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Basic ingredients of the model: contact laws
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FIG. 1: Graphical representation of the model for the adhesive elastic contact force as a function of the distance between
the surfaces of particles i and j, hij . (a) The elastic normal force consists of a repulsive Hookean part Ne

ij plus a linearized
attractive part Na

ij . (b) The elastic tangential force is limited by the Coulomb cone (adhesion shifting its tip to °F0 on the
normal force axis).

cial energy, l the typical size of asperities [47] and D
0

is
in the nanometer range.

In the case of contacting disks (hij < 0), the attractive
term Na

ij is kept constant, equal to °F
0

, while strains in
the contact region result in normal (Ne

ij) and tangential
(Tij) elastic forces. It is also assumed that a viscous
normal term Nv

ij opposes relative normal displacements.
One thus writes:

~Fij = (Ne
ij + Nv

ij ° F
0

) n̂ij + Tij t̂ij (5)

The diÆerent terms introduced in Eqn. (5) are defined
according to the following models. First,

Ne
ij = °KNhij

is the linear elastic unilateral repulsion, due to the normal
deflection °hij in the contact as the disks are pressed
against each other. KN is the normal stiÆness coe±cient,
related to the elastic moduli of the material the grains
are made of.

The viscous normal force opposes the normal relative
receding velocity ±vN

ij = n̂ij · (~vj ° ~vi) as long as the
contact persists. The relative normal motion of two disks
i and j in contact is that of an oscillator with viscous
damping, and ¥ij is the damping coe±cient. We choose
its value as a constant fraction ≥ of the critical damping
coe±cient,

¥ij = ≥

s
4KNmimj

mi + mj
. (6)

This is equivalent to the choice of a constant restitution
coe±cient in normal collisions if F

0

= 0. In the presence
of attractive forces the apparent restitution coe±cient in
a collision will depend on the initial relative velocity, and
will be equal to zero for small values, when the receding
velocity after the collision will not be able to overcome
the attraction and separate the particles. The minimum

receding velocity for two particles of unit mass (i.e., of
maximum diameter a) to separate is V §p2, with

V § =
p

F
0

D
0

. (7)

The elastic tangential force in contact i, j is linearly
related to the elastic part ±uT

ij of the total relative tan-
gential displacement ¢uT

ij , as

Tij = KT ±uT
ij ,

and is subject to the Coulomb inequality. KT is the
tangential stiÆness coe±cient. ¢uT

ij can be updated for
all closed contacts according to

d¢uT
ij

dt
= (~vij · t̂ij)

and vanishes as soon as the contact opens. Its elastic
part satisfies

d±uT
ij

dt
= H

µ
µNe

ij

KT
° |±uT

ij |
∂

(~vij · t̂ij)

in which H denotes the Heaviside function. This last
equation introduces the friction coe±cient µ. It is im-
portant to note that the Coulomb inequality,

|Tij | ∑ µNe
ij , (8)

applies to the sole repulsive elastic component of the nor-
mal force (see Fig. 1b). We chose not to implement any
tangential viscous force.

The moment that disk i exerts onto its contacting
neighbor j, of radius Rj , in its center, is denoted by °ij

in Eqn. (2). It is first due to the tangential contact force,
then to a possible moment ° r

ij of the force density dis-
tribution within the contact region. One thus writes:

°ij = °TijRj + ° r
ij . (9)

With F0 = ⇡�a (� = surface tension)

F cap
= �F0 if h < 0 (contact, deflection �h)

F cap
= �F0
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Lois de contact : représentation schématique
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ij = tij .(ui−uj)+Riδθi+Rjδθj

(matrice de rigidité
G)

analogue aux lois
macroscopiques,
mais...
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Normal contact force:  
elastic + adhesive terms

Tangential  force:  
elasticity + Coulomb friction

3D model for beads with capillary forces caused by liquid menisci 



Assembling and compressing cohesionless systems 
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to the confining pressure is analogous to inertia param-
eter I used to assess dynamical effects in steady shear
flow [27, 28], or in the compression of non-cohesive gran-
ular packings [31, 34]. The compression program is pur-
sued until P ∗ reaches the maximum value 13.33, above
which negligible plastic collapse is observed. It should
be noted that, thanks to the high value of stiffness pa-
rameter κ (see Sec. II A), the typical contact deflection
aP/KN at this highest pressure level is still very small.
Then, the effect of decreasing P ∗ back from its highest
value to 0.01 is also simulated. As no large structural
changes occur on decompressing the system, larger pres-
sure jumps can be imposed on unloading.

The simulations are computationally costly, as in some
pressure steps equilibration times of order 100T0 are re-
quired, while the time step for the integration of the equa-

tions of motion is a small fraction of

√

m

KN
=

T0√
κ

. This

limits the size and the number of samples, and the use of
small strain rates. Some tests of statistical significance
and rate dependence of the results will be reported in
Section III.

3. Computation of elastic moduli

We observe that once samples are equilibrated accord-
ing to the conditions of Section II D 1, then the Coulomb
criterion |T | ≤ µF e

N , as well as the rolling friction con-
dition |ΓR| ≤ µRF e

N are satisfied as strict inequalities in
all contacts. No contact is ready to yield in sliding, and
with RR no contact is ready to yield in rolling either.
This ensures that the response to small enough exter-
nal load increments about a well-equilibrated state will
be elastic and reversible. Elastic moduli express elastic
response, i.e., with no effect of tangential or rotational
sliding and no change in contact network topology and
geometry. To compute elastic moduli, we build the stiff-
ness matrix K of the contact structure (also taking into
account the distant interactions). K [29] is a square ma-
trix of order 3N +2 (the number of degrees of freedom in
the system), depending on stiffness coefficients KN (re-
placed by −F0/D0 for the rare distant attractive bonds),
KT , KR (with RR), and on network geometry. K is
symmetric, positive definite (once the free translational
motions of the whole sample as one rigid body are elim-
inated) – and thus the stability of equilibrium states is
checked. To compute elastic moduli, one solves a linear
system of equations:

K ·U = F
ext (6)

for the unknown displacement vector U, containing all
particle displacements and rotations, as well as strains
(ϵα)α=1, 2. The right-hand-side of (6) contains external
forces and torques applied to the grains, which are set to
zero, and stress increments (∆σα)α=1, 2 (the same proce-
dure is followed in [35] with 2D disk packings and in [36]
with 3D sphere packings). On setting ∆σ1 = 1, ∆σ2 = 0,

or vice-versa, one thus gets two separate measurements
of the compliance matrix in our (statistically) isotropic
systems, from which moduli C11 and C12 are deduced,
and hence the bulk modulus B = (C11 + C12)/2 and the
shear modulus G = (C11 − C12)/2.

III. MATERIAL BEHAVIOR UNDER
ISOTROPIC LOAD

A. Compression and pressure cycle with
non-cohesive material

Non-cohesive systems of Table II, initially obtained
by isotropic compression of a granular gas (like the 3D
sphere packings of e.g., Refs. [37] and [31]), are subjected
to a compression cycle, in which reduced pressure P/KN

increases from its initial value P0/KN = 10−5, up to
P1/KN = 1.33 × 10−3, and decreases back to 10−5.

Typical results for the density of systems with and
without RR are shown on Fig. 1. Changes of solid frac-

FIG. 1: (Color online) Φ versus P/KN in pressure cycle with
1400 disk samples with and without RR. Blue dashed lines
correspond to elastic response evaluated with the bulk mod-
ulus from initial and highest pressure states.

tion are very small (of order 10−3, i.e., of order κ−1

for the lowest values of κ), and nearly reversible (more
than 90% of the deisty increase is recovered on decom-
pressing), as observed in Ref. [34] with 3D sphere pack-
ings. The slight increase of bulk modulus as a func-
tion of Φ is due to the larger density of contacts under
higher pressures. One typical feature of frictional, co-
hesionless grain packs assembled by direct compression
is the existence of a non-negligible population of “rat-
tlers”, i.e., particles that transmit no force (as observed
e.g. in Ref. [31] in 3D, or Ref. [35] in 2D systems). The
fraction of rattlers x0 thus exceeds 20% of the grains
under P0 in systems with RR in the present case, and
reaches 17% without RR. x0 is reduced to 14% under

the solid fraction change with pressure is almost perfectly
reversible: the data points corresponding to the compression
and decompression parts of the pressure cycle are almost
indistinguishable. More precisely, once the pressure had re-
turned to its lowest value in samples A–C, the packing frac-
tion was observed to have changed by very small amounts,
below 2!10−4. The loosest state, D, undergoes a slight com-
paction. Yet, this effect apparently decreased as the maxi-
mum prescribed value for parameter I was changed from
10−4 to 10−5 upon unloading !the reported results correspond-
ing to this latter value". Our model material thus differs from

sands, which are reported to respond to such cycles with
notable irreversible density increases #2,3$. It should be
noted, though, that we are using a contact model without
plasticity or particle damage, which, as argued on evaluating,
in Sec. II C, the maximum pressure and shear stress in the
grains near contact points with Eqs. !8" and !9", is quite
unrealistic for the highest pressure levels simulated. Stress
concentrations in contacts between angular particles like
sand grains, with corners or asperities #30,39$, are more se-
vere than between smooth objects and should enhance the
effects of anelastic material behavior within the grains. The
smallness of irreversible compaction in our simulations sug-
gests that such macroscopic behavior, in sands, originates in
contact mechanics rather than in collective effects. The re-
versibility of the response to the pressure cycle is, however,
only apparent, as the coordination number does not return to
its initial value.

As expected, z* increases under a growing confining pres-
sure #Fig. 2!a"$: as the particles pack more closely in a
smaller volume, near neighbors come into contact. z* reaches
about 7.3 at the highest pressure in the densest samples, A
and C. Correlatively, an increasing number of rattlers get
trapped as their free volume shrinks, and are recruited by the
force-carrying network. The initially large fraction of rattlers
in states C and D !x0"10% " steadily decreases as P grows
#Fig. 2!b"$ and has virtually disappeared at P=100 MPa.

The evolution of coordination numbers on unloading is
more surprising. While low coordination states C and D ex-
hibit a very limited hysteresis effect and eventually retrieve
their initial, low z* values !about 4.6", with a slightly lower
rattler fraction, samples of types A and B, in which z* was
initially high, lose contacts as a result of the pressure cycle
and end up with z* values below 5 !about 4.8 for A and 4.5
for B", closer to the C and D ones than to where they started,
with a substantial rise in the population of rattlers. !Let us
recall that samples A and B are regarded in the study of
quasistatic compression as made of frictional beads with #
=0.3, like the others." The behavior of !frictionless" samples
A0 is of course different, for they cannot be stable at low
pressure below z*=6 #40$. Figure 3 compares the evolutions
of z* in the A and A0 series, and shows that z* is very nearly
reversible in the A0 series. The unloading curves in A states
starting at lower pressures, 3.16 and 1 MPa instead of

FIG. 1. !Color online" Evolution of packing fraction as a func-
tion of pressure P in glass bead packings !bottom axis", or dimen-
sionless stiffness parameter $−1 !top axis", in !from top to bottom"
states A !red crosses, continuous line", C !black square dots, con-
tinuous line", B !blue asterisks, dotted line", and D !green open
squares, dotted line".

(b)(b)(b)(b)

(a)(a)(a)(a)

FIG. 2. !Color online" Backbone coordination number z* !a" and
proportion of rattlers x0 !b" as functions of P or $−1, same symbols
as in Fig. 1.

FIG. 3. z* versus P or $−1 in pressure cycle in series A !crosses"
and A0 !dots", showing reversibility for A0. Shorter cycles !up to
0.316 and 1 MPa" than the one of Fig. 2 are also shown for A.
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the solid fraction change with pressure is almost perfectly
reversible: the data points corresponding to the compression
and decompression parts of the pressure cycle are almost
indistinguishable. More precisely, once the pressure had re-
turned to its lowest value in samples A–C, the packing frac-
tion was observed to have changed by very small amounts,
below 2!10−4. The loosest state, D, undergoes a slight com-
paction. Yet, this effect apparently decreased as the maxi-
mum prescribed value for parameter I was changed from
10−4 to 10−5 upon unloading !the reported results correspond-
ing to this latter value". Our model material thus differs from

sands, which are reported to respond to such cycles with
notable irreversible density increases #2,3$. It should be
noted, though, that we are using a contact model without
plasticity or particle damage, which, as argued on evaluating,
in Sec. II C, the maximum pressure and shear stress in the
grains near contact points with Eqs. !8" and !9", is quite
unrealistic for the highest pressure levels simulated. Stress
concentrations in contacts between angular particles like
sand grains, with corners or asperities #30,39$, are more se-
vere than between smooth objects and should enhance the
effects of anelastic material behavior within the grains. The
smallness of irreversible compaction in our simulations sug-
gests that such macroscopic behavior, in sands, originates in
contact mechanics rather than in collective effects. The re-
versibility of the response to the pressure cycle is, however,
only apparent, as the coordination number does not return to
its initial value.

As expected, z* increases under a growing confining pres-
sure #Fig. 2!a"$: as the particles pack more closely in a
smaller volume, near neighbors come into contact. z* reaches
about 7.3 at the highest pressure in the densest samples, A
and C. Correlatively, an increasing number of rattlers get
trapped as their free volume shrinks, and are recruited by the
force-carrying network. The initially large fraction of rattlers
in states C and D !x0"10% " steadily decreases as P grows
#Fig. 2!b"$ and has virtually disappeared at P=100 MPa.

The evolution of coordination numbers on unloading is
more surprising. While low coordination states C and D ex-
hibit a very limited hysteresis effect and eventually retrieve
their initial, low z* values !about 4.6", with a slightly lower
rattler fraction, samples of types A and B, in which z* was
initially high, lose contacts as a result of the pressure cycle
and end up with z* values below 5 !about 4.8 for A and 4.5
for B", closer to the C and D ones than to where they started,
with a substantial rise in the population of rattlers. !Let us
recall that samples A and B are regarded in the study of
quasistatic compression as made of frictional beads with #
=0.3, like the others." The behavior of !frictionless" samples
A0 is of course different, for they cannot be stable at low
pressure below z*=6 #40$. Figure 3 compares the evolutions
of z* in the A and A0 series, and shows that z* is very nearly
reversible in the A0 series. The unloading curves in A states
starting at lower pressures, 3.16 and 1 MPa instead of

FIG. 1. !Color online" Evolution of packing fraction as a func-
tion of pressure P in glass bead packings !bottom axis", or dimen-
sionless stiffness parameter $−1 !top axis", in !from top to bottom"
states A !red crosses, continuous line", C !black square dots, con-
tinuous line", B !blue asterisks, dotted line", and D !green open
squares, dotted line".

(b)(b)(b)(b)

(a)(a)(a)(a)

FIG. 2. !Color online" Backbone coordination number z* !a" and
proportion of rattlers x0 !b" as functions of P or $−1, same symbols
as in Fig. 1.

FIG. 3. z* versus P or $−1 in pressure cycle in series A !crosses"
and A0 !dots", showing reversibility for A0. Shorter cycles !up to
0.316 and 1 MPa" than the one of Fig. 2 are also shown for A.
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2D model (polydisperse disks) 
Solid fraction versus pressure 3D model (monodisperse glass beads)

• Possible to assemble different initial states  
in some density range   
• Compression nearly reversible (not quite) 
• Coordination number might change notably in  
compression cycle 

Agnolin & Roux 2007
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Géométrie et désordre : « chaînes de force »

• Noter les conditions aux limites
périodiques

• Désordre spatial et distribution
des valeurs des forces de contact

• Grains flottants – une proportion
x0 des grains ne transmettent au-
cune force

• “Squelette” = structure portant
les forces = grains non flottants

• Nombre de coordination du
squelette = z∗ =

z

1− x0

100 MPa, also shown in Fig. 3, witness a lower, but signifi-
cant decrease of z* from its initial value z*!6 at the end of
the cycle.

The shape of the force distribution and the mobilization of
friction also change with P, as shown by the evolution of
parameters Z"2#, M1, and M2 in Fig. 4.

As a general rule, the width of the force distribution cor-
relates with the level of force indeterminacy, relative to the
number of degrees of freedom. Contact elasticity tends to
share forces rather evenly because contact force values
should minimize the intergranular elastic energy, subject to
the constraint that they balance the applied pressure "this
elastic energy as a function of forces is written further below
in connection with a discussion of irreversibility in pressure
cycles, and the minimization property is exploited in paper
III $16% to estimate bulk moduli#. More precisely, the incre-
ments of forces due to pressure increases will tend to reduce
the width of the distribution, the faster the less constrained
the minimization, i.e., the larger the degree of force indeter-
minacy. Thus in configurations A, the large coordination
number enables a quick narrowing of the distribution under
growing pressure. In states C, the same tendency is present,
but the evolution is much slower, as there are less possibili-
ties to distribute forces in a more tenuous network while
maintaining equilibrium. However, C samples gain contacts
faster than D ones $Fig. 2"a#%, for which the narrowing effect
is even slower. Finally, the extreme case is the situation of

isostaticity, as in the A0 series, in which the distribution of
forces is geometrically determined in the rigid limit of !→
+". As, furthermore, the increase of z with P is not very fast
in that case, since z is already large from the beginning, the
shape of the distribution remains nearly constant. A few nor-
mal force probability distribution functions at different pres-
sure levels are shown in Fig. 5.

The evolution of force values and friction mobilization on
unloading is more complicated: all three parameters shown
in Fig. 4 first increase, then go through a maximum and end
up, at the initial pressure value, with a value comparable
with the initial one "except for friction mobilization param-
eters M1 and M2 in A systems, because they started at zero#.
In a granular sample controlled in displacements or strains,
rather than stresses, large self-balanced forces can in some
situations remain when the external load that created them is
removed, the simplest example being that of one particle
wedged in a corner $41,42%. Our observations indicate that
such a phenomenon does not take place in a situation of
controlled stress state: all forces are of the order of the av-
erage force, which is related to the current pressure by Eq.
"7#, even though contacts have carried forces that were larger
by orders of magnitude in the past. This suggests that the set
of admissible contact forces, restricted to the intersection of
an H-dimensional affine space "due to equilibrium relations#
with a cone "due to Coulomb inequalities# is bounded. Yet
during unloading many more sliding contacts are observed
than at growing pressure, due to the effects of decreasing
normal force components, and the level of friction mobiliza-
tion is higher "Fig. 4#. Meanwhile, the distribution of normal
forces gets wider. The global influence of the past loading,
with contacts previously carrying larger forces, enhances
force heterogeneities. A related quantity is the elastic energy
stored in the contacts. The total elastic energy per grain w
reads $from Eqs. "1# and "2#%

FIG. 4. "Color online# From bottom to top: Z"2#, M1, and M2
versus P or !−1 in the compression cycle. Symbols as in Fig. 1 for
states A, C, and D. Series A0 represented with "red# dots joined by
a dotted line for Z"2#. Hysteresis loops for Z"2# first decrease then
increase back on unloading and go through a maximum "except for
A0, in which case it is nearly constant#. M1 and M2 behave in a
similar way, with the special circumstance that their initial values
are equal to zero in A states "assembled without friction#.

FIG. 5. From bottom to top, evolution of normalized force dis-
tributions P"f#, with f =N / &N', with growing pressure in samples A,
C, D, and A0. P values in kPa are 10 "except for D: P=1#, 100, 103,
104, and 105. All four distributions tend to narrow as P grows, but
at very different rates.

IVANA AGNOLIN AND JEAN-NOËL ROUX PHYSICAL REVIEW E 76, 061303 "2007#

061303-6

‘force chain’ patterns

(normalized)  force distributions  
under growing P



New control parameter in cohesive system: reduced pressure P* 

Assembling and compressing initially loose states
Adhesive forces may stabilize loose structures if left to act in aggregation stage

Use ideal numerical procedure: assemble cohesive aggregates before compressing:

• For P*<< 1, cohesion dominates  
• At P*>>1, confining stress dominates

1. Dispersion. Prepare disordered  ‘granular gas’ configuration at low solid fraction 

2. Aggregation. Give random velocities to grains (Maxwell distribution variance      ), form connected aggregate 
structure at constant volume. Compare V0 to                                 (escape attractive potential)   

3. Compression. Increase isotropic pressure P, wait for equilibrium at each pressure step.  

�0

V 2
0

V ⇤ = 1
m

p
F0D0

P ⇤
=

PaD�1

F0
in D dimensions, for grain diameter a
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FIG. 4: Solid fraction versus time for both preparation procedures, showing some aspects of the configurations at diÆerent
stages. Point A is the initial state (or ©I). Aspects of configurations are shown for intermediate states B1 and B2, and for
final equilibrated states C1 and D2 (at P § = 0.01). Point C2 corresponds to the stage when all disks are assembled in a unique
aggregate, then equilibrated at P § = 0 (both aggregation and equilibration stages take place between A and C2). The time

unit is T0 =
p

ma/F0. Note the duration of the preparation process with method 2, and the diÆerence in final equilibrated
states compared to method 1.

0.45–0.55 range (see fig. 4). Nevertheless, the final solid
fraction under P § = 0.01 is considerably lower than the
one obtained with method 1.

It should be noted on Fig. 4, which summarizes the
assembling procedures, that the aggregation stage makes
method 2 computationally quite costly because of the
time necessary for clusters to merge, and especially for
the stabilization of loose samples in equilibrium config-
urations (lower contact numbers implying lower rates of
energy loss as well as larger and slower fluctuations of
soft, tenuous structures). In an attempt to limit the in-
fluence of compaction dynamics, which results in denser
samples when the lower density of the initial state al-
lows the compaction process to accelerate more (as noted
in Sec. IIIA), we tested the eÆect of limiting the max-
imum strain rate ≤̇

max

. Without any limitation, we ob-

tained a maximum value ≤̇ ' 0.15 T°1

0

. Using the sam-
ples with ©

I

= 0.13 (the lowest value used in this work)
with KN = 105F

0

/a, three diÆerent values for ≤̇
max

were
tested: 0.10 T°1

0

, 0.05 T°1

0

and 0.015 T°1

0

. The condi-
tion ≤̇ ∏ 0.10 T°1

0

gave a final state close to the original
one. The others two values produced similar results, with
a relative decrease in density of about 10% compared to
the original procedure. We chose to enforce condition
≤̇
max

= 0.05 T°1

0

, to save computational time. This value
has been applied to prepare all samples studied in the fol-
lowing.

Fig. 4 shows that method 2 succeeds in stabilizing open
structures. Final solid fractions agree with the typical
values observed in powders if one uses the correspon-
dence between 2D and 3D packing fractions suggested

Assembling initially loose states

Direct compression (method 1) —> dense states.  
Loose states stabilized by aggregation step 

First compression to P*=0.01



Aggregation and first pressure step (to P*=0.01)

Reminiscent of colloid aggregation processes 
(here, ballistic aggregation) 
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FIG. 7: Typical configurations of 1400 disk samples of series A with (left) and without (right) rolling resistance, at P § = 0 (a)
and P § = 0.01 (b). Note the diÆerence in local structure of thin “beams” joining dense regions with or without RR.

Another important parameter is the initial velocity of
agitation, V

0

. Its influence has been assessed on one 1400
disks sample, with ©

I

= 0.36. The changes of coordina-
tion number with V

0

at P § = 0 are presented on Fig. 8.
Low velocity values produce more tenuous aggregates

(z ª 2), since even a small level of RR is able to slow
down local rearrangements and stabilize tree-like struc-
tures (i.e., devoid of flops) immediately after the colli-

FIG. 8: Final coordination number z versus initial quadratic
average velocity in agitation stage of method 2, normalized
by characteristic velocity V §. The arrow points to the value
most often used in our calculations.

sions between particles or small clusters.
A large kinetic energy cannot be absorbed by the RR,

and as a result disks are able to rotate, which leads to
better connected structures (z ª 3). In a sense, a large
V

0

kills the eÆects of RR, and packings are similar to
those made without RR in such cases.

We therefore conclude that the connectivity of loose
samples with RR assembled by aggregation depends on
the initial magnitude of velocity fluctuations and on the
level of rolling friction.

As figure 8 shows, the same trend was found on reduc-
ing contact stiÆness parameter ∑, as a larger translational
and rotational compliance creates more contacts.

V
0

is analogous to the particle fluctuating velocity in
experiments on gas-fluidized beds of xerographic toners
under gravity [67]. Such velocities are larger than the gas
velocity by two orders of magnitude. Typically, one has
v

gas

ª 1 ° 4 mm/s, while V §, deduced from the contact
parameters with relation (7) is about 1 cm/s. Such a
value is therefore comparable to the particle fluctuation
velocity.

Of course, such a comparison is only indicative, be-
cause the influence of V

0

on packing structures depends
on µr, and is also very likely to be aÆected to some extent
by the viscous dissipation model we have adopted. Both
rolling resistance and viscous forces are micromechanical
features for which no accurate physical identification is
available. Yet, it seems plausible that powder packings,
because of their initial agitated states, stabilize in better
connected states than predicted by geometric aggregation
models.

Role of Rolling Resistance (RR) 

Analog to Coulomb condition for tangential force, condition on contact rolling moment 

||�||  µRFN

µR = length (surface roughness)
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FIG. 11: (Color online) Sample of type 2 (N=1400), in equilibrium under P § = 0 after aggregation stage, with solid fraction
© = 0.26 (series B). Same conventions as on Fig. 2(b), except for the blue color corresponding to contacts carrying a total force
below tolerance 10°4F0 (deflection h0 and no mobilization of tangential force). Note the large number of such interactions and
the local compensation of attractions and repulsions in small prestressed clusters. To help visualize unstressed regions, disks
only interacting at contacts bearing forces below tolerance are filled in light grey.

such that forces are uniquely determined [73, 78–81]. The
degree of force indeterminacy is linked to the number of
degrees of freedom, equal to 3N (or 3N +2 if the cell sizes
can change), to the number of contacts Nc, the number
of distant interactions Nd and the number of indepen-
dent mechanisms or floppy modes k (also called degree
of hypostaticity [81]) by the following relation (written
here for a fixed cell)

3N + h = 2Nc + Nd + k (no RR). (19)

A proof of this simple result (which is classical in struc-
tural engineering), and the relation of numbers h and k
to the rigidity and stiÆness matrices of the contact net-
work, are recalled in Appendix A. Mechanisms are those

sets of velocities (or small displacements, dealt with as
infinitesimal) which entail no relative velocities (or small
relative displacements) in contacts. For distant interac-
tions, only normal relative velocities are relevant, hence
their particular treatment in (19). In Appendix A we
explain how we determine whether a given configuration
is rigid, i.e., devoid of mechanisms (apart from the two
global translational motions of the whole set of grains,
rendered possible by the periodic boundary conditions).
It is customary to relate the level h of force indeterminacy
to the coordination number z in granular materials. How-
ever, this is not possible in general, which motivated our
recalling (19) in its complete form. (19) can be rewritten,

Forces in loose structures (no RR) at P = 0

Compensation of  repulsive and attractive forces, presence of unstressed grains 



With RR: initial stress
24

FIG. 20: (Color online) Same as Fig. 19, in a sample with large RR, µr = 0.5a, N = 5600, and © = 0.26. Inset: force network
in N = 1400 sample obtained with low initial mean quadratic velocity V0 and small RR (corresponding to the bottom left point
on Fig 8).

ulations of frictionless, cohesive grains (also devoid of
RR). In the limit of rigid disks (∑!1), one knows then
that such assemblies are devoid of force indeterminacy:
h = 0 [73, 79–81]. As a consequence, once large clus-
ters are formed under no external pressure, all contacts
should bear normal forces equal to zero. Such a situa-
tion is depicted on Fig. 21. The aggregate represented on
Fig. 21 is obviously floppy. The analog of relation (19) is

2N + h = Nc + Nd + k (µ = 0, no RR) (22)

(It is customary, on counting degrees of freedom for fric-
tionless disks or spheres, to discard rotations, which are
all irrelevant, thereby reducing the number of degrees of
freedom to 2N in the l.h.s. of (22) ; an alternative is to
regard each rotational degree of freedom as an indepen-

dent mechanism).

Formula (22) in the frictionless case yields for h = 0
a number of floppy modes equal to 2N ° Nc ° Nd =
(4 ° z)N/2. The configuration of fig. 21 has a coordi-
nation number z = 3.14, hence a number of mechanisms
larger than 40% of the number of particles. Such ag-
gregates are therefore very floppy, although particles are
firmly tied to their contacting neighbors. Large parts of
the particle cluster of Fig. 21 are connected to the rest of
the structure by only one or two contacts, thereby allow-
ing large scale motions maintaining all contacts. Not sur-
prisingly, the application of a small pressure P § = 0.01
to the system of Fig. 21 produces a very large compres-
sion step, resulting in the configuration shown on Fig. 22.
The coordination number is now 4.01 (corresponding to a

No initial stress for large RR, or  very gentle process (low V0) 
Limit of geometric aggregation rule



Quasistatic compression: equilibrium under varying P*

Classically, use void ratio rather than solid fraction e =
1
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FIG. 26: Equilibrium particle positions in 1400 disk sample
with small RR under P ∗ = 0.032. Particle displacements to
new configuration equilibrated under P ∗ = 0.042 are shown
as arrows (global density change ∆Φ = 0.05). Neighbor pairs
for which contact opens are filled in grey. All other contacts
(thin solid lines) are maintained. Dense regions moving ap-
proximately like rigid solids are circled within dotted lines.
Most lost contacts are situated near the boundaries of such
solid-like particle lumps.

tween two equilibrium configurations. As an example, let
us consider the evolution between equilibrated states as
P ∗ increases from 0.177 to 0.237, and compare two sam-
ples, one with small (µR/a = 0.005) and the other with
large (µR/a = 0.5) RR. Table IV gives the changes in
solid fraction and coordination number, and numbers of
maintained, destroyed and created contacts in this com-
pression step. Successive configurations separated by a
fixed time interval ∆t = 0.16T0 are compared and Fig.27
plots the number of destroyed and created contacts as
functions of time. For the same strain increment, con-
tact losses, as a function of global strain, are significantly
less frequent in the sample with large RR. This fact is re-
flected both in the data of Table IV, where global changes
are recorded, between the initial and final states, and in
those of Fig. 27, where successive changes over time inter-
vals ∆t are detailed. As a consequence, while the coor-
dination number hardly changes during consolidation in
systems with small or vanishing RR (see Fig. 17), it grad-
ually increases from an initial value close to 2 to nearly 3
in systems with large RR (Fig. 9). The lesser importance
of tensile contact rupture in the plastic compression of as-
semblies with large RR is also witnessed by the normal
force distribution (Section VE): forces approaching −F0

are quite scarce, as opposed to the situation in samples

µR/a ∆Φ(%) ∆z(%) N (=) N (−) N (+)

0.005 3.2 0.14 2084 (94.9 %) 112 (5.1 %) 115 (5.2 %)

0.5 3.1 1.2 1679 (98.5 %) 26 (1.5 %) 46 (2.7 %)

TABLE IV: Relative changes of solid fraction, ∆Φ, and of co-
ordination number (∆z), and numbers of maintained (N (=)),
destroyed (N (−)) and created (N (+)) contacts in a 1400 disks
sample, with small or large RR, in the compression step be-
tween P ∗ = 0.177 and P ∗ = 0.237.

FIG. 27: (Color online) Evolution of the contact number
as a function of relative density increase. In sample with
µR/a = 5 · 10−3 the proportions x+ and x− of gained and of
lost contacts with respect to the previous recorded list are re-
spectively shown with red square dots and triangles – the lat-
ter being connected with a dashed line. A similar code is used
for x+ and x− values in a sample with large RR (µR/a = 0.5),
but with open dots, and in black.

without RR (Fig. 18). With small RR, some single par-
ticle chains are also present, although shorter and less
numerous. The sensitivity of plasticity index λ to the
rolling friction is likely to be explained by different rup-
ture mechanisms, the importance of folding rearrange-
ments growing with the level of rolling resistance.

VIII. CONCLUSION

To summarize, we have used numerical simula-
tions to observe and characterize, at the macroscopic
and microstructural levels, the consolidation behavior,
in isotropic compression, of model cohesive powders.
Macroscopic constitutives laws for quasistatic loading,
unloading and elastic responses were shown to be reason-
ably well approached. The material behavior was inves-
tigated for a range of densities that is wider than in most
simulation studies of cohesive granular materials. The
consolidation process goes through three stages. In a first
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of Φ is observed. One then has Φ ∝ ξdF −2 or

ξ ∝ Φ−1/(2−dF ), (10)

the prefactor being specific to the particular system stud-
ied. Systems with size L ≫ ξ can then be regarded as
homogeneous packings of fractal “blobs” of (linear) size ξ.
Such ideas are quite generally used, and were applied to
semi-dilute polymer solutions [48], to silica [49] or poly-
meric [50] gels, in computer simulations of aggregation
models [51], and to various complex, supramolecular ob-
jects like fat crystals [52] or asphaltene aggregates [53].

One may expect that the density increase caused by the
collapse, under growing load, of the tenuous structures
formed by cohesive packings corresponds to a decrease
in the fractal blob size ξ, while dimension dF still de-
scribes the scaling of density correlation at smaller scale.
One should then observe the scaling predicted in (10).
This implicitly assumes that the small scale structure of
the packing is not affected by the compaction process,
which essentially breaks long, thin junctions and fills the
largest pores. A clue in favor of such a scenario is pro-
vided by the results of Sec. III C, which suggest that the
same structure is obtained if the material is directly pre-
pared with some value of Φ, or if it is assembled first in
a looser state and then isotropically compressed, up to
solid fraction Φ.

To compute dF and ξ, we measure the “scattering in-
tensity” I(k), i.e. the Fourier transform of the density
autocorrelation function, as we briefly recall now (see pa-
per I for more details). Density field χ(r), taking values
1 within particles and 0 outside, is first discretized on a
regular mesh, then Fourier transformed, thereby obtain-
ing χ̂(k). We then evaluate I(k) = |χ̂(k)|2 /A, A being
the cell surface area. Invoking isotropy, it is a function
of k = ||k|| alone. I(k) should then vary proportionally
to k−dF for a ≪ 2π/k ≪ ξ, and reach some plateau for
k < 2π/ξ.

This approach was used in paper I, and yielded the
same fractal dimension, dF ≃ 1.52 in systems with RR,
under P ∗ = 0 (solid fraction ΦI = 0.36) and Φ = 0.01
(solid fraction Φ0 = 0.524±0.008), while ξ decreased from
ξI = 9.3 ± 0.4 to ξ0 = 5.1 ± 0.2. It should be noted that
these values are roughly compatible with relation (10) (as
(ξI/ξ0)2−dF = 1.4± 0.1 is close to Φ0/ΦI = 1.46± 0.02).

Fig. 15 shows the scattering function for similar con-
solidation states shown in Fig 2 (P ∗ = 0.01), in Fig. 3
(P ∗ = 0.178), and for P ∗ = 1. These results are averaged
over the four largest samples (with RR) of Table II. In
spite of the error bars, I(k) exhibits the expected form, it
is approximately constant below some crossover wavevec-
tor 2π/ξ which increases with Φ, and then decreases, with
slope −dF on a logarithmic plot. Pressure P ∗ = 0.178 is
the largest one for which this latter feature is clearly ob-
served, and I(k) data corresponding to smaller pressures
are intermediate between P ∗ = 0.01 and P ∗ = 0.178
curves. The arrows on the plot signal the identified val-
ues of wavevector 2π/ξ, which values have been estimated
by means of the fit function for I(k) presented in paper I.

FIG. 15: Scattering intensity per unit area versus wave vector
k. Results are averaged over the four largest samples (with
RR) of Table II.

The curve corresponding to P ∗ = 1 – a flat, low scatter-
ing signal – is typical of dense, homogeneous media with
no fractal range for density correlations.

In view of the small value of ξ reached in the loos-
est configurations (those with P ∗ = 0 studied in paper
I), relation (10) is difficult to test from density correla-
tion data. Another characteristic length scale for density
inhomogeneities, used in paper I, is the (mass) averaged
radius of gyration of pores. It may provide an alternative
definition of a blob size ξ′, proportional to ξ. We observed
ξ′ ≃ ξ at P ∗ = 0.01, In fact, this equality works well
under very low consolidations. However, under higher
confining pressures we have observed that the definition
of ξ′ gives lower values than ξ. Figure 16 is a plot of ξ′

as a function of pressure.
Despite the restricted fractal range, our observations

therefore confirm the validity of the “fractal blob” model,
with a constant dF and a correlation length ξ decreas-
ing as consolidation proceeds, until a final, homogeneous
structure similar to that of cohesionless packings (albeit
somewhat looser) is obtained. Other values of dF are
likely to be observed with other assembling processes
(such as e.g., diffusion-limited cluster aggregation).

Values of ξ and dF do not, however, entirely determine
the mechanical properties of the system. The response
of an aggregate to some mechanical perturbation should
depend on its connectivity which, as explicitly shown in
paper I, is independent of its fractal dimension (systems
with different µR and/or prepared with different values of
V0/V ∗ have the same dF , but very different coordination
numbers – see also Section III C 3).

Results concerning blob sizes in systems without RR,
for which dF ≃ 1.9 [29], are similar. Different stress
states and mechanical conditions might also produce

Fractal blob at intermediate scale
(fractal dimension corresponds to ballistic aggregation process)
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• Explore behavior of loose cohesive structures (beyond simple isotropic compression), 
from granular systems and powders to colloids 

• importance of friction and resistance to rolling… Measurements for small cohesive 
grains?

Perspectives



• Impose shear rate                   while maintaining constant normal stress 
• Steady state depends on two parameters, P* and inertial number  
• Measure apparent friction coefficient                  and solid fraction   

Simulation of steady-state shear flow in wet bead assemblies

Quasistatic limit of I —> 0 = critical state  
Large increase of apparent friction for decreasing P*, while density decreases 
Faster approach of quasistatic limit (flat curves) 
Systematic shear banding for smaller P* ~ 0.1  

Macroscopic friction coeff. vs. I for different P*
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Experimental measurements at grain scale

initial value at higher concentrations of CpCl. The concentration
at which the viscosity reached amaximumwas found to coincide
with point at which the net potential of the mixture was zero.
Webegin by providing an overviewof the experimental details,

including a brief description of the laser tweezer apparatus used
to perform these micromechanical measurements. Next, results
are presented describing how the addition of surfactants to the
solution alters the mechanical response of colloidal aggregates
to an applied bending moment. Measurements of the critical
bending moment and single-bond rigidity of chain aggregates
are made at various surfactant concentrations. We demonstrate
that the observed influence of surfactants on the single-bond
rigidity may be understood in terms of our previously developed
model that accounts for the surface adhesion energy between
particles.5,6 Finally, we discuss the mechanics of the contact
region between aggregated particles and its relationship to the
nonlinear mechanics of aggregates.

Experimental Section
Laser Twezeers. The laser tweezer apparatus used in this work

is constructed using an inverted microscope (Zeiss Axiovert 200)
to enable simultaneous trapping and imaging via video microscopy.
A 4-WCWNd:YAG laser (λ ) 1064 nm, Coherent Compass 1064-
400M) is used to generate the traps. The trap positions within the
microscope focal plane are manipulated by controlling the angle of
the beam at the back aperture of the objective using a pair of
perpendicular acousto-optic deflectors (AODs,AAOpto-electronics
AA.DTS.XY-400). The AOD provides a spatial resolution of 0.2
nm and a rate of trap repositioning on the order of several kilohertz.
The beam is then focused onto the sample using a 63×NA1.2water
immersion microscope objective (Zeiss C-Apochromat). A high
numerical objective is necessary to maximize the gradient force
generated by the laser,whereas the use of awater immersion objective
allows for particle trapping throughout the entire sample, which is
approximately 200-300 µm in depth. Our objective allows us to
trap over a range of 100 × 100 µm2 in the image plane using the
AOD. A more detailed description of the experimental apparatus
can be found in ref 4.
Materials and Sample Preparation.Experiments are performed

on monodisperse spherical latex particles composed of poly(methyl
methacrylate) (PMMA). The PMMAparticles (Bangs Laboratories,
Inc.) have an average diameter of 2a ) 1.47 ( 0.1 µm and are
obtained in a stock solution of solids that is 10%w/w solids inwater.
The particles are triply washed inMilli-Qwater before being diluted
to a solids volume fraction of φ ≈ 10-4.
The double-layer repulsion is screened through the addition of

magnesiumchloride (MgCl2, Sigma-Aldrich) to a final concentration
of 250 mM. In this work, we study the interactions of particles in
the presences of both nonionic and anionic surfactants. The anionic
surfactant used was sodium dodecyl sulfate (SDS, EM Science).
Bulk solutions of 400 mM SDS were prepared and diluted to the
desired final concentration. The critical micelle concentration (cmc)
of SDS in the absence of added electrolyte is 8 mM. However, the
addition of salt to an ionic surfactant solution is known to depress
the cmc.12,14 Corrin and Harkins found that the cmc is affected only
by the concentration of the ion opposite in charge to the micelle.13
They provide an empirical relationship for calculating the cmc of
SDS in the presence of salt,

where c* is the cmc in the presence of an added salt and m+ is the
concentration of counterions in solution. Both terms have units of
mol/L. Thus, for an SDS in solution with 250 mM MgCl2, the cmc
is c* ≈ 1 mM.

The nonionic surfactant is pentaethylene glycol monododecyl
ether (C12E5, Sigma-Aldrich). The cmc of C12E5 in the absence of
an added electrolyte is 85 µM. Unlike ionic surfactants, the cmc’s
of nonionic surfactants are not significantly affected by the presence
of salts in solution (i.e., c*≈ cmc).14 Bulk solutions of 2 mM C12E5
were prepared and diluted to the final desired concentration. We
note that we do not expect the surface adsorption of surfactants to
shift the bulk concentration significantly relative to the cmc for
either surfactant because the concentration of particles used in our
samples is extremely low.
Measurements of Aggregate Elasticity. Samples for each

experiment aremade using standard glassmicroscope slides (Fisher,
size 25 × 75 × 1 mm3). An adhesive spacer is used to form a gap
between the glass coverslip (no. 1.5, CorningLabware&Equipment)
and the microscope slide. A solution consisting of the particles, salt,
and surfactant at the final dilution concentration is introduced such
that it fills the gap, and the ends are sealed with a fast-curing U.V.
epoxy (Norland Products, NOA81) to prevent drying and convective
flow within the sample.
Particle aggregates are directly assembled using the discrete

trapping method described previously.4 This method is based on the
principles of time-shared optical trapping, in which multiple traps
are created through the use of high-frequency, high-precision steering
of a single laser beam.15-17 After an array of time-shared traps is
created, all of the traps are filled with particles. Because of the low
particle volume fractions used in our samples and the relatively
large size of the particles, the time required to fill as few as three
traps via particle diffusion is untenable. Therefore, we actively seek
particles to fill the array of traps by translating the microscope stage
to scan through the sample. After all traps in the array are filled, the
gap between the particles is decreased until van derWaals interactions
induce aggregation. The advantage of this method over the other
techniques is the direct control over each particle position.4 This
assures that tensile or compressive forces are not being applied to
the chainduringmicromechanical experiments, such as chainbending.
Using time-shared optical traps, a bending moment is applied to

the chain using a three-point trap configuration, shown in Figure 1.
The two end particles are held in stationary traps as a third trap,
positioned on the center particle, translates perpendicular to the
aggregate at a velocity slowenough to create negligible hydrodynamic

(14) Rosen, M. J. Surfactants and Interfacial Phenomena, 3rd ed.; Wiley:
Hoboken, NJ, 2004.

(15) Misawa, H.; Sasaki, K.; Koshioka, M.; Kitamura, N.; Masuhara, H. Appl.
Phys. Lett. 1992, 60, 310.
(16) Visscher, K.; Brakenhoff, G. J.; Krol, J. J. Cytometry 1993, 14, 105.
(17) Mio, C.; Marr, D. W. M. Langmuir 1999, 15, 8565.

log c* ) -0.46 log m+- 3.25 (1)

Figure 1. (A) Schematic drawing of the three-point bending
experiment. Stationary traps are positioned on the two end particles,
which serve as forces sensors. A bending moment is applied to the
aggregate using a third trap positioned on the center particle,
translating in the y direction at a rate of 20 nm/s. (B) Micrograph
of an aggregate deforming. The scale bar is 5 µm. (C) Diagram of
the experimental apparatus. Multiple optical traps are generated by
time sharing a single beam using an acousto-optic deflector (AOD).

1142 Langmuir, Vol. 24, No. 4, 2008 Pantina and Furst

Pantina& Furst, Langmuir, 2008 
‘3 point beam bending’ experiment 

carried out with optical tweezers 
on aligned model colloid particles 

(PMMA, diameter 1.5         ) 
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Powders & Grains 2017 will be held in Montpellier (South of 
France) on 3-7 July 2017. The aim of the conference is to give 
an up-to-date picture of the broad research field of granular 
media. Contributions from experts around the world will cover 
a wide range of hot research topics. 

Powders & Grains is an international scientific conference held 
every four years that brings together both physicists and 
engineers interested in the physics and micro-mechanics of 
granular media. It distinguishes itself from other meetings on 
granular materials (i) by the mixture of disciplines, (ii) by a 
refereed conference papers ready at the conference and online 
available, and (iii) by its unique single-session concept. 

Previous meetings: Clermont-Ferrand, France (1989), 
Birmingham - UK (1993), Durham - USA (1997), Sendai - Japan 
(2001), Stuttgart - Germany (2005), Golden - USA (2009), 
Sydney - Australia (2013). 


WEBSITE


www.pg2017.org

Powders & Grains
Since 1989

Send abstracts before June 5th!


