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Plan of lectures

Some facts from the tensorial algebra

How to deduce equations of a continuum

Basic laws of mechanics

Elastic continua: classic, full Cosserat, reduced Cosserat
Basic laws for elastic continua. Integral and local forms.
Nonlinear full Cosserat continuum. Equations

Nonlinear reduced Cosserat continuum. Equations
Linear full Cosserat continuum. Equations

Linear isotropic full Cosserat continuum. Equations
Linear reduced Cosserat continuum. Equations
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Linear isotropic reduced Cosserat continuum. Equations
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Lectures 1,2.

What is the mechanics of the Cosserat media?
Some facts from the tensorial algebra
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Complex materials

Classical continuum is a continuum of point masses that only can move.
However, the reality is much richer! Advanced applied science deals with

3D acoustic metamaterials with effective negative elastic moduli /
density for some frequencies. Control of wave beams, acoustic cloaking,
noise reduction, ...
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What is mechanics of the Cosserat media?

Cosserat medium is a continuum whose point bodies (particles) have
rotational degrees of freedom.

Hand-made smart materials
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What is mechanics of the Cosserat media?

Magnetic materials (Kelvin's medium — special Cosserat medium with
particle posessing large spin)
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What is mechanics of the Cosserat media?

Granular and particulate materials
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What is mechanics of the Cosserat media?

Cosserat media: heterogeneous materials with granular structure,
composites under loading that causes rotation of (sufficiently rigid)
grains (superplastic materials, acoustic metamaterials)

Shear in a granular/particulate medium
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What is mechanics of the Cosserat media?

Limitations: Cosserat medium is a particular case of complex medium.
Its point-body is rigid. There are other more complex media, e.g. where a
point-body is deformable (protein chains, porous media, etc.) It is only a
first step to the world of enriched continua. In this course we will make
an introduction to the elastic Cosserat media. No temperature or heat
effects are considered.

Methods: Theory is based on the fundamental laws of mechanics
(balance of forces, couples, energy) and, for inelastic media, 2nd law of
the thermodynamics. Symmetry considerations and material objectivity
(frame indifference). Another branch is the microstructural approach.
Experimental methods: under development. We need experiments to
determine the moduli. Most of them are based on the experiments on
waves (mechanics of magnetic and piezoelectric materials, mechanics of
granular materials, rotational seismology...)
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Your suggestions?

What do we need to know to describe a behaviour of a Cosserat-like
material?

Lecturer: Elena F. Grekova (elgreco@pdmi.lntroduction to the mechanics of Cosserat milySidi iR Tl ENTINY [Sely ETy o= N = Te 1



Scope of the course

Continuum deforms. Therefore we cannot find out its motion only from
equilibrium or dynamic equations. Constitutive equations tell us how the
medium reacts to the stresses in each point. They are needed to solve
any problem where there are deformations.

@ Mathematical technique: tensorial algebra. (Brief overview.)

@ Basic equations of the elastic Cosserat media (constitutive and

dynamic equations)
@ Waves in the elastic Cosserat continua
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Tensorial algebra. Plan

@ Tensors. Definition
o Co-ordinates and direct tensorial notation
@ Polar and axial vectors and tensors
@ Tensor invariants
@ Important identities
@ Accompanying vector of an antisymmetric tensor
@ Orthogonal tensors. Rotation tensor
Literature: books by P.A. Zhilin and A.l. Lurie on tensorial algebra
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Tensorial product. Diades and tensors

Vectors a,b, c, ...

Operation ®: tensorial product. Linear in its arguments.

Dyadic a®b is a linear object with respect to both vectors:

(aa + Bb)®c = xa®c + Bb®c, c®(aa + Bb) = ac®a + Bc®b.
This is an ordered pair: a®b # b®a (generally speaking).

A tensor of second rank is a sum of dyadics:

A = a®b + c®d + e®f + - - - —Za( ®b()

Questions
1) How to introduce a tensor of the 4th rank?
2) We will work with 3D vectors. What is the minimal n such that any
n p
tensor of the 2nd rank can be represented as > c(,-)®d(’)?
i=1
3) How to introduce and represent an identity tensor?
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Answer 1. Tensor of the 4th rank

“A = a;®b;®c1®d; + ax®br®co®ds + ... — a sum of polyadics of the
4th rank. Polyadycs are linear in their arguments and the permutation of
vectores is not allowed (generally speaking)

Lecturer: Elena F. Grekova (elgreco@pdmi.lntroduction to the mechanics of Cosserat milySidi iR Tl ENTINY [Sely ETy o= N = Te 1



Answer 2. Co-ordinates

We see that tensors are linear with respect to the vectors of their
dyadics. We choose an orthonormal basis in 3D space: ix, k = 1,3. Any
dyadics can be represented as

a®b = Z a"i,® Z b"i, = Z Z a"b"i,®i,.

n=1 m=1n=1
The numbers L™ = amp" form a matrix of co-ordinates of the dyadic

a®b in the basis ik.
Express a”, b" in terms of a, b, ix and L™ in terms of a®b, iy.
J

Any tensor of the 2nd rank is a sum of dyadics: A = ) aj®bf. Let us
j=1
proceed with aII the dyadics the same We have
A= Z Z Z ar Mm@ i, = Z Z(Z ambf”’)lm(xu,7
Jj=1m=1n= m=1n=1 j=
In 3D space any tensor of the 279 rank is a sum of < 9 dyadics.
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Answer 3. Identity tensor

E is the identity tensor if for any tensor of the 2nd rank A it holds
A-E=E-A=A
Let us prove that E exists. Choose an orthonormal basis i.

3 3 3
E= Y ixQix. Indeed, A-E= 3 A™ipi, 3 ix®ix =
k=1 m,n=1 k=1
3 3 3
SO A8 ®ik = > AM™LRi, = A.
m,n=1 k=1 m,n=1

In the same way we prove that E- A = A.

Prove that E is unique. Suppose that there exist Eq1, E5, both identity
tensors. In this case E; = E1 - E> = E».

Verify that for tensor a of any rank (including 1, i.e. for vectors)
a-E=E-a=a.
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Co-ordinates

A = A™j.i,. The coefficients A™" form a matrix of co-ordinates in the
basis ip,.

Let us omit the sign > and sum in repeated indices of the Roman
alphabet from 1 to 3 (in Greek indices from 1 to 2) if one is subscript
and another superscript.

A tensor A does not change when we change the basis ij. Its
co-ordinates change.

A tensor that represents a physical object, generally speaking,
depends on the system of reference (it is a physical thing), but
never depends on the system of co-ordinates (which is a
mathematical thing that we choose arbitrarily).
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Direct tensorial notation

This allows us to perform calculus in the simplest way. We see that we
can omit the symbol ®. In this case ab is a dyadic a®b. We can do it
since A®a = Aa, if X is a scalar.

We shall use the notation A -b and b - A for scalar products of tensor A
and vector b, and notation A x b and b x A for vectorial products (e.g.
A x b = a*®a) x b).

Example 1. © = Ak®k + u(E — k®k) — tensor of inertia of a body with
axial symmetry about the axis k. Let us calculate its moment of inertia
with respect to the axis n = (i +j)v/2/2:
n-©-n=n-(Ak®k+ u(E — k®k)) -n=
n-2k®@®k-n+un-E-n—un-k®k -n=0+un-n—0=pu.

Examples 2,3. (a®b)-c=a®b-c=ab-c;

Let us omit ®: (ab)-c=ab-c=ab-c.

c x a®b = c x a®b. Omitting ®, we have c x ab = c x ab.
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Direct tensorial notation

Introduce A-B,A x B,AT A --B etc. for dyadics. (Exercise 1: write
down the definition for tensors in general case, verify that we can omit
the symbol ® and that we simply may forget about the brackets.)
(a®b) - (c®d) = a®(b-c)d =b-ca®d

(a®b) x (c®d) = a®(b x c)®d

(a®b)" = b®a

(a®b) - - (c®d) =a-(b-c)d=a-db-c

In USA they use the operation A: B =A--B' (write down for dyadics)
trA=A--E

Vectorial invariant [a®b]x = a x b
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Dual bases and co-ordinates

Let ix be a basis. The dual basis i¥ is defined by: iy - i” = 0. Delta of
Kronecker 0 = 1 if k =n, and 0] = 0 if k # n.

Verify that if i¥ is dual for iy, then i, is dual for i¥, and that an
orthonormal basis is dual for itself.

Let a be a vector. Let us find its co-ordinates in both bases. Look for
alk) such that a = a(kiy. | i

a-it = alij, i = a(k)éi = a(%),

Co-ordinates in the dual basis: @ - is = agi* - is = ak)0f = as).
Verify that ii¥ is the identity tensor, if ix is any basis.

When changing the basis, the co-ordinates of a vector or a tensor
change. When they change in the same way as the basis, they are
“covariant”, we use a subscript for notation. When they change in the
same way as dual basis, they are called “contravariant”, and we use
superscripts. (Give examples. Express a' via a; and iy - is.)
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Polar and axial vectors

Vectors are mathematical objects that can reflect something physical, for
instance, correspond to a translational displacement, or to a rotation. To
describe a translation in space in a certain direction for a certain distance
we use polar vectors (they have direction and absolute value).
To describe a rotation we need “spin-

vectors”, or “circular vectors” introduced

by P.A. Zhilin (a circular arrow, its

direction corresponds to the direction Q
of rotation, and its longitude to the
absolute value of rotation). We put in
correspondence to a circular vector a
straight vector of the same longitude
(axial vector), for instance, using the
“right hand screw rule”

circular vector

axial vector
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Polar and axial vectors

We introduce an axial vector because it is easy to work with it, but we
could also define it by a “left hand screw rule”. Choosing the rule, we
define the orientation of the system of reference and we must perform all
the operations with the same orientation. This orientation does not
correspond to any physical reality, this is only our arbitrary choice. Axial
vectors are also called “pseudovectors”.

A vector is a polar vector if it does not depend on the orientation of the
system of reference.

A vector is an axial vector, if the change the orientation of the system of
reference changes its direction to the opposite, and its longitude does
not change.

One cannot add polar vectors to axial ones (the absolute value of the
sum would depend on the orientation). This is so since polar vectors
correspond to the translation, and axial vectors to the rotation.
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Polar and axial vectors

Remark 1: Polar and axial vectors differ in the physical sense.

Remark 2: The orientation of the system of reference has nothing to do
with the orientation of the system of co-ordinates which we use. Having
chosen any orientation of the system of reference we may use no system
of co-ordinates at all, or we may orient it in the same or opposite way.
Questions: 1) how to introduce a polar or axial tensor / scalar?

2) Let a, b, c be a) polar; b) axial; ¢) polar and axial vectors. What type
have 1) vector a x b 2) scalar a-b 3) (a x b) - c? Does the result change
if a, b, c are tensors?

Exercises.

2.x-x+a-x+ a = 0. Vector a and scalar a are given. Find:

1) vector x (general solution) 2) solution with minimal and maximal
absolute values.

3. a x x=b (vectors), find x and |X|min-
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Determinant

[(A-a) x(A-b)]-(A-c)

A=
det [axb]-c

Prove that if (a x b) - ¢ # 0 (these vectores are lineally independent),
det A does not depend on the choice of a, b, c. Prove:

det AT =detA, det(A-B) = detAdetB, detA~! = ;1.

How to define A=17?

Find E™! and (©'e;e;)~ !, where e; is an orthonormal basis.

Always remember:

a- (b x c) is an oriented volume of a parallelepiped generated by vectors
a, b, c. If they lie in the same plane (in particular, if some of them
coincide), it is 0. Cyclic permutations of vectors do not change it, and
others change its sign.
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Invariants of the 2nd rank tensor

L(A)=trA= A", -i,=A--E.

I(A) = ((tr A)? — tr A?)/2,

I3 = det(A) = ;(trA)® — 2tr Atr A2 + 2tr A3,

For a symmetric tensor the physical sense of invariants is related to
perimeter, surface and volume of a rectangular parallepiped whose sides
are equal to the tensor eigenvalues

Prove:

trA=trAT, tr(A-B)=tr(B-A)=A--B, tr(A-B)=tr (AT -BT).
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** |dentities **

Prove what you can.
Identity of Cayley—Hamilton

—A° + T (A)A? — T (A)A + I3(A)E =0
How to express other degrees (positive and negative) of A via A, A%, A3,
using this identity?
(A-B)"'=B! AL
If det A #£ 0,
(A-a) x (A-b) = (detA)A~" - (a x b).

fS=ST T=-T =txE=—det(S+T)=detS+t-S-t
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Antisymmetric tensor. Accompanying vector

If A= —AT, there exist a vector a such that A = a x E.
[A]x = —2a. Prove this.
a is the accompanying vector of A.
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Orthogonal tensors

If for any vector x

Q- x| = |x], (1)

Q is an orthogonal tensor. Prove that it is the same that to require
Q- Q" =E, that det Q = +1 and that Q; - Q> is orthogonal if Q1, Q>
are orthogonal.

An orthogonal tensor does not change the angles between vectors.
(Q-a)-(Q-b)=a-b.

Proof: (Q-a)-(Q-b)=a-Q"-Q-b=a-E-b=a-b.

Note:

[(Q-e1) X (Q-e2)]- (Q-e3) ==*[er x €] - 3.

If det Q = 1, the tensor Q does not change the orientation of a vector
basis (rotation tensor, or tensor of turn in Zhilin's terminology).

If det Q = —1, it changes the orientation of a triadic (tensor of
reflection).
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** Orthogonal tensors. Identities **

Prove what you can
Q- (axQ')=Q-(axE)-Q" =detQ[(Q-a) x E],
(Qxa)-Q"'=Q-(Exa)-Q" =detQ[(Q-a) x E],
tr(Q-A- QT) =trA,
det(Q-A- Q") = detA,
L(Q-A-Q') =1x(A),
(@ A Q") = tr(A")
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Rotation tensor

Rotation tensor is an orthogonal tensor whose determinant is 1:
P-P" =E, detP =1.

Theorem by Euler: any rotation tensor (except E) can be represented in
a unigque way as

P(6m) = (1 —cos@)mm + cosfE +sinfm x E, —m <6<,
6 is an angle of rotation and m is an axis of rotation (fixed vector of P).
Verify: P(6m) - m =m - P(6m) = m.

Calculate P(6ém) - n, where n-m = 0.
If dy is a basis and D = P - dy, it holds P = D,d* (verify it).
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Rotation tensor. Properties

Is Py - P> equal to P> - Py or not?

Answer: sometimes. Generally speaking, NO (draw examples). It is true
only when axes of rotation coincide. (Prove if you have a wish.)
Calculate the rotation vector for tensor P> - Py for the case when the
axes of rotations 1,2 coincide.

A rotation tensor is represented as a composition of three rotations
about three fixed axes (the second does not coincide neither with the
first one nor with the third one):

P = P3(¢¥mg) - P2(6ng) - P1(¢plo) (2)

Ifmg=1Ip, mg-ng=1lg-ng =0, Y, 0, p are angles of precession,
nutation, proper rotation.
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Angular velocity and angular strains

Equation of Poisson: P = w x P. Prove that w exists and find it.
(Help: Prove that P-PT is an antisymmetric tensor. Calculate its
accompanying vector.)

Spatial analogue for the equation of Poisson: if g' are co-ordinates,
8 = 5 OP = xP,

1) Prove that if P = P, - Py, then w = wy + P> - wy.

2) Calculate the angular velocity w for the case when the rotation axes
P, and P> coincide.

3) Obtain the formula for w in terms of the angles of precession,
nutation, proper rotation.

4) Hometask: prove that

aiw:d>,-+¢,» X W. (3)
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Infinitesimal rotation

If the angle of rotation 6 is infinitesimal,

P~E+6xE 6=06m, w= 6. Obtain it from Euler theorem.
Calculate P, - P and the angular velocity if P1, P> are small rotations
with rotation vectors 81, 6, respectively.
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Derivatives

If scalar U is a function of vector 6,

ou
dU = df - —.
o0
If scalar U is a function of tensor A,
ou
— T . . —
w=onT(39)
If tensor T is a function of tensor A,
oT
dr=dA" - —
T oA
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Lecture 3.

Test.
What is the mechanics of the Cosserat media?
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Test

Prove that if P is a rotation tensor and a, b are vectors, then

P-(axb)=(P-a) x (P b)
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Test: help

Use the definition of the determinant of a tensor

[(A-a) x (A-b)]-(A-c)

S = [axb]-c

where A is a tensor of the 2nd rank, a, b, c are any vectors, and the
expression for the rotation tensor

P = D,d",

where d¥ is the dual basis for a vectorial basis d, and Dy = P - d.
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How to deduce equations of an elastic continuum

The fundamental laws give us a general frame. Using symmetry
considerations, we essentially reduce it.

@ balance of forces (1st law of dynamics of Euler, balance of impulse)

@ balance of couples (2nd law of dynamics of Euler, balance of kinetic
moments)

(]

balance of energy

principle of material objectivity (frame indifference)
@ 2nd law of thermodynamics satisfied (elasticity, no heat)

We write down the laws of balance in the integral form for a
representative volume of the medium. We obtain its local form.
Combining the balance of energy with dynamic laws, we obtain its form
that depends only on internal stresses and strains. This lets us to
express the stresses via the strain energy and strain tensors (constitutive
equations).
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How to deduce equations of the elastic continuum

The principle of material objectivity (frame indifference) (independence
on the system of reference) is: if a piece of material in any system of
reference performs a rigid motion, the stresses rotate in the same way
and do not change with the rigid translation.

It does not matter of the system of reference is inertial or not.
Physically this means that if an observer moves or walks around the
material, this material does not change its constitutive behaviour. This
law yields in very important restrictions for the strain energy (it cannot
change under rigid motion).

Linearity (if it is the case) and symmetry give more restrictions. For
instance we obtain with this reasoning equations of an elastic classical
linear isotropic medium (with Poisson coefficient and Young modulus
depending on each material).

For inelastic media we have to use 2nd law of thermodynamics.
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Models of continua

Classic medium: continuum that consists of mass points

U=U(VR)
reference configuration actual configuration
(before the deformation) (after the deformation)

U — elastic energy, V — nabla operator with respect to r,
u — translational displacement.

Inertial characteristics of each point: mass density p.

Each point is subjected to forces.
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Models of continua

Cosserat medium: continuum consisting of infinitesimal rigid bodies. At

each point there are two fields: displacement u and rotation tensor

P
such that P

Oyt PP ()
- “ @
@) @©

r @ R
O O [e] [¢]
reference U=U(VR,P,VP)

configuration actual configuration

Inertial characteristics of each point: mass density p and density of tensor
of inertia pl. Each point is subjected to forces and couples
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Models of continua

Reduced Cosserat medium: Cosserat medium that does not react to
the gradient of rotation.

o u(R),P(R)
infinitesimal
point body Y

reference u=u (% R,P)
configuration actual configuration
Rotations and translations are independent kinematically, but the strain
(o]

energy does not depend on VP.
Inertial characteristics of each point: mass density p, density of tensor of
inertia pl. Each point is subjected to forces and couples.
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Models of continua

Reduced Cosserat medium: why do we choose this model for a granular
material?

u(R), P (R)

U=U(VR,P,VP)

There is no “rotational spring” that tries to reduce the relative rotation
of particles = there is no ordered structure of rotations.
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References. (Take critically even the best works!)

Cauchy, Green: classical nonlinear elasticity

Brothers Cosserat: Cosserat medium

Eringen, Kafadar: full Cosserat continuum

Zhilin: method to obtain constitutive equations via the balance of energy
Many works on Cosserat continua: Green, Naghdi, Rivlin, Erbay, Suhubi,
Nowacki, Palmov, Aero,...

Books to read by: Zhilin; Eremeyev, Lebedev, Altenbach; Eringen;
Maugin; Nowacki; Erofeyev;...

Granular media in terms of full Cosserat continua: Vardoulakis, Besdo,
Metrikine, Askes, Suiker, de Borst, Sulem

Granular media as a linear reduced isotropic Cosserat medium:
Schwartz, Johnson, Feng

Waves in the linear elastic reduced Cosserat medium: Herman, Kulesh,
Shardakov, Grekova
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Balance of momentum

Existence of the stress tensor
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Balance of forces: 1st law of dynamics by Euler

We write down the laws of dynamics in inertial systems of reference.
Consider a material volume V with a surface S. Suppose that there is no
volumetric income of impulse.

Balance of forces, global form

( / pvdV) = / pFdV + / T(ndS (4)

1% vV 5}

() is a material derivative with respect to time (we follow the same point
bodies), F is the density of external volumetric force, v = R, R position
vector of the centre of mass of a point body, T, the force acting upon
a unit surface S with vector of normal n (from the part of other point
bodies outside of the volume V).

Lecturer: Elena F. Grekova (elgreco@pdmi. Institute for Problems in Mechanical Enginee



Cosserat medium. Stress tensors

If T(n) is a force acting upon a unit surface with normal n from the outer
part of the volume, there exist a stress tensor (of forces) T such that

Cauchy stress tensor, definition

T(n):n-‘r

If My is a couple (torque) acting upon a unit surface with normal n,
there exist a tensor p such that

Cauchy couple stress tensor, definition

M) =n - p

Stress tensor T and couple tensor u do not depend on the normal n.
T produces power on Vv + w x E (Vv gradient of the translational
velocity in the actual configuration, v = u); u produces power on Vw
(gradient of the angular velocity in the actual configuration).
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Existence of the stress tensor

Cauchy's proof is based on the balance of forces for a small tetrahedron
(see A.l. Lurie, “Theory of elasticity").

Proof. Let us consider an infinitesimal volume V limited by a closed
surface S that has a flat part S; (S =51 US2). Then V = 0o(S).

We shall use in the proof: Q (ndS)

n)

@ balance of force for V and S
© that surface S is closed
Q@ V=0(S)at V-0

S'is closed = §ndS =0 =

S
~/nd5: /ndS:mSl Q(n)(nl S,
S S1

Arguments of the function Q) (ndS). Q(n)(ndS) = T(n)dS
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Existence of the stress tensor

Balance of force for the surface S| —
Q(n)(—n151) = —Q(ny(n151)

Balance of forces for V (if there are no singularities in F, v):

j{Q(n)—/ F)aV = O(V) = o($)

Up to the next orders

/Q (n)(ndS) /Q(n = —Q(n(n151)

= Qe (-mS1) = Q[ nas)

S
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Existence of the stress tensor

Thus we have for any S, (such that S, >> V at V — 0)

Q(n)(/ndS) = /Q(n)(ndS)

S S

Therefore Q(,) = T()dS is a linear function of ndS, and, consequently,
the traction T(y) is the linear function of n = there exist a 2nd rank
tensor 7T such that

T(n) =n-T.

T is called the stress tensor.
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Divergence theorem (Ostrogradsky theorem, Gauss
theorem) for 3D space

For a volume V which is compact and has a piecewise smooth boundary
S with normal n, if G is a continuously differentiable tensor field defined
on a neighborhood of V, then we have:

/V-GdV:?{n-GdS
v S

Lagrange (1762), Gauss (1813), Ostrogradsky (1826, the first proof of
the general theorem), Green (1828)...
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Cosserat and classical media.
Local form of the balance of forces

The 1st law of dynamics by Euler can be rewritten using the fact that
T(n) =n- 7 and the divergence theorem as

/(V-‘r—i—pF—p\'l)dV:O.
%

Since V is arbitrary, we may obtain the local form of this law

Balance of forces, local form

V-7 + pF = pv. (S)J

NB: All this and what we discuss further is valid only if functions are
sufficiently smooth (continuous or “piece-wise” continuous).

NB: Operator gradient in the reference configuration (e.g. inicial) V # V
(operador gradient in actual configuration).
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Balance of forces. Summary

o We formulate balance of force in the global form for a selected
volume inside the continuum (separating volume — external — forces
and surface — from the other part of the continuum — forces)

@ We prove the existence of the Cauchy stress tensor 7 if there are no
singularities in external forces and accelerations

@ Using the Gauss theorem, we pass from surface integrals to the
volume integrals, from surfance forces to the stress tensor and
obtain the local form of the balance of forces
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Balance of kinetic moment.
Existence of the couple stress tensor
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Comments on the balance of moments

To write down the balance of moments we have to choose two points:
reference point (a fixed point or a centre of mass of the body) and the
centre of reduction.

Kinetic moment consists of moment of momentum (impulse) that
depends on the reference point, and of proper kinetic moment that does
not depend on the reference point.

The full moment consists of the moment of force and couple (proper
moment, torque). Torque does not depend on the reference point, and
the moment of force does. Torque makes the body rotate about the
centre of reduction. Thus torque depends on it. The full moment does
not depend on the centre of reduction, though depends on the reference
point.
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Comments on the balance of moments

Here we take the origin of an inertial system of reference as the reference
point and the centre of mass of a point-body as the reduction centre.
Mass density of the moment of momentum equals R X v, v = R. Proper
kinetic moment equals | - w, w is the angular velocity of the point body
(P =w x P, P — rotation tensor), | = P - Ip - P is the tensor of inertia
of the point body,

The mass density of the full external moment acting upon a point body
in the volume consists of the mass density of moment of force R x F and
the mass density of torque (couple) L.

The full moment acting upon the unit surface (part of the surface
limiting volume V') from the part of the material outside of V, equals the
moment of force R x T,y and the torque M.
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Balance of moments: 2nd law of dynamics by Euler

Suppose that there is no income of the volumetric kinetic moment. We
write down balance of moments taking origin as the reference point. The
moment is calculated relatively to the centre of mass of a point body.

Balance of kinetic moment, global form

([ pK2dV) = [ p(RxF+L)dV + [ (R x T(n) + M(n))dS (6)
[ /

The density of kinetic moment K» = R x v+ 1-w, L is the density of the
external volumetric torque, M(n) the torque acting upon a unit surface S
with vector of normal n (from the part of other point bodies outside of
the volume V).
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Couple stress tensor

Hometask: prove that there exist a 2nd rank tensor u (couple stress
tensor) such that M,y =n - p.
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Classical medium:
balance of moments = symmetry of the stress tensor

In the classical medium I =0, M) =0, L = 0. Using the divergence
theorem (theorem by Ostrogradsky—Gauss) and the 1st law of dynamics

by Euler obtain that the 2nd law of dynamics by Euler is reduced to

T=1".
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Classical medium

The 2nd law of dynamics by Euler reduces to

(/p(R xv)dV) = /p(R X F)dV+/R X T(ndS

vV Vv S

We rewrite it using that T(,) = n- 7 and the divergence theorem as

/(—V-('rxR)~|—pR><F—,oR><\'I)dV:0.
v

It is easy to show that V- (T x R) = (V - T) x R — 7. We see that due
to the 1st law of dynamics by Euler almost all the terms vanish, and we

obtain

4

Since V is arbitrary, it gives us 7x =0, or T =T .
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Cosserat medium. 2nd law of dynamics by Euler, local

form.
balance of forces 4+ Gauss theorem + global form of balance of moments

=
Balance of kinetic moment, local form
<7>J

V-p+7«+pL=p(l w)

Proof. Ty =n -7, M) = n -, therefore

/(—V-(TXR)+V~;1.—|—p(R><F+L—(R><v+l‘w)'))dV:O.
v

/(RxV-‘r—i—‘rx—IrV-u,—i—p(RxF+L—(R><v)'—(|-w)'))dV=0.

v

R x balance of force (5) =>/(V-u,+‘rx +pL — po(l - w))dV = 0.
v

V is arbitrary = (7)
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Balance of moments. Summary

@ We formulate balance of moment in the global form for a selected
volume inside the continuum (separating volume — external —
moments and surface — from the other part of the continuum —
moments)

@ We prove the existence of the Cauchy couple stress tensor u if there
are no singularities in external forces, moments and accelerations

@ Using the Gauss theorem, we pass from surface integrals to the
volume integrals, from surfance forces and moments to the stress
tensor and couple stress tensors and obtain the local form of the
balance of moments
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Balance of energy.
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Continue with the Cosserat medium. Balance of energy

The mass density of the kinetic energy is K =v?/2 +w -1 -w/2. The
density of the strain energy U depends on the deformation in the
medium.

Balance of energy, global form

([p(K+U)dV)=[p(F-v+L -w)dV+ [(Ty - v+ Mgy w)dS (8)
o] /

This is true for elastic media in the absence of heat effects. Generally
speaking, we have the contribution of heat apart from work of forces and
couples.

We want to eliminate external forces and couples from this law using the
laws of dynamics. We will have only stresses, strains and strain energy.
(For inelastic media there will be a contribution of the flux of heat and
we will need the 2nd law of thermodynamics to write down the
constitutive equations.)
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Balance of energy. Local form

Exercise 5. Prove that w - (I w) = w - | - w.
Lemma. It holds pK = (V- T+ pF) -v+(V-p+ 74 +pL) - w.
Proof. We will use the previous exercises and the laws of dynamics.
. 1 o1 . :
pK = E,o(v-v—i—w-l-w) = 5p(2v-v+w-l-w+w-(l-w))
=p(v-v+w -(I-w)=(V-7T+pF) v+ (V- p+ 7« +pL) w
Theorem. 1st law of thermodynamics (8) can be rewritten as

Balance of energy. Local form
pU=7"- VW—Ty w+p' - -Vuw (9)J

(Gauss theorem + global form of the balance of energy + balance of
force + balance of moments)

NB: If nothing produces power on Vw, then 1 = 0, and T can be
asymmetric. This kind of continuum is called “reduced Cosserat medium”.
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Balance of energy. Local form

Proof. We shall use the previous exercise, representation of forces and
torques via Cauchy tensors, and divergence theorem.
Rewrite the right part of (8) as

/p(F-v+L~w)dV~|—/(n-‘r-v+n‘u,-w)dS
v s
:/,o(F-v+L-w)dV~|—/(V-(‘r-v)—l—V-(p,-w))dV
v v

:/(p(F-v+L-w)+(V-‘r)-v+ik-T-@kv+(V-u)-w+ik-u.-@kw))dv
v

:/((V-‘r+pF)'v+‘rT-~Vv—i—(V-u,—i—pL)«w+u,T--Vw))dV

Vv

Lecturer: Elena F. Grekova (elgreco@pdmi.lntroduction to the mechanics of Cosserat milySidi iR Tl ENTINY [Sely ETy o= N = Te 1



Balance of energy. Local form

Using the lemma
pK = (V- T+pF) v+ (V- -p+7x +pL) w
proved above, we see that (8) takes form

/pUd\/z/(rT.-vV—rX-w+uT~Vw))dv
Vv Vv

Since it holds for an arbitrary volume V/, we obtain
,oU:‘rT--Vv—‘rX -w—l—p,T--Vw

Quod erat demonstrandum.
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Lecture 6.
Material objectivity (frame indifference)
Strain tensors of the Cosserat medium
Balance of energy in terms of “energetic tensors”

Constitutive equations
(sketch)
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In a few words

During last lectures we have written

@ the balance of forces, balance of moments and balance of energy for
a material volume V limited by surface S (integral form)

@ the local form (at a point) of the balance of force, using the
divergence theorem by Ostrogradsky—Gauss

@ the local form of the balance of moments, using the divergence
theorem and the balance of force (in the local form)

@ the local form of the balance of energy, using the divergence
theorem and the balances of force and moments in the local form.
External forces and moments do not enter there.

Now we will formulate

@ the principle of material objectivity (frame indifference).
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Principle of material frame indifference (Noll, 1958)

If a piece of material performs a rigid motion, its stresses rotate together
with it and do not depend on the translation.

It does not matter if the system of reference is inertial or not. In other
words, if the observer moves or rotates, the material does not change its
physical behaviour.

Mathematically: if in the material there exist stresses T7(R), u(R) and it
performs the motion R = Q(t) - (R—R¢:) + Rc + Ro(t), PP =Q - P,
where R’ is the position vector and P’ is a rotation of point body of the
material subjected to the rigid motion, the rotation tensor Q(t), Ro(t),
R, do not depend on R, then stresses in this motion will be equal to
7=Q-7-Q", /' =Q-u-QT (stresses are materially objective, frame
indifferent).

NB: If the stresses depend only on the strain tensors which are frame
indifferent, i.e. rotate together with the piece of material when it
performs a rigid motion, and do not depend on any anisotropic tensorial
constants, the principle holds.

Lecturer: Elena F. Grekova (elgreco@pdmi. Institute for Problems in Mechanical Enginee



Material frame indifference

Exercise 6. Prove that any 2nd rank tensor, a function of a frame
indifferent 2nd tensor is also frame indifferent.
Help: expand it in series in its argument.

Note: VR is not frame indifferent. Under the rigid motion with a rotation

tensor Q we have VR’ = VR - Q.
Proof.

VR = V(Q- (R~ R.)) + V(R + R,) = V(Q - R)
— Q-8R =i"0,R-Q" =VR-Q".

It yields that constitutive equation (in classical elasticity) T = #C - - VR
cannot be valid even for the isotropic theory. However, the right

Cauchy—Green strain tensor € = (VR)T - VR is frame indifferent (check
it!), and any isotropic T(€) is also frame indifferent.
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Material frame indifference and linearity

When we have nonlinear equations, under some conditions we may
linearize them near a certain state.

Question: what happens with the requirement of the material objectivity
(frame indifference) for the linear theory?

Answer: we have to require the same, but for infinitesimal rotations.
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Strain tensors in the Cosserat medium

The Poisson equation is P = w x P. If we differentiate it not with
respect to time, but in space (with respect to co-ordinate g'), we have
8,P = ¢,’ x P.
Exercise 7: prove that Ojw = d>,- + P, X w.

o
Define the Cosserat deformation tensor A = VR - P and transposed
wryness tensor K = r'®; - P.
Exercise 8. Find out an invariant expression for K.

Exercise 9(!). Prove that A, K do not change under rigid motion.
Proof for A.

A-VR -P-VR-Q"-Q-P=VR-P—A
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Balance of energy. Local form with “energetic tensors”.
Constitutive equations

Exercise 10: prove that the law of balance of energy can be rewritten as
oU=71] -A+pn] K (10)

where we introduce “energetic tensors’ 7. = VR~ - 7P,
e = VR™T - - P. (Pavel Zhilin for 2D)
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Constitutive equations

Consider a hyperelastic medium: elastic energy is a function of strain
tensors. If U= U(A, K), we obtain from (10)

ou ou

87A ' Ko :P& . (11)

T = P
These equations are called “constitutive equations”: it is the relation
between internal forces/torques and deformations in the medium. They
do not depend on nothing external.
Check that since A, K do not change under rigid motion, T and pu are
frame indifferent.
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Questions

1) Is it true that equations (11) satisfy the principle of material
objectivity (frame indifference)? Why?

2) Can we choose any U(A, K) and state that such a material may exist?
(e.g., its existence does not violate basic principles). Why?

3) Have we now a closed system of equations? If we have initial and/or
boundary conditions, can we resolve any problem?

4) Can other constitutive equations of the elastic Cosserat medium, that
do not enter in this frame, exist?

5) What to do with stability?

6) Has it to be simpler everything for the classical medium in the sense
of material objectivity (frame indifference)?
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Lecture 7.
Material frame indifference
Strain tensors of the Cosserat medium
Balance of energy in terms of “energetic tensors”

Constitutive equations
(full and reduced Cosserat media)

(continuation)
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Strain tensors in the Cosserat medium

Exercise 9 from lecture 6: K does not change under rigid motion.
Proof.

9P =(6(QP)=QoP=Q-(¢,xP)=(Q-¢,)x(Q-P) = (Q-®,)xP’
— ¢/ =Q -9, =9,-Q".
K=reo -P=ro,-Q"-Q-P=ro;,-P=K
Note: If f is a function of A, K and not of any other types of

deformation, f does not change under rigid motion, and S,Z aK do not
change under rigid motion.

Note: For any vector w |t holds Vw VR Vw

(another form: VR Vw = Vw).
Proof The increment of w |n space

dr Vw=dR-Vw=dr (VR)-Vw — Vw=VR.Vw
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Balance of energy. Local form with “energetic tensors”.
Theorem (following the formulation and proof by Pavel Zhilin for 2D):
The law of balance of energy can be rewritten as

where “energetic tensors”

T.=VR ".7.P, pe=VR - pu-P. (12)

Proof.
We use the local form of balance of energy

pU=7"- - VW—Ty w+p' - -Vo=7"- (WH+wxE)+pu'- Vo,
the Poisson equation P=wxP,

the relation Ojw = ®; + P, x w proved as an exercise,

and identities (X-Y)--Z = X (Y- Z) Y- - (Z-X),

X (w x E)= Xy -w, and VRl Vw = Vw.



Balance of energy. Local form with “energetic tensors”.

A=(VR-P)=Vv-P+VR-(wxP)=(Vv+(VR)- (wxE))-P
(By the way we obtained A = (%v+%R X w)-P.)
7T A=(VRT-7-P)T--((Vv+ (VR) - (w x E)) - P)

—(PT 7T -(VR™1))-- (Vv + (VR) - (w x E)) - P)

=TT'~(%R_1'%V)+TT-'(wXE)ZTT"VV—TX-w.
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Balance of energy. Local form with “energetic tensors”.

K=o, -P)=r'd,.-P+rd; (wxP)
=rQw+wx®)-P+ro; (wxP)
=(%w+r’wx¢/)-P+rI¢,-(wxP)

— (Vw —r'®; x w) - P+ r(®; xw) P=Vw-P.

ul K= (VR -u-P)T - (Vu-P)
:(PT,MT,%R—l),,(%w,p):,ﬁ..v“_
Thus we have
) A+p!  K=71T. . Vv—7 w+p' - Vw=pU, (13)

quod erat demonstrandum.
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Constitutive equations of the full Cosserat medium

Consider a hyperelastic medium: elastic energy is a function of strain
tensors. If U = U(A, K), we obtain from (10)

_ou _ou
Ty = p67A ) My = 98? :
These equations are called “constitutive equations”: it is the relation
between internal forces/torques and deformations in the medium. They
do not depend on nothing external.
Write down the constitutive equations in terms of Cauchy stress and

couple stress tensors, using 7= VR -7, -PT, pu=VR" . pu, -P':
ou
oA

ou

P’ — VR -
- B=PVROaR

T=pVR'. P (14)
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Reduced Cosserat medium. Constitutive equations.

pU=7"T.  (VW4+wxE)=1]- A,

Strain energy depends only on A = VR - P (the Cosserat deformation
tensor): U = U(A).

T = ,oVRT ou. P,
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Questions

1) Is it true that equations (14) satisfy the principle of material
objectivity (frame indifference)? Why?

2) Can we choose any U(A, K) and state that such a material may exist?
(e.g., its existence does not violate basic principles). Why?

3) Have we now a closed system of equations? If we have initial and/or
boundary conditions, can we resolve any problem?

4) Can other constitutive equations of the elastic Cosserat medium, that
do not enter in this frame, exist?

5) What to do with stability?

6) Has it to be simpler everything for the classical medium in the sense
of material objectivity (frame indifference)?

Lecturer: Elena F. Grekova (elgreco@pdmi. Institute for Problems in Mechanical Enginee



Answers

1) Yes; 2) Yes; 3) Yes, if we know U(A, K); who knows.

4) Only hypoelastic (or with singularities?)

5) The condition of the stability of the material is not a basic principle.
There may exist unstable materials even in the sense of translation.
Examples: explosion, phase transitions, possibly flow surfaces. Instability
in the sense of rotation not necessarily yields in the destruction of the
material. Perhaps there are exist regimes of unstable rotations. There are
many works on stability in nonlinear classical elasticity and much less for
the Cosserat media.

6) Not much. The energy cannot depend on rotations of the material. A

frame indifferent strain tensor is VRT - VR (right Cauchy—Green strain

o o
tensor). A strain tensor not influenced by rigid motion is VR - VR (left
Cauchy—Green strain measure).
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Material objectivity (frame indifference) of T, u

Frame indifference: Noll, 1958.

Consider a material subjected to the strains A, K with stresses T and
couple stresses w in our frame of references, and the same material
under the same strains subjected to the rigid motion

R =Q(t)-(R—R:)+ R+ Rg(t), P=Q:P. Then

° ou 9 ou
7 = pVR'" - Tk PT=p(VR-Q")"- A Q-P)T
° ou
:pQ-VRT~a—A-PT-QT:Q-‘r'QT.
Analogously
B=Q pu Q' (16)

Therefore for any U(A, K) the principle of material frame indifference
holds. All the fundamental laws are satisfied.
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Second law of thermodynamics

In hyperelasticity we suppose that U is determined by the state of
material, i.e. by strain tensors A, K. The work of mechanical forces in a
cyclic process (passing from a certain state (*) of material to the same
state (*)) is equal to the change of the strain energy

U(A, Ky) — U(A4, Ky), which is zero. Since we consider no heat effects
(e.g. adiabatic processes), no energy is lost, and the second law of
thermodynamics holds identically (equality as a particular case of the
non-strict inequality).
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Classical elastic medium

The law of balance of energy for the classical elastic medium reduces to
pU=T--Vv, (17)

7 =1 (due to the balance of moments for the classical medium).

The left Cauchy—Green strain tensor £ = VR - (VR)T =& has 6
independent components (as 7) and does not change under rigid motion,
so in a hyperelastic medium U = U(E). Calculating U(E), after
transformations (see next page) we have

T [¢]
ol = 20(VRT - 25 VR) Vv, (18)
therefore T = 2p(%RT gg %R) (19)

We see that 7 is frame indifferent (since VR’ VR Q).
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Classical elastic medium (proofs for the previous page)

1. Let us calculate U(E) remembering that the contraction of a
symmetric and ant|symmetr|c tensor is zero (if UT = U, W' = —W,

thenU--W =0),e=¢ ﬁg_%T.

UE) = (gg)T L= <2L;>T--(%V-%RT+%R-%VT)
2@?) .(Vv-VRT) = 2(VR" . Zg)

2

Vv

_ovR™- Y (TR v = 2(% VR) - - (Vv)

oE

dU(E") au(E)
&’ &

—pQ VR aau VR-Q'=Q-7-Q".

2. 1/ =p(VRT). VR = p(VR-Q")T - VR-Q"
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Lecture 8.

Linear full and reduced Cosserat media
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Linear Cosserat medium. Linearization in kinematics
Small displacements u = R —r = o(1) and rotations 6 = o(1).
Lemma 1. A tensor of infinitesimal rotation looks as E + 68 x E, 0 is the
infinitisemal rotation vector. Its angular velocity w = 6.
Proof. Indeed, at 8 — 0
0
P = (1 — cosf)mm + cos6E + sinfm x E ~ E+6mxE
=E+ 6 x E, where 6 = 6m.

P~OXE~Ox(E+60xE)~8xP.
Lemma 2. V =V + o(1)
Proof. Let f be an arbitrary function depending on R.

df = dr-Vf = dR-Vf = (dr + du) - V.

(¢)
Therefore dr - (Vf — V) = du- Vf. Since du << dr, we have
o e]
Vf —Vf =o0(1). Itis so for each f and dr = V =V + o(1).
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Linear Cosserat medium. Strain tensors

Theorem. In the linear approximation in the vicinity of the natural
configuration (zero stresses)

p~po(l—-V-u), A~E+VutO0xE  KmV6, (20)

T and p are linear funct|ons of Vu + 6 x E and V6.
Proof. p = po/detVR ~ po(1 — V. u).

A:VR-P%V(r+u)-(E+0><E)

— (E+Vu)-(E+0xE)~E+Vu+8xE

1 1
® = —S[0P Pl ~ —S[0/(E+6 xE)- (E+6 x )],

1
~ —5[(8,'9) X E]X = 6/9
K=r6,-P~ro6 (E+6xE)~V0~Vo

Lecturer: Elena F. Grekova (elgreco@pdmi.lntroduction to the mechanics of Cosserat milySidi iR Tl ENTINY [Sely ETy o= N = Te 1



Linear Cosserat medium. Stress tensor

‘r:%RT-‘r*-PT %(E—l—%u)T'T*(A,K)'(E—i—Bx E)"
A =[T]o+ Vu' - [1]o — [T]o x 0

+(Vu+0xE)T - [GT*] +Vo' .. [aT*]
0 0

OA oK

M\ This step is not always possible: for instance, if U is can be expanded
into the series in VA - AT, VK - KT (with non-zero odd terms). There
are media where the linear theory cannot be applied even for small
strains. Here we suppose it to be valid. U(A, K) has to be “nice enough”
for this. It is a strong hypothesis.

If are in the natural configuration ([T]o = 0), then [T.]o, and T is a linear
function of linear strain tensors.
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Linear Cosserat medium. Couple stress tensor

Analogously, if U can be expanded into the series at least up to the
second term of the magnitude in the vicinity of natural configuration,

g o+ Vu' - (o — [ps]o x 8

+(Vu+0xE)T"[a”*} +V0T--[a”*]
0 0

OA oK

If the reference configuration is natural, first three terms in the
expression for p vanish.
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Linear Cosserat medium. Constitutive equations

Another way to obtain constitutive equations is to expand the law of
balance of energy (10) into the series with respect to the linear strain
tensors. Take into account that near the natural configuration
T. =7+ 0%(1)=o0o(1), ps«=p+0%1)=o0(1), both of them
functions of the linear strain tensors, and we have to keep only cuadratic
terms in U whose approximation is also a function of the linear strain
tensors.
In the vicinity of natural configuration for such U nonlinear constitutive
equations (14) give in the linear approximation
0 0
ou ou

TP vurexE)’ KT ™ave (21)

O
U is the quadratic approximation of U expanded in u, 6.
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Linear Cosserat medium

Note: (Vu+0xE)=Vv+wxE, (VO)=Vw.

Note: Nonlinear T, u work on material derivatives of linear strain tensors
Vu+6 xE, V6.

Note: In the reduced Cosserat medium in the vicinity of the natural
configuration

ou

T_poa(VquBxE) X-(Vu+6xE), n=0
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Linear classical elastic medium

We linearize the nonlinear constitutive equation near the natural

configuration, provided that U can be expanded into series in £ at least
up to 0?(1).

o oy o
f— T " —
T =2p(VR 9% VR).
VR=E+Vu~E+ Vu,
£=VR-VRT ~ (E+ Vu) - (E+ Vu)T = E + 2(Vu)S + 02(1).

In the natural configuration [gu] = 0, therefore
0

82U S
~A4py | —5| --(Vu)®.
! pO[afﬂL v
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Linear Cosserat medium

Questions.

1) Are linear stress and couple stress tensors frame indifferent?
2) Can T, pu exist that depend in a nonlinear way on linear strain tensors?
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Linear Cosserat medium. Answers

1) NO. (Prove that stresses do not rotate when the material is subjected
to a final rigid rotation.) However, they are frame indifferent in the

infinitesimal sense (for any rigid translation and infinitesimal rotation).
Also prove that.
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Linear Cosserat medium. Answers

2) Often it is not correct (even if published in journals with high impact
factor). Vice versa yes; we can have stresses that depend linearly on
nonlinear A, K (“physically linear and geometrically nonlinear material”).
If we consider a physically nonlinear but geometrically linear material,
often it yields that when linearizing equations (11) we have kept some
terms and neglected other ones of the same order. (Find examples.)
There are exceptions: “piece-wise linear equations” for heteromodular
media, non-linearizable equations near 0 (for instance, with pU function

o [e]
of \V VO V@7, cases when there are other small parameters, cases when
the equation in reality is one-dimensional etc.) Each time we must
specify the orders of magnitude and explain why we can neglect one term
and keep another one.
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Exercises

Exercise 11.

Verify that X, Z are polar, Xmnki = Xuimn: Zmnkl = Zrimn. Y 1S axial, and
if they are isotropic, then Y = 0, and each of X and Z contains three
independent constants. Obtain that they have a form

X = AEE + 20(imin) S (iMi")5 + 2cu(imin)A(™i")A, (22)

Z = BEE + 2 (imin)° (iMi")° 4 2€(imin) A (™). (23)

Exercise 12.

Verify that in the linear case w =6 and (1-w) = lg - 8, p = po, where Iy
is | in the reference configuration.
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Lecture 9.
Isotropic full and reduced Cosserat media

Brief overview of the course.
Ideas and equations

Look ahead: wave propagation
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Linear isotropic Cosserat medium. Elastic energy

For any linear Cosserat medium the elastic energy looks as

1/1
U:p-(E(Vu+9><E)T-~X-~(Vu+0><E)+
0
1
(Vu+e><E)T~-Y--ve+§veT--z--ve)

Principle by Curie—=Neumann vyields: for an isotropic material X, Y, Z are
isotropic.
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Isotropic linear Cosserat medium. Elastic energy

Lemma: An axial isotropic 4th rank tensor is zero.

Proof. An isotropic tensor of the fourth rank Y™ i i ixi; does not
change under any rotation. Let us choose polar unit vectors iy, i>, and
the axial vector i3 = i1 X i»: an orthonormal basis, oriented by the right
hand screw rule.

Rotate it at 7 about i;. Then i> will change to —ip, i3 to —is3, and iy will
not change. Then rotate it at 7 about i», etc. Since rotated tensors are
equal to the initial one, non-zero components must have even number of
repeating indices (Y1122 Y2332 y1llll etc)

Now if this tensor is axial, the change of orientation of space will change
its sign. At the same time it will change sign of all vector products, and
in particular of i3 = iy X i». Since in all non-zero components each index
repeats even number of times, change of sign of iz will not influence Y.
On the other hand, it has to change the sign. Thus an axial fourth rank
isotropic tensor equals zero.
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Isotropic linear Cosserat medium. Constitutive equations

Full Cosserat continuum:

ou
T—pOm—X--(VU—FGXE)
= AV -uE +2uVu® + 2a(Vu + 6 x E)*,
ou S A
u = poa—ve = Z- -V = BV -0E + 29V6> + 2¢(VO)".

Reduced Cosserat continuum:

ou

T = POS(Vu+ 6 x E)

=X--(Vu+6 xE)
= AV -uE +2uVu® + 2a(Vu + 0 x E)*,

u = 0. For anisotropic media expressions for T may differ in reduced and
full Cosserat continuum.
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Isotropic linear Cosserat medium. Dynamic equations

Exercise 12 (solution). Verify that in the linear case (I-w) =l - 6.
Solution.

(E+60 x E) =0 x (E+ 8 x E) 4+ 0%(1). Therefore by Poisson equation
0 is the angular velocity for the infinitesimal turn E + 6 x E.

(I-w)y ~((E+0%E)-lg-(E+0xE)T-8) =1ly-0+ 03(1).
Substitute the expressions for 7,  in dynamic laws and obtain their form
in displacements:

(A +2u)VV -u— (u+a)V x (V x u) +2aV x 0 + pF = pil,

(B+2Y)VV -0 — (v +€)V x (V x8) +2a(V x u—28) + pL = plg - 6.

Verify that if elastic rotational constants o, 3,7y, € and tensor of inertia |
are zero, we have equations of a classical isotropic linear elastic medium.

Nota bene: here (up to the high order terms that do not enter in the
equations) p = pg.
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Equations of the linear isotropic reduced Cosserat
medium

We can obtain it from the equations for the full linear isotropic Cosserat
medium, considering G, 7, € to be zero.

AN +2u)VV-u—(p+a)V x (V xu)+2aV x 6 = pui
2aV><u—4a6:plé

If &« = 0, we have a classical linear isotropic elastic medium.
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Brief overview of the course. Ideas

@ We considered elastic Cosserat continua: media, where particles
(point bodies) can move and rotate, possess density and tensor of
inertia and are subjected to forces and couples

@ We introduced stress tensor and couple stress tensor. Force acting
upon a point body in the medium depends on the stress tensor, and
full moment depend both on stress and couple stress

@ We have written fundamental laws of mechanics for these continua:
balance of force, balance of moments, balance of energy. From their
integral form (for a material volume V') we passed to the local form
by means of theorem by Ostrogradsky—Gauss.

@ Second law of thermodynamics holds identically for elasticity
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Brief overview of the course. Ideas

@ Combining the law of balance of energy with other laws of balance,
we obtained the frame for the constitutive equations (how stresses
depend on the deformations in the medium). Strain tensors
(Cosserat deformation tensor, transposed wryness tensor) appear
naturally in the balance of energy.

@ Nonlinear stress and couple stress work on derivatives of linear strain
tensors

o Cosserat deformation tensor and transposed wryness tensor do not
change under rigid motion

@ We checked that stress and couple stress obeying these constitutive
equations, are frame indifferent (no additional elastic energy appears
in the material if we walk around it)
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Brief overview of the course. Ideas

@ We linearised these equations (under supposition that it is allowed)

@ We have written the equations for the linear isotropic Cosserat
medium

@ We considered also reduced Cosserat medium, where rotations and
translations are also independent, but the couple stress is zero
(nothing works on the gradient of angular velocity)

@ We obtained also constitutive equations, linear and nonlinear, for
classical elasticity
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Brief overview of the course. Equations

General theory:

V-1 +pF = pu (24)
V-p+7« +poL= (1 w) (25)
T:%RT-pg—X'PT, u:%RT.pZ—Z~PT. (26)
A—VR-P, K=r®,-P, 6P—® xP. (27)
Reduced Cosserat theory:
V-1 +pF = pu (28)
Tx + pL = (pl - w) (29)
r—ovr- YT L0 (30)

OA
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Brief overview of the course. Equations

Linear theory (natural configuration, zero initial stresses):
T=X--(Vu+6 xE)+Y--(V0) (31)
p=((Vu+0xE)-.Y)T+Z..ve (32)
Reduced Cosserat theory:
7=X--(Vu+6xE), p=0. (33)

Linear isotropic theory: Y = 0, X and Z are determined by 3 independent
constants each one.

Full linear Cosserat isotropic theory: 6 constants.

Reduced linear Cosserat isotropic theory: 3 constants.

Linear classical isotropic elasticity: 2 constants.
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Brief overview of the course.

Full Cosserat theory: T, p. Stress tensor is not symmetric: T # 7' .

Reduced Cosserat theory: 7 # 7', u=0.

Classical elasticity: T =7, u=0.
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[oanTCst N onpenensitollee ypaBHEHE A1 NOJIHOW 1

penyunpoBaHHon cpen Koccepa?

@ Hapo npoBepsiTb ypaBHEHME AAS Manbix Unu 6onbLInX
nepemeLleHnii n noBopoToB? Vnn ans tex u apyrux?

Ecnm ectb A, K, P — ans 6onblunx. Ecnn ecte 8 — ana manbix.

Q TllpoBepsiem ypaBHEHVE HA MaTeEPMabHYO 00 bEKTUBHOCTL (B
6onbwoM nan manom). Ecnn HeT ee — ypaBHeHNE HempaBUibLHOE.
Ecnm ectb — MOXeT rognTbcs ans noJHoW cpeabl Koccepa
(nopobpaTb KOHCTaHTY). Torga naem panbLue.

@ Ecnn Tpebyetcs nposepuTh Ans Masnbix U bonblnx gecdopmaliunii,
CHauvana nposepsieM Ans Manbix. Ecam gns Hux He rogutca —
YPaBHEHME BCEr[a HEBEPHO.

@ Ecnn TeH30pbl HaNpsKEHUIA Manbl, X MaTepuasbHas 0O bEKTUBHOCTb
= HEN3MEHHOCTWN NPN MaJblX XECTKNX ABUMXXEHNAX

MpoBepsieM Ha MONSAPHOCTL / akcuanbHOCTb. T, A — nonsipHbl. K, p
— akcuaneHbl. MNoabupaem TN KOHCTAHTHI.

B peayunpoBaHHoli cpene Koccepa HET 3aBUCMMOCTW OT FPagUeHTa
nosopoTa. Takxe pu = 0. B knaccnyeckoit cpege HeT W,
33aBUCUMOCTIW OT NMOBOPOTA WU €ro rpaJneHTa.
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CgolicTBa TeH30poB AecopMauunii (Mpy >XeCTKUX

ABVKEHVSIX MaTeprana)
Ansa 6onbwmnx gecdopmanunii

VR =VR-Q, P=Q-P, A=A K =K
%U,Vu, nx PyHKLNN (%US,VUS,%UA,VUA,% xu, V x u,% ‘u,V-u)

HE MaTEPNANBHO OOBEKTUBHBI npn 60/IbLLUNX YKECTKMNX ABUNXXEHNAX.

Ana manbix gecdopmaunii

Vu, Vu, Vu?, Vu?, V x u, V x u, 8, |6|

HE MaTepnanbHO OO BEKTNBHbI I MEHSAIOTCS npu ManblX XXECTKUNX

[BVXXEHUSX. o o
Vu+6 x E, V8, Vu+ 6 x E, VO, ux dyHkunn

(%uS,Vus,%-u,V-u,VuA—i—GxE,B—qu/Q,
%uA+0><E,9—%><u/2,...)

MaTepunaabHO OOBEKTUBHbLI N HEU3MEHHBI npn ManblX XXECTKNX
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Lecture 10.
General ideas.

How will we see a reduced Cosserat medium
If we are “rotationally daltonic?

Viscoelastic linear Cosserat medium

Constrained Cosserat media
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General ideas

Equations for all the materials must satisfy
@ balance of force
@ balance of moment
@ balance of energy
@ the second law of thermodynamics
@ material objectivity

Elastic media undergoing adiabatic or isothermic processes satisfy the
second law of thermodynamics identically.

To obtain the constitutive equations for elastic continua, we use the

balance of energy (modified taking into account balance of force and
balance of moment).

Together with dynamic laws we obtain a closed system of equations.
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What happens if we cannot observe rotations in the
reduced linear elastic Cosserat medium?

[sotropic case:

A+2u)VV-u—(p+a)V x (V xu)+2aV x 0 = pii
400 + pl = 2aV X u
Consider 2aV x u as an external moment for the mathematical

pendulum with the rotation vector 8 and integrate the second equation
in time. After some math we obtain

0 = Bpe™°f +V x ii/2,
t
where b=, il = wo / u(7)sinwo(t — 7)dT.

—00
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Linear reduced Cosserat medium by eyes of a
rotationally daltonic scientist

We substitute the expression for @ into the balance of force:

(A +2u)VV-u— (u+a)V x (V x u)
+ aV x (V x ii)+2aV x 8pe'°t = pii.

We can rewrite it as

V- %+ 2aV x 8pe™ot = pii,

+ & 4 2a(V - GE-Vii®) =4,

7. =NV -uE + 21/ Vu® is a stress tensor in the classical isotropic
elastic medium with Lamé constants X' = X\ — 2o, u' = u + a.
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Linear reduced isotropic Cosserat medium by eyes of a
rotationally daltonic scientist

+ € 4 2a(V - GE— Vi) =47
We will see such a medium as a classical but history-depedent medium,
possibly with some unpredictable harmonic external body forces with
frequency wy.
If we consider external body forces and moments for the reduced
Cosserat medium, we will see that the expression for the effective body
force in the effective classical medium will have a time-dependent
contribution from the rotor of body moment.
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Linear reduced anisotropic Cosserat medium by eyes of a
rotationally daltonic scientist
If only the translational part of the stress is anisotropic
(1 =C--Vu® 4+ 2a(Vu + 8 x E)A), we obtain the similar interpretation
with

#=C--Vu® —2aV - (u—i)E+2a(V(u—i))° =+".

If the coupling N between Vu® and (u + 8 x E)A is present

1
pUzEVus--C--Vus—i—VuS--N~~(Vu—|—9>< E)A
+(Vu+8xE) -a--(Vu+6 x E)*,
even if only N is anisotropic, such an interpretation does not exist. We
can find a symmetric effective #, but it will depend on Vu? and Vii?, so

it will not possess material objectivity in the linear approximation.
See for details Grekova, 2012, Mathematics and mechanics of solids
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Constrained Cosserat medium

Sometimes a kinematical hypothesis 8 = V x u/2 is accepted. Such a
medium is called constrained (linear) Cosserat medium. For the nonlinear
case this hypothesis is different.

Balance of energy for the Cosserat medium

pU=71°- W’ -7 (WHwxE +u’ - Vw.

For the constrained theory VvA + w x E = 0, the red term does not
exist, T cannot be determined from the constitutive equation!

In any theories, if a kinematical constraint is accepted, stresses working
on the corresponding strain rate cannot be determined from the
constitutive equation.

They must be determined from dynamic laws.
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Constrained Cosserat medium

Is it important for the balance of force and moment that the kinematical
constraint is accepted?
Balance of force

V- (1° + 1) + pF = pii.

V12—V X T« /2 + pF = pii.
Balance of moment
V- p+ 7+l = (pl - w) = (ol - (V x v/2))"

For the linear or isotropic case the dynamic term equals pl - (V x v)/2,
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Constrained Cosserat medium

Balance of moment
T =pl- (VxVv)/2—-V-u—plL.
Balance of force
V-TS~V><(pl~(V><\'I)/2~V'u.~pL)/2+pF:pii.
V-T2 +V x (V-p1/2) 4 oF + V x (pL)/2 = pii + V x (pl - (V x ii))/4.

75 is determined via constitutive equations.

W is determined via constitutive equations.

If rotational strain enters into equations, it must be substituted by
translational strain, using the kinematical hypothesis. Everything is in
terms of translations, but higher gradients are present.
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Full isotropic constrained linear elastic Cosserat model
Constitutive equations for the isotropic case
p=2--VO=2Z--(VV xu)/2,
T° =C--Vu°.
Balance of force takes the form
V-(C--Vu?)+Vx(V-(Z--(VV x u)/4))
+pF+V x (pL)/2 = pi + V x (pl - (V x i1))/4.

This is a second-gradient theory.

Only two moduli in Z enter into the constitutive equations, since
BEE - -VV xu=0.

What about balance of moment? What happens with it?
Exercise: obtain the equations for the homogeneous case, | = /E.
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Reduced constrained Cosserat model

uw=0
V-7° + pF +V x (pL)/2 = pii + V x ((pl - (V x 01)))/4.

No rotations enter into the constitutive equation for 7°. We obtain
almost a classical theory but with a very strange dynamic term derivated
with respect to the space co-ordinates.

Note that here we did not use anything but the laws of balance of force
and moment and kinematical constraint w =V x u/2.

Is it true in the nonlinear case?
In the inelastic case?

In anisotropic case?

In inhomogeneous case?
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Reduced constrained Cosserat model

The answer is: yes for the linear case! For the nonlinear case material
objectivity fails.

For spherical density of the tensor of inertia p/E, equal for all body points,
V- 1° = pit+ pl(VV - i1 — Aii) /4
For the linear isotropic case in absence of external loads
7% = AV - uE + 2u(Vu)®,

AVYV -u—puV x (V xu)=piu+pl(VV-1u— Au)/4

Note that the highest order of the space derivative is the same as in the
classical theory. Here we do not obtain the second gradient theory.
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Kelvin’s medium

Kelvin's medium — special Cosserat medium with particle posessing large
spin
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Kelvin’s medium

In Kelvin's medium body points possess rotational symmetry (angle ¢,
axis m), and no stresses are caused by their proper rotation. The main
term in the kinetic moment is due to dynamic spin.
This is a Cosserat medium with special type of kinetic moment and
U(A, K) such that

U _ U _

oo ' OVep
One can be prove that it is necessary and sufficient for U to be a
function of

G=A-A", F=A-(E-mgmp)-K', y=A-my

or any other 14 independent strain measures, functions of these ones.
Here mg be the unit vector of the body axis in the reference
configurarion, m = P - mg in the actual configuration.

Exercise: check that G, F,v do not depend on ¢ and V.
Institute for Problems in Mechanical Enginee



Kelvin’s medium

Lord Kelvin suggested an idea of such a medium to describe
electromagnetic phenomena.

Linear equations: Gavrilov, Grekova and Zhilin (1996), nonlinear:
Grekova and Zhilin (1996-1999).

Density of inertia tensor: p(/mm + /;(E — mm)).

Dynamic term: [, I = o(1), ¢ is large, plo = O(1) =
(1 w) = w x plom.

Balance of force:
V -1+ pF = pu.

Balance of moment:
V-u+ 7T« +pL=w x plpom.
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Kelvin’s medium
Sixth balance equation:

ou
%:0 = (V-p+74) m=0.

ou
GV_(p_O — u-m=0.
Proof. Let P =P - Py,(pmg), then w = w; + ¢m,
Vw=Vw, +Vom + oVm.

pU:TT-.(V\H-wL><E+¢>m><E)—|—;1,T-‘(le+V<bm+<me).

=7 (WHw, xXE)+u' - Vw,
O(T--(MxE)+p'--Vm)+Ve-(u-m).

U _ = o =
Ne = 0 :>6V(p 0= pw-m=0,
U _

T -m=p' - -Vm=—(V-p) m
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Kelvin’s medium

Constitutive equations:

o au au au\ "
_ T, it it e K. o T . pT
T=VR p(ag A+ m0+<6 ) K-(E — mgmy) ) P',
ou

. —_— T- T
6.7-' -A (E momo) P,

w= VRT
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Kelvin’s medium

[t is important that we would have a complete set of independent strain
measures. For instance, a set

G, 7. K-(E—mymg) -K' (34)

seems to be perfect. But it is not complete; there is another independent
strain measure mg - K - (E — mgomy) - AT -myg, on which the strain energy
may depend.

There is an analogy between Kelvin’s medium and magnetic media.
Neglecting dependence on this strain measure means to forbid helicoidal
magnetic materials.
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Kelvin’s medium

It has been shown that the dynamical laws and constitutive equations for
Kelvin's medium with large angular velocity of proper rotation and
infinitesimal inertia moments per unit mass of point-bodies, and for
elastic ferromagnetic saturated insulators coincide. All angular quantities
correspond to the magnetic subsystem and translational ones to the
elastic subsystem.
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Kelvin’s medium

’ for Kelvin’s medium for ferromagnet ‘

’ u is the translational displacement ‘

’ T is the stress tensor ‘

m is a unit vector
of an axis of a point-body ‘ of the magnetic moment S

plom<— pS /v = Mm/7 is the kinetic moment
@ is the angular velocity of proper | S is magnetic moment, M =
rotation of a point-body, / is the | p|S| is magnetization, [S| =
density of axial moment of inertia | const for saturation state, -y is
gyromagnetic ratio
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Kelvin’s medium

’ for Kelvin’s medium

for ferromagnet

A

A

T7 is related to the moment | 77 is caused by spin-lattice
working on the rate of the rotation | interaction
of a body point relatively to the
surrounding continuum
uw<+— —BxS
i is the couple tensor B is the tensor of exchange
interactions
L+~ B¢xS
L is the volume density of an | B€ is the external magnetic
external moment induction
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Linear Kelvin’s medium
Let P=(E+ 0 xE)-Py(pmg), 6=0(1), u=R-—-r=o0(1). Then
[Alo = Py(emo),  [K]o=0,
[Al; = (Vu+60 X E) - Py(omg),  [K]1 = VO - Py(pmo).
Linearized equations near the natural state, suppose it is at %mo =0:
T=X--(Vu+60xE)+Y--(V8) (35)

p=((Vu+60xE)"--Y) +Z..V8 (36)
X--(moxE):0, Y"(moXE):O.

(6 — V x u/2)-mg does not enter into equations
Direct way to obtain linear equations from the balance of energy:
Gavrilov, Zhilin, 1996
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Linear Kelvin’s medium

Dynamic term:

w~0+@E+0xE) mg=0+pm.
w x plom ~ 8 x plpmg.

Equations in displacements:

V- (X--(Vu+6xE)+Y--(V8)) = pi,

V- ((Vu+8xE)--Y) +Z.-V8)
+[X--(Vu+60xE)+Y--(V8)]x =8 x plpmg.

They are the same as for the linear Cosserat medium, but: dynamic term
in the balance of moment is different, and elastic tensors forbid
(6 — V x u) -mg enter into equations. m ~ mq.
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Simplest reduced linear Kelvin’s medium

In _the reduced Kelvin’s medium by definition stresses do not work on
VO —u=0.

1
pU = 5(VuS - C--Vu® +4a((0 — V x u/2) - (E — mm))?).
Constitutive equations:
1
T = AV -uE + 2u(Vu)® + 2a(0 — 5V xu)- (E~mm) xE.

Equations in displacements (6 = 8 - (E — mm), bf — external body
moment):

(A +2u)VV -u—puV x (V x u)
—aV x (E—mm) - (V xu—20) = pu,
4a(V x u/2 —8) - (E—mm) — b8 = M x m.
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Useful formulae and facts

Vr—=VR=E

V=VR - V=V4+Vu-V (=V+o(l)ifu=o(1))
If tensor A=o0(1), (E4+A)"'~E—-X
VR !~E-Vu ifu=o(l)
Q~E+qxE if Qisan infinitesimal rotation tensor
(E+qxE)'~E—-qxE ifg=o0(1)
Q- A-Q" = Aif A= o(1), Q infinitesimal rotation tensor
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Useful formulae and facts

Rigid motion superposed upon a deformation R, P:
rigid rotation Q about a center Re, rigid displacement Rg

R,:Q(t)'(R_RC)"‘Rc-I-Ro(l’), P=Q: P
%R':%R-QT
Vu' ~ Vu—q x E,
0 =6+q,

whereu=o0(1), q=o0(1), 0=o(1),
Q~E+qxE,
P~E+ 6 xE.
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Useful formulae and facts

o
Vu® is materially objective in the linear approximation and
NOT in the nonlinear approximation

o
Vu? is NOT materially objective even in the linear approximation
A, K do not change under rigid motion

An infinitesimal tensor does not change under rigid motion
= it is materially objective in the linear appproximation
(Q-A-QT =N

but NOT in the nonlinear sense
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Example 1. Vu” is not materially objective in any sense.

Proof. We consider two motions, R corresponds to a certain deformation,
and R’ to the same deformation but with superposed rigid motion.

%U/A _ %(Rl o r)A — (%R . QT . E)A — (%R . QT)A
— (V(r+u) Q) = (E+Vu)-QT) = (Vu-Q")* - Q*
—(Vu-QT-Q-Vu')2-Q@*#£Q-Vu*- Q.

So we see that it is not materially objective in the nonlinear sense. Let us
make the linear approximation (Q ~ E + q x E). Then

Vu = (Vu-vVu')/2—qxE* = Vu' —qxE~ Q-Vu*-Q" —qxE
It is not rotated with the material even in the linear sense.

Lecturer: Elena F. Grekova (elgreco@pdmi.lntroduction to the mechanics of Cosserat milySidi iR Tl ENTINY [Sely ETy o= N = Te 1



Example 2

CanTt=C- -%us, where Cjiy = Cuij = Cij # 0, be a good constitutive
equation for a nonlinear theory? For a linear theory?

Answer: no for nonlinear, yes for linear.

Proof. Let us check the material objectivity. Remember that u = R —r.
Consider a piece of deformed material subjected to a rigid motion
corresponding to deformations u’, stress 1’

Vu'S = V(R —r)° = VR® —E= (VR-Q")° — E

:%(Q-%RTJr%R-QT)—E:%(Q-%UT+%U-QT)+QS—E

Since Vu'® # Q - Vu® - QT, it is not materially objective strain tensor.
Also it changes under rigid motion.
o

We see that T/:C"Vu’s#Q.(C..%us).QT_
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Useful facts (proved previously)

@ If energetic stress tensors Ty, . do not change under rigid motion,
then Cauchy stress tensor 7 and Cauchy couple stress tensor p are
materially objective (rotate together with the piece of material).

o If 1., u, depend only on strain measures that do not change under
rigid motion, themselves they do not change under it, and T, u are

materially objective.

o If T, u depend only on materially objective strain measures, they are
materially objective.
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Example

In the linear approximation, using Q ~ E + q x E, we obtain
Vu’® ~Vu® ~Q-Vu® - QT up to 0%(1):

o 1 o o
Vu'® = E(Q'VUT—G—VU-QT)—G—QS —

(E+qxE)-Vu' +Vu-(E—qxE)+(E+qxE)S —E

N -

%%(%UT—F%U)—}-E—E:%US
Then
T = (Vu)s (E+qxE)- (C--%u5)~(E—q><E)
~Q-(C--Vu$) Q" =Q-7-Q"
posesses material objectivity in the linear approximation.
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How to check if constitutive equation is a good one

© Understand if it is a linear one or nonlinear one, or can be both. If

o
we have A, K, VR, P, this is a nonlinear equation. If we have 08, we
have defined it only for the linear case.

©

Check the material objectivity (in the linear or nonlinear sense). If it
is not satisfied, it is never valid. 7 and p are rotated by rigid motion,
U does not change.

If it is satisfied, it is a good equation for the full Cosserat medium.
For the classical medium we have no rotations, and 7 =77

For the reduced Cosserat medium u = 0, and T and U does not
depend on gradient of rotation.

For the constrained (pseudo-) Cosserat medium we consider only
the linear case, and T4 cannot be found from constitutive equations.

© 6 0600

For Kelvin's medium either we check that 7, u, U do not depend on
o, Vo, or (T« +V-u) - m=0,p-m=0.
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Properties of strain tensors

@ A K do not change under ridid motion
@ VR=VR-Q, P’—Q P
QVu—l—BXEVG Vu—l—OxEVG Vu , Vu® V uV-u,

Vu +0xE Vu'+0xE 60—V xu/2, 60— V X u/2 are materially
objective and do not change under rigid motion in the linear sense.
They have no any of these properties in the nonlinear sense (“bad”
ones)

@ V X u, u, 6 and their absolute values are not valid in any sense
(linear / nonlinear). They change under rigid motion and are not
materially objective
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Waves in linear Cosserat-type media

: Elena F. Grekova (elgreco@pdmi.lntroduction to the mechanics of Cosserat milySididli{=N{oldl =l geTo]t=l ERTI NI [rel EToTTe W=y To TRt



Simple mathematical facts

If f = fpe!(Wttkn) then

f = jwf,
Vf = ikf.

Indeed, if r = g°es, and k = k®es, then

Vf = esfoei(thrksqs) — iksesfoei(wt+k5q5) _ /kfoei(thrk'r)

9qs
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Reminiscences: linear elastic classical medium

In absence of external loads
T=C--(Vu)®, V.1 =pi.
Equations in displacements:
V- (C--Vu®) = pii.
Looking for the solution u = uge’(@Wt+k ") we obtain
ik - (C--i(kug)®) = —w?pu.

(ow’E —k-C-k)-ug=0.
Denote k = |k|, k = k/k.

(prE—kQIAvC‘IA()-uo:O.
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Reminiscences: linear elastic classical medium

Since k- C -k is a symmetric tensor, it can be represented as C;e;e;,
eigenvectors and eigenvalues in the anisotropic case depend on the
direction of wave propagation k.

Then we obtain three possible solutions: ug = uge;,

pw? = k?C; — w=+/Ci/ok.

These are straight lines.

In the isotropic case, eigenvectors are k (compression wave, velocity C)
and any vector orthogonal to k (shear wave, velocity Cs), and
corresponding velocities are

G =+ (A+2u)/p, Cs=Vu/p<C.

Dispersion relations for infinite linear elastic classical medium are always
straight lines
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Dynamic equations for the linear elastic isotropic
reduced Cosserat medium (free oscillations)

For Cosserat-type media, there will be not more than one straight line...

A+2u)VV-u—(p+a)V x (V xu)+2aV x 0 = pii
2aV xu—4a0=pl-6 "'Z'E 5/d

If « = 0, we have the classical isotropic elastic medium.
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Linear isotropic reduced Cosserat medium: dispersion

[0l
: Cl k, /C o k
’ % 1
e e
i o illati
X 1 w = W 1+« v
:forbidden zone C12 0/( 0
ifor the S-wave S =u/p,
|Strong Csza = (b +a)/p,
dispersion C/2 = (XA +2u)/p.
Iclassmal
Ibehaviour

There exist a band gap, where shear—rotational waves do not propagate
(single negative acoustic metamaterial).

2 _ ‘*ﬁ(l —wz/wg)
- (1-w?/uR)

This happens since some elastic connections are broken (the medium
does not react to V8.) In this zone waves will be localised.
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Isotropic linear Cosserat medium. Dynamic equations

(A +2u)VV -u— (b + a)V x (V x u) +2aV x 8 + pF = pi,
(B+2Y)VV -0 — (y+¢€)V x (V x 8) +2a(V x u—28) + pL = ol - 6.
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Linear isotropic Cosserat medium with spherical tensor
of inertia. Dispersion curves

If I = /E, the inertial term in the balance of moment equals p/é.
Consider free oscillations (F = 0, L = 0). For 3D plane waves we obtain
the following dispersion curves:

Y 1
C,k . Gk C B ' classical 5

i 1 behaviour Cr=(\+2u)/p,

o ' 2
’ "”’Cgk St.rong ) C/I' - (ﬁ + QIY)/pI'
dispersion Cs2 _ M/P-
T Gk C2, = (u+a)/p,
C2=(v+e)/pl.
k wg = 4a/(pol).
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Linear isotropic reduced Cosserat medium: dispersion
relations

We look for the solution of dynamic equations for the reduced Cosserat
medium as u = uge'K @) g = gye/(krtwt) Then we have to change
the operator V to ik, and time derivatives to jw.

—(N 4 2u)kk - u + (4 a)k x (k x u) + 2iak x 8 = —w?pu
2iak X u — 408 = —w?plO
We express 6 via u from the last equation, introducing w3 = 4a/(pl). At
W # Wy ,
Iw,
0=_——5"—5kxu 37
2(w3 — w?) o (37)

Consider_ separately the case W = wo. We have a possible solution u = 0,
0 = Bpe'“t, or 6 = Gp(r)e'“ot, if V x Bp(r) = 0.
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Linear isotropic reduced Cosserat medium: dispersion
relations

We substitute 0, expressed via u, to the balance of force:

2
w
~(A+2u)kk - u (o a—s— )k x (kxu) = ~w?pu.
0

Note that k x (k x u) = k?(kk — E) - u, where k = k/k, k = |k|.

We can write down pw?E = pw?kk + pw?(E — kk).
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Linear isotropic reduced Cosserat medium: dispersion
relations

We obtain

(pw? — k2(\ + 2u))kk - u
2 2 w? o
w: — k a———))(E — kk) -u=0.
+ (o (b + w2—w3))( )
We see that the compression wave is the same as in the classical
medium, and the dispersion relation for the shear—rotational wave is
w? - w? (1 —w?/wi)

2 _ 42 2
— k Yy = TV )
pe (M+aw2—w§) C? (1 — w?/w?)
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Reduced isotropic Cosserat medium: dispersion graph

:Po"t’éﬂﬁtﬁ‘;‘faga"“g wo = 4a/(pol).
oscillations

! w? =wi/(1+4a/w),
iforbidden zone C12 0 /( /M)
ifor the S-wave < = u/p.

strong C2, = (n+a)/p.
dispersion _ ()\ + 2'“)/,0.

: classical
: behaviour
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This is a localisation

If we consider point sources F = Fge'®t, L = Lge™t, and w; < w < wp,
then a part of wave is localised near the source (Grekova, Kulesh,

Herman, BSSA, 2009)
At wq there are resonant phenomena (if point torque is applied) or

stronger localisation (for point force).
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Linear isotropic full Cosserat medium: dispersion
relations
For zero loads

AN +2u)VV-u—(u+a)V x (V xu)+2aV x 6 = pi,

(B+2Y)VV -0 — (7 +€)V x (V x 0) +2a(V x u—28) =pl6.

We look for solutions of dynamic equations in the form u = uge’(kr+wt),

0 = pe’krtwt) Again we change V to ik, and time derivatives to iw.
We have

~(A+2u)kk -u+ (1 + a)k x (k x u) + 2iak x § = —pw?u,  (38)

—(B+27)kk -0 + (v + )k x (k x 8) +2a(ik x u—28) = —plw?6. (39)

If we try to eliminate 8 from the balance of force using the balance of

moment, we will have more difficulties than for the reduced Cosserat
medium. What to do?

Lecturer: Elena F. Grekova (elgreco@pdmi.lntroduction to the mechanics of Cosserat milySidi iR Tl ENTINY [Sely ETy o= N = Te 1



Linear isotropic full Cosserat medium: dispersion
relations

Note that we only have to express k x 6 via u. Calculating the cross
product of (39) and k, we obtain

(7 + )k x (k x (k x 8)) 4+ 2a(ik x (k x u) — 2k x 8) = —plw?k x 8.

Note that k x (k x (k x 8)) = —k?(E — kk) - (k x ) = —k’k x 8
We have

2iak x (k x u) = (K*(y +€) + 4o — plw?)k x 6.

Dividing by p/, we obtain

iw3k x (k x u)/2 = (K2C2 + w3 — w?)k x 0.
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Linear isotropic full Cosserat medium: dispersion
relations

We will show that this cannot be true:

w? = wi + C2K%. (40)

In the reduced Cosserat medium it was a straight line w = wgy. We see
that this yields u - (E — kk) = 0. Substituting to (39) these equations, we
obtain k-6 = 0.

Indeed, k x u =0, dividing (39) by p/, we obtain

—CPkk -0 — C2Kk*(E — kk) - 0 — w28 = —w?0, (41)

and taking into account (40) we have (C2 — C2)kk - 8 = 0. We will not
consider the case Cgr = (.
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Linear isotropic full Cosserat medium: dispersion
relations

Then we have k-6 = 0.
At the same time (38) in this case can be written as

(pw? — k2(X + 2u))kk - u + 2iak x 8 = 0,
which is due to (40)-k gives us k- u = 0. Then k x 8 = 0, and therefore

6 =0.
Contrary to the reduced Cosserat medium, there are no free oscillations.
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Linear isotropic full Cosserat medium: dispersion
relations

Continue to eliminate 8 from the balance of force. We can divide both
sides

iwsk x (k x u)/2 = (k?C2 + w3 — w?)k x 8.
by the multiplier at 0:

2
owg

2iak x 0 = —
- (KC 4w — )

k x (k X u).

Substitute it into the balance of force (38):

22 2
k<C& —w

—(A+2u)kk -

)k x (k x u) = —pw?u.
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Linear isotropic full Cosserat medium: dispersion
relations. Compression wave

We obtain the spectral problem for u

(pw? — k2(\ + 2u))kk - u
k2C2 — w?

+ (pw® — K (p+
k2C2 + w? — w?

))(E — kk) -u = 0.

1. Longitudinal acoustic branch. \We see that compression wave in the
isotropic full linear elastic Cosserat medium is the same as in the classical
medium (dispersion relation w = Cjk, C,2 =(\+2u)/p, up = uok,
from (39) it follows 8 = 0).
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Linear isotropic full Cosserat medium: dispersion

relations
2,3. Transverse acoustic and optical branches Shear—rotational wave
(u -k = 0) corresponds to the branches of the equation

22 2
k“Cq —w

k2 :
(“+ak2C§r+w8—w2)

which gives us
w — w?(K?(C2 + C2)) +wj) + k°C2wi + k*C2,C2 = 0.

This biquadratic equations can be resolved with respect to w or k. Note
that at kK — oo it gives w = Cg k or w = Cgok. It has no horizontal
asymptotes, contrary to the reduced Cosserat medium, since the elastic
energy is positively defined. At small k either w ~ Csk, or
w? ~ w2+ k?(C2 + C2, — C2) = w3 + k?(C2 + a/p), i.e. for the upper
branch we have a cut-off frequency wqg, and the lower branch starts as
the shear wave in the classical medium.
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Linear isotropic full Cosserat medium: dispersion
relations. Shear-rotational wave

The expression for w takes form

2P = W + K*(C3 + C2) £ /(w3 + K3(CE — C2,))? + 4wRk2a/p

We can obtain from (39), that for the shear—rotational wave 0 - k = 0.
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Linear isotropic full Cosserat medium: dispersion
relations. Longitudinal rotational wave

4. Longitudinal optical branch. Longitudinal rotational branch. As we
saw, 0 - k does not influence the spectral problem for u, but there exist
free plane waves with @ parallel to k. Calculate (39)-k:

(w? — wd) — K*(B+27)/(p!))0 k=0
We obtain the dispersion relation
w? = wj + C2K?

Here ug =0, 6g = QOR. Another way to obtain the dispersion relations:
Eringen, 1999, Microcontinuum field theories, pp. 147-150.
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Reduced linear constrained elastic Cosserat medium.
Dispersion relation

V.12 =V x (IV x ii)/4 + pii
Ty =10 =1V x ii/2.

First we choose an isotropic homogeneous elastic model

75 = AV - uE + 2u(Vu)®

Equations in displacements: J

A +2u)(VV-u) —uV x (V xu) =V x (IV x i)/4+ pi
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Reduced linear constrained isotropic elastic Cosserat
medium. Plane shear wave

P-wave is classical for the isotropic case. It is separated J

Plane wave solution: u = uge’(kr+wt),
Shear wave in the Fourier domain (u -k = 0):

pk x (k x u) = —w?pu — lw?ku/4.

Dispersion relation:
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Reduced linear constrained isotropic elastic Cosserat

medium. Plane shear wave
Ce \2 W
wi ) w?—w?

Dispersion relation:

Single negative acoustic metamaterial

Re c;k/wl
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Elastic case with the simplest anisotropic coupling term
(axial symmetry, axis n)

Constitutive equations:
U = Uisotropic + N(Vu)® - -Enn - - Vu® = Usotropic + N(V -u)n-Vu-n

T° = AV -u+2u(Vu)® + NEn-Vu-n+ NV -unn

Dynamic equations in displacements (after Fourier transform):

— (M +2u)kk - u+ pk x (k x u) — Nkku - -nn — Nn - kk - un

= —w?pu — lw’k%u/4

v
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Elastic case with the simplest anisotropic coupling term
(axial symmetry, axis n)

Denote k = k/k, then n =n-kk + i, @ = (E—kk)-n.

Spectral problem:

AN

[(pw? — (A + 2u)k? — 2Nk?(k - n)?)kk
/ -
+ (pw? — uk?® + Zw2k2)(E — kk)
— NKk?(k - n)(iik + kii)] -u=0.

There exist a shear wave: u || (n x k).

The same dispersion relation as for the isotropic case.
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Elastic case with the simplest anisotropic coupling term
(axial symmetry, axis n). Special directions of wave
propagation

Ifn-R:ilorn-R:O,

@ anisotropic term for the shear wave disappears, and its dispersion
relation is the same as for the isotropic medium

© longitudinal wave is non-dispersive, with constant velocity G,

A+ 2u+ 2N N
cgz% for k||n,

~

C? for k-h=0.

> At+2u
Cp = =
p
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Elastic case (axial symmetry, axis n). Mixed wave

If neither n - k # +1 norn- k # 0, longitudinal wave and shear wave with
u not parallel to i x k do not exist. Waves become mixed.

Dispersion relation for the mixed wave
2k2 C2k2
wh(l+ =) — wzkz(cg(l + =)+ C3)
W Wy
+ k*(c2C2 — cp(n-k)?In x k|?) = 0.

C2K?
1+ =5
1

2 2 2
wzzk_<C§+ @ ., <C2_ c )+4cﬁ(n-k)2(n><k)2>
1+

v

Here c2 = N/p, 2= C?+2N(k-h)?/p, C?=(\+2u)/p.
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Example of dispersion curves (C?/C2 =3, cxy/C2 = 1.4,

n-k=+2/2)
Horizontal asymptote w = ws < wq, at w — oo we have w =~ ¢k
Both curves are dispersive but for the upper one we hardly notice this.

They are different but look very similar to the isotropic case.
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Linear isotropic viscoelastic constrained reduced
Cosserat medium

We consider the simplest viscoelastic model (Eringen; Sorokin's body).
Without proof: It satisfies all the balance laws, material objectivity in the
linear approximation and the 2nd law of thermodynamics.

T2 = AV - u+ 2u(Vu)® + A&V - 0 + 2uv(Va)®

We substitute it into the balance of force and obtain equations in
displacements:

A +2u)(VV - (u+ k) —uV x (V x (u+va)) =V x (IV xu)/4+ pi
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Plane waves in the viscoelastic constrained medium

We look for the solution u = uge/(¢"+wt) ~All elastic constants are now

complex and linear in frequency: u(1 + iwv) instead of u etc.

As above, the pressure wave is separated (isotropy!) and classical.
Shear wave (u-k = 0):

w(l+ ivw)k x (k x u) = —w?pu — lw?k?u/4.

Dispersion relation:
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Plane waves in the viscoelastic constrained medium
There is one positive root for (Re k)?

2 2 _ 2
b WS Wi —wi4z

2 232 2 2
= —- = (wy —w vew<s > 0.
Cs2 27 4 (1 )+

(Re k)

No band gap. Decreasing part of the dispersion graph. Re k is limited

Dissipation changes the
type of metamaterial and
favours wave propagation.
Similar effect for reduced
linear isotropic Cosserat
medium (Grekova, Abreu,
Piatysheva, 2019).

It destroys localisation

w/wy

s Ts B P
Re csk/wy, vw; =0.05
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Waves in the simplest reduced Kelvin's medium /
simplest gyrocontinuum

Equations in displacements (6 = 8 - (E — mm)):

(A +2u)VV -u—uV x (V xu)
—aV x (E—mm) - (V xu-20) = pu,

40a(V x u/2 —8) - (E—mm) — b6 = M x m.

Here A, u are Lamé constants, « is the elastic rotational constant,
M = ple is the dynamic spin, b8 external body moment.

P-wave is classical:
V - u enters only in balance of force. J
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Special regime at frequency wg = &t

Let {e1,ep, m} be a right-handed orthonormal basis.
A special regime of motion: u=0, V x (6y(e; + iez)) =0,

é = 90(61 e /e2)ei“’5t

This is a regular precession with the nutation angle 6p, velocity of
precession —wg and velocity of proper rotation .

my0,
.t

ot
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Spectral problem for the shear wave

Let k = k/k, us = (E — kk) - u.
Shear wave:
pk x (k x ug) + 2iak x ((E—mm)- (8 — ik x us/2)) = —pw?us,

. wex W =
(E—mm)- (ki X u5)/2=-26+i— @ xm,
wo wo
where wg = 4V°‘. In absence of external torque wg = wp.

Multiplying the balance of moment by tensor ((E —mm) — /;>-m x E)",

we express 0 in terms of u at w # wg:

. WoWp . w
g — _m(I(E —mm) - (k X ug) — @m X (k X us)).
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Reduced spectral problem for the shear—rotational wave

Substitute A(u) in the balance of force. If w # wg, we obtain

Reduced spectral problem
(pw? — (p + (1l + —))/(2)uS
wp
+ak?(1+ %)(R x m)(k x m) - ug
B
o u}ow ~ N
— jak?—5———k-m(k x E) -us = 0.
w? — w3 ]
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Spectral problem. k- m =0

Denote e = k x m.
Shear wave propagating perpendicular to rotor axes m:

Wow
(pw? — uk?)ee - us + (pw? — (u + (1 + ﬁ))kz)mm ‘us = 0.
B

At us = (pe

this is a classical shear wave: w = Csk, C2 = u/p.

At us = ugm

w2 w2_

[ -
2 2 2
Coo W? —wig

Low frequency velocity € [Cs; Csq) at b > 0,
less than C or disappears at b < 0 C2, =

wig = wp(ws — awo/(k + a)) < w3
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Dispersion curves: plane waves propagating orthogonal

to rotors’ axes
Q)

4o+ b>0

Lower branch disappears at

b 1 4a+b <0
_1<m<l+a/u +
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Case k||m

Spectral problem for shear waves propagating along rotors’ axes

WoWp
(,ow2 - (lf' aF OL(]. aF wzo—wB))k2)U5 + Iak2—wB(k X E) us =

Wave with circular polarization:
us = up(e; £ iep),
2_ w? w4+ ws 2
C2w+ w2y /wg’ - G w—wig/wg

w? w—uwg
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Case k||m. Shear wave propagates along rotors’ axes

At b > 0 (stabilizing external torque)
one of the branches has a band gap, and another one not. J

wo=1, wp=1.05, wiy=0.14 , wia/ws = 0.1 1,p=0.1,a=1,b=02,k-m=1

00 01 02 03 05 06 07 08

04
Re k

b> —4a/(1+a/w).
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Case k|jm, —4a < b < 0,wig < 0
—4a < b< —4a/(1+a/u).

wo=1, wy=0.5, wi; =-0.10714285714285715, wis/ws =-0.2142857142857143, u=0.4,a=1,b=-2, k-m=1

0.00 025 050 075 1.00 125 150 175 2.00
Re k

At b < 0,w?g < 0 (negative external torque)

there are bands where the medium is single/double negative acoustic
metamaterial for different branches.
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Shear—rotational wave with circular polarisation
propagates parallel to rotors’ axes, b < —4«a

wWo=1 ws=-05, wly=035 wl/ws=-0.7, u=4,a=1,b=-6, k-m=1

/

/

/

/

/

/

/
(

TheE—
3 /
06 /
I Y
02
o
0.0 02 04 06 08 10 12
Re k
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General case: k-m # 0, k # +m

The wave is polarized. We look for B(w) such that e; + iBez would be an
eigen vector for the reduced spectral problem. We obtain the equation

for B:
B2+2B86-1=0 <<= PBw)=—-€E+E2+

1(kxm?/w wgb
(e e

k-m wo w 4o

2 2
k2 - w w UJB
- 2
2 w2

~ 2
—w?g + Brwwek -m(1— °:J—1§)

At b > 0 there is one branch with a band gap and another one without

it. At b < 0 if the stability is not violated there may exist zones with
decreasing part w(k).
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Positive follower torque

wo=1, ws=2.5, Wiz =3.9772727272727275, wizlws =1 1,u=0.1,a=1,b=6k-m=0.08

e

Shear—rotational wave with elliptic frequency-dependent polarisation,
k-m=0.008, b > 0.
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Negative follower torque

wo=1, w5 =0.25, Wiy =-0 wg/ws =-0. 1,u=2,a=1b=-3k-m=09

0s / //
D. S

Iy y

_~ /
D, (

..............

Re k

—4a < b< —4a/(1+ (k-m)?a/u), k-m=0.9.
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Negative follower torque

wo=1, ws=0.5, wly=-0.1 wls/wp =-0.33333333333333337, u=0.2,a=1,b=-2, k- m=0.239
1 /
o. //

0 __—

02 e

k-m=0.239, b < —-4a
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Negative follower torque

Wy =1, wp =-5.25, w, = 31.9375, wiy/wp = -6.083333333333333, p=0.2, @ =1, b=-25, k-m=0.239

,4 /

: / _
/

//
C
— >
)

k-m=0.239, b < —4a.
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Negative follower torque

Wo=1, wg=-5.75, w}s = 34.2125, wis/ws =-5.95, u=4,a =1, b=-27, k-m=0.239

~
~

P TR A A E A

k-m=0.239, b < 4o
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Reduced continua with dynamic spin: conclusions

@ P-wave is classical

@ A regular precession of body points with fixed mass centers at
frequency wg may take place

@ Shear-rotational wave propagating perpendicular to the rotors’ axes
is plane, has a classical branch and a branch with a band gap limited
by wg from above

@ Other shear—rotational waves have dispersion, polarisation (circular
if the wave vector is parallel to rotors and elliptic, frequency
dependent, if not)

@ Under positive external torque one of the branches has a band gap
limited by wg from above, and another one not

@ wg depends on the external follower torque, by its means we may
somewhat control the band gap

@ under negative external follower torque we may change qualitatively
dispersion curves, obtaining the decreasing part

Lecturer: Elena F. Grekova (elgreco@pdmi. Institute for Problems in Mechanical Enginee



Some facts about waves in full Kelvin's medium

= @ No band gaps: the medium is not

120 1 reduced

a1 @ Interesting: intersection curves of
partial (rotational and

80 | translational) dispersion curves.
Magnetoacoustic resonance. For

€ simple roots of partial dispersion

w0 | r.elations coupled curves I.ook t.here
like hyperbolas. Strong dispersion

20 | and mixed eigen vector. If we
excite elastic subsystem, we obtain

0 magnetic (rotational) wave and

> 015 20k vice versa. If there is any nonlinear
coupling, it is crucial at these
points.

An example of dispersion
curves
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Waves. Conclusions

@ In classical elastic medium dispersion relations are straight lines

@ In full (non-reduced) Cosserat and Kelvin's media there are no band
gaps

@ In reduced constrained Cosserat, reduced Cosserat and reduced
Kelvin's media almost always there exist band gaps (the media are
single negative acoustic metamaterials for these frequencies) and for
some cases — decreasing part of dispersion curves (double negative
acoustic metamaterials)

@ In reduced Cosserat medium there exist plane harmonic waves
@ In continua with dynamic spin most harmonic waves are polarised

@ Viscosity may favour the wave propagation destroying a band gap,
and may change the type of acoustic metamaterial
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Exam questions (1st part — mathematical facts)

Polar and axial tensors, vectors, scalars
Antisymmetric tensor. Accompanying vector
Rotation tensor. Definition. Poisson equation
Infinitesimal rotation (vector, tensor, their relation).

Angular strains ®;. Their expression via spatial derivatives of the
rotation tensor.

© 000O0COC

Nabla operator V in actual configuration (position vector R), nabla
[e]

operator V in the initial configuration (position vector r). Prove:

(¢} o

V=VR.-V.

Cosserat deformation tensor A = VR - P and its linearization.

© 0

Transposed wryness tensor K = r'®; - P and its linearization.
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Exam questions (2nd part — basic equations)

Principles that we use to write down basic equations of the elastic
medium.

Balance of forces for Cosserat and reduced Cosserat continuum.
Balance of moments for Cosserat and reduced Cosserat continuum.
Balance of energy for Cosserat and reduced Cosserat continuum.
Principle of material objectivity (material frame indifference).

Constitutive equations for elastic Cosserat and reduced Cosserat
continua.

Kelvin's medium as a specific Cosserat medium.

©0 0000O0C O

Constrained (reduced and full) Cosserat medium, its difference from
the full and reduced non-constrained Cosserat continua.
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Exam questions (3rd part — harmonic waves)

© Plane waves in an infinite 3D linear classical elasticity.

@ Plane waves in an infinite 3D linear reduced Cosserat medium

© Difference between dispersion graphs of the three elastic isotropic
continua: classical one, reduced and full Cosserat medium

© Difference between dispersion graphs of the three elastic isotropic

continua: constrained reduced Cosserat medium, reduced Cosserat

medium and full Cosserat medium

Influence of anisotropic term coupling volumetric and shear

deformations on the plane waves in the classical elasticity and

constrained reduced elastic Cosserat medium

@ Plane waves in the isotropic reduced elastic and viscoelastic
constrained reduced Cosserat media: difference in dispersion graphs,
acoustic metamaterials of different type.

@ Difference between harmonic waves in the simplest elastic reduced
Kelvin's medium and elastic isotropic reduced Cosserat medium

© Difference between dispersion graphs of the full and reduced Kelvin's
medium. Points of magnetoacoustic resonance
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