Basic mechanical properties of cohesive granular materials Numerical studies by DEM.

A collaboration with Antonio Castellanos and Francisco Gilbert, 2003-2008

J.-N. Roux, Université Paris-Est, Laboratoire Navier ENPC-IFSTTAR-CNRS Champs-sur-Marne, France

- Simple model in 2D, circular grains, to understand the effects of cohesion.
- assembling process, initial state
- isotropic compression
- recent developments in 3D models (capillary cohesion)

Basic ingredients of the model: contact laws

3D model for beads with capillary forces caused by liquid menisci

With
$$F_0 = \pi \Gamma a$$
 ($\Gamma = \text{surface tension}$)
 $F^{\text{cap}} = -F_0$ if $h < 0$ (contact, deflection $-h$)
 $F^{\text{cap}} = -F_0 \left[1 - \frac{1}{\sqrt{1 + \frac{4V}{\pi a h^2}}} \right]$ if $0 \le h \le D_0$ (rupture distance $V^{1/3}$)

Assembling and compressing cohesionless systems

- Compression nearly reversible (not quite)
- Coordination number might change notably in compression cycle

3D model (monodisperse glass beads)

Force transmission in cohesionless packings

'force chain' patterns

(normalized) force distributions under growing P

New control parameter in cohesive system: reduced pressure P*

$$P^* = \frac{Pa^{D-1}}{F_0}$$
 in D dimensions, for grain diameter a

- For P*<< 1, cohesion dominates
- At P*>>1, confining stress dominates

Assembling and compressing initially loose states

Adhesive forces may stabilize loose structures if left to act in *aggregation stage* Use ideal numerical procedure: **assemble cohesive aggregates before compressing**:

- 1. Dispersion. Prepare disordered 'granular gas' configuration at low solid fraction Φ_0
- 2. Aggregation. Give random velocities to grains (Maxwell distribution variance V_0^2), form connected aggregate structure at constant volume. Compare V₀ to $V^* = \frac{1}{m}\sqrt{F_0D_0}$ (escape attractive potential)
- 3. Compression. Increase isotropic pressure P, wait for equilibrium at each pressure step.

Assembling initially loose states

Direct compression (method 1) —> dense states. Loose states stabilized by aggregation step First compression to P*=0.01

Aggregation and first pressure step (to P*=0.01)

Reminiscent of colloid aggregation processes (here, ballistic aggregation)

Role of Rolling Resistance (RR)

Analog to Coulomb condition for tangential force, condition on contact rolling moment

 $||\Gamma|| \le \mu_R F_N$ $\mu_R = \text{length (surface roughness)}$

Forces in loose structures (no RR) at P = 0

Compensation of **repulsive** and **attractive** forces, presence of unstressed grains

With RR: initial stress

No initial stress for large RR, or very gentle process (low V₀) Limit of geometric aggregation rule

Quasistatic compression: equilibrium under varying P*

Macroscopic behaviour: irreversible compression

3D simulation of wet beads (Than, Tang & JNR)

Equilibrated loose configurations under low P*, compression in 3 stages: (I) stability, (II) collapse, (III) cohesionless behavior at large P*

Without cohesion: nearly reversible, small compression due to contact deflections

Effect of initial solid fraction Void ratio versus pressure on log scale

Curves converge to same final states at high P*

Contact and distant coordination numbers in compression cycle

Irreversible compression

Effect of initial coordination number (related to ratio V_0/V^* in aggregation stage)

Fractal blob at intermediate scale (fractal dimension corresponds to ballistic aggregation process)

Mechanism of irreversible compression

Structure factor I(k) $I(k) \propto k^{-d_F}$ for $a \ll \frac{2\pi}{k} \ll \xi$ Fractal blob size $\xi \propto \Phi^{\frac{-1}{2-d_F}}$

Perspectives

- Explore behavior of loose cohesive structures (beyond simple isotropic compression), from granular systems and powders to colloids
- importance of friction and resistance to rolling... Measurements for small cohesive grains?

Simulation of steady-state shear flow in wet bead assemblies

• Impose shear rate $\dot{\gamma} = rac{\partial v_1}{\partial x_2}$ while maintaining constant normal stress $\sigma_{22} = P$

- Steady state depends on two parameters, P* and inertial number $I = \dot{\gamma} \sqrt{\frac{m}{aP}}$
- Measure apparent friction coefficient $\mu^* = \frac{\sigma_{12}}{\sigma_{22}}$ and solid fraction Φ

Quasistatic limit of I —> 0 = critical state Large increase of apparent friction for decreasing P*, while density decreases Faster approach of quasistatic limit (flat curves) Systematic shear banding for smaller P* ~ 0.1

Khamseh, Roux & Chevoir PRE 2015

Experimental measurements at grain scale

Pantina& Furst, Langmuir, 2008 '3 point beam bending' experiment carried out with optical tweezers on aligned model colloid particles (PMMA, diameter 1.5 μm)

Resistance to rolling!

POWDERS AND GRAINS 2017

The 8th International Conference on the Micromechanics of Granular Media

3-7 July 2017, Montpellier, France

Powders & Grains 2017 will be held in Montpellier (South of France) on 3-7 July 2017. The aim of the conference is to give an up-to-date picture of the broad research field of granular media. Contributions from experts around the world will cover a wide range of hot research topics.

Powders & Grains is an international scientific conference held every four years that brings together both physicists and engineers interested in the physics and micro-mechanics of granular media. It distinguishes itself from other meetings on granular materials (i) by the mixture of disciplines, (ii) by a refereed conference papers ready at the conference and online available, and (iii) by its unique single-session concept.

Previous meetings: Clermont-Ferrand, France (1989), Birmingham - UK (1993), Durham - USA (1997), Sendai - Japan (2001), Stuttgart - Germany (2005), Golden - USA (2009), Sydney - Australia (2013).

WEBSITE

www.pg2017.org

Send abstracts before June 5th!