, γνB = 0.

Here E and B are electrical and magnetic fields, γτω and γνω are tangential and normal components
of the field ω at the boundary of the domain.

In [2] a problem of scattering of electromagnetic waves by a system of small spheres was considered.
A model of generalized point interaction (GPI) [3] for Maxwell equations was suggested. In this case
the restriction of the operator on to the set of smooth functions vanishing at a point is essentially
self-adjoint. Due to this fact the authors in [2] use Pontrjagin spaces with indefinite metric. We
suggest a model of point-like opening in a screen for this operator. The model is based on the theory
of operator extensions in Potrjagin space. Particularly a problem of point-like window in a plain is
considered.
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True amplitude depth migration by Gaussian beam summation method

M. M. Popov

Saint-Petersburg Steklov Mathematical Institute, Russia

True amplitude depth migration remains an actual topic in geophysics because it enhances mi-
grated seismic image of a subsurface model. It occurs to be important in tomography for the velocity
reconstruction. The problem which underlies the true amplitude migration consists in the following.
All migration methods are based on computations of wave fields generated by sources or by recorded
seismograms. As it is well known, the magnitude of wave fields decreases with increasing distance
between the source and observation point and this phenomenon worsens the migration image in a
deep part of the subsurface domain. If high-frequency asymptotic methods are used for the wave
field description, this phenomenon stems from the geometrical spreading and therefore it has to be
eliminated, or at least suppressed, to implement the true amplitude concept of migration.

Recently (see. [1] and [2]) we have suggested and tested on widely used benchmark models an
approach to seismic depth migration based on Gaussian beam summation method which also belongs to
high-frequency asymptotics of wave fields. Visually this approach can be explained as follows. Suppose
on a seismogram we have a reflected wave. Then, for given smooth velocity model, we propagate this
wave back in time together with the direct wave field generated by a source, located on the seismic
surface, and fix the wave in such a depth position in the migration domain where both fields coincide in
phase, i.e. are coherent. The coherence between the direct U (d)(M, t) and back propagated U (0)(M, t)
wave fields is estimated by computations of correlation function W (M) =

∫
dtU (d)(M, t)U (0)(M, t).

Since coincidence in phase of the direct and backward wave fields on an interface is only a necessary
and not sufficient condition, we perform stacking of W (M) over sources to avoid areas with casual
coherence. Thus, positions of interfaces are fixed in migration domain by the extremes of correlation
function after stacking. Propagation of the both direct and backwards wave fields is performed by
Gaussian beam summation methods.

In the report we demonstrate capabilities and advantages of our depth migration method:
1. By modification of the imaging condition we are able to compute the angle-depended reflection
coefficient on the interface and therefore to evaluate velocity contrast V1/V2 on this interface.
2. By using weight-functions in Gaussian beam integral for the wave fields we are able to suppress the
geometrical spreading in the wave field computations and to construct therefore the true amplitude
migration image.

The above mentioned capabilities are verified by application of our method to several widely used
in geophysics benchmark models.
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Application of the Rayleigh wave model to a moving load problem

D. A. Prikazchikov

Bauman Moscow State Technical University, Russia

J. Kaplunov, E. Nolde

Department of Mathematical Sciences, Brunel University, UK

The paper is concerned with the application of an asymptotic model for the Rayleigh surface wave
[1] to the plane strain problem for an elastic half-space subject to a line force moving with uniform speed
along the surface. Both steady-state and transient formulations are investigated. The motion of the
half-space is governed by the simplified equations of the asymptotic model recently suggested for the
Rayleigh wave, containing quasi-static elliptic equations for the elastic Lamé potentials over the interior
along with the hyperbolic equation for one of the potentials at the boundary and also a differential
relation for the other potential. In case of stationary formulation the asymptotic expressions [2] for
the displacements and stresses turn out to be the leading order Taylor series expansion of the known
exact solution [3]. Application of the model to transient moving load problem allows a simple explicit
solution for the displacements [4] along with the associated rigid body motion components. In this case,
the vertical component of rigid body motion has a logarithmic growth in time. We also immediately
establish the asymptotic behavior of the solution at the Rayleigh wave speed, demonstrating a linear
growth in time. This behavior is similar to that predicted in [5] for a Heaviside-like moving load using
a rather sophisticated procedure applied to the related exact solution. In addition, we discover that
formulae, originally derived for non-resonant regimes, are valid for a load moving with the Rayleigh
wave speed as well. Numerical comparison with the exact integral solution [6] of the original problem
establishes the validity range of the approximate model.
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High frequency Diffraction of an electromagnetic plane wave
by an imperfectly conducting rectangular cylinder

A. D. Rawlins
Department of Mathematical Sciences, Brunel University,
Uxbridge, Middlesex, UB8 3PH, UK

We shall consider the the problem of determining the scattered far wave field produced when a
plane E-polarized wave is incident on an imperfectly conducting rectangular cylinder. By using the
the uniform asymptotic solution for the problem of the diffraction of a plane wave by a right-angled
impedance wedge, in conjunction with Keller’s method, the a high frequency far field solution to the
problem is given.
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On the new model for protein concentration dynamics
in bounded domain

Alexander M. Samsonov
The Ioffe Physical Technical Institute of RAS,
St. Petersburg, 194021 Russia
e-mail: samsonov@math.ioffe.ru

We propose the refinement of modelling of protein concentration dynamics in space (long range
diffusion), leading to the 3d order partial differential equation, together with the refinement of them
in time (via the time delay or relaxation). The combination of these improvements is based on general
concepts of the Extended Irreversible Thermodynamics (EIT). It allows us to derive the new reaction-
diffusion-mobility (RDM) model. We show that both additions to the classic approach are necessary,
and the RDM leads to a new approach in mathematical modelling of protein concentration dynamics,
free of some inconsistencies typical for parabolic or hyperbolic reaction-diffusion equations. In the
autoregulation problem the new statement provides an exact solution for a piecewise linear source
term. The examples of the new description of gene expression dynamics in early development of
Drosophila embryo are considered.

Asymptotic methods for some hydrodynamics
problems with rapidly oscillating data

G. V. Sandrakov G.V.

Kyiv National T. G. Shevchenko University, Ukraine
e-mail: sandrako@mail.ru

Let ε be a small positive parameter and (u, p) be a Hopf’s solution of the initial-boundary value
problem for unsteady Navier-Stokes equations

u′t − ν∆u + u ·∇u + ∇p = Fε in Ω × (0, T ),

div u = 0 in Ω × (0, T ), (1)

u
∣∣
t=0

= 0 in Ω, u = 0 on ∂Ω × (0, T ),

where Fε = F (t, x, x/ε), F (t, x, y) ∈ L2(0, T ;L2(Ω;L∞
per(Y )/R )n), Ω ⊂ Rn is a bounded domain with

a smooth boundary, T is a positive number, and 2 ≤ n ≤ 4. Here, a subscript per means 1-periodicity
with respect to y ∈ Rn and Y = [0, 1]n is a periodicity cell. Therefore, by definition F (t, x, y) is
1-periodic in y,

∫
Y F (t, x, y) dy = 0 for a. e. (t, x) ∈ (0, T ) × Ω, and the restriction of F (t, x, y) to

Y is an element of L2(0, T ;L2(Ω;L∞(Y ))n). Thus, Fε is a rapidly oscillating vector function.

Theorem. Let ∇x F ∈ L1(0, T ;L2(Ω;L∞
per(Y )/R)n×n) and (u, p) is a solution of problem (1).

Then, there are positive ε0 and ν0 such that

‖u ‖2
L∞( 0,T ;L2(Ω)n) + ν ‖∇u ‖2

L2( 0,T ;L2(Ω)n×n) ≤ C ( ε2 + ε2 ν−1 ),

and
‖ p ‖W−1,∞(0,T ;L2(Ω)/R) ≤ C ( ε + ε2 ν−1−n/4 ),

where C is a constant independent of ε and ν whenever 0 < ε ≤ ε0 and 0 < ν ≤ ν0.

Asymptotic and homogenization methods are used to prove of the theorem (see [1],[2]). Similar
theorems for equations (1) and the linearized equations will be discussed also, for example, when∫
Y F (t, x, y) dy �= 0.
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Integral methods for conical diffraction by multi-profile gratings

G. Schmidt
Weierstrass Institute of Applied Analysis and Stochastics,
Mohrenstr. 39, 10117 Berlin, Germany

In the talk we discuss two approaches for studying the diffraction of plane waves by 1D multi-
profile gratings and photonic multi-grid structures. In many cases these problems can be reduced to a
sequence of diffraction problems on relief or rod gratings with one profile, which can be modeled by a
2×2 system of singular integral equations. We give some existence and uniqueness results for solutions
of that system and present an efficient collocation method for its numerical solution. In combination
with the marching procedures the presented integral method allows to solve conical diffraction for
rather complicated grating geometries.

Nonstationary diffraction of a single pulse for
a generator of encoded pulse sequence

S. Semenov, T. Statsenko, Yu. Tolmachev

Physics dept., Saint Petersburg State University, Saint Petersburg, Russia

Using the pulse approach developed in [1], diffraction from the thin ring lens as a component of
the Fresnel lens was studied. The analysis demonstrated transformation of the initial plane δ-wave
into a combination of
- passing through component of the initial wave conversion into a section of spherical wave, and
- two edge toroidal waves possessing all specific features described in [2].
While propagation towards the focal point, the internal self-crossing point of the tore surface runs
down the passing wave and reaches it just in focus. In the focal point, the combination of those pulses
forms the first derivative of δ-signal. The analytically obtained conclusion is supported with numerical
calculations using Gaussian-modulated cosine signal.

By replacing the Fresnel lens with similar reflection system, one can realize the generator of pulses
sequence corresponding to different numerical codes consisting of (-1, +1), (0, +1) or (- 1, 0,+1)
depending on reflection properties of ring mirror components.

Fourier transform of pulse response provides the response of the ring or lens to the monochrome
wave. It permits to explain the main properties of the Fresnel lens as traditional optical instrument.
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Traveling water waves: a global variational approach

Eric Séré

CEREMADE, Université Paris-Dauphine, France

A. Chambolle, C. Zanini

CMAP, Polytechnique, France

We consider the classical problem of periodic traveling water waves without vorticity, in presence of
gravity and surface tension. We give a global variational formulation of this free-boundary problem.
We find weak solutions of arbitrary momentum as minimizers of an energy functional. When the
momentum is not too large, we prove that our weak solutions are classical solutions.

Weinstein’s problem with double set of screens:
Matrix Wiener-Hopf approach and ODE approach

A. V. Shanin

Moscow State University, department of Physics, Russia

A classical Weinstein’s problem is the problem of scattering of a plane high frequency wave by a
periodic set of ideally absorbing parallel half-planes (in fact, it is a reformulation of the problem of the
problem of radiation from an open end of a plane waveguide). This problem has been solved in the late
40’s by using the Wiener-Hopf method. Here we consider the closest generalization of the problem,
namely now the period of the scatterer consists of two half-planes instead of one. This problem can
be reduced to a matrix Wiener-Hopf problem, for which no solution is known.

An alternative approach is proposed based on the new techniques developed recently, namely the
embedding formula and the spectral equation. As a result, we get the ODE with unknown coefficient,
but with known boundary data.

Use of eigenfunctions of integral operator with weakly
singular kernel for a magnetostatic problem solving

K. S. Shaposhnikov

Southern Scientific Centre of RAS, Rostov-on-Don, Russia

Consider a thin magnetic layer in the stationary magnetic field of intensity H0. Let h be the layer’s
thickness, S its median surface, and µ the relative permeability. Suppose H0 is given.

By H∗ denote the intensity of microcurrents induced in the layer. It can be described by the scalar
potential ϕ∗ that is in fact a simple layer potential. The density σ of the potential ϕ∗ is a solution of
the following equation∫

S
Kσ ξdS +

∫
S
µh gradsKσ gradsKξdS =

∫
S
µhH0

s gradsKξdS.

The operator K has the following form

Kξ (M) =
1

4π

∫
S

ξ (Q)
rQM

dSQ, M ∈ S.

One way to solve the equation is reducing its to a system of linear algebraic equations. It is proved
that eigenfunctions of operator K can be used as basis functions for the system forming. Thus one
can simplify the process of the system forming.
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The software package for the problem solving has been made. Numerical results have been tested
by comparison with analytical ones. Eigenfunctions of operator K have been calculated by the way
described in [1]. Influence of number of eigenfunctions on the solution precision has been analysed.
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Multidimensional zero-pressure gas
dynamics with the energy conservation law

V. M. Shelkovich

St.-Petersburg State Architecture and Civil Engineering University, Russia
e-mail: shelkv@yahoo.com

We study delta-shock wave type solutions in zero-pressure gas dynamics

ρt + ∇ · (ρU) = 0,

(ρU)t + ∇ · (ρU ⊗ U) = 0,(ρ|U |2
2

+H
)

t
+ ∇ ·

((ρ|U |2
2

+H
)
U
)

= 0,

where ρ(x, t) ≥ 0 is the density, U(x, t) = (u1(x, t), . . . , un(x, t)) ∈ Rn is the velocity, H(x, t) ≥ 0 is
the specific enthalpy, x ∈ Rn, ⊗ is the usual tensor product of vectors.

Delta-shocks are discontinuities which are different from classical ones in the sense that carry mass,
impulse and energy.

By generalizations of our results [1], [2], we introduce integral identities to define delta-shocks for
the above system. Using this definition, the Rankine–Hugoniot conditions for delta-shock is derived.

We show that delta-shocks are connected with transport and concentration processes and derive
the balance laws describing mass, momentum, and energy transport between the volume outside of
the δ-shock wave front and the δ-shock moving wave front. We prove that these processes are going
on in such a way that the mass and energy of the delta-shock wave front is an increasing quantity,
while the kinetic energy of the volume (outside of the delta-shock wave front) and the total kinetic
energy are nonincreasing quantities.

These results can be used in modeling of mediums which can be treated as a pressureless continuum
(dusty gases, two-phase flows with solid particles or droplets, granular gases).

The author was supported by DFG Project 436 RUS 113/895 and by Analytical Departmental
Special Program “The development of scientific potential of the Higher School”, Project 2.1.1/1399.
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The numerical method for 2D Helmholtz equation in complicated regions

Ilya A. Shereshevskii, Igor M. Nefedov

Institute for Physics of Microstructures RAS, Nizhnii Novgorod, Russia
e-mail: ilya@ipm.sci-nnov.ru

The new method for numerical solving difference boundary value problem for Helmholtz equation
in complicated regions is supposed and comparison with existing methods is discussed. The method
is based on the application of Fast Fourier Transformation in the rectangle containing the considered
region. The procedure of the solving of initial problem is reduced to calculation of some “low dimen-
sional” boundary operator and the solving of corresponding boundary equation. It’s shown that the
method supposed demonstrates high efficiency and accuracy compared with most of known algorithms
of solving of the problem of such kind.
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Temporal and spectral evolution of electric field and
complex envelope of few-cycle light pulses experiencing

paraxial self-focusing in transparent media

Yu. A. Shpolyanskiy, A. N. Berkovsky

St. Petersburg State University of Information Technologies, Mechanics and Optics, Russia

There are two common mathematical formalisms for the description of nonlinear evolution of
ultrashort pulses in transparent nonmagnetic media. One opportunity is to deal directly with the
real electric field or its spectrum, another variant is to use complex envelopes (or amplitudes) in
derivations. A choice of a correct and convenient formalism for nonlinear optics of femtosecond
pulses with ultrabroad spectra is a point for discussions since 1990s. The envelope approach was
fundamental for quasi-monochromatic light pulses with many field cycles and narrow spectra [1]. But
it was originally introduced to analyze slow variation of pulse profile as a whole, rather than fast field
oscillations. The characteristic time scale for distinguishing “slow” and “fast” processes was a period
of a field cycle. Later, the envelope equations were generalized to the case of femtosecond pulses with
broad or even continuum spectra with spectral width of the order of the central frequency [2]. However
the utility and validity of such extension for continuum spectra and few-cycle pulses with 10 or less
field oscillations was questionable. Particularly, it was unclear how to treat and calculate the envelope
of ultrafast fields with characteristic features in the time scale of one cycle or even shorter.

The envelope consideration is not necessary for few-cycle pulses, so many researchers constructed
their models directly for the optical field in 1990s. Kozlov and Sazonov derived equation for the
electric field of femtosecond pulses with ultrabroad temporal and narrow spatial spectra propagating
in transparent media with dispersion and cubic electronic nonlinearity [3]. The equation is a reduction
of Maxwell equations to the case of non-resonant medium response and unidirectional propagation
without generation of self-reflected waves. The equation was used to qualify scenarios of paraxial
self-focusing of few-cycle light pulses in media with normal and anomalous group dispersion [4]. It
was shown that the non-stationary self-focusing leads to development of complicated spatiotemporal
field structures like light “dumbbells” at moderate intensities or light “bubbles” at higher intensities.
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Here we compare field and envelope formalisms. Using a consistent definition of complex enve-
lope of light filed with arbitrary temporal profile [5] we present the generalized envelope equation
which accounts for third harmonic generation (THG) and exact medium dispersion relation without
Taylor expansion. We develop similarly arranged numerical models of field and envelope equations
with equivalent approximation accuracy and show that the computation results for self-focusing of
axisymmetric few-cycle wave packets are identical if THG is considered in envelope equation. How-
ever the computed temporal and spectral structures can differ substantially when THG is ignored as
is done conventionally. The field in nonlinear focus is overpredicted without THG because the higher
harmonics lag behind due to group dispersion and carry the optical energy out of the focusing region.
The results illustrate unusual features of the envelope of few-cycle pulses. The trailing edge of the
envelope is self-steepening and shortening down to duration of a half of a period on laser frequency.
The spectral width of generated continuum is twofold to the central frequency. The amplitude and
phase have oscillations considerably faster than the field cycle of input pulse.

The work is financed by the grant No MK-844.2009.2 of the President of Russian Federation for
state support of Russian young scientists.
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Discrete spectrum of periodic Schrodinger operator with
non-constant metric in the case of non-negative perturbations

V. A. Sloushch
Department of Physics, St. Petersburg State University,
Ul’yanovskaya 3, Petrodvorets, St. Petersburg, 198504, Russia
e-mail: vsloushch@list.ru

The talk is dedicated to the joint work with M.Sh. Birman.
Let A be an elliptic periodic self-adjoint operator of the second order in L2(Rd), d ≥ 1, and let

V be the multiplication by the function V (x) ≥ 0 which tends (in an appropriate sense) to zero as
|x| → +∞. Let (α, β) be an inner gap in the spectrum of A and λ ∈ [α, β] be a fixed number. The
spectrum of the operator B(t) := A + tV , t > 0 inside the gap (α, β) is discrete. Denote by N(λ, τ)
the number of eigenvalues of the operator B(t) that have passed the point λ as t increased from 0 to
τ . In the paper the asymptotics of N(λ, τ) is obtained for τ → +∞ in the case when the perturbation
V (x) has power-like asymptotics at infinity, V (x) ∼ ω(x/|x|)|x|−ρ, |x| → +∞, ρ ∈ (0, d).

The main result can be represented in the following form: N(λ, τ) ∼ Γρ(λ)τd/ρ, τ → +∞. Here
the coefficient Γρ(λ) is computed in terms of the zone functions of the operator A. Under certain
conditions, this asymptotics holds on the left edge of the gap as well, λ = α. We impose no additional
restrictions on the smoothness of the coefficients of the operator A. The condition ρ < d is a technical
one and can be dropped if the coefficients of the operator A are smooth enough.

The verification of the main result is based on analysis of the asymptotics of singular numbers of
certain integral operators. Down this route, we employ different generalizations of the Cwikel estimate.
The derived asymptotics is non-local with respect to energy, its order is different from the “standard”
τd/2. The Weyl nature of the asymptotics reveals itself if the roles of coordinates and quasi-impulses
are switched.



76 DAYS on DIFFRACTION’2010

On a method of metrological self assurance in a
problem of control of orbital complexes

Alexandr S. Slusarenko, Galina N. Dyakova

Department of Applied Mathematics, St.-Petersburg State University of Aerospace Instru-
mentation, Russia

In a problem of control of an orbital complex of space apparatus such as GPS, GLONASS,
GALILEO appear tasks that require a full solution of the eigenvalue problem. The matter is that to
such cases correspond systems of large dimensions. For solution of such systems iterative methods
are usually used. However, for stiff and super stiff systems provided by these methods metrological
level becomes insufficient. In the paper a modified method of metrological self assurance for solving
systems of this type is proposed.
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Active protection from noise propagation in cylindrical waveguide

Oleg Soldatenko

St.Petersburg Universiry, Russia

We consider a cylindrical waveguide with acoustic noise propagating from one side. To reduce
the noise we suggest to install in the walls of the waveguide a set of microphones, which will register
amplitudes of waves. This data is processed and a ”protective” wave is generated with the help of
sound speakers also installed in the walls of the waveguide. Results of numerical simulation of such a
device are to be presented.

Coercivity of boundary integral operators in high frequency scattering

Euan A. Spence

Department of Mathematical Sciences, University of Bath,
Bath, BA2 7AY, UK

Much research effort in recent years has been focused on designing effective numerical methods for
high frequency acoustic scattering. The main difficulty is that, as the frequency increases, the solution
becomes more oscillatory, leading to a rapid increase of degrees of freedom in conventional methods to
maintain accuracy. Once these methods have been designed, an interesting and challenging question
is whether rigorous error bounds can be established which are explicit in the frequency.

One strategy for proving rigorous error bounds for boundary integral methods for these high
frequency problems is to seek to prove that the integral operator has a property known as coercivity.
This is a strong definiteness property of the operator which in particular implies boundedness of an
inverse. For these high frequency problems one ideally wants to establish coercivity independent of
(or at least explicit in) the frequency.
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Coercivity has so far been established only for the case of the circle (in 2d) and sphere (3d) using
Fourier analysis. This talk will outline why coercivity is important, what is known about it already, and
then discuss some new results on proving coercivity using PDE techniques involving certain identities,
and on numerically computing the so-called coercivity constants (which appear in the error bounds).

This is joint work with Timo Betcke and Simon Chandler-Wilde (University of Reading), and Ivan
Graham and Valery Smyshlyaev (University of Bath).

Simulation of a laminar flow in a porous medium

Olga Strizhenko, Maxim Kolmakov

Saint-Petersburg Stage University, 198504 Petrodvoretz, Ulyanovskaya street 1, Russia
e-mail: maxal2@mail.ru, bzixilu@gmail.com

In this presentation we analyzed and compared the software packages Eclipse 2004A, NGT BOS
v.2.1 and ANSYS CFX v11.0 for the task of the oil and gas flows simulation in a porous medium.
We identified the common features, examined the differences and explored recommended fields of
application.

PO/GTD method for 3D modeling of
the aperture antenna with a radome

I. Sukharevsky

Institute of Radiophysics and Electronics of National Academy of Sciences of Ukraine,
12 Proskury str., Kharkov, 61085, Ukraine
e-mail: i.sukharevsky@gmail.com
A. Altintas
Electric and Electronics Engineering Department, Bilkent University,
Bilkent, Ankara, 06800 Turkey
e-mail: altintas@bilkent.edu.tr
Ye. Ryabokon

Kharkiv University of Air Forces,
77/79, Sumska St., Kharkiv 61023, Ukraine
e-mail: ryabokon evgen@ukr.net

The generalised image theory and exact mathematical model of an aperture antenna are employed
in order to develop exact and PO integral representations of the fields radiated by 3-dimensional
radome-enclosed aperture antenna. The desired problem is reduced to finding fields of a plane wave
diffracted on the ”symmetrized” radome. Radiation patterns for antennas with a specified ampliphase
distribution enclosed in the radomes of different geometries are analysed.

Correction of bore-sight errors induced by a radome

Ye. Ryabokon, I. Sukharevsky, A. Altintas

Ukraine, Turkey

We consider an advantage of using dielectric materials with different permittivity in the radome
design to reduce far side field and to improve directivity properties of a two-dimensional antenna array
in a radome. For calculations, the method based on solving the volume integral equation relatively
the total field in the radome is used.
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A novel Fisher information criterion to study
electromagnetic resonances in lamellar gratings

Juan Sumaya-Martinez, M. Mayorga-Rojas, O. Olmos-Lopez

Facultad de Ciencias, Universidad Autonoma del Estado de Mexico,
Instituto Literario 100, Toluca 50000, Estado de Mexico
e-mail: jsm@uaemex.mx

A novel information criterion based on the principle of minimum Fisher information[1] is presented
in order to locate resonant wavelengths at which field enhancement [2] occurs in the interaction of
electromagnetic beams with finite lamellar gratings. A comparison with the results obtained using
Maxwell equations is done. Nevertheless both theories agree well, we show the former method is
numerically more efficient and reliable.
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Near field spectrum in the neighborhood of a
subwavelength metallic slit at resonant wavelengths

Juan Sumaya-Martinez, M. Mayorga-Rojas, O. Olmos-Lopez
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At wavelengths where enhanced transmission occurs we show that the near field spectrum in
the neighborhood of a subwavelength metallic slit presents a topology which favors the energy flow
(characterized by the Poynting vector) through the slit no matter how deep it is. However a little shift
(about 5completely different topology which turns the energy flow away from the aperture entrance
(kind of turbulence). A simulated movie of this phenomenon is shown.

Homogenization of nonstationary periodic equations

M. Sh. Birman, T. A. Suslina

St. Petersburg State University, Russia
e-mail: suslina@list.ru

In L2(Rd;Cn), we consider a second order differential operator Aε = b(D)∗g(ε−1x)b(D), ε > 0.
Here g(x) is an (m ×m)-matrix-valued function in Rd such that g, g−1 ∈ L∞, g(x) > 0, and g(x) is
periodic with respect to some lattice. Next, b(D) is a first order differential operator; its symbol b(ξ)
is an (m × n)-matrix-valued linear homogeneous function of ξ ∈ Rd such that rank b(ξ) = n, ξ �= 0.
We assume that m ≥ n. We study the following Cauchy problem for the Schrödinger type equation
for a function uε(x, τ), x ∈ Rd, τ ∈ R:

i∂τuε(x, τ) = Aεuε(x, τ), uε(x, 0) = φ(x).

We also study the Cauchy problem for the hyperbolic equation for a function vε(x, τ), x ∈ Rd, τ ∈ R:

∂2
τvε(x, τ) = −Aεvε(x, τ), vε(x, 0) = ϕ(x), ∂τvε(x, 0) = ψ(x).
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The corresponding ”homogenized” problems look as follows:

i∂τu0(x, τ) = A0u0(x, τ), u0(x, 0) = φ(x);

∂2
τ v0(x, τ) = −A0v0(x, τ), v0(x, 0) = ϕ(x), ∂τv0(x, 0) = ψ(x).

Here A0 = b(D)∗g0b(D) is the effective operator.
Theorem 1. If φ ∈ L2(Rd;Cn), then uε tends to u0 in L2(Rd;Cn) for a fixed τ ∈ R, as ε → 0. If
φ ∈ Hs(Rd;Cn), 0 < s ≤ 3, then

‖uε(·, τ) − u0(·, τ)‖L2 ≤ εs/3Cs(τ)‖φ‖Hs .

Here Cs(τ) = O(|τ |s/3) for large values of |τ |.
Theorem 2. If ϕ,ψ ∈ L2(Rd;Cn), then vε tends to v0 in L2(Rd;Cn) for a fixed τ ∈ R, as ε→ 0. If
ϕ,ψ ∈ Hs(Rd;Cn), 0 < s ≤ 2, then

‖vε(·, τ) − v0(·, τ)‖L2 ≤ εs/2
(
C(1)

s (τ)‖ϕ‖Hs + C(2)
s (τ)‖ψ‖Hs

)
.

Here C(1)
s (τ) = O(|τ |s/2), C(2)

s (τ) = O(|τ |1+s/2) for large values of |τ |.
We also prove analogs of Theorems 1 and 2 for more general class of operators [1].
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Properties of quasi-Rayleigh waves near cylindrical
cavity subject to surface impedance load

D. E. Syresin, T. V. Zharnikov
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V. V. Tyutekin
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Theory and applications of surface waves present significant practical interest [1, 2], with particular
attention directed at Rayleigh waves. For example, axially symmetric quasi-Rayleigh and Stoneley
waves near cylindrical cavity were considered in paper [3]. Properties of quasi-Rayleigh waves near
the plane boundary of isotropic half-space under two component impedance load were studied in
article [4]. This work investigates the effect of surface impedance load on the characteristics of axially
symmetric quasi-Rayleigh waves propagating along the boundary of cylindrical cavity in the isotropic
elastic medium. Such waves are of importance for many practical applications.

Dispersion equation for the waves under consideration is derived under assumption that the
impedance load can be described by Hermitian impedance matrix Z(L). Such a load causes addi-
tional normal (n) and tangential (τ) stresses on the surface. As a result full stress σ(f) = (σ(f)

n , σ
(f)
τ )T

can be expressed through the displacement vector u(f) = (u(f)
n , u

(f)
τ )T as follows:

σ(f) = −iω
(
Z(0) + Z(L)

)
u. (1)

Here Z(0) stands for the impedance matrix of the medium (its derivation is illustrated in the present
work) and ω is the angular frequency. Condition of absence of full stress at the cavity surface imme-
diately leads to the dispersion equation, describing the behavior of quasi-Rayleigh waves:

det
(
Z(0) + Z(L)

)
= 0. (2)
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In limiting cases (zero load, plane boundary case, etc.), it was shown to coincide with results [3,4].
It was found that for certain loads quasi-Rayleigh waves in question cannot exist in cylindrical

cavity. Such loads can be determined from condition of cutoff frequency ωcr turning to infinity ωcr →
∞. This condition follows from equation (2) if one sets wavenumber k equal to that of shear waves kt

and tends frequency ω to infinity.
The properties of the waves under consideration were investigated in detail for the case of diagonal

impedance load matrix Z(L) = diag(Zrr, Zzz). It was demonstrated that depending on the load three
situations are possible: quasi-Rayleigh waves do not exist, there is one such wave, and two of them
exist simultaneously. To prove it one should consider a point in space (k, ω) and find loads such
that the dispersion curve of the quasi-Rayleigh wave passes through this point. They are described
by equation (2), with this point fixed, and form a hyperbole in space (Zrr, Zzz). Considering such
hyperboles for all possible positions of this point one can note that impedance space can be separated
in three regions. No hyperboles lie in the first of them; the points of the second region belong to just
one hyperbole; the points of the third one pertain to two hyperbolae. It justifies above mentioned
classification. Noteworthy, if one considers loads from the third region and knows dispersion properties
of one of two quasi-Rayleigh waves then it is possible to determine restrictions for those of the other
wave. These restrictions are discussed in the work as well.

Obtained results were exemplified with two models of surface impedance load. As the first model
the cavity filled with the non-viscous fluid was considered. This fluid was treated as impedance load
with only one non-zero element Zrr of the matrix Z(L). Its substitution into equation (2) leads to
classical dispersion equation of Stoneley wave in fluid-filled cavity. For the second model comb-like
layer was chosen (with the elements of height l, which is small as compared to the shear wave length).
The impedance matrix for this layer was derived before [4]. It was shown that such a load always
causes two quasi-Rayleigh waves to appear. The cutoff frequencies for each of them diminish with the
increase of ratio l/a, where a is the radius of the cavity.

Theoretical results described above can be used for the development and construction of the devices,
which will allow controlling characteristics of quasi-Rayleigh waves in cylindrical geometry.
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”Complex source” in two-dimensional real space

Azat M. Tagirdzhanov

Physics Faculty, St.Petersburg State University, Russia

We consider the complexified Green function for the 2D Helmholtz operator, g∗ = − i
4H

(1)
0 (kr∗),

r∗ =
√
x2 + (z − ia)2, a > 0, which is analogous to the 3D construction by Izmest’ev and Deschamps

[1, 2]. The function g∗ is interesting as an exact solution of the Helmholtz equation showing a Gaussian
beam behavior near z-axis and is widely discussed in literature (see e.g. [3, 4]). The square root in
r∗ is not defined uniquely but branches at z = 0, x = ±a, and thus g∗ jumps on a certain curve S,
depending on the choice of the branch cut. Thus, g∗ satisfies the inhomogeneous Helmholtz equation
(� + k2)g∗ = F in the real space R2 with a source function F localized on S. We calculate F for
several choices of branch cut.
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Surface acoustic waves in a rotating solid

V. A. Topunov

Electrotechnical University, St.Petersburg, Russia

Surface acoustic waves (SAW) properties are dependent on the rotation speed of the medium.
This effect is happened because the Coriolis force m · 2[Ω3.0 × v] is applied on the particle of mass
m oscillating with velocity v when the body is rotating with angular velocity Ω. Similar effect in
optics is called the Faraday effect [1] when that the speed and the polarization of light in the material
depends on the applied magnetic field. This effect arises because the Lorentz force q · [v3.0 ×B] acts
on electrons with the charge q and velocity v in a magnetic field B.

Two methods of analysis have been considered. The first is the numerical solution of equations
for SAW propagation in the rotating half infinite anisotropic piezoelectric substrate. The second one
is qualitative description of the Coriolis force action on the moving particles while SAW propagation.

In [1-2] the rotation investigation was restricted only by the SAW velocity changing and this shift
is very small for mainly all practical applications. However it is important to take into account other
effects (for example, appearance of new components of displacement vector) which can be measured
and further on can be used in the devices. According to [1-2] the maximum shift in SAW velocity is
achieved by the body rotation around the normal to the sagittal plane, that kind of rotation usually
considered as preferable. In this case, the Coriolis force will act along the radius of curvature of the
particle locus. This will lead in material stiffness changing and hence the wave velocity shift. On the
other hand, according to [2], the minimal shift in the SAW velocity is achieved by rotation around the
direction of SAW propagation. In this case, the Coriolis force is perpendicular to the sagittal plane.
Nevertheless, this kind of rotation will result in the declination of the plane of particle oscillation
from the sagittal plane. As a result, the additional component of displacement will appear and also
the power flow angle of SAW will be different. These effects have been recently confirmed by the
corresponding numerical calculations [3].
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Super short Bessel beam Ffrmation by axicon

Ekaterina E. Ushakova
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Peculiarities of femtosecond Bessel light beams formation depending on axicon shape are investi-
gated. It is shown that conical lens blunt tip causes significant differences of structure of light fields
formed after it in comparison with one obtained by means of ideal axicon. A new method is proposed
to eliminate influence of real axicon blunt tip: dielectric mirror (photonic crystal) is carried on the
place of cut blunt tip.
Introduction. Generation of Bessel light beams by means of an axicon attracts increasing attention
of scientists due to law light loss as compared with the other methods of such light fields obtaining
(for example, using circular diaphragm [1]). Structure of this type light fields is strongly influenced by
a shape of an axicon though. In works [2], [3] it is shown that taking into consideration peculiarities
of axicon shape (blunt point on axicon apex) leads to significant differences in intensity distribution.
Lately femtosecond laser pulses characterizing high light energy localization are widely adopted in
electric discharge control, clustered plasma formation, media miniaturization. However, dispersing
blurring of such light fields is a significant problem. Therefore formation of dispersion-free, diffraction-
free pulsed Bessel beams by means of an axicon is of great interest. Detailed investigation of super
short Bessel light beams formation by means of axicon of various shape is carried out.
Description of femtosecond Bessel light beams formation. Let the pulse of Gaussian en-
velope and amplitude depending on radial coordinate r E(r, t) = E0 · exp(−r2/2w2) · exp(−t2/t20) ·
exp(iω0t), falls on an axicon along longitudinal coordinate z. Transformation of a light field fre-
quency component made by the conical lens can be presented as the Kirhgof integral E(r, z, ω) =
−(ik/z)·exp(ikr2/2z)

∫ R
0 Tid/nonid(r′, ω)·exp(−r′2/2w2)·exp(ikr′2/2z)·J0(kr′r/z)·r′dr′, where Tid/nonid

- transmission function of ideal or nonideal axicon with blunt tip (Tid(r, ω) = exp[−ikγ(n(ω) −
1)r], Tnonid(r, ω) = exp[−ikγ(n(ω) − 1)Rh · tan2(γ)

√
1 + r2/R2

h · tan2(γ)]) for r ≤ rh, Tid(r, ω) =
exp[−ikγ(n(ω) − 1)[(R − r) · tan(γ)]] for r > rh). Expression of pulsed beam electrical field looks
like: E(r, z, t) = (1/2

√
π)
∫ +∞
−∞ t0 · exp(−ω2t20/4) · E(r, z, ω) · exp[i(kz(ω)z − ωt))]dω, where kz(ω) =

kz,0 + k′z,0(ω − ω0) + (1/2)k′′z,0(ω − ω0)2 + (1/6)k′′′z,0(ω − ω0)3 + ... .
Results. Calculation conducted according to the obtained formula has shown significant differences in
paraxial intensity profiles of super short light beam formed by axicon with blunt tip and ideal axicon.
Intensity distribution after the conical lens with blunt tip distinguishes by numerous oscillations and
additional maximum outside diffraction-free zone in comparison with one formed by ideal axicon.
The oscillations and the additional maximum are caused by interference of super short Bessel beam
formed by peripheral part of nonideal axicon and pulsed Gaussian beam produced by blunt tip of
axicon central part (acting as a lens).

We propose a new method to eliminate the influence of conical lens imperfection. It lies in the
following: dielectric mirror consisting of periodically alternating dielectric layers of different refraction
indexes (photonic crystal) is carried on cut axicon blunt point. This method is based on the property
of photonic crystal not to transmit radiation of wavelength from so-called photonic band gap. It
possesses a number of advantages as compared with the other methodic (with an addition of a beam
stop [2]) such as disappearance of unwanted oscillations and light losses. In Fig. there are illustrated
paraxial intensity profiles of super short Bessel light beams formed by means of ideal, nonideal conical
lenses and with photonic crystal on the cut apex of axicon. It is obvious structure of the light field
formed after the axicon with photonic crystal follows one formed by ideal conical lens.
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Figure : Normalized on its maxima paraxial intensity profiles of super short Bessel light beams formed
by means of ideal (a), nonideal (b) conical lenses and axicon with photonic crystal on the cut apex
(c).
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Exact radiation from an antenna on an oblate metallic spheroid coated
with layers of isorefractive and anti-isorefractive materials
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The geometry analyzed in this work consists of an oblate metallic spheroid that is coated with
confocal oblate spheroidal layers made of lossless materials whose refractive indexes are either equal
(isorefractive) or opposite in sign (anti-isorefractive) to the refractive index of the infinite medium (e.g.,
air) surrounding the structure. The intrinsic impedances of the materials of the coating layers are
real and positive, but may take any value. The primary source is an electric dipole antenna mounted
outside the structure, on the axis of symmetry, and axially oriented. The analysis is performed in
phasor domain.

The boundary-value problem is amenable to exact solution by separation of variables. The fields
in the various regions of space are written as infinite series of products of radial and angular oblate
spheroidal functions, in the notation of Flammer (1957). The modal expansion coefficients are deter-
mined by imposing the boundary conditions at the spheroidal interfaces and the radiation condition
at infinity. The explicit analytical determination of the coefficients is possible because the angular
oblate spheroidal functions are independent of the sign of the refractive index. Thus, a new canonical
solution is obtained, that is of interest not only in itself, but also because it may be used to vali-
date computer codes developed for penetrable structures. The particular cases in which the metallic
spheroid becomes either a sphere or a circular disk are examined in detail.

The radiated field is discussed as a function of the geometry (thickness of each layer, number
of layers, eccentricity of the metal spheroid) and of the intrinsic impedances of the layers, and is
compared to the field radiated in the case of an uncoated spheroid.
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Modal representation of transient waves
constrained by an elliptical cylinder

Andrei B. Utkin
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The generation of transient waves by physically admissible (space-time limited) sources is discussed.
We assume that both the wavefunction and the source term equals zero on the surface of an elliptical
cylinder (which, for example, corresponds to an elliptic-waveguide boundary condition).

The investigation is carried out in the elliptic-cylindrical coordinate system u, v, z , related to the
Cartesian coordinates x, y, z with the same axis z by

x = h coshu cos v, y = h sinhu sin v

where h is a positive real parameter with dimensions of length. The wave equation takes the form[
∂2

∂τ2
− 1
h2
(
cosh2 u− cos2 v

) ( ∂2

∂u2
+

∂2

∂v2

)
− ∂2

∂z2

]
Ψ (u, v, z, τ) = S (u, v, z, τ) ,

where Ψ is the wavefunction, S is the source term and τ = ct is the time t in units of length (c is the
wavefront velocity). Both the wavefunction and the source term are supposed to be confined by an
elliptical cylinder u = u0 , viz.

Ψ (u, v, z, τ)|u=u0
= 0, S (u, v, z, τ)|u=u0

= 0.

Then, according to the result obtained in [1], p. 297, Ψ and S admit expansion in terms of the Mathieu
(elliptic) sine (Se, se) and cosine (Ce, ce) functions(

Ψ (u, v, z, τ)
S (u, v, z, τ)

)
=

∞∑
m=0

∞∑
n=1

(
ψ

(c)
mn (z, τ)
s
(c)
mn (z, τ)

)
Cem

(
u, q

(c)
mn

)
cem

(
v, q

(c)
mn

)
+

∞∑
m=0

∞∑
n=1

(
ψ

(s)
mn (z, τ)
s
(s)
mn (z, τ)

)
Sem

(
u, q

(s)
mn

)
sem

(
v, q

(s)
mn

) (1)

where q(c)mn and q
(s)
mn are the roots of equations

Cem

(
u0, q

(c)
)

= 0, Sem

(
u0, q

(s)
)

= 0

Substitution of (1) into the wave equation yields the PDE ∂2

∂τ2
− ∂2

∂z2
+

(
2q(c,s)mn

h

)2
ψ(c,s)

mn (z, τ) = s(c,s)mn (z, τ)

of known Riemann function

R
(
z′, τ ′; z, τ

)
= J0

(
2q(c,s)mn

h

√
(τ − τ ′)2 − (z − z′)2

)

Thus, the desired longitudinal-temporal components ψ(c,s)
mn (z, τ) of the modal representation (1) can

be obtained using the Riemann method.
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Derivation of modified Smyshlyaev’s formulae using
integral transform of Kontorovich-Lebedev type

Valery Yu. Valyaev, Andrey V. Shanin

Department of physics, Moscow State University, Russia

The aim of this work is to fill the gap between the embedding formulae for cones and the modified
Smyshlyaev’s formulae. Embedding formulae for cones represent the directivity of the scattered field as
multiple integrals over spatial variables. Modified Smyshlyaev’s formulae represent the same directivity
as a single contour integral over parameter ν. This situation resemble the convolution theorem for
Fourier transform: multiple convolutions can be represented as a single integral over frequency.

Originally, Modified Smyshlyaev’s formulae have been ”guessed” and then proved by study of the
poles of the integrands instead of being regularly derived. Extension of the analogy with Fourier
transform allows to obtain a regular method for deriving the modified Smyshlyaev’s formulae.

The most straightforward way to extend the described analogy to the conical case is to use the
Kontorovich-Lebedev transform. However, we cannot use it directly due to convergence problems.
Namely, for the classical Kontorovich-Lebedev procedure it is necessary for the parameter k0 of the
Helmholtz equation to be purely imaginary, which is hardly interesting from the practical point of
view.

That is why we develop a slightly different approach. Instead of the Kontorovich-Lebedev trans-
form we use the ”Kontorovich-Lebedev-Smyshlyaev representation” that differs by the choice of the
cylindrical function (Bessel instead of Hankel), and, more important, by the contour of integration.
As the result, the functions participating in the representation stop being orthogonal. However, for
our needs the orthogonality (and even the uniqueness and invertibility of the representation) is not
important, we need only the analogs of well known for Fourier transform Plancherel formula and con-
volution formula. That is why we prove only these important formulae without using orthogonality
and demonstrate the possibility to derive the modified Smyshlyaev’s formulae.

The numerical calculation of eigen modes of rectangular
electrodynamic waveguide with metal partition

Nadezhda K. Vdovicheva, Ilya A. Shereshevskii

Institute for Physics of Microstructures RAS, Nizhnii Novgorod, Russia
e-mail: ilya@ipm.sci-nnov.ru

We present the numerical method for calculating eigen modes of rectangular electrodynamic waveg-
uide with metal partition. Such a devices appear in particular in the high frequency radio technic
systems as polarizers. Due to the quite complicated geometry the calculating of eigen modes of such
devices needs the numerical approach. We suppose method based on decomposition through the basis
of eigenfunctions of rectangle without partition. This method reduce the problem to the solution of
dispersion equation, which can be solved essentially more efficiently in compare with the direct diago-
nalization of the matrix of transversal Helmholtz operator. We discuss also some problems connected
with calculation electromagnetic field through the modes computed.
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Existence of edge waves along periodic structures

Juha H. Videman
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e-mail: videman@math.ist.utl.pt

We address the problem of interaction of linear water waves with three-dimensional periodic struc-
tures, totally or partially submerged within a homogeneous, inviscid and incompressible liquid. Con-
sidering, as usual, the problem as a spectral boundary-value problem, we derive a condition ensuring
the existence of trapped modes by introducing a trace operator in a suitable functional setting and
investigating its spectrum. The trapped modes correspond to waves propagating along the periodic
structures but vanishing at large distances from them.

The sufficient condition is a simple inequality comparing a weighted volume integral, taken over
the submerged part of an element in the infinite array of identical obstacles, to the area of the free
surface pierced by the obstacle.

Various examples are given and the results are extended to edge waves along periodic coastlines
and over periodically varying ocean floor.

This is a joint work with Sergey Nazarov from the Institute of Mechanical Engineering Problems
at the Russian Academy of Sciences at St. Petersburg.

Instability of electromagnetic surface waves guided by the hiral column

N. F. Yashina, T. M. Zaboronkova

Technical University of Nizhny Novgorod,
24 Minin St., Nizhny Novgorod 603950, Russia
e-mail: gematityash@mail.ru

The study is made of the linear stage of the parametric instability of electromagnetic surface waves
guided by the hiral infinitely extended cylinder immersed in a uniform unbounded dielectric space.
Note that the parametric instability of whistler surface waves guided by an axially magnetized plasma
column surrounded by a dielectric space has been considered in [1]. Here we consider the bi-anisotropic
column whose permittivity and permeability are described by tensors ε̂ and µ̂ with nonzero off-diagonal
elements. The axis of considered hiral cylinder is assumed to coincide with the gyrotropic axis which
is parallel to z axe. For a monochromatic signal tensors ε̂ and µ̂ can be written as follows

ε̂ =

 ε1 iε2 0
−iε2 ε1 0

0 0 ε3

, µ̂ =

 µ1 iµ2 0
−iµ2 µ1 0

0 0 µ3

,
here ε2 =

χ

η
, µ2 = −χη, η =

√
µ1

ε1
, χ is the chiral parameter [2,3].

Our investigation has shown that the possibility of existence of proper electromagnetic surface
waves is determined by the sign of components of permittivity and permeability tensors. We obtained
the conditions under which the surface waves can be supported by the column. The dispersion char-
acteristics of these waves are analyzed. As it is known, the intense external electromagnetic field
may effect on the medium properties and as a result of such action, tensors diagonal elements are
the functions of the amplitude of the external field. A three wave interaction can occur if the space-
time conditions between the external electromagnetic field and the guided surface waves take place.
The expressions of the instability increment of guided waves are obtained. For the some practically
interesting cases numerical analyzes have been performed and the results of computations will be
reported.
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Resonance scattering and generation of the third harmonic by the diffraction of
a plane wave on cubically polarisable dielectric layered structure

Vasyl V. Yatsyk
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Results of the analysis of process of resonance scattering and generation of the third harmonic in the
case of the diffraction of a plane electromagnetic wave through an isotropic, cubically polarisable, non-
magnetic, linearly polarised (E polarisation) medium with a non-linear, layered dielectric structure
are considered. The electromagnetic waves in a non-linear medium with a cubic polarisability are
described by an infinite system of non-linear equations [1-3]. In the study of particular non-linear
effects it proves to be possible to restrict the examination to a finite number of equations, and also
to leave certain terms in the representation of the polarisation coefficients, which characterize the
physical problem under investigation. Thus, in the analysis of the non-linear effects of the processes of
resonance scattering of the field (at the frequency of excitation) and generation of the third harmonic
(at the triple frequency) it is possible to restrict the investigation to a system of two equations, where
only the non-trivial terms in the expansion of the polarisation coefficients are taken into account [4].
This leads to the strong formulation of a boundary-value problem, which in turn can be reduced to
a system of one-dimensional non-linear integral equations (defined along the height of the structure)
with respect to the complex Fourier amplitudes of the scattered fields in the non-linear layer at the
basic and triple frequencies. The system of non-linear integral equations and also the boundary-value
problem are reduced to a system of non-linear boundary-value problems of Sturm-Liouville type, which
indicates the equivalence of both problems. The one of the possible iterative schemes of the solution
of the system of non-linear integral equations (based on the application of a quadrature rule to each
of the non-linear integral equations) is considered. The analysis of the scattering problem and the
generation of the third harmonic by excitation by a plane wave passing a non-linear three-layered
structure is carried out. Results of the numerical investigation of both the values of the non-linear
dielectric constants corresponding to a given amplitude of the incident field and of the scattered and
generated fields are presented [4]. The dependence characterizing the portions of generated energy in
the third harmonic on the value of the amplitude of the excitation field of the non-linear structure is
investigated. Within the framework of the conservative system under consideration it is shown that
the imaginary part of the dielectric constant, determined by the value of the non-linear part of the
polarization at the excitation frequency, characterises the loss of energy in the non-linear medium
(at the frequency of the incident field) due to the generation of the electromagnetic field of the third
harmonic (at the triple frequency).
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Resonance properties of wave propagation in the
heterogeneous composites with nematic coatings
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117526 Moscow, Russia
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The peculiarities of the wave propagation in the elasto-nematic heterogeneous composites are
investigated. The so-called liquid crystalline rubber-like nematic elastomers (or simply nematics) are
relatively new non traditional class of materials combining the properties of classical viscoelastic solids,
liquid crystals and Cosserat media. These combinations attract the interest of research community
in context of medical and bio- applications, as well as in nano mechanics (as a specific matrix). In
the latter the additional problem of quality control is arisen while facing the appearance of nano tube
clusters. In what follows we focus the attention on the acoustical properties of composites which
possess the potential of applications in many areas. The recently introduced effective low frequency
model of nematic medium is used.

The phase speeds and attenuations of the surface and guided waves is the subject of this study.
The quasi Rayleigh and quasi Love waves propagating in the coated half-space are considered first
under different orientation of the nematic anisotropy. The similar situations for the fundamental S0,
A0 and SH0 modes in the coated plates are also studied.

The solution to the respective Christoffel equation is obtained analytically, than the impedance
matrices for each configuration of composite are obtained. The solution to the dispersion equations
are sought numerically based on their long wave asymptotic behavior.

The obtained results are classified and parametrically analyzed. Two kinds of resonance effects
are revealed and their physical meanings are discussed.
Acknowledgements. The presented study supported by Russian Foundation for Basic Research
(project 08-08-00855).



DAYS on DIFFRACTION’2010 89

High order asymptotics of the near field, radiated by
a normal or angled beam fluid couple ultrasonic
transducer, into an elasic plate or a half-space

Dmitrii D. Zakharov
Dept. of Math Analysis, Moscow State University of Railway Engineering, Obraztsova str.
9/9, 127994 Moscow, Russia
e-mail: dmitrii.zakharov@gmail.com

The reasonable formalization of the radiation problem for the case of normal or angled beam fluid
coupled ultrasonic transducer is discussed in context of NDT needs. The inspection solid is assumed
to be a plate or, as a limit case, an elastic half-space. The Green tensor is introduced first in the
frequency domain. In the plate it is represented in the modal form. The radiated field is represented
by a convolution integral using effective contact loading. The field is analyzed in the first Fresnel
zone where the characteristic wavelength is comparable with the zone size. As known, this problem is
usually most time consuming.

The high frequency asymptotics of the convolution integral of the highly oscillating functions over
the contact spot with smooth contour are studied using the stationary phase method. For the case
of rectangular transducer the leading asymptotic terms are obtained in the special geometrical zones.
On the boundaries of these zones the transition areas are investigated.

The numerical examples in the frequency and time domains show that the satisfactory accuracy is
achieved at the distance of a half-wavelength from the transducer lobes with simultaneous decreasing
the calculation time with four decimal orders.

In the limit case of large (infinite) thickness of solid the field underneath the rectangular transducer
is also discussed.
Acknowledgements. The presented study is performed under partial support of Russian Foundation
for Basic Research (project 08-08-00855).

Semiclassical analysis of conductance
fluctuations in open electronic resonators

V.V. Zalipaev
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Quantum transport of electrons through semiconductor microjunctions has been observed in many
experiments in the middle of nineties. Less than micron-size 2D junctions are made with such purity
that both quantum coherence length and the mean free path for elastic collisions of electrons with
defects are large compared to the size of junction. Thus, electrons can be described as 2D ideal Fermi
gas of non interactive particles. In this case electron would bounce ballistically through the resonator
cavity, and its wave function scatters elastically from the walls of the junction. The conductance
of such junctions was measured, and was found to oscillate strongly as the Fermi energy of electron
or the strength of applied magnetic field is varied. Statistical properties of these fluctuations have
been studied, and compared with predictions from random matrix theory. It was found common to
all generic microscopic conductors in electronic transport in mesoscopic systems [1], [2], [3] that the
high-frequency part of the power spectrum of the oscillations had structure of power-law decay for
regular systems versus exponential decay for chaotic ones.

On the theoretical side, physicists were trying to develop simple algorithms that predict the fluc-
tuations of conductance with respect to electron Fermi energy or magnetic field. Conductance of
electronic waveguide through resonator is determined by total transmission coefficient (Landauer for-
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mula for the zero temperature conductance of a structure) T =
∑

n,m |tn,m|2, where tn,m are the
transmission amplitudes of transverse modes propagating in waveguide. The quantities tn,m may be
computed semiclassically. Toward this end a number of groups ([4], [5], [6], [7], and others) performed
calculations for some specific shapes of resonators such as rectangular or circular, and found the same
qualitative behaviour of the rapid oscillations of conductance. However, most of the papers on semi-
classical analysis of conductance oscillations dealt with acoustic model for quantum electron behaviour
and seems to have not been able to present quite accurate results for magnitude of the conductance.

In this talk basic details of a developed semiclassical analysis, based on the uniform GTD ([8]),
that predicts some of the large scale structure of conductance fluctuations of waveguide-resonator
junction are presented. Using effective hamiltonian approximation for the junction of waveguide and
rectangular resonator, made of metal or semiconducting materials, this problem can be reduced to 2D
problem for the Schrödinger operator with magnetic field and parabolic confinement potential.

In the paper ([9]) a semiclassical analysis of the high-energy eigen-states of an electron inside a
closed resonator was described. On the basis of numerical analysis carried out by finite element method
(FEMLAB), it was established that these high energy eigen-states are excited in the intersection of
waveguide and resonator by a waveguide traveling mode. In the case of resonance excitation of a
high-energy eigen-state (Fermi energy of the incident mode coincides with the closed resonator eigen
energy), the transmission of waveguide through resonator is blocked. Firstly, this effect was discover
on the basis of FEMLAB for single-mode waveguide propagation ([9]). The mathematical model
generated in FEMLAB studying a waveguide propagation through resonator is able to takle only
single-mode propagation. It encounters computational difficulties for large values of Fermi energy
of travelling electron. The presented semiclassical analysis of the junction conductance works for a
multi-mode waveguide propagation, and it becomes more accurate the larger electron Fermi energy
is taken. In this talk full agreement is shown between the FEMLAB computations and the results
obtained by semiclassical analysis of the junction conductance for the case of one mode waveguide
propagation. It is near the border between the resonance and high energies bands. For larger electron
Fermi energy and two modes waveguide propagation, we demonstrate that the blockage of waveguide
propagation by excited resonator takes place again. It is due to excitation of a high-energy eigen-states
based on stable periodic orbits. Such type of mesoscopic device may be considered as an ideal filter
for electronic transport through semiconductors.

References

[1] Datta, S., 1995 Electronic transport in mesoscopic systems, Cambridge University Press, Cam-
bridge.

[2] Mello, P. A., Kumar, N., 2004 Quantum transport in mesoscopic systems, Oxford University
Press, New York.

[3] Stockmann, H. J., 2000, Quantum Chaos. An Introduction, Cambridge University Press, Cam-
bridge.

[4] Schwieters, C.D., Alford, J.A. and Delos, J.B. Phys.Rev.B. 54, N15, 10652 (1996).

[5] Beenaker, C.W.J. Rev. Mod. Phys. 69, 731 (1997).

[6] Blomquist, T. and Zozoulenko, I. V. Phys.Rev.B. 61, N3, 1724 (2000).

[7] Jalabert, R. A., Baranger, H. U., Stone, A. D. Phys.Rev.Lett. 65, N19, 2442 (1990).

[8] Borovikov, V. A. and Kinber, B.E., 1994 Geometrical theory of diffraction, IEE, London, UK.

[9] V. V. Zalipaev, F. V. Kusmartsev, and M. M. Popov, J. Phys. A: Math. Theor. 41, 065101 (2008).



DAYS on DIFFRACTION’2010 91

Stationary phase based asymptotic analysis of inter-pulse
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In this work, we investigate the formation of cross-correlation patterns generated by a frequency
comb laser in dispersive media. The source consists of equidistant pulses which contain modes only at
specific frequencies. Each pulse has a fixed phase relation with every other pulse yielding a discrete
spectrum with regularly spaced frequencies ωm = mωr + ω0 where ω0 is the common offset frequency,
m is a non-negative integer and ωr is the repetition frequency fr expressed in angular notation ωr =
2πfr = 2π/Tr and Tr = 1/fr. Here Tr is the time distance between the pulses. The field of the pulse
emitted by the laser, propagating in the direction of positive x, at x = 0 can be written as

E(0, t) =
∞∑

m=0

Am cos [(mωr + ω0) t+ φm] (1)

where Am is a real amplitude and φm is a phase. We consider the problem of the pulse propagation in
a dispersive unbalanced interferometer. It can be shown that the discrete spectrum of the laser yields
discrete cross-correlations that can be described by a series as

Γ(X) =
∞∑

m=0

|am|2 cos
[
(mωr + ω0)n (mωr + ω0)

X

c

]
(2)

where am = Am exp(iφm), X = x2−x1 is the delay distance, and n() is a non-linear function denoting
the dispersion properties of the medium. When the pulses emitted from the frequency comb laser
propagate in a non-linear dispersive medium, the resulting cross-correlation patterns are distorted.
This distortion at a short length scale is non-linear and relaxes to linear broadening for longer length
scale. We observe that the cross-correlation distortion and the interference fringe formation cannot be
simply understood by using the discrete cross-correlation model (2). Therefore, we used the Poisson
summation formula to extend the formalism to an integral-based continuous model [1]. The continuous
model is found to be more helpful in understanding the dispersion effects on cross-correlation functions.
Furthermore, to study the asymptotic behaviour of the cross-correlations formed in the unbalanced
interferometer for very long distances, we used the method of stationary phase [2]. From this analysis
it is seen that the contributing stationary frequency remains constant in the evolution of a particular
optical fringe in the correlations found periodically at increasing delay distances.
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Flexural-gravity wave scattering by heterogeneities
in an elastic plate floating on water
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In this paper we consider the scattering of a flexural-gravity wave propagating on a thin elastic
plate by an arbitrary number of infinitely-long parallel straight line heterogeneities. The plate is
partially submerged into an ideal incompressible fluid of finite constant depth and covers its entire
surface. The plate’s heterogeneities are specified via boundary-contact conditions. We consider three
following conditions: the plate is clamped, hinged or cracked along a line. The problem is designed
to model a pontoon-type very large floating structure [1-7] which is either supported by a number of
fixed columns to the sea bed, or tethered by extensible mooring lines. Cracks also may occur between
adjacent plates making up the structure. Exact mathematical formulation of the problem is given.
Exact expressions are obtained for the wave field in the fluid and the flexural field in the plate. The
transmission coefficient of the incident flexural-gravity wave from infinity and its reflection coefficient
are determined. The internal forces which arise in the supports are found. The existence of the
resonant phenomena which follows to the perfect transmission of the wave is shown. The problem
is also solved for two approximate models of water depth: infinite and shallow. Numerical results
obtained are compared to determine the validity ranges of these models.
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The paradox of zero forward-scattering in
relation with the optical theorem
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Metamaterials and exotic material properties have raised a strong interest in recent years for
cloaking and transparency, as well as other anomalous scattering phenomena. In this regard, one
of the recognized venues to metamaterial cloaking, the plasmonic cloaking technique, put forward in
2005 [1], has been often associated with the anomalous scattering from small nanoparticles coated
by ”complementary” permittivity materials, which were shown few decades earlier by Kerker [2] to
provide identically zero scattering in the static limit.

We will talk here about a different and less known anomalous scattering property of magnetodielec-
tric nanoparticles in the static limit, also put forward by Kerker [3], which consists of the interesting
theoretical possibility of conceiving objects that may provide identically zero scattering in the for-
ward direction, despite significantly larger scattering in any other direction. Recent experimental and
theoretical papers on the topic have further discussed this possibility in more realistic scenarios [4-8].
Inspecting some of their analyses, it seems indeed possible to conceive a significant scattering pattern
presenting a sharp minimum (but not identically zero) in the forward direction and a much stronger
scattering in all other directions. However, from a theoretical standpoint, it is well known that the
total scattered power from any object has to be proportional to a portion of the scattered field in the
forward direction, implying that zero (or near-zero) forward scattering should be synonymous to zero
(or even closer to zero) total scattering, regardless of the nature of the object and of its design! Using
analytical theory and an accurate scattering formulation, in this talk we will discuss the nature of this
apparent optical paradox and the limitations of this phenomenon in practical situations. In this way,
we show that the optical theorem is indeed satisfied and we will shed some light on theoretical and
experimental papers on the topic, showing relevant missteps in some of their physical interpretation,
and discussing the general possibility of verifying these effects in practice. Moreover, we will relate
this discussion to the recent interest in cloaking applications using exotic artificial materials, and in
particular on the possibility to achieve minimum-scattering devices.
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The interest in artificial materials and metamaterials composed of short loaded wires has led in
recent years to a revived interest for simplified, but accurate models for the scattering and receiving
properties of dipole antennas [1-2]. Currently available models that calculate the scattering and
receiving properties of these antennas are often oversimplified and they are easily shown not to satisfy
basic constraints on power conservation. This interest has developed independently, but in parallel
with a revived interest for circuit equivalent models of receiving antennas, for which recent discussions
have pointed out how power relations may not always hold in their circuit representation [3-5].

In this talk, we present an improved and self-consistent analytical model for the approximate
current distribution induced on an arbitrarily loaded wire antenna of moderate length operating in
its receiving operation. We derive interesting novel closed-form conditions on the values of input
impedance parameters of an arbitrarily loaded wire, and we relate these quantities with its approximate
current distribution models and with a novel accurate expression for its polarizability.

The results of our analysis not only shed some new light on a debated issue regarding the circuit
model of receiving antennas, and improve currently available simplified analytical models for receiving
dipoles, but are also shown to be of great interest to the proper homogenization of composite materials
and surfaces formed by loaded short wires, and to minimum-scattering receivers and absorbers.
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Microwave heat of copper powder with varying particle size
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In recent years, using of microwaves for heating has extended to compacted metal powders. Mi-
crowave heating is more preferred than conventional due to its various advantages such as: time and
energy saving, rapid heating rates, considerably reduced processing cycle time and temperature, fine
microstructure and improved mechanical properties, better product performance, etc. There are a lot
of experimental and theoretical publications in microwave heating of metal powders. But mechanisms
of microwave heating of metal powders have not yet been explained clearly. In the study [1] was
obtained that as particle size increases the heating rate decreases and the heating rate increases as
the porosity increases.

This work is a theoretical verification of experimental paper [1] where microwave heating curves
of copper powder with varying particle size and porosity were obtained.

Approximate theoretical model for calculation of microwave heating of copper powder is suggested
in this work. Copper particles are covered with thin oxide shells. We use effective medium approx-
imation to take into account the impact of this shell on the effective permittivity and permeability.
We use Mi theory to take into account the impact of skin-effect on the permeability of the copper core
[2]. Electric and magnetic fields penetrated into copper powder are calculated using transition matrix
method.

Fig.: Calculated heating curves of copper powder as a function of particle size.
Theoretical heating curves of copper powder are obtained in the present study (fig. 1). And these

results are in a good qualitative correspondence with the experiment results [1]. Presence the oxide
shell onto the copper cores provides the penetration of the electromagnetic waves into the volume of
the copper powder. And heating of the powder is provided by complex effective permeability of the
copper core appeared due to skin effect and magnetization of the particle.
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Transformation electromagnetics [1] enables the design of exotic devices for the manipulation of
electromagnetic waves in ways that are not occurring naturally. The most prominent application so far
has been the cloak of invisibility [1], a structure that can be constructed using dispersive metamaterials
[2]. The cloak of invisibility and other interesting transformation electromagnetic based devices, such
as the field rotator, concentrator and the optical clack hole, will be studied in this presentation. So
far, however, such devices have been mostly studied under single frequency plane wave illumination
[3], which effectively ignores their inherently dispersive nature. For example, the investigation of the
cloaking bandwidth has been very limited in the literature to mostly analytical treatments [4].

In this presentation, we will examine the steady-state and transient responses of transformation-
based devices. The goal is to demonstrate their bandwidth performance and better understand the
physics involved in their frequency response. This is achieved using the robust and efficient dispersive
radially-dependent FDTD numerical technique [5], which will be thoroughly explained during the
presentation. This numerical modelling method is advantageous compared to the Finite Element
Method (FEM) used in previous works [6], since the transient response and the operational bandwidth
of a device can be easily computed. Dispersive FDTD also self-consistently accounts for the frequency-
dependent effects of the electric and magnetic components that arise in resonance-based metamaterial
structures.

The FDTD simulations of the lossless and lossy (tan δ = 0.1) cylindrical cloaks, after the steady
state has been reached, can be seen in Fig. (a), (b), respectively. More results will be presented at
the conference.

Fig. Magnetic field (Hz) amplitude distribution of the lossless (a) and a lossy (b) ideal cylindrical
cloak.
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Optimal parameters of metallic nanorods
arrays for subwavelength imaging
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Arrays of metallic nanorods are capable of transmitting images with subwavelength resolution
[1,2]. There are two typical geometries of such arrays, suggested by A. Ono, J. Kato, S. Kawata
[1] and M.Silveirinha, P.Belov, C.Simovski [2] for different frequency ranges of optical spectrum. In
this work we examine the geometries in order to identify optimal parameters of the structures which
enable best imaging performance. In the case of A.Ono et al the length of rods can be tuned so that
imaging of cophasal sources is possible. This tuning provides much better range of applications of the
nanorods arrays by providing possibility of imaging arbitrarily shaped sources. These improvements
may dramatically change operation of cascaded geometries suggested in [3] for colour subwavelength
imaging. In the case of M. Silveirinha et al the tuning of the rods diameter provides wider opera-
tion bandwidth. The optimum diameter is approximately equal to half of the square lattice period.
Astonishingly, the arrays of thicker rods are capable of operating with sources located at significant
distances away from the front interface. The arrays in such regime operate very similarly to perfect
lens [4], but the distance through which the sources can be detected is limited by the periodicity of
the structure rather than the thickness of the slab as in the case of the perfect lens.

P. Belov acknowledges financial support by EPSRC Advanced Research Fellowship EP/E053025/1.
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Nonreciprocal transmission of surface microwaves along
“ferrite-grating of resonant elements” metasandwiches
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First unique effect of giant nonreciprocal transmission (up to 35 dB) has been discovered in “trans-
versely magnetized ferrite plate” grating of resonant double split rings metasandwiches, arranged at
distance of a quarter of the waveguide width from the narrow side wall in a rectangular waveguide
[1]. In [2] nonreciprocity was observed in situations when nonreciprocity is absent without a resonant
grating. So, the effect was observed when the metasandwiche was placed in free space or along the
waveguide axis. These effects take place with both chiral elements and electric-dipole elements (polyg-
onal nonconvex loops and zigzag dipoles) [2, 3]. Therefore theoretical investigations of wave processes
around gratings of resonant elements are of interest.
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The paper under presentation is devoted to theoretical study of surface microwaves formed by a
bianisotropic layer (BL) as well by a metasandwich “ferrite plate – bianisotropic layer”. Bianisotropic
layers simulate gratings of resonant elements. When resonant elements are identically oriented double
split rings or other chiral elements it is supposed that the BLs matter possesses permittivity and
permeability with nonzero and different from each other diagonal components , εjj = εj , µjj = µj(j =
x, y, z) and the nonzero components κyz = κT

zy = κ of chiral tensors. When resonant elements are
electric-dipoles the BLs permeability is unit tensor, and chirality is absent. We suppose that a ferrite
permittivity ε is isotropic, and tensor permeability possesses elements µ and ±iµa , as usually [4].
To allow for dissipation of electromagnetic energy by a ferrite, µ and µa are assumed to be complex
numbers.

Figure : A bianisotropic-ferrite metasandwich in free space; k and E are the wave vector and electric
field of an incident wave, H0 is a magnetostatic field.

The dispersion equation has been got. The distribution of energy fluxes and the polarization of the
magnetic field of surface waves of BL have been studied. Dispersive characteristics of the metasand-
wich have been found. Some basic transmission laws for the waves in the metasandwiches ferrite plate
bianisotropic layer have been revealed. These laws include the nonreciprocity of microwaves transmis-
sion along the metasandwich placed in free space, the manifestation of the transmission nonreciprocity
near the resonance in the grating elements, the change in the nonreciprocity sign by transference of the
ferrite plate to opposite side the BL, dependence of the nonreciprocity sign on the relative positions
of the ferromagnetic resonance and the resonance in the BL elements, and (qualitative) independence
of the observed effects on the design of the grating elements (they are chiral or electric - dipole). All
these peculiarities were experimentally observed in [1-3, 5].
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In our presentation we consider an optical metamaterial consisting of spatially periodically repeated
nanolayers of metal and dielectric. Such the metamaterial possess plenty of unique electromagnetic
properties. For instance, it can transmit evanescent waves from one of its surfaces to another one.
This property could be used to create superlenses, which is capable of transforming evanescent waves
to propagating ones. Also, the metamaterial under consideration could be applied in subwavelength
microscopy, as image magnification possibility recently was demonstrated in a number of works [1-5].
Another useful applications include nanolithography [6], as well as cloaking [7].

In order to describe such metamaterials method of local homogenization is in widely use. However,
we will show that in the multilayered metal-dielectric nanostructure there are effects of strong spatial
dispersion, which cannot be avoid. As expected, a local model does not provide satisfactory description
of the metamaterial’s electromagnetic behaviour because it does not depend on the wave vector. The
latter is necessary for description of spatially dispersive effects. Thus we need nonlocal homogenization
theory.

A method of nonlocal homogenization has been proposed by Mario Silveirinha in 2007 [8]. The
main idea consists in excitation of system by an external electric current with certain field distribution.
Solving Maxwell’s equations with such a continuous source, it is possible to calculate average electric
fields and then find the effective nonlocal dielectric permittivity εeff(ω,k) depending on a wave vector
k by means of the following expression:

Dav = ε0Eav + Pg = ¯̄εeff(ω,k)Eav ,

where Dav, Eav - average electric displacement and electric field, and Pg polarization.
We apply the given method to the special case of a multilayered metamaterial. Solutions of

Maxwell’s equations are written in the form of the sum of three components: direct and backward
waves (eigenmodes of the structure), and the induced component caused by an external current, which
is the solution of the equations for infinite space. Amplitudes of direct and backward waves are found
by solving the system of the linear equations. Then from expressions for these amplitudes average
electric fields are calculated. Finally we obtain analytical expressions for components of the nonlocal
dielectric permittivity tensor ¯̄εeff of the multilayered metamaterial in directions along the layers and
normal to the layers. Expressions obtained are fully spatial dispersive as they depend on the wave
vector k.
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Recently, plasmon-polariton resonances of metallic nanoparticles have received much attention due
to their exotic electromagnetic properties. By choosing the shape of the particles, it becomes possible
to engineer both scattering and near-field properties, promising in, e.g., near-field microscopy, bio-
sensing, optical antennas, solar cells, etc. A pair of closely placed metallic nanorods forms a strongly
coupled system, whose properties are strongly influenced by the dimer geometry. Such a nanorod dimer
can act as an optical nano-antenna or as a resonant unit cell of optical metamaterial. Metamaterials are
known to possess unusual physical properties rare or absent in naturally occurring media. Two notable
examples are (i) giant optical activity in materials made of spiral-like or otherwise twisted elements
(“meta-atoms”) and (ii) planar chirality if the meta-atoms possess 2D rather than 3D enantiomeric
asymmetry. Such planar chiral metamaterials (PCMs) have polarization eigenstates that are elliptical
and co-rotating, unlike 3D chiral or Faraday media. This leads to exotic polarization properties such
as asymmetry in transmission for left-handed vs. right-handed circularly polarized incident wave.

In this presentation we introduce a simple but powerful model for the metallic nano-dimer within
dipole-dipole approximation. Resonances of an isolated nanorod are governed by the coupled elec-
tromagnetic and surface plasmon excitations of the particle and determined by the nanorod material
and size. For particles much smaller in size than the wavelength of the incident wave the dominant
contribution to the fundamental resonance is seen to be dipole in nature. If a particle is sufficiently
elongated in one dimension, only the longitudinal plasmon-polariton excitation contributes to the fun-
damental resonance. The proposed model employs this to derive explicit analytical expressions for
effective dipole, quadrupole, and magnetic dipole polarizabilites of a dimer.

These calculated polarizabilities can be used to further determine the extinction and scattering
cross-sections of an individual dimer meta-atom, as well as the effective material tensors of a PCM
composed of such meta-atoms. The results in Figure 1 show a reasonable agreement with direct
numerical simulations. Analytical nature of the model facilitates an efficient and systematic study of
dimer-based nano-antennas and metamaterials. By varying the length of the rods and their placement
in the dimer, it is possible to arrive at the geometries that maximize the scattering efficiency of an
antenna or that provide the desired planar chiral properties. The model lends itself to a straightforward
generalization to describe both PCMs and 3D chiral metamatetials within a single framework.

Figure: (Left) Gold nanorods dimer. Extinction cross-section of a pair of parallel gold nanorods of
different length. One rod has fixed length l1 = 80 nm, distance between rods is d = 100 nm. Com-
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parison of the dipole-dipole model and direct numerical simulations is shown. (Right) Planar chiral
metamaterial. Numerical (top) and analytical (bottom) dependence of the transmittance difference
for left-handed vs. right-handed circularly polarized waves for different inter-rod distance. Unit cell
consists of a pair of copper mm-scale rods rotated 45 degree with respect to each other. Rods lengths
are l1 = 13 mm and l1 = 10 mm.

Acoustic metamaterials

Johan Christensen

Instituto de Optica - CSIC Serrano 121, 28006 Madrid, Spain

In this lecture I will start out with a brief review on sonic metamaterials that are man-made
structures enabling the design of exotic properties, such as negative mass densities, subdiffraction
limited focusing and resonant blockage of sound [1,2]. Metamaterials gain their material properties
from geometrical parameters rather than their chemical composition. In this context we demonstrate
how to obtain quasi-perfect lensing (see Fig. 1) by means of a perforated steel plate, which is able to
serve as an imaging device when Fabry-Perot resonances are excited within the holes [3,4].

The mass conservation equation constitutes the bulk modulus (spring constant or compressibility
for air) and governs linear acoustics. With a so-called acoustic double fishnet structure we show how
the effective bulk modulus can be tuned to negative values, giving rise to a complete suppression
of sound transmission. This negativity implies that a fluid element in the structure on resonance is
expanding upon compression, hence exhibiting a negative group velocity [5].
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In the last decade, a new class of artificial composite materials called electromagnetic metamaterials
or left-handed materials (LHM) has emerged. LHM are produced using “particles” such as split-ring
resonators and nanowires as their structural units, and they exhibit unusual electromagnetic properties
like the simultaneously negative permittivity and permeability. In the theoretical work of Veselago,
it was shown that left-handed materials have a negative index of refraction (and, hence, negative
phase velocity), inverse Doppler effect, and radiation tension instead of pressure. These properties
are related to the fact that the Poynting vector in these materials is antiparallel to the wavevector,
i.e., the electric field, the magnetic field and the wavevector of a plane electromagnetic wave form a
left-handed system of reference.

We investigate the transmission and reflection properties of lossy structures involving left-handed
materials with graded permittivity and permeability. An exact analytical solution to Helmholtz’
equation for a lossy case, with the graded real parts of permittivity and permeability profile changing
according to a hyperbolic tangent function along the direction of propagation, is presented. We obtain
the exact analytic expressions in the closed form as well as the graphical results for the field intensity
along the graded structure. The model straightforwardly allows for arbitrary spectral dispersion
function.

Thus we consider the transmission and reflection properties of lossy structures including left-handed
materials with graded permittivity and permeability. Such structures, with neglected losses, were
studied in the framework of metamaterial gradient index lenses by a few authors, who have shown that
this provides an additional degree of freedom that can be used to reduce geometrical aberrations. A
gradient metamaterial lens was also demonstrated experimentally by Smith. Theoretical investigations
of structures including left-handed materials with graded permittivity and permeability has been done
only very recently.

Here we present an exact analytical solution of Helmholtz’ equation for the propagation of electro-
magnetic waves through a lossy graded metamaterial structure. We choose a graded profile for which
the real parts of both the permittivity and the permeability vary according to a hyperbolic tangent
function, such that there is a perfect impedance match between the RHM and LHM Media.

Investigation of electrodynamic properties of multilayer structures from
biisotropic materials by means of nonlocal bilateral boundary conditions

V. T. Erofeenko, S. V. Maly

Belarusian state university, Minsk, Belarus
e-mail: erofeenko@bsu.by, maly@bsy.by

Multilayer structures find wide application in various fields of optics and the microwave techniques
(radio absorbing coats, frequency-selective and polarizable filters, radio transparent antenna radoms,
one-dimensional photon crystals, antireflection films). In this connection, investigation of electromag-
netic performances of the stratified structures consisting from biisotropic materials is of interest.

The rigorous solution of the following diffraction problem was obtained. In the free space R3 with
the permittivity and permeability ε0, µ0 stratified structure D(0 < z < ∆, consisting from n layers
Ωs(zs < z < zs+1), s = ¯1, n, z1 = 0, zn+1 = ∆ is allocated. Layers consist from biisotropic materials
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with electromagnetic parameters εs, µs, Zs, Gs. From a half-space D1(z < 0) on the screen D the plane
electromagnetic wave �E0, �H0 with arbitrary direction of propagation and polarization was incident.

Let’s designate: �E′
1,
�H ′

1 - scattering field in D1; �E1 = �E0 + �E′
1
�H1 = �H0 + �H ′

1 - total field in D1;
�E2, �H2 - the field which has transited in region D2(z > ∆); �E(s), �H(s) - field in layers Ωs.

Boundary-value problem statement. Field equations

rot �E(s) = iω(µs
�H(s) + Zs

�E(s)), rot �H(s) = −iω(εs �E(s) +Gs
�H(s)) in Ωs, (1)

rot �Ej = iωµ0
�Hj, rot �Hj = −iωε0 �Ej in Dj , (2)

where εs, µs, Zs, Gs - the arbitrary complex quantities.
Boundary conditions on planes Γs(z = zs) (s = 1, 2, ..., n + 1)

(�Es−1
τ − �Es

τ )|Γs = 0, ( �Hs−1
τ − �Hs

τ )|Γs = 0, (�E(−1) = �E1, �H
(−1) = �H1, �E

(n+1) = �E2, �H
(n+1) = �H2) (3)

Boundary conditions of infinity.
For the problem solution (1) (3) the nonlocal bilateral boundary conditions linking fields on either

side of the screen are used

�E2τ |Γn+1 = (B11
�E1τ +B12

�H1τ )|Γ1 , (4)

which are equivalent to the system of boundary conditions (3) in case of monochromatic fields [1,2].
The technique of the solution of diffraction problems on stratified structures from biisotropic ma-

terials is used for investigations of electromagnetic properties of the one-dimensional photon crystals,
the electromagnetic screens, radio absorbing coats. Influence of biisotropic material parameters on
electrodynamics performances of stratified structures is presented.

References

[1] D.Y. Haliullin, S.A. Tretyakov, “Generalized impedance boundary conditions for thin layers of
different media,” Radiotechnics and Electronics, 43(1), 16-29, 1998, in Russian.

[2] V.T. Erofeenko, D.P. Tavakkoli, “Models of the boundary conditions in electrodynamics on screens
and shells with distributed inhomogeneities,” Proceedings of the National Academy of Sciences of
Belarus, No.1, 40-45, 2008, in Russian.

Homogenization of arrays of nanorods
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A metamaterial made of nanorods arranged periodically in two directions of space is considered
in the low frequency regime. The materials constituting the nanorods can be a dielectric or a metal.
The effective permittivity and permeability tensors are derived. It is shown that a magnetic activity
is possible for dielectric rods while the effective medium is non-local for metallic rods.

A lot of efforts have been made to describe the effective properties of metamaterials [1, 2, 3].
However, the complexity of these structures is generally an obstacle to a rigorous theory. In the
present work, we consider a structure that is a bidimensional periodic array of finite length nanorods.
Using a multiple scale approach, we derive rigorously the effective behavior of the metamaterial. The
domain of validity of the results is precised by numerical experiments.
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Homogenization. The behavior of dielectric rods is the same as the one obtain for infinitely long
rods [3]. Let us simply describe here the behavior of ohmic nanorods. In that case, the medium has a
strong spatial dispersion, the displacement field D being given by [4]: D = ε0(E + iPe3), where P is
a polarization field satisfying a propagation equation, with the vertical component of the electric field
as a source term:

∂2P

∂x2
3

+ (k2 +
2iπγ
κ

)P = 2iπγE3, (1)

here κε0ω is the total conductivity of the wires over the entire medium and 1/γ = d2 log( d
2πa). To these

relations one should add the boundary condition: ∂J
∂x3

= 0 on the top and bottom of the structure.
Clearly, in that case it is not possible to define an effective local permittivity.
Acknowledgements. This work was realized in the framework of the ANR contract POEM PNANO
06-0030. Support from the Institut Universitaire de France is gratefully acknowledged.
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Light transport in disordered metamaterials made of nanorods
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Light transport in two-dimensional disordered metamaterials made of high-permittivity rods is
studied theoretically. Different regimes of transport are observed and explained in terms of coupled
electric and magnetic dipolar resonances. Light propagation at frequencies close to the magnetic dipole
resonance is shown to rely on hybrid, necklace-like, states.

All-dielectric metamaterials have attracted much attention recently because of their potential abil-
ity to manipulate light without loss at optical frequencies [1]. Dielectric nano-rods in s-polarization
have been shown to support overlapping electric and magnetic dipole resonances, yielding a left-handed
behavior in periodic arrays of them [2, 3]. Interestingly, experiments by Peng and coworkers [2] re-
vealed that this behavior was not particularly sensitive to structural disorder. Previous studies had
also shown that photonic band gaps could resist a relatively high degree of disorder [4]. Actually,
disorder is of critical importance for nanophotonics applications and is known to result in complex
optical phenomena [5].
Light Transport. In this work, we study light transport in disordered arrays of high-permittivity
nanorods by means of the scattering matrix method [6]. Such arrays are shown to exhibit three
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distinct regimes of transport, described by positive and/or negative effective permittivity εeff and
permeability µeff (in s-polarisation). We find that disorder has only a weak effect on the “dielectric”
optical features of the structure, i.e. right-handed bands (εeff > 0, µeff > 0) and photonic band gaps
(εeff < 0, µeff > 0). The existence of an artificial magnetic activity at frequencies close to the magnetic
dipolar resonance is evidenced by calculating the total magnetic moment. The structural disorder is
found to play a critical role on light propagation in the double-negative (εeff < 0, µeff < 0) frequency
range. Microscopically, light transport is supported by hybrid modes assimilable to necklace states [7].
Acknowledgements. This work was realized in the framework of the ANR contract POEM PNANO
06-0030. Support from the Institut Universitaire de France is gratefully acknowledged.
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Meeting the phase requirement for an EBG resonator antenna in
two bands using a single-band frequency selective surface
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In recent years, metamaterials have been considered for enhancing the performance of antennas
or for obtaining characteristics that are not easily attainable otherwise. Among them are the EBG
structures with special properties that are required to form EBG resonator antennas. Such antennas
have the advantages of low planar profile, high directivity and low cost of production. The main
resonator in such an antenna is an air cavity, which is bounded by two surfaces. One of the surfaces
is either a fully reflecting electric conductor or a fully reflecting artificial magnetic conductor (AMC).
The other surface is usually formed by a strongly but partially reflecting EBG structure. 1-D, 2-D
and 3-D EBG structures have been considered for this purpose. In the 2-D case, it is essentially a
specially designed frequency selective surface (FSS) or a partially reflective surface (PRS). Both the
reflection coefficient magnitude and the phase of this surface are crucial to the performance of the
antenna. The reflection coefficient should be sufficiently large to achieve high gain. Its phase should
satisfy the cavity resonance condition at the operating frequency. These requirements have been met
by several groups, employing different methods. A wider operating bandwidth can be achieved by
designing the surface so that its phase increases with frequency, unlike in a standard PRS where the
phase decreases with phase. The authors recently presented two surfaces with such character, for
wideband EBG resonator antennas.
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Designing an EBG-resonator antenna to operate in two bands is more challenging because the
phase condition for cavity resonance has to be satisfied in both bands. Several methods have been
developed in the past to design dual-band EBG resonator antennas, including the application of multi-
layer EBG surfaces and the combination of a single-layer PRS with an artificial magnetic conductor
(AMC) ground. In this paper we explore another approach introducing a steep rise of reflection
phase, at a specific frequency, to the phase response of the surface. This can be achieved by making
the metamaterial inclusions in the surface to resonate at this frequency. Then, it is possible to meet the
phase requirement for cavity resonance at two frequencies, one below the surface resonance frequency
and one above the surface resonance frequency. Hence dual-band cavity resonance and dual-band
antenna operation can be achieved using a single-band surface.

As an example, we have designed a PRS with a 2-D periodic slot array etched on one side of
an FR4 substrate. At its resonant frequency of 11.4 GHz, it exhibits a steep rise in phase. When
a resonant cavity is formed using this surface and a conducting ground, the cavity resonates at two
frequencies, around 10.5 GHz and 12.3 GHz. The reflection magnitude of the surface is large enough
at these frequencies to support cavity resonance. When an EBG resonator antenna is formed using
this cavity, the antenna directivity peaks in two bands around these cavity resonance frequencies. The
peak directivities, predicted by full-wave electromagnetic simulations, at the two bands are 18.2 dBi
and 20.5 dBi, respectively.

It should be noted that the wideband EBG resonator antenna and this dual-band antenna need
different reflection phase curves. In the former, the phase should slowly increase with frequency over
the operating band. In the latter, it should increase steeply at or around one frequency.

Two-layered waveguide with superconducting film and
metamaterial slab: propagation below cutoff

M. V. Golovkina

Povolzhskiy State University of Telecommunication and Informatics, Samara, Russia
e-mail: nauka77@yandex.ru

It is known, that electromagnetic waves can amplify at interaction with some moving system, for
example with electron flow in backward-wave tube, when the velocity of electromagnetic wave is equal
to velocity of moving system. The electromagnetic waves amplification can take place also in structures
with thin superconducting film having electrodynamic parameters in the nonlinearity range of the dy-
namic mixed state [1, 2]. In this paper the electromagnetic wave propagation in two-layered waveguide
with thin superconducting film is considered. One layer is a double negative metamaterial, the other
one is an usual dielectric. This layers are divided by thin superconducting film having parameters
in the dynamic mixed state. In this case the external magnetic field directed perpendicularly to the
plane of the film penetrates into the superconductor in the form of Abrikosov vortex lattice. Under the
impact of transport current the flux-line lattice in the superconducting film moves along the interface
of the film with the velocity v. The dispersion relation for considered two-layered waveguide structure
is examined. The presence of thin superconducting film is described as boundary condition by reason
of the small amount of thickness. The propagation of TE modes is studied. It has been shown that the
amplification of electromagnetic waves because of the interaction between electromagnetic waves and
the moving Abrikosov vortex lattice is possible, when the velocity of electromagnetic waves is equal to
the velocity of vortex lattice. The combination of double negative metamaterial and usual dielectric
in considered waveguide structure brings to the existence of slow waves which effective interact with
flux-line lattice. As result the significant amplification is observed below a cutoff frequency of the
two-layered waveguide. The parameters of amplification or attenuation depend on value of external
magnetic field and transport current density. The dependency of amplification on external magnetic
field can be used by creation new controllable amplifiers and filters.
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Equivalent Surface Impedance of FSSs and Applications
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The extraction of an equivalent surface impedance (admittance) that describes the far field scat-
tering of an FSS can be based on a pole-zero technique. As a consequence the extraction of an
equivalent reactance reduces to the extraction of a set of alternating poles and zeros. An extension
of the technique that allows extraction of an analytical expression for the surface impedance of dipole
FSSs arrays as a function of the dipole lengths will also be described. This is based on the observation
that the dependence of the far-field response of FSSs as a function of frequency and as a function
of dipole length is similar. This extension allows for synthesis of dipole FSSs. Examples of applica-
tions in waveguides for dispersion compensated transmission as well as leaky wave antennas will be
demonstrated.

Figure 1: Fabricated prototype of a dispersion compensated waveguide: Measured and simulated
unfolded transmission phase of S21 (unfolded phase for transmission along 78 mm of unloaded x-band
waveguide shown for comparison).

Figure 2: (a) Time domain representation of the pulse at the output of 84.6 cm length of hollow
x-band waveguide, (b) and the loaded waveguide of the same length.
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Figure 3: (a) 1D Fabry-Perot leaky-wave antenna formed by a parallel-plate waveguide loaded with a
dipole-based FSS acting as a PRS and transverse equivalent network of the structure, (b) Radiation
pattern of the designed PRS-LWA (LFSS=8mm, f=15GHz).

Figure 4: E-plane normalised radiation pattern for 2-layer antenna 6 at a) low-end bandwidth fre-
quency 12.3GHz, b) upper-end bandwidth frequency 14.25GHz.

Modes of a metallic waveguide with the metamaterial insertion

N. V. Ilin, I. G. Kondratiev, A. I. Smirnov
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Currently, the waveguide properties of a single infinite layer of isotropic metamaterial with si-
multaneously negative permittivities (dielectric ε and magnetic µ, respectively) have been extensively
studied and discussed [1-5]. Detailed classification of the layer modes and description of the features
of their dispersion characteristics are given in [6, 7]. Influence of anisotropy is investigated in [8].

In this paper, we consider a metallic waveguide with the insertion of an isotropic metamaterial.
Such systems can be practically employed for the miniaturization of waveguide paths [9, 10] and the
creation of frequency filters and deceleration systems. The presence of metamaterial insertion allows
to efficiently manage the dispersion of propagating waves.

A single layer of isotropic metamaterial with negative permittivity and permeability supports only
slow the modes. In the presence of the metallic waveguide, both the slow and the fast modes are
possible. At the same time, the waveguide itself may be either subcritical or supercritical with respect
to the vacuum.

The influence of the waveguide results in the redistribution of energy fluxes in the vacuum and the
metamaterials, thus significantly affecting dispersion characteristics. For example, when reducing the
size of the waveguide, the forward wave transforms into the backward one. In the case, when initially
(without the waveguide) both the forward and backward waves coexist (i.e. the dispersion curve has
a bend), the decrease of the size of the waveguide causes the vanishing of the forward wave (the bend
vanishes).

By varying the parameters of the waveguide, one can control the position of the bend of the
dispersion characteristic and, in particular, localize the bend at the point of the transition from the
fast waves to the slow ones. This way, an interesting class of modes that have the fast forward wave
and the slow backward one can be implemented.
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For a few recent years the interest in metal-dielectric metamaterials, which form a large class of
nanostructured composite materials, has quickened [1,2]. Nanostructured metal-dielectric composites
exhibit fascinating optical properties at visible and near-infrared frequencies due to excitation of sur-
face plasmon modes. Such plasmonic systems, as two-dimensional (2D) arrays of metal nanoparticles
embedded in a dielectric medium have been attracting much attention. Surface-enhanced Raman
scattering (SERS) signal has a large value (as large as for arrays of silver or gold nano-disks) for such
structures. SERS enhancement factor for the nanostructured arrays are strongly dependent on the
ratio of composing particle diameter and inter-particle spacing [3,4].

Since the metal permittivity is negative in the optical frequency region and it is inversely propor-
tional to the frequency squared we can model a metal particle as an inductance L. The interaction of
a metal particle with electromagnetic (EM) field can be then presented as excitation of R-L-C con-
tour. Inductance L (with small losses described by resistance R) represents the metal particle while
capacitance C represents the gap between particles. The resonance in R-L-C contour is analogous to
the surface plasmon resonance in a single metal particle [4].

In this work the two-dimensional (2D) model of TM-wave propagation in dielectric medium with
array of duplicate silver nanoparticles and the same inter-particle distance was investigated. The cal-
culations of the numerical problem were obtained with COMSOL Multiphysics 3.4. For a few different
diameters of nanoparticles (200nm, 100nm, 50nm, 10nm) and the distance between nanoparticles
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(20nm, 10nm, 5nm, 1nm) the reflection factor of TM-wave through the system have been calculated.
The value of the ratio of particle diameter and inter-particle spacing was constant.

(a) (b)

Figure : (a) Reflection factor at array of silver nanoparticles with diameter D=100nm and distance
between nanoparticles d=10nm for different frequencies. (b) Number of created surface plasmon modes
in array of silver nanoparticles with diameter D=100nm and distance between nanoparticles d=10nm
for different frequencies.

It was shown, that the reflection of TM-wave at array of nanoparticles in the proposed model
nonmonotonic depends on frequency (fig.1 (a)) due to collective surface plasmon resonance in metal
nanoparticles. In some frequency range nanoparticles exhibit EM modes similar to whispering gallery
modes. Number of nodes in the mode depends on frequency (fig.1 (b)).

This work was supported by RFBR (Russian Foundation for Basic Research), Grant 09-02-01519-.
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The manganite-perovskite composites with left handed media properties seem to be e quite per-
spective structures for design of electromagnetic materials of GHz and THz bands [1]. In this paper,
we present experimental study of transmission properties of manganite-perovskite metamaterials in
microwave band.

In our research the specimen of strontium-doped lanthanum manganite La0.775Sr0.225MnO3
(manganite-perovskite) was used [2]. The specific property of this metamaterial is a phase transition
from ferromagnetic-metallic phase to the paramagnetic-dielectric one. The temperature of the phase
transition is 350 K. Two structures were considered: a) manganite- perovskite slab; b) manganite-
perovskite prism (Fig.a,b). The structures were loaded into single-mode waveguide section: a) waveg-
uide; b) H-plane T-junction. Transmission spectra of the manganite- perovskite structures have been
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Figure : Photo of of the investigated metamaterial structures: (a) manganite-perovskite slab, (b)
manganite-perovskite prism. (c)Transmission through manganite-perovskite metamaterial at various
magnetic fields.

experimentally studied for different thicknesses of perovskite slab in the frequency range of 20-40 GHz
and magnetic field range of 0-15000 Oe.

We have obtained the following results:
1) The transparency peak (double-negative region [1]) in the transmission spectra has been observed.
2) The influence of the metamaterial thickness on the peak amplitude has been registered.
3) The negative refraction of electromagnetic waves in the manganite-perovskite prism has been shown.
4) The magnetic field tuning of the transparency peak frequency position has been indicated.

Authors acknowledges to Prof. A. Pogorily (Imag NASU), Prof. A. Tovstolitkin (Imag NASU)
Prof. A. Belous (IGIC NASU) for the specimens presented. The paper is supported partially by
STCU grant N 4912.
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Microwave magnetic response of a cut wire
based on interaction with surface plasmons
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It is well known that metamaterials, containing chiral conductive inclusions, possess resonant
magnetic properties, which contribute to effective permeability, if microwave magnetic field induces
the resonant current in elements in dependence on orientation and size of elements. Permittivity is
due to excitation of currents and corresponding resonant effects by microwave electric field. Interest
in metamaterials is permanently renovated because of possibility to realize materials with artificial
magnetism containing not only chiral elements. This issue is discussed in many works. The emphasis
is given to a pair of metal rods or strips which can show a negative response to an electromagnetic
plane wave in the case when the electric field is parallel to the axis of rods and magnetic field is
oriented perpendicular to the plane of the rods [1]. The magnetic response to radiation is possible
because this magnetic field will cause anti-parallel currents in the two rods. The electric field induces
parallel currents and provides strong resonant electric response to radiation at similar wavelength.
But practically it is very difficult to separate magnetic and electric response and to be certain that
magnetic response is created.

Therefore search of another way of looking is urgent. In this presentation a microwave magnetic
resonant response of a single cut wire, or of a grating of wires, placed along the propagation direction
transversely to the electric field E of a plane electromagnetic wave is experimentally revealed and
identified for the first time. This phenomenon is observed when cut wires are placed near a meta-
surface SSP, which forms surface plasmons. A strong magnetic resonant response appears in the
domain of excitation of plasmons on a low-frequency side of the plasmonic resonance and depends on
the distance between a wire and SSP in the case of an asymmetrically located half-wavelength wire.
The response is identified as magnetic because a wire shows negative pass-band in a cutoff waveguide
and electric resonant response is impossible (a single cut wire is placed transversely to the electric
field). Analyzing pass-bands in cutoff waveguide one can testify magnetic or electric excitation of the
resonance [2]. The results are confirmed with different SSP, containing spirals, planar double split
rings, gratings of cut wires parallel to the E-field. Magnetic response is possible because incoming
inhomogeneous magnetic field of plasmons can possess necessary circular polarization to cause the
current in a wire and create magnetic response depending on a wire length and location. Tunable
magnetic resonance and plasmonic resonance are observed at different frequencies depending on design.

The possibility of exciting separate tunable magnetic and electric microwave resonances, as well
as combining and superimposing these resonances, is experimentally demonstrated for the first time.
These phenomena are observed in a three-layered meta-sandwich that consists of a wire grating as
a meta-surface SSP forming surface plasmons and two layers containing a single wire. The joint
magnetic-?electric resonance is excited depending on design and provides simultaneously negative
parameters.

Metamaterials, containing such elements, can be easy realized in microwaves and optics.
Interactions of plasmons with media are attractive because new effects have been observed with

ferrite [3] and new applications are predicted with active media [4].
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Analytical modeling of artificial impedance surfaces

O. Luukkonen∗, C. Simovski, S. Tretyakov

Department of Radio Science and Engineering, Aalto University
School of Science and Technology, Finland
∗Department of Electrical and Systems Engineering, University of Pennsylvania, PA, USA.
e-mail: olu@seas.upenn.edu

This lecture concentrates on analytical modeling of artificial impedance surfaces. We will make
an overview to our recent results on this field and concentrate especially on the oblique-incidence
excitation. We will represent some simple analytical formulas for the grid impedance of electrically
dense arrays of rectangular patches, for the surface impedance of high-impedance surfaces based on
such grids over ground planes, with or without metallic vias.

Artificial impedance surfaces are a branch of metamaterials, composed of a capacitive grid over a
grounded dielectric slab, whose electromagnetic response can be engineered depending on the applica-
tion. The interest towards the exotic features of high-impedance surfaces has increased tremendously
after the seminal paper [1] by D. Sievenpiper et al. in 1999, in which many promising applications for
such surfaces were proposed. In this lecture we will discuss our recent results in analytical modeling
of artificial impedance surfaces (see e.g. [2, 3, 4]), including design, optimization, and revise some
possible applications in absorbers and antennas. We will concentrate mainly on analytical modeling
of artificial impedance surfaces, in which the capacitive grid is composed of metallic patches. Also,
the effect of metallic vias in the grounded dielectric slab is discussed.

The main design challenges are the need to provide as uniform operation with respect to the
incidence angle (including also evanescent waves in the vicinity of sources or inhomogeneities) and as
broad frequency bandwidth as possible. As is usually the case, these requirements conflict with the
desire to have as thin and simple structure as possible. Recently, we have made a series of studies with
the goal to better understand physical phenomena in artificial magnetic conductors and find better
solutions for their design.

The first half of the lecture discusses the modeling of frequency selective surfaces such as the patch
arrays. Here we will concentrate on finding an averaged boundary condition for different capacitive
grids. We will also look into the possibility to use the extreme material properties of some novel
artificial electromagnetic materials favorably in the artificial impedance surface designs. This leads
us to a dual-resonance high-impedance surface design in which the plasma resonance of wire medium
is used. Finally, we will review some applications in which the discussed artificial impedance surfaces
could be used favorably.
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Homogenization of metamaterials on the
basis of average scattering matrixes
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For the description of electromagnetic properties of composites and metamaterials in practice
effective material parameter (permittivity, permeability, chirality and nonreciprocity) are widely used.
For calculation of these parameters various analytical, numerical and numerically-analytical techniques
are used. Effective material parameters generally are tensors values, that complicates their use at the
solving of electrodynamic problems. Use of effective parameters of the specified type can lead to errors
at modeling of the electrodynamic systems which characteristic sizes are comparable with the sizes of
structural heterogeneity of a metamaterial (surface layers of macroscopical volumes, thin layers, spikes
and edges, objects of the small wave sizes).

The approach to homogenization of composites and metamaterials, free from specified above dis-
advantages is offered. For the description of average electromagnetic properties of a metamaterial
the macro block containing a fragment of a non-uniform material is allocated. Blocks can have the
following form: a rectangle or a square - for two-dimensional problems; a rectangular parallelepiped
or a cube - for three-dimensional problems. By analogy to a method of the minimum autonomous
blocks (MAB) [1] electromagnetic characteristics of the non-uniform block are described by an average
scattering matrix in relation to the waves propagating in virtual wave guides, connected to the parties
or block sides. On walls of virtual wave guides periodic boundary conditions are set. The order of an
average scattering matrix is equal: 4 - for two-dimensional problems; 12 - for three-dimensional prob-
lems. The average scattering matrix completely describes electromagnetic properties of a fragment
of a composite at any modes of excitation and does not demand preliminary or subsequent definition
traditionally used effective constitutive parameters.

Various techniques of calculation of average scattering matrix elements, based on the MAB method
and on the finite elements method are offered. Frequency dependences of scattering matrix elements
for non-uniform blocks with various internal structure and material structure are investigated. It is
shown that average scattering matrixes do not concede to the description of material parameters of
composites and metamaterials by tensor values.

The solving of electrodynamic problems with use of average scattering matrixes is possible on
the basis of the MAB method with use of recomposition, iterative or hybrid algorithms. Within the
limits of this approach non-uniform blocks are a part of the decomposition scheme along with usual
homogeneous MABs.

Examples of use of the developed method of homogenization for research of electrodynamic systems
which structure includes the metamaterials containing spirals, the opened rings, metal-dielectric strips
etc. are presented.
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Channelling Casimir’s force: ultra-long range Casimir-Polder
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In 40’s of the last century, a Dutch physicist Hendrik B. G. Casimir predicted [1] that two elec-
trically neutral metal plates in vacuum attract when positioned close enough one to another. This
attraction is due to the quantum fluctuations of the electromagnetic field in the space that separates
the plates. When this space is filled with a high-permittivity liquid and one of the plates is replaced by
a low-permittivity dielectric, the sign of the force is flipped and the interaction becomes repulsive [2].

The force between parallel plates decays rather quickly: as 1/a4, where a is the plate separation.
This behavior of the force is easily predictable with a dimensional analysis: the only combination of
the Plank constant �, the speed of light c and the plate separation a that has the dimension of the
force per unit surface is �c/a4. Usually, at distances of about several hundreds of nanometers Casimir’s
forces are rather weak (from a macroscopic point of view) and are of the order of micronewtons per
square centimeter.

In the parallel plate geometries that had been considered so far the separation a was the only
geometrical parameter of the system. What will happen if we add more? Effectively, what will happen
if we replace the vacuum in between the plates with a metamaterial that has certain microstructure? In
this presentation we study the case when such an intermediate agent is the uniaxial wire medium with
nanowires oriented orthogonally to the plates. With a rigorous proof, we show that the additional
geometrical parameter in this case is the area b2 per a single wire (the unit cell area of the wire
medium). Respectively, the Casimir’s force becomes proportional to �c/(ba)2. Such a force is much
stronger at large separations and may be observable even at tens of microns.

The physical reason for this enhancement in the force at large distances is that the quantum
fluctuations of the electromagnetic field are effectively guided by the nanowires, in a manner similar
to channeling of the near field that happens in wire lenses [3]. In wire lenses, as well as in the system
that we consider, each wire plays a role of a separate channel whose characteristic cross-section is b2.
When a 	 b these channels are effectively unidimensional. It is known that in the unidimensional
equivalent of the volumetric parallel plate system the Casimir force is proportional to �c/a2. Taking
into account that in our problem there are 1/b2 effective channels per square meter we immediately
obtain the expression for the force mentioned in the previous paragraph.

When compared to the usual Casimir forces, the long-range forces in wire media are stronger by
the factor (a/b)2. Such an enhanced attraction results in what might be called “quantum super glue”
effect. Not only attractive forces can be enhanced. We have studied several configurations in which
exist long-range repulsive forces. Moreover, the effect of channeling of the quantum fluctuations in wire
media can be controlled if one can control the conductivity of the nanowires, their separation and (or)
orientation. This opens interesting perspectives in micro- and nano-technology where a fine control
over the interaction of the exceptionally tiny parts of the micromachines is a necessary requirement.
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Spatial dispersion from a quasi-static model: crossing wires and patches
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In 2003, in a joint publication [1] we demonstrated that the dielectric response of uniaxial wire
media was strongly non-local even at very low frequencies. The following wave-vector dependent
expression for the longitudinal component of the dielectric permittivity of these media was proposed

εzz(ω,k)
ε0

= 1 − ω2
p

ω2 − (kzc)2
, (1)

where ωp was the effective plasma frequency of the wire medium. The physical mechanism of this
spatial dispersion, however, was not explained in detail in [1]. This was done in [2], based on a simple
quasi-static model of wire medium reported in [3]. Later in [4], Demetriadou and Pendry gave a
similar explanation, indicating the charge accumulated on the wires and the low effective capacitance
of the wires as the main factors resulting in spatial dispersion in wire media. The same authors also
mentioned some possibilities how to make the dispersion effects less pronounced.

Recently, in [5] we have extended the model of [3, 2] to include classes of wire media with several
subsets of intersecting wires and wires loaded with metallic objects and/or impedance insertions.
In short, our model treats the wires as objects of certain effective capacitance and inductance per
unit length. These effective parameters are found under a quasi-static approximation. The dielectric
permittivity is then obtained by relating the current induced on the wires with the average electric
field in the medium. In this presentation we will give an overview of our quasi-static model paying
special attention to physical mechanisms that are responsible for the non-local effects in wire media
and to the ways how to control them.
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A critical review of extraordinary transmission phenomena
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Unexpected high transmissivitty of light through electrically small holes made in opaque metal
screens is called, since the discovery of the phenomenon twelve years ago, as extraordinary optical
transmission (EOT) [T. W. Ebbesen et al., Nature, 391, pp. 667-669, Feb. 1998]. Transmission
efficiencies larger than one were measured in the original experiments. The phenomenon seems to
be in apparent contradiction with Bethe’s theory for small apertures and even with the optimistic
predictions of ray optics. In spite of the word “optical”, enhanced transmission has been observed at
THz [X.-Y. He et al. J. of Mod. Opt., Sept. 2009] and millimiter-wave frequencies [M. Beruete et al.
IEEE Trans. Antennas & Propagat., 53, no. 6, pp. 1897-1903, June 2005]. Indeed, the phenomenon is
closely related with the periodicity of the distribution of holes (or any other perturbation of the metal
surface). It is the period of such perturbation what controls the critical frequencies of the phenomenon
[A. G. Schuchinsky et al., J. Opt. A: Pure Appl. Opt., 7, pp. S102-S109, 2005] rather than material
properties (which certainly play some role). Nowadays the phenomenon is well understood and its
study has deserved three long review papers in the prestigious journal Reviews of Modern Physics
[F. J. Garćıa de Abajo, Rev. Mod. Phys., 79, pp. 1267-1290, Oct.-Dec. 2007; K. Y. Bliokh et al.,
Rev. Mod. Phys., 80, pp. 1201-1213, Oct-Dec. 2008; F. J. Garćıa-Vidal et al., Rev. Mod. Phys., 82,
pp. 729-787, Jan.-March 2010]. In spite of this, there remains some confusion about the true meaning of
EOT. For instance, many papers have been published reporting on extraordinary transmission through
a single hole or a few holes close to each other. In those cases, the size of the holes with significant
transmissivitty is far from being subwavelength. The transmission of electromagnetic waves through
holes having nearby resonant structures (which are, sometimes, even inside the hole and crossing the
hole) has inappropriately been referred to as “extraordinary transmission”.

Althouhg in a first stage EOT was linked to periodic structures, it has recently been shown that
small diaphragms inside waveguides exhibit exactly the same properties as periodic distributions of
holes [N. G. Don et al., Radiophys. Quantum Electron., 51, no. 2, pp. 101-108, Feb. 2008; Y. Pang et
al., Optics Express, 17, no. 6, pp. 4433-4441, 2009; F. Medina et al., Appl. Phys. Lett., vol. 95, pp.
071102-(1-3), Aug. 2009]. A theory reporting on a unified explanation for extraordinary transmission,
which is valid for periodic structures and hollow pipes with small diaphragms, has recently been
developed [F. Medina et al., IEEE Trans. on Mic. Theory Tech., 56, no. 12, pp. 1108-1120, Dec,
2008; F. Medina et al., IEEE Trans. on Mic. Theory Tech., 58, no. 1, pp. 105-115, Jan. 2010]. The
basic concept behind this model is impedance matching rather tan surface wave excitation.

Finally, this talk will pay credit to some classic papers focused on the same topic or on closely
related phenomena. The reading of those pioneering works might shed some light on the understanding
of the extraordinary transmission phenomenon.
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Electromagnetic properties of doubly-periodic chiral
gratings placed on both surfaces of a dielectric layer
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The normal incidence transmission of circularly polarized waves through a planar doubly-layer
structure (DLS) consisting of doubly-periodic strip gratings placed on both surfaces of a dielectric
layer was reported. The problem of electromagnetic wave scattering by the DLS is solved using a
numerical method. The comparison of the transmission properties of the structures with identical
chiral strips and with reflection symmetric of chiral strips in adjacent gratings was presented.

Recently, a few papers dealing with electromagnetic properties of doubly-periodic grating (DPG)
of curvilinear strips were published [1, 2]. Such structures are attractive for microwave applications
because of their resonance properties in the frequency band of a single-wave regime due to a complex
shape of the grating elements. The first experiential observation and theoretical analysis of circular
conversion dichroismin of a planar single-layer chiral structure was discussed in [1]. In this paper
a peculiarity of circularly polarized waves propagation through the DLS consisting of planar chiral
gratings are reported.

The intensities and polarization characteristics of fields were calculated using the method described
in [3]. This numerical method involves solving the integral equation for the surface induced current in
the metal pattern by the field of the incident wave. This is followed by calculations of scattered fields
as a superposition of partial spatial waves.

The perceptible effect of asymmetric transmission of a circularly polarized incident wave was
observed for single-layer DPG with chiral strips only if the dielectric substrate was lossy [1]. The DLS
with lossless dielectric substrate possess such the feature. We want to draw your attention to the

fact that the transmission matrixes TCP =
(
T++ T−+

T+− T−−

)
of the DLS with identical gratings and

with reflection symmetric strips in adjacent gratings are differed essentially (see Figure). For DLS
with identical gratings of the chiral strips T++ = T−−, T+− �= T−+ (see Figure a), but for DLS with
reflection symmetric chiral strips in adjacent gratings (see Figure b). Although the shape parameters
of strips are equal, the DLS with identical gratings behave as a plane chiral structure, the DLS with
reflection symmetric strips in adjacent gratings as a 3D chiral structure.

Figure : Normal incidence transmission of the DLS with identical gratings (a) and with reflection
symmetric strips in adjacent gratings (b) The strips have the chiral shape.
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Anti-reflection optical coating with silver nanoparticles
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Metal-dielectric composite media exhibit abnormal dispersion characteristics at optical scales and
can behave as a medium with unique effective refractive index. From the practical point of view it
is interesting that the optical response of such artificial media may be tuned by specific choice of
constituents and their concentration or by the detailed morphology of medium. In this work, we
consider the possibility of producing of an antireflection structure (a low-index composite layer) in the
substrate itself using silver ellipsoidal nanoparticles.

It is theoretically shown that monolayers of disc-like silver nanoparticles embedded in a transpar-
ent host (glass) can significantly reduce the reflection by making use of interference effects. One can
see from Figure that due to the plasmon resonance of nanoparticles the reflectance in a broad spec-
tral region (> 150 nm) never rising above that of the uncoated glass surface. The lowest reflectance
calculated is about 0.04%. Unfortunately, there is no any evident improvement of the transmittance
because of the absorption of electromagnetic radiation and the transition of the energy of electromag-
netic radiation into the thermal energy of the nanoparticles. Nevertheless, no less than 96% of the
light actually enters the glass substrate in a relatively broad spectral region (∼ 100 nm) around the
wavelength of the lowest reflectance.

This work explores the utility of effective medium representations to simplify the electromagnetic
analysis of composite system, and demonstrates the use of this simplification in solving of the boundary
problem under consideration. This approach allows us to easily control the parameters of a system
and predictably change its optical properties, expressing the necessary conditions in an analytical
form. With the help of full-wave finite-element numerical analysis, it is shown that effective-medium
approach provides a satisfactory qualitative description of the reflection and transmission spectra in
such composite layers and confirms their antireflective behavior.

Figure: Reflection and transmittance spectra of composite material on glass substrate computed for
normal incidence. Solid line corresponds to the case of three-layer antireflection structure. Dashed
line is the case of optimized single-layer antireflection structure. Dot-dashed line corresponds to the
case of the uncoated glass surface.
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Dynamic extraction of effective material parameters of composites
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In recent years, there has been a great deal of attention devoted to composite electromagnetic
structures called metamaterials (MTMs). The most convenient way to describe the electromagnetic
behaviour of MTMs is the utilization of so-called effective material parameters, obtained by a homog-
enization procedure. However, in the modern scientific literature there is no well-established method
of homogenization and existing solutions often give controversial and ambiguous results.

In this report we apply a dynamic homogenization procedure which allows the extraction of the
effective material parameters of MTMs (consisting of small scatterers) from the reflection and trans-
mission coefficient of a single grid of such scatterers. The method is based on the results of our previous
works [1, 2, 3, 4] and partially on the results obtained in [5, 6]. To illustrate the applicability of the
method we studied the design of MTM, suggested in [7] to obtain negative permeability at optical
frequencies, based on effective rings of plasmonic spheres. The results of dynamic homogenization
were compared to the same of the quasi-static approach developed in [8].

It was shown that this method gives effective material parameters which satisfy the locality con-
dition, what is the initial indication of their physical adequacy. The comparison with quasi-static
approach reveals the fact that the behaviour of the dynamic material parameters is much more com-
plex then is expected by Maxwell Garnett approximation. Particularly, the electric and magnetic
resonances are not independent: the electric resonance is supplemented with a weaker magnetic one
and vice-versa.

The obtained results clearly show that the dynamic homogenization is a necessary procedure
if one wants to characterize MTMs which lattice constant is not negligibly small compared to the
wavelength. We hope that the method will have wide application to the design of modern MTMs,
especially operating at optical frequencies.
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Tolerable material properties of resonators in
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An artificial material with negative refractive index can be developed using a set of closely posi-
tioned dielectric spherical particles exhibiting Mie resonance. Interaction between the particles with
E111 resonance gives rise to creation of magnetic and electric dipoles in the structure. Simulation
shows backward wave existence in the structure. Additionally, a possibility of a design of an invisibility
shield for microwave region using resonant dielectric spheres is discussed.

Metamaterial structures consisting of dielectric resonators are widely discussed in number of pub-
lications. Most of them are based on dielectric resonators operating on first Mie resonance [1-8].
Dielectric resonators based metamaterial has an advantage of low loss at high frequency and may be
easier to fabricate (in comparison with conventional split ring resonators).

In this paper a bi-spherical metamaterial structure consisting of two types of dielectric spherical
resonators [2] is observed. This structure has an advantage of isotropy and is promising in construction
of tunable metamaterial.

It is well known that effective parameters could be retrieved in the limit of homogenous structure.
This is valid in case if the period of the structure is less than the quarter of the wavelength of the
electromagnetic wave, propagating in the structure [8, page 4]. This condition limits maximum value
of the dimensions of the particles which are used as constituent of the metamaterial. The sum of sizes
of two closely placed different resonators could not exceed the period of the structure. At the same
time the resonance frequency depends on the dimensions of the resonators. Resonance frequency in
turn depends on the permittivity of the resonator. It will be shown that for any chosen operating
frequency there is a minimum value of the permittivity of the resonating particle εmin = 100 at which
the period of the structure has physical meaning.

Other calculations show that to increase bandwidth of the double negative region (where both
effective permittivity and permeability of the structure are negative) the permittivity should be min-
imal. Besides there is a limit for tolerable loss level in resonators material. In case of high loss level
double negative bandwidth tends to zero.

Summing all the conclusions it could be defined optimal properties for the material parameters of
resonators used in desired metamaterial structure.
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Spatial dispersion in multilayered metal-dielectric nanostructures
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The multilayered metal-dielectric structures are widely used in optics for manipulation of fields on
the subwavelength scale. Their applications include subwavelength imaging [1-5], creation of subwave-
length patterns [6] and achieving negative index of refraction [7]. In the most of the cases, the effective
medium model is applied for description of the metal-dielectric structures. At the long-wavelength
limit, it is assumed that the one-dimensional photonic crystal can be described as a uniaxial dielectric
with the permittivity tensor of the following form:

ε =

 ε⊥ 0 0
0 ε‖ 0
0 0 ε‖

 , ε‖ =
ε1d1 + ε2d2

d1 + d2
, ε⊥ =

[
ε−1
1 d1 + ε−1

2 d2

d1 + d2

]−1

,

where d1 and d2 are thicknesses, ε1 and ε2 are permittivities of the constituent layers, respectively.
The effective medium model is widely used for explanation of various phenomena in multilayered

metal-dielectric nanostructured optical metamaterials. However, its applicability for description of
such structures was not verified yet, up to our knowledge.

We performed detailed full-wave study of dispersion properties of a typical multilayered metal-
dielectric structure and compared the obtained results with ones predicted by effective medium model.
The comparison of dispersion curves and isofrequency contours revealed very strong spatial dispersion
effects in the structure at the frequencies near the resonance of transverse component of permittivity.
At these frequencies the local effective medium model is not applicable. For example, the local
model predicts existence of the only propagating extraordinary wave, whereas the full-wave results
demonstrate two or even more waves at certain directions at some frequencies.

The observed effects are closely related to existence of hybrid plasmon-polariton waves travelling
predominantly along interfaces of the layers. These travelling waves causes the spatial dispersion
effects in multilayered optical metamaterials in the same manner as magneto-inductive waves causes
the spatial dispersion effects in microwave metamaterials consisting of split-ring resonators [8,9].

P. Belov acknowledges financial support by EPSRC Advanced Research Fellowship EP/E053025/1.
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Self-organization route to metamaterials

Dorota A. Pawlak
Institute of Electronic Materials Technology (ITME),
ul. Wolczynska 133, 01-919 Warsaw, Poland

One possible way to move beyond limitations of now-a-day manufactured metamaterials would
be using the self-organization mechanism and chemical methods [1]. The bottom-up such as self-
organization and chemical methods approach could be a good alternative to mainstream metamaterial
manufacturing techniques, and could result in 3D metamaterials, broadband behaviour and different
new functionalities. Recent advances in the manufacturing of engineered self-organized multicompo-
nent structures and their way towards novel electromagnetic functionalities will be presented. The
structures are made utilizing directional solidification of eutectics (DSE) [2-3] as well as by nanopar-
ticles doping (NPD) [4]. The product properties of eutectics promise metamaterial-like behaviour of
appropriately-designed and engineered materials. The structures with geometries as lammelar, rod-
like, spiral, and others are available in eutectics world (Fig. 1). Also structures resembling different
metamaterial-like geometries have been shown [3]. And these will be mainly discussed. Also, the
ability to make metallodielectric materials will be presented.

Figure 1. Gallery of engineered self-organized materials obtained in ITME [1-6].
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Inter-element coupling in metamaterials

A. Radkovskaya

Magnetism Division, Faculty of Physics, M.V. Lomonosov Moscow State University,
Leninskie Gory, Moscow 119992, Russia
e-mail: anna@magn.ru

Properties of metamaterials assembled from individual resonators are governed by strong inter-
actions between individual ‘artificial atoms’. The coupling between individual resonators may lead
to propagation of slow waves with the wavelength much shorter than that of the electromagnetic
radiation. Due to these slow waves metamaterials may provide the basis for a variety of near-field
manipulating devices including miniaturized waveguide components and near field lenses.

This talk discusses recent advances (i) in studies of coupling mechanisms in metamaterials, (ii)
properties of slow waves of coupling and (iii) in the developments of novel applications.
(i) Coupling mechanisms. It was only recently realized that the properties of a metamaterial as-
sembled from individual resonators are governed by strong interactions between individual artificial
atoms. Coupling mechanisms may be quite different depending on the operation frequency. For low-
frequency metamaterials like capacitively loaded loops (MHz range) the coupling is purely magnetic
and anisotropic, depending on the relative orientation of the elements. For split rings (GHz range)
the physical picture is more complicated. Firstly, the coupling coefficient comprises both a magnetic
and an electric part; depending on the relative orientations of two such elements and on the distance
between them, the coupling may be dominated by either its electric or magnetic part or be a combina-
tion of both. Secondly, the coupling constant is a complex quantity due to retardation effects. In the
THz range the effects that need to be incorporated are those of kinetic inductance due to the inertia
of the electrons (noticeable as dimensions become as small as 100 nm) and of plasmon-polaritons at
the metal/dielectric interface (noticeable as the surface plasma frequency is being approached).
(ii) Magnetoinductive waves. The coupling between individual resonators may lead to propagation
of slow waves with the wavelength much shorter than that of the electromagnetic radiation. These
slow waves are eigenmodes of the metamaterial and can be expected to couple to and influence the
propagation of electromagnetic waves forming polaritonic modes, similar to plasmon-polaritons in a
bulk metal. Magnetoinductive waves, propagating on magnetically coupled resonators, exhibit all the
relevant wave phenomena such as refraction, reflection and diffraction and, in a nonlinear variety,
are shown to exist in form of solitons and breathers or be suitable for parametric amplification.
Experimentally, slow waves of coupling between metamaterial elements have been proven to exist
in metamaterials in the entire frequency range from MHz over GHz to hundreds of THz. For any
particular realization MI waves can propagate in a limited band but that band may be anywhere in
a region from RF frequencies to infrared and possibly beyond.In practice, when a particular device
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is to be designed it is desirable to have considerable freedom in choosing the dispersion properties of
a metamaterial structure. We have explored the flexibility of metamaterial engineering to tailor the
dispersion to required specifications. A biatomic structure (with two elements per unit cell) has a
dispersion curve split into an upper branch and a lower branch, similar to the acoustic and optical
branches of phonons in bi-atomic solids. Possible ways for realizing a biatomic chain are changing
parameters of the element (e.g. the resonant frequency) and varying the distance between the elements.
(iii) Applications. Due to slow waves of coupling, which can be much shorter than the free-space
wavelength, magnetic metamaterials may provide the basis for a variety of near-field manipulating
devices including miniaturized waveguide components smaller than the wavelength such as power
dividers, directional couplers, field concentrators, delay lines, phase shifters, near field lenses, Magnetic
Resonance Imaging (MRI) components or optical wave plates. A possible application of biatomic
structures is to use them as waveguides providing two distinct pass bands. A particular application
may be in MRI when the image is required at two different frequencies far from each other. Another
set of potential applications is for nonlinear wave interaction exemplified by parametric amplification.

Transmission through slit diffraction gratings with
dielectric slabs: equivalent circuit model

Raúl Rodŕıguez-Berral, Francisco Mesa

Dept. de F́ısica Aplicada 1, Universidad de Sevilla, Spain

Francisco Medina

Dept. de Electrónica y Electromagnetismo, Universidad de Sevilla, Spain

The issue of the transmission properties of slit diffraction gratings has received a renewed attention
in the last few years (see, for instance, [D. C. Skigin et al., Phy. Rev. Lett., 95, pp. 217402(1-4), 2005;
M. Navarro-Cı́a et al., App. Phys. Lett., 94, pp. 091107(1-3), 2009] and references therein). Among the
unexpected characteristics of these gratings we can emphasize (i) extraordinary transmission peaks
associated with the periodicity of the structure and (ii) the presence of total transmission bands
with some centered/off-centered transmission dips (provided electrically thick screens and compound
gratings with more than one slit per period are considered). In the optics frame, these phenomena
were completely accounted for by full dynamic diffraction theories (see references above). Although
these theories provide some physical insight into the shape of the transmission spectra, they are
complex and it can be said that they mostly provide a “numerical” explanation. A simple and easy
physical understanding of the problem would be welcome. Fortunately, all the above mentioned
phenomena have also been perfectly explained by the simplified equivalent circuit model reported in
[F. Medina et al., IEEE Trans. Mic. Theory Tech., 58, no. 1, pp. 105-115, 2010]. The equivalent
circuit is composed by a simple network of transmission lines and some appropriate capacitances.
When the slit thickness is almost negligible, the only “anomalous” phenomenon that appears is the
expected total reflection due to the Wood’s anomaly, and this is accounted for by the equivalent circuit
model. Nevertheless, if the diffraction grating incorporates dielectric slabs in the front and/or back
sides of the perforated metal screen, the transmission spectrum becomes much more complex. This is
due to the appearance of new phenomenology. In particular, new total reflection and total transmission
effects. In this poster we will present some modifications of our original circuit model that are able
to account for all the details of the modified transmission characteristics. More specifically, we add a
shunt capacitance-loaded transmission line to account for the excitation of possible surface waves of
higher-order in the dielectric slab. In this way, our proposal approaches the “standard” explanation of
total transmission phenomena as due to the excitation of surface plasmons but providing a quantitative
reduced order model whose parameters can be computed from a few full-wave simulations. Astonishing
agreement between circuit model results and full-wave mode matching results will be shown.
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Towards dynamical metamaterials: electrodynamical
relativistic phenomena and invisibility problem

Nikolay N. Rosanov

S.I. Vavilov State Optical Institute, Saint-Petersburg State University of Information Tech-
nologies, Mechanics, and Optics Saint-Petersburg, Russia
e-mail: nrosanov@yahoo.com

Most of the currently studied optical metamaterials - artificial media with engineered optical
features - are static, i.e. their optical characteristics do not change with time. However, non-stationary
media are also of great interest, both from the scientific point of view, and due to a number of
promising applications. Non-stationary behavior can be organized, first, by controlled propagation of
optical characteristics perturbations in motionless media and, second, by controlled medium motion.
In the talk, a review is presented of the both variants, but mainly the first, due to the availability to
reach relativistic velocities in this case.

The first variant corresponds to the so-called parametric Doppler effect in motionless media [1].
Here one can consider an optically nonlinear medium whose refractive index depends on the radiation
intensity. Irradiation of the medium by a laser pulse or soliton, or by a number of pulses-solitons
induces inhomogeneities of medium refractive index moving jointly with pulses, i.e., with the speed of
light. Then the medium is linear for additional less intensive radiation, but the medium includes fast
moving inhomogeneities of refractive index. Correspondingly, a giant Doppler shift of frequency can
occur for reflected radiation. The simplified problem to be solved is a linear wave equation for electric
field strength with given non-stationary (moving) inhomogeneities. More detailed description takes
into account the effect of additional field on the inhomogeneities important if reflection coefficient is
large enough and a significant part of energy of strong pulses forming inhomogeneities is transformed
into reflected radiation.

In one-dimensional geometry and under approximation of given localized inhomogeneities propa-
gating with constant speed, the problem of reflection of weak monochromatic radiation can be solved
analytically [2, 3]. The speed of the inhomogeneity should be less than the phase velocity of reflected ra-
diation, because otherwise rapidly moving inhomogeneity radiates itself due to the Vavilov-Cherenkov
effect. In the regime of homogeneous plane waves (with real wavenumber, the case of purely transparent
medium), it occurs that the equation for the reflected radiation frequency has one solution, several so-
lutions (so called complex Doppler effect), or no solutions. In the last case, the reflected radiation is not
monochromatic, corresponding to the regime of accumulation of the filed near the front of moving inho-
mogeneity. For the case of oblique incidence of the weak radiation wave on the moving inhomogeneity,
the angle of reflection differs from the angle of incidence. In metamaterials with simultaneously nega-
tive dielectric and magnetic permittivity, a new branch of frequencies in the dispersion relation arises.
For pulses of weak radiation with narrow frequency spectrum, the reflected radiation has the same
shape, but its width is strongly reduced. In the regime of inhomogeneous plane waves forming in media
with absorption or under conditions of total internal reflection, it follows from complexity of wavenum-
ber that the frequency of reflected wave occurs to be complex too. This corresponds to exponential
temporal variation of the reflected radiation amplitude. Engineering of inhomogeneities, i.e., using of a
regular sequence of strong laser pulses forming the inhomogeneity, allows one to increase the reflection
coefficient giving the possibility of efficient frequency transformation of electromagnetic radiation.

The second variant with the medium motion is connected with the invisibility problem. Discussed
are several approaches for this problem solution: the invisibility of the object transparency, the invis-
ibility due to light rays bending around the object, invisibility with detecting of radiation incident on
the object and subsequent generation of radiation restoring the form of the incident radiation - and
their limitations are revealed [4]. One of the limitations is due to light partial dragging in moving me-
dia (the Fresnel-Fizeau effect). We demonstrate that a hypothetical object invisible when motionless,
reflects radiation when it moves due to the Fresnel-Fizeau effect, and it can therefore be detected via
reflected radiation.
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An analytical approach for study the spectral properties
of a nanosize laser subjected to a random force
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We present a study of a lasing phenomenon which occurs as a result of strong resonant interaction
of the dielectric quantum dot with plasmonic oscillations in metallic nanoscale resonator. The whole
composite aggregate is considered like a ’nanolaser’. We calculate the spectral characteristics of
this nanolaser and discuss the ways for tuning the lasing wavelength. Lasing threshold is defined
analytically. The influence of external random force has been studied regarding to functioning the
nanolaser.

On electromagnetic characterization of metamaterials

C. R. Simovski, S. A. Tretyakov

Department of Radio Science and Engineering, Aalto University, School of Science and
Technology
PO Box 13000, FI 00076, Aalto, Finland
e-mail: csimovsk@cc.hut.fi

In this presentation we discuss problems related to electromagnetic characterization of metama-
terials in terms of effective material parameters and clarify the difference between characteristic and
effective material parameters. Metamaterial is an arrangement of artificial structural elements, de-
signed to achieve advantageous and unusual electromagnetic properties. Not every arrangement pos-
sessing such properties is compatible with the concept of material. The concept of material implies
homogeneity, i.e. the distance between elements should be small enough. In contrast to photonic



128 DAYS on DIFFRACTION’2010: Metamaterials

crystals, metamaterials possess such properties due to specific electromagnetic response of their ”ar-
tificial molecules” and not due to specific wave distances between them. Characterization in material
science refers to the use of external techniques to probe into the internal material structure and ma-
terial properties of a material. The results of characterization of a material should not depend on the
sample shape and measuring setup. Respectively, electromagnetic characteristic material parameters
are not parameters specific for a given wave process, they do not correspond to a given sample or to
a given source. We consider interpretations of retrieved electromagnetic parameters for bulk media
and discuss the pitfalls related to inconsistent classification of the material under study. Inconsistent
classification may lead to inadequate characterization of the material, when bulk electromagnetic pa-
rameters would be meaningless for a structure which they should characterize. Misinterpretation of
retrieved material parameters may lead to misleading performance expectations related to the values
of these parameters, which are often inconsistent with the definition of characteristic parameters. The
reasons of these problems are discussed. The artifact of the so-called antiresonance, the concept of
so-called Bloch lattices and the role of transition layers at the interfaces of metamaterial slabs are
discussed in details.

Multifrequency local field enhancement by a metamaterial nanopyramid

Constantin Simovski
Department of Radio Science and Engineering, Aalto University, School of Science and
Technology
PO Box 13000, FI 00076, Aalto, Finland
e-mail: csimovsk@cc.hut.fi
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Stefan Mühlig, Carsten Rockstuhl
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We suggest and theoretically study the local field enhancement in a metamaterial sample shaped
as a pyramid and formed by alternating metallic and dielectric nanoplates parallel to the pyramid
base. Due to very small thickness of metal nanoplates and different transversal sizes of them the
structure not only offers the efficient conversion of the light wave field impinging the pyramid base
into hot spots near the pyramid apex, but the structure also sustains a large number of plasmonic
resonances at which a tremendous field enhancement can be observed in the spatial vicinity to the
structure. These resonances cover the whole visible range. Such structure that possesses the ability
to provide a broadband local field enhancement may be of use in applications to enhance fluorescence.
It can also open new doors for field-enhanced near-field microscopy and spectroscopy of nanoscaled
objects. We suggest a nanostructure shaped as a pyramid formed by silver or gold nanoplates that
have a varying size along a coordinate axis which is a multi-resonant plasmonic object. The whole
pyramid is optically small, and the thickness of silver plates is equal to few nm. Therefore the pyramid
is efficiently excited by a wave beam as a whole. The envisioned regime requires an illumination of
the pyramid from the base. At a given frequency one of metal nanoplates experiences a plasmon
resonance. The spectrum of resonances that is covered can be easily controlled by changing the axis
ratio of the nanoplates that form the pyramid. If the light pulse is broadband all nanoplates resonate.
It is important that the resonant excitation of a given nanoplate does not suggest that the local field
is only concentrated inside the respective nanoplate or only close to its vicinity. The chopped interface
of the nanotip supports the surface wave propagation at all frequencies of the visible band. Therefore
the resonant excitation of one of nanoplates results in the resonant excitation of surface plasmon
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polariton propagating towards the pyramid apex. At the apex the local field is enhanced as well as at
the surface of the resonating nanoplate. Such operation suggests a possible path towards broadband
plasmonic resonators.

Manipulating the light transmission through metamaterial films by applying a
magnetic or electric field and by changing of nano-structures shapes
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Alexey P. Vinogradov, Andrey N. Lagarkov, Alexander M. Merzlikin

Institute for Theoretical and Applied Electromagnetics,
Moscow, 125412 Izhorskaya 13, Russia

The light transmission through metallic films with different types of nano-structures was studied
both theoretically and experimentally. It is shown that the positions of the surface plasmon resonances
[1] depend on nano-structural details. Those can be changed from sample to sample [2] or in given
sample by applying an external dc electric [3] or magnetic field [4-6]. The dependence of transmission
spectrum on the shape of holes (inclusions) and external fields can be used for manipulation of the
light transmission, as well as the polarization [7] of the transmitted light and other optical properties,
by external field. Two complementary situations are considered: a metal film with dielectric holes
and a dielectric film with metallic islands [2]. A new analytical asymptotic approach for calculation
the optical properties of such plasmonic systems is developed [2]. The results of our analytical and
numerical studies are in good qualitative agreement with experiment [2,8].
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Nonlinear diffraction and total internal
reflection with interaction of optical beams
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We present a review of theoretical investigations and laser experiments on optical beams interaction
in media with a nonlinear refractive index, including metemeterials. Effects of total internal reflection
and nonlinear diffraction are presented. The equation of a signal trajectory is introduced and analyzed.
The expression for a critical angle of total reflection is obtained. Results of numerical simulation of
beam interactions in quadratic media, photorefractive crystals and thermal nonlinearity are discussed.
Data of experiments on cw helium-neon and argon laser beam interplay in a cell with the tinted spirit
are compared with the theoretical results. We also consider the discrete diffraction in the induced
grating created by two tilted pump beams.

The phenomenon of total internal reflection from a less dense medium refers to the fundamental
phenomena of optics. Total reflection in smoothly inhomogeneous medium, for example, in a ground
layer of an atmosphere and gradient a waveguide occurs due to a curvature of a light trajectory. Here
Snells law can be used taking into account layered change of a refractive index. New features of total
reflection have been opened in nonlinear optics of solitons. Spatial soliton can be described as gradient
waveguide which index profile is defined by basic beam intensity in cross-section. In defocusing media
dark solitons can propagate. In defocusing media can exist dark solitons, and Gaussian laser beams
have additional divergence.

In this lecture we discuss total reflection of optical radiation from the negative inhomogeneity
induced by a powerful laser bunch. The mechanism of reflection consists in the following: in defocusing
medium the powerful basic wave owing to cross-action creates at the second, signal frequency effective
transverse inhomogeneity of a refractive index, and a maximum of pump intensity corresponds to a
minimum of the index. When passing through the inhomogeneity is induced by the second beam
suffers refraction, there is the mutual repulsion of beams. As a result, the trajectory of the signal
beam is curved, and if the angle between the beams is sufficiently small, a nonlinear total internal
reflection occurs. The effects of repulsion and reflection have been studied in the quadratic nonlinear
media, photorefractive crystals and, finally, in media with thermal nonlinearity. In the latter case we
observed total reflection due to the interaction of crossed laser beams of different frequencies in the
cell with ethanol.

Theoretical analysis of the dynamics of total reflection and nonlinear diffraction is performed using
numerical simulation of wave equations and the method of geometrical optics of inhomogeneous media
for the construction of the trajectories of the signal wave. The problem of nonlinear interaction of
beams reduces to the analysis of propagation of the signal wave in a inhomogeneous channel formed by
the pump beam (compare with wave propagation in a gradient waveguide, the ionosphere, etc.). Since
the channel is making a negative heterogeneity, there is a reflected signal from a less dense medium.
Numerical simulation showed that under certain conditions, oblique signal beam reflected from the
pump beam. If the condition of total reflection not satisfied, then the signal beam passes through the
pump beam, slightly curving its trajectory.

It should be noted an important feature of the interaction of beams in a defocusing medium.
When the condition of total reflection the beam pump becomes opaque to the signal wave, and thus
acts as a convex cylindrical mirror. Therefore narrow beams after reflection are divergent and broad
beams round the pump beam, forming a specific pattern of the nonlinear diffraction. The reflection of
the signal beam is experiencing a similar effect of pump beam - it deviates in the opposite direction
according law of impulse conservation

Total reflection was first observed by us in modeling the incoherent three-wave interaction in media
with quadratic nonlinearity, with two-wave mixing in photorefractive crystals and thermal blooming
in a weakly absorbing media. In the latter case, we also performed laser experiments in which beams
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of gas lasers interact with alcohol cell.
In the 3D geometry the phenomenon of nonlinear diffraction gets special features. As a result,

reflect a narrow signal beam becomes diverging (the effect of a convex mirror), taking the crescent
shape in accordance with the cylindrical shape of the reflecting beam pumping. The wide bunch flows
round the induced cylinder, forming behind it extensive area of a shadow which is not washed away
by diffraction. As a result the alarm wave is as though cut by a basic pump beam on two parts.

We also consider nonlinear diffraction in a gradient waveguide with defocusing nonlinearity. In
this case there is competition between the total reflection effects and focusing on a parabolic profile
of refractive index.

The final part deals with the discrete diffraction by a periodic structure, formed by two crossing
beams.

Work is supported by projects of the RFBR 08-02-00717, 09-02-01028 and Leading Scientific School
NSH-4299.2010.2

Possibilities of cloaking and invisibility at microwaves

S. A. Tretyakov

Department of Radio Science and Engineering / SMARAD Center of Excellence, Aalto
University, School of Science and Technology, 00076, Aalto, Finland

In this tutorial overview talk we will discuss recent advances in cloaking and invisibility at mi-
crowave frequencies. Recently, the topic of making objects ”invisible” for electromagnetic radiation
has gained much attention, following new ideas of using engineered electromagnetic materials with
unusual properties for this purpose. This lecture provides a comparative review of the recent devel-
opments in this field and discusses the potentials of utilizing these ideas for various microwave and
antenna applications. Recently proposed solutions for cloaking of objects are reviewed and compared,
with the emphasis on the fundamental limitations of their performance. This topic is closely linked to
the problem of creating of artificial materials with engineered electromagnetic properties. In particu-
lar, materials with equal values of relative permittivity and permeability are of interest. The lecture
presents our recent developments of such materials based on mixtures of spiral inclusions and their use
for cloaking applications. Furthermore, we discuss the use of electrically dense meshes of transmission
lines as cloaking devices. It is shown how new cloaking techniques can be used for applications not
necessarily related to cloaking of objects, for instance in new microwave lens antennas or in the design
of matched absorbing layers.
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Effective permittivity of structure of coated wires
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In present work a new technique of obtaining an effective permittivity of some type of metamaterials
is developed. This technique is similar to the averaged boundary conditions method which is effective
for some planar periodic structures [1-3]. The technique is applied to a periodic 3D-structure of parallel
wires with non-conducting coating.

It is known that the system of wires without coating possesses certain spatial dispersion [4]. This
dispersion can be destructive to some prospective application of metamaterials. Therefore taming this
effect is an actual problem. One of methods for this consists in using a structure of coated wires [5].

The system under consideration is characterized by two finite periods having the same order. It is
assumed that the coating radius is essentially less than these periods which are in turn considerably
less than the typical wave length. Thus the method developed is based on two small parameters.
As a result, we obtain an expression for longitudinal component of effective permittivity tensor as a
function of frequency and wave vector. This function contains two parameters: an effective plasma
frequency and a parameter being responsible for spatial dispersion. For the case of non-coated wires,
comparison of our result with results of other authors is given.

It is shown that the coating has only small influence on the plasma frequency but it affects es-
sentially spatial dispersion. In principle, it is possible to reach both increase and decrease of spatial
dispersion. For taming spatial dispersion we can use both magnetic coating and dielectric one (the
variant with magnetic coating had been offered in [5]). Note that coating with high permeability gives
bigger decrease of spatial dispersion. However, coating with high permittivity gives essential decrease
as well. The latter variant has some preference since the dielectric coating with small losses is simpler
in fabrication than the magnetic one.

In the present work we describe some application of the structure under consideration as well. It
concerns diagnostics of beams in accelerators. The important problem in this area is measurement
of energy of the beam particles. We offered for this a new method which bases on measurement of
frequencies of Cherenkov modes in a waveguide containing some material [6,7]. Now we show that
the structure of coated wires is a perspective medium for this goal since it allows realization of strong
enough dependence of the modes frequencies on the particles energy.

References

[1] Kontorovich M.I., Astrakhan M.I., Akimov V.P., Fersman G.A. Electrodynamics of grid struc-
tures. Moscow, 1987 (in Russian).

[2] Moyzges B.Ya. Zhurnal tekhnicheskoy fiziki. Vol.25, no.1, p.155 (1955) (in Russian).
[3] Tyukhtin A.V. Journal of Communications Technology and Electronics. 42(4), p. 374 (1997).
[4] Belov P.A., Marques R., Maslovski S.I. etc. Phys. Rev. B. Vol.67, p.113103 (2003).
[5] Demetriadou A., Pendry J.B. J. Phys.: Condens. Matter. Vol. 20, p.295222 (2008).
[6] Tyukhtin A.V. Pro. of the 11th European Particle Accelerator Conference (EPAC08). Genoa,

Italy, June 23-27, 2008. P.1302 (www.jacow.org).
[7] Tyukhtin A.V. Technical Physics Letters. Vol. 35, no.3, p. 263 (2009).



DAYS on DIFFRACTION’2010: Metamaterials 133

Optical flip-flop in bistable photonic crystal microlasers
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It has been envisaged for a long time that bistable phenomena in microstructures (e.g., photonic
crystals or microcavities) can pave the way towards designing an all-optical memory element (flip-flop)
suitable for applications in integrated optics and optical communications. In this respect, multistable
microlasers are particularly promising because of their ability to maintain their state indefinitely if
they remain above threshold and because they can be flipped by a relatively low-energy pulse in a
very short time. However, designing a microlaser that would exhibit multiple-wavelength bistability
turned out to be challenging until very recently.

This work employs a systematic theoretical treatment of lasing in a multimode microcavity. Us-
ing coupled-mode Maxwell-Bloch equations, it is shown that bistable lasing is unlikely to occur in
microcavities unless spatial hole burning is strongly suppressed. Nevertheless, such suppression is
demonstrated to occur rather frequently in coupled-cavity geometries where the cavity modes have
different symmetry properties but almost identical spatial intensity distribution (see Fig. a). For such
cavities, there exists a parameter range where more than one mode can lase single-handedly depending
on the initial conditions. So, the lasing mode can be selected by preparing (“injection seeding”) the
cavity by a signal with the matching phase symmetry pattern. Further, the lasing mode (and hence,
the wavelength) can be changed by simply re-seeding the cavity, without any need for an external
cavity tuning process. Thus it can be expected that ultrafast operation necessary for an all-optical
flip-flop can be achieved in such systems.

In order to evaluate the performance and practical feasibility of such a device, we analyzed the
temporal mode dynamics during the flip-flop cycle for the simplest case of two modes. It was confirmed
that picosecond-scale wavelength switching is indeed possible by re-seeding the cavity by control pulses
with energy slightly exceeding the energy stored in the cavity during steady-state lasing. A tradeoff
was identified between switching speed and minimum energy of the control pulse (Fig. b), so the
performance of the flip-flop can be geared towards faster or more energy-efficient operation, without

Figure : (a) The twin-defect coupled-cavity microstructure used in the present work, together with
typical electric field distributions for the cavity supermodes. Note that the supermodes are different
in phase pattern but not in field intensity. (b) The dependencies of the total switching time of the
proposed flip-flop cell τsw on the duration and intensity of the control pulses. Circled are regions of
optimum switching performance. (c) Output mode amplitudes during flip-flop cycle for the structure
shown in (a), as obtained from the coupled mode theory (top) vs. from direct numerical finite-difference
time-domain (FDTD) simulation (bottom).
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having to change the cavity parameters.
Theoretical predictions were checked against direct numerical time-domain simulations of a twin-

defect cavity in a 2D photonic crystal lattice available for experimental fabrication at state-of-the-art
facilities (Fig. a). The results (Fig. c) show that 15-30 fJ top-hat pulses can switch such a cavity
in less than 10 ps, with on-off contrast of at least 40 dB. The modes in question are sufficiently
(about 3 nm) apart from each other in wavelength. This value can be controlled to a large extent
by a simple change in the spacing between the defects in the cavity. Generalization of the proposed
operating principle to more than two modes as well as to other geometries such as coupled microdisks,
nanopillar waveguides, or multicore photonic crystal fibers is straightforward.
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Kwaśnicki M., 52
Kyurkchan A.G., 53

Lagarkov A.N., 129
Lakshtanov E., 54
Lammering R., 35

Langenberg K.J., 55
Lapin V.G., 56

Larichev V.A., 59
Lederer F., 127
Leuchs G., 63, 64

Lobanov I.S., 57
Lotoreichik V.Yu., 57
Luukkonen O., 113

Makin V.S., 57

Mal’tsev V., 97
Maly S.V., 102, 114
Marklein R., 55

Marqués R., 117
Maslovski S.I., 94, 115, 116
Mateo-Segura C., 107

Matsui C., 58
Mauritsson K., 23

Maximov G.A., 59
Mayer K., 55
Mayorga-Rojas M., 78

Medina F., 117, 125
Merzlikin A.M., 129

Mesa F., 117, 125
Minenkov D.S., 59
Mironov M.A., 60

Mladyonov P.L., 118
Moiseev S., 119

Molotkov L.A., 60



136 DAYS on DIFFRACTION’2010

Morits D., 120
Motygin O.V., 60
Mühlig S., 128

Nakamura G., 61
Nazarov A.I., 62
Nazarov S.A., 63
Nazaykinskii V.E., 62
Nefedov I.M., 74
Neumann M., 35
Nolde E., 69
Norgren M., 102

Odit M., 121
Olmos-Lopez O., 78
Orlov A.A., 99, 122
Orlov S., 63, 64

Papkelis E., 24
Pauly D., 65
Pavlov Yu.V., 14
Pawlak D.A., 123
Pertsch T., 127
Peschel U., 63, 64
Petschulat J., 127
Plachenov A.B., 43, 65
Pniewski J., 128
Popov A.V., 66
Popov I.Yu., 57, 67
Popov M.M., 68
Postnikova E.Yu., 38
Prikazchikov D.A., 69
Pyatakov A.P., 60
Pyatakov P.A., 60

Radkovskaya A., 124
Rahman A., 97
Rawlins A.D., 69
Rockstuhl C., 127, 128
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