Introduction to the mechanics of Cosserat media

Lecturer: Elena F. Grekova
(elgreco@pdmi.ras.ru)

Institute for Problems in Mechanical Engineering
of the Russian Academy of Sciences

Foreign member of the research group “Electrohydrodynamics and cohesive granular materials” of the University of Seville
Plan of lectures

- Some facts from the tensorial algebra
- How to deduce equations of a continuum
- Basic laws of mechanics
- Elastic continua: classic, full Cosserat, reduced Cosserat
- Basic laws for elastic continua. Integral and local forms.
- Nonlinear full Cosserat continuum. Equations
- Nonlinear reduced Cosserat continuum. Equations
- Linear full Cosserat continuum. Equations
- Linear isotropic full Cosserat continuum. Equations
- Linear reduced Cosserat continuum. Equations
- Linear isotropic reduced Cosserat continuum. Equations

Lecturer: Elena F. Grekova (elgreco@pdmi.ras.ru): Introduction to the mechanics of Cosserat media
Lectures 1,2.

What is the mechanics of the Cosserat media?
Some facts from the tensorial algebra
Complex materials

Classical continuum is a continuum of point masses that only can move. However, the reality is much richer! Advanced applied science deals with

3D acoustic metamaterials with effective negative elastic moduli / density for some frequencies. Control of wave beams, acoustic cloaking, noise reduction, ...
What is mechanics of the Cosserat media?

Cosserat medium is a continuum whose point bodies (particles) have rotational degrees of freedom.

Hand-made smart materials
What is mechanics of the Cosserat media?

Magnetic materials (Kelvin’s medium — special Cosserat medium with particle possessing large spin)
What is mechanics of the Cosserat media?

Granular and particulate materials
What is mechanics of the Cosserat media?

Cosserat media: heterogeneous materials with granular structure, composites under loading that causes rotation of (sufficiently rigid) grains (superplastic materials, acoustic metamaterials)

Shear in a granular/particulate medium
What is mechanics of the Cosserat media?

Limitations: Cosserat medium is a particular case of complex medium. Its point-body is rigid. There are other more complex media, e.g. where a point-body is deformable (protein chains, porous media, etc.) It is only a first step to the world of enriched continua. In this course we will make an introduction to the **elastic** Cosserat media. **No temperature or heat** effects are considered.

Methods: Theory is based on the fundamental laws of mechanics (balance of forces, couples, energy) and, for inelastic media, 2nd law of the thermodynamics. Symmetry considerations and material frame indifference. Another branch is the microstructural approach. Experimental methods: under development. We need experiments to determine the moduli. Most of them are based on the experiments on waves (mechanics of magnetic and piezoelectric materials, mechanics of granular materials, rotational seismology...).
Your suggestions?

What do we need to know to describe a behaviour of a Cosserat-like material?
Scope of the course

Continuum deforms. Therefore we cannot find out its motion only from equilibrium or dynamic equations. Constitutive equations tell us how the medium reacts to the stresses in each point. They are needed to solve any problem where there are deformations.

- Mathematical technique: **tensorial algebra**. (Brief overview.)
- **Basic equations** of the elastic Cosserat media (constitutive and dynamic equations)
- **Waves** in the elastic Cosserat continua
Tensorial algebra. Plan

- Tensors. Definition
- Co-ordinates and direct tensorial notation
- Polar and axial vectors and tensors
- Tensor invariants
- Important identities
- Accompanying vector of an antisymmetric tensor
- Orthogonal tensors. Tensor of turn

Literature: books by P.A. Zhilin and A.I. Lurie on tensorial algebra
Tensorial product. Diades and tensors

Vectors \(\mathbf{a}, \mathbf{b}, \mathbf{c}, \ldots \)

Operation \(\otimes \): tensorial product. Linear in its arguments.

Dyadic \(\mathbf{a} \otimes \mathbf{b} \) is a linear object with respect to both vectors:

\[
(\alpha \mathbf{a} + \beta \mathbf{b}) \otimes \mathbf{c} = \alpha \mathbf{a} \otimes \mathbf{c} + \beta \mathbf{b} \otimes \mathbf{c}, \quad \mathbf{c} \otimes (\alpha \mathbf{a} + \beta \mathbf{b}) = \alpha \mathbf{c} \otimes \mathbf{a} + \beta \mathbf{c} \otimes \mathbf{b}.
\]

This is an ordered pair: \(\mathbf{a} \otimes \mathbf{b} \neq \mathbf{b} \otimes \mathbf{a} \) (generally speaking).

A tensor of second rank is a sum of dyadics:

\[
\mathbf{A} = \mathbf{a} \otimes \mathbf{b} + \mathbf{c} \otimes \mathbf{d} + \mathbf{e} \otimes \mathbf{f} + \cdots = \sum_{i=1}^{n} \mathbf{a}(i) \otimes \mathbf{b}(i)
\]

Questions

1) How to introduce a tensor of the 4th rank?

2) We will work with 3D vectors. What is the minimal \(n \) such that any tensor of the 2nd rank can be represented as \(\sum_{i=1}^{n} \mathbf{c}(i) \otimes \mathbf{d}(i) \)?

3) How to introduce and represent an identity tensor?
Answer 1. Tensor of the 4th rank

\[^4 A = a_1 \otimes b_1 \otimes c_1 \otimes d_1 + a_2 \otimes b_2 \otimes c_2 \otimes d_2 + \ldots \] — a sum of polyadics of the 4th rank. Polyadyscs are linear in their arguments and the permutation of vectors is not allowed (generally speaking)
Answer 2. Co-ordinates

We see that tensors are linear with respect to the vectors of their dyadics. We choose an orthonormal basis in 3D space: i_k, $k = 1, 3$. Any dyadics can be represented as

$$a \otimes b = \sum_{m=1}^{3} a^m i_m \otimes \sum_{n=1}^{3} b^n i_n = \sum_{m=1}^{3} \sum_{n=1}^{3} a^m b^n i_m \otimes i_n.$$

The numbers $L^{mn} = a^m b^n$ form a matrix of co-ordinates of the dyadic $a \otimes b$ in the basis i_k.

Express a^n, b^n in terms of a, b, i_k and L^{mn} in terms of $a \otimes b, i_k$.

Any tensor of the 2nd rank is a sum of dyadics: $A = \sum_{j=1}^{J} a_j \otimes b^j$.

Let us proceed with all the dyadics the same. We have

$$A = \sum_{j=1}^{J} \sum_{m=1}^{3} \sum_{n=1}^{3} a_j^m i_m \otimes b^j n i_n = \sum_{m=1}^{3} \sum_{n=1}^{3} \left(\sum_{j=1}^{J} a_j^m b^j m \right) i_m \otimes i_n.$$

In 3D space any tensor of the 2^{nd} rank is a sum of ≤ 9 dyadics.
Answer 3. Identity tensor

\(\mathbf{E} \) is the identity tensor if for any tensor of the 2nd rank \(\mathbf{A} \) it holds \(\mathbf{A} \cdot \mathbf{E} = \mathbf{E} \cdot \mathbf{A} = \mathbf{A} \).

Let us prove that \(\mathbf{E} \) exists. Choose an orthonormal basis \(\mathbf{i}_k \).

\[
\mathbf{E} = \sum_{k=1}^{3} \mathbf{i}_k \otimes \mathbf{i}_k.
\]

Indeed, \(\mathbf{A} \cdot \mathbf{E} = \sum_{m,n=1}^{3} A^{mn} i_m i_n \cdot \sum_{k=1}^{3} i_k \otimes i_k = \sum_{m,n=1}^{3} \sum_{k=1}^{3} A^{mn} i_m \delta_{kn} \otimes i_k = \sum_{m,n=1}^{3} A^{mn} i_m \otimes i_n = \mathbf{A} \).

In the same way we prove that \(\mathbf{E} \cdot \mathbf{A} = \mathbf{A} \).

Prove that \(\mathbf{E} \) is unique. Suppose that there exist \(\mathbf{E}_1, \mathbf{E}_2 \), both identity tensors. In this case \(\mathbf{E}_1 = \mathbf{E}_1 \cdot \mathbf{E}_2 = \mathbf{E}_2 \).

Verify that for tensor \(\mathbf{a} \) of any rank (including 1, i.e. for vectors) \(\mathbf{a} \cdot \mathbf{E} = \mathbf{E} \cdot \mathbf{a} = \mathbf{a} \).
Co-ordinates

\[\mathbf{A} = A^{mn} \mathbf{i}_m \mathbf{i}_n. \] The coefficients \(A^{mn} \) form a matrix of co-ordinates in the basis \(\mathbf{i}_m \).

Let us omit the sign \(\sum \) and sum in repeated indices of the Roman alphabet from 1 to 3 (in Greek indices from 1 to 2) if one is subscript and another superscript.

A tensor \(\mathbf{A} \) does not change when we change the basis \(\mathbf{i}_k \). Its co-ordinates change.

A tensor that represents a physical object, generally speaking, depends on the system of reference (it is a physical thing), but never depends on the system of co-ordinates (which is a mathematical thing that we choose arbitrarily).
Direct tensorial notation

This allows us to perform calculus in the simplest way. We see that we can omit the symbol \otimes. In this case ab is a dyadic $a \otimes b$. We can do it since $\lambda \otimes a = \lambda a$, if λ is a scalar.

We shall use the notation $A \cdot b$ and $b \cdot A$ for scalar products of tensor A and vector b, and notation $A \times b$ and $b \times A$ for vectorial products (e.g. $A \times b = a^k \otimes a'_k \times b$).

Example 1. $\Theta = \lambda k \otimes k + \mu (E - k \otimes k)$ — tensor of inertia of a body with axial symmetry about the axis k. Let us calculate its moment of inertia with respect to the axis $n = (i + j)\sqrt{2}/2$: $n \cdot \Theta \cdot n = n \cdot (\lambda k \otimes k + \mu (E - k \otimes k)) \cdot n = n \cdot \lambda k \otimes k \cdot n + \mu n \cdot E \cdot n - \mu n \cdot k \otimes k \cdot n = 0 + \mu n \cdot n - 0 = \mu$.

Examples 2,3. $(a \otimes b) \cdot c = a \otimes b \cdot c = ab \cdot c$;

Let us omit \otimes: $(ab) \cdot c = ab \cdot c = ab \cdot c$.

c \times $a \otimes b = c \times a \otimes b$. Omitting \otimes, we have $c \times ab = c \times ab$.
Direct tensorial notation

Introduce $A \cdot B, A \times B, A^\top, A \cdot \cdot B$ etc. for dyadics. (Exercise 1: write down the definition for tensors in general case, verify that we can omit the symbol \otimes and that we simply may forget about the brackets.)

$$(a \otimes b) \cdot (c \otimes d) = a \otimes (b \cdot c)b = b \cdot c a \otimes b$$

$$(a \otimes b) \times (c \otimes d) = a \otimes (b \times c) \otimes d$$

$$(a \otimes b)^\top = b \otimes a$$

$$(a \otimes b) \cdot \cdot (c \otimes d) = a \cdot (b \cdot c)d = a \cdot d b \cdot c$$

In USA they use the operation $A : B = A \cdot \cdot B^\top$ (write down for dyadics)

$${\text{tr}} A = A \cdot \cdot E$$

Vectorial invariant $[a \otimes b]_\times = a \times b$
Dual bases and co-ordinates

Let \mathbf{i}_k be a basis. The dual basis \mathbf{i}^k is defined by: $\mathbf{i}_k \cdot \mathbf{i}^n = \delta^k_n$. Delta of Kronecker $\delta^k_n = 1$ if $k = n$, and $\delta^k_n = 0$ if $k \neq n$. Verify that if \mathbf{i}^k is dual for \mathbf{i}_k, then \mathbf{i}^k is dual for \mathbf{i}_k, and that an orthonormal basis is dual for itself.

Let \mathbf{a} be a vector. Let us find its co-ordinates in both bases. Look for $a^{(k)}$ such that $\mathbf{a} = a^{(k)} \mathbf{i}_k$.

$\mathbf{a} \cdot \mathbf{i}^s = a^{(k)} \mathbf{i}_k \cdot \mathbf{i}^s = a^{(k)} \delta^s_k = a^{(s)}$.

Co-ordinates in the dual basis: $\mathbf{a} \cdot \mathbf{i}_s = a_{(k)} \mathbf{i}^k \cdot \mathbf{i}_s = a_{(k)} \delta^k_s = a^{(s)}$.

Verify that $\mathbf{i}^k \mathbf{i}_k$ is the identity tensor, if \mathbf{i}_k is any basis.

When changing the basis, the co-ordinates of a vector or a tensor change. When they change in the same way as the basis, they are “covariant”, we use a subscript for notation. When they change in the same way as dual basis, they are called “contravariant”, and we use superscripts. (Give examples. Express a^i via a_i and $\mathbf{i}_k \cdot \mathbf{i}_s$.)
Polar and axial vectors

Vectors are mathematical objects that can reflect something physical, for instance, correspond to a translational displacement, or to a turn. To describe a translation in space in a certain direction for a certain distance we use polar vectors (they have direction and absolute value).

To describe a rotation we need “spin-vectors”, or “circular vectors” introduced by P.A. Zhilin (a circular arrow, its direction corresponds to the direction of rotation, and its longitude to the absolute value of rotation). We put in correspondence to a circular vector a straight vector of the same longitude (axial vector), for instance, using the “right hand screw rule”.

Lecturer: Elena F. Grekova (elgreco@pdmi.ras.ru) : Introduction to the mechanics of Cosserat media
Polar and axial vectors

We introduce an axial vector because it is easy to work with it, but we could also define it by a “left hand screw rule”. Choosing the rule, we define the orientation of the system of reference and we must perform all the operations with the same orientation. This orientation does not correspond to any physical reality, this is only our arbitrary choice. Axial vectors are also called “pseudovectors”. A vector is a polar vector if it does not depend on the orientation of the system of reference.

A vector is an axial vector, if the change the orientation of the system of reference changes its direction to the opposite, and its longitude does not change.

One cannot add polar vectors to axial ones (the absolute value of the sum would depend on the orientation). This is so since polar vectors correspond to the translation, and axial vectors to the rotation.
Polar and axial vectors

Remark 1: Polar and axial vectors differ in the physical sense.
Remark 2: The orientation of the system of reference has nothing to do with the orientation of the system of co-ordinates which we use. Having chosen any orientation of the system of reference we may use no system of co-ordinates at all, or we may orient it in the same or opposite way.

Questions: 1) how to introduce a polar or axial tensor / scalar?
2) Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ be a) polar; b) axial; c) polar and axial vectors. What type have 1) vector $\mathbf{a} \times \mathbf{b}$ 2) scalar $\mathbf{a} \cdot \mathbf{b}$ 3) $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$? Does the result change if $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are tensors?

Exercises.
2. $\mathbf{x} \cdot \mathbf{x} + \mathbf{a} \cdot \mathbf{x} + \alpha = 0$. Vector \mathbf{a} and scalar α are given. Find: 1) vector \mathbf{x} (general solution) 2) solution with minimal and maximal absolute values.
3. $\mathbf{a} \times \mathbf{x} = \mathbf{b}$ (vectors), find \mathbf{x} and $|\mathbf{x}|_{\text{min}}$.

Lecturer: Elena F. Grekova (elgreco@pdmi.ras.ru) : Introduction to the mechanics of Cosserat media
Determinant

$$\det A = \frac{[(A \cdot a) \times (A \cdot b)] \cdot (A \cdot c)}{[a \times b] \cdot c}$$

Prove that if $$(a \times b) \cdot c \neq 0$$ (these vectores are lineally independent), $$\det A$$ does not depend on the choice of $$a, b, c$$.

Prove that $$\det A^\top = \det A$$, $$\det(A \cdot B) = \det A \det B$$, $$\det A^{-1} = \frac{1}{\det A}$$. (How to define $$A^{-1}$$?)
Invariants of the 2nd rank tensor

\[I_1(A) = \text{tr} A = A^{mn} i_m \cdot i_n = A \cdot E. \]
\[I_2(A) = (\text{tr} A)^2 - \text{tr} A^2, \]
\[I_3 = \text{det}(A) = \frac{1}{6} (\text{tr} A)^3 - \frac{1}{2} \text{tr} A \text{ tr} A^2 + \frac{1}{3} \text{tr} A^3. \]

Prove:
\[\text{tr} A = \text{tr} A^\top, \quad \text{tr} (A \cdot B) = \text{tr} (B \cdot A) = A \cdot B, \]
\[\text{tr} (A \cdot B) = \text{tr} (A^\top \cdot B^\top). \]
** Identities **

Prove what you can.

Identity of Cayley–Hamilton

\[-\mathbf{A}^3 + I_1(\mathbf{A})\mathbf{A}^2 - I_2(\mathbf{A})\mathbf{A} + I_3(\mathbf{A})\mathbf{E} = 0\]

How to express other degrees (positive and negative) of \(\mathbf{A}\) via \(\mathbf{A}, \mathbf{A}^2, \mathbf{A}^3\), using this identity?

\((\mathbf{A} \cdot \mathbf{B})^{-1} = \mathbf{B}^{-1} \cdot \mathbf{A}^{-1}\).

If \(\det \mathbf{A} \neq 0\),

\[(\mathbf{A} \cdot \mathbf{a}) \times (\mathbf{A} \cdot \mathbf{b}) = (\det \mathbf{A})\mathbf{A}^{-\top} \cdot (\mathbf{a} \times \mathbf{b}).\]

If \(\mathbf{S} = \mathbf{S}^\top, \mathbf{T} = -\mathbf{T}^\top = \mathbf{t} \times \mathbf{E} \implies \det(\mathbf{S} + \mathbf{T}) = \det \mathbf{S} + \mathbf{t} \cdot \mathbf{S} \cdot \mathbf{t}.\)
If $\mathbf{A} = -\mathbf{A}^\top$, there exist a vector \mathbf{a} such that $\mathbf{A} = \mathbf{a} \times \mathbf{E}$. $[\mathbf{A}]_\times = -2\mathbf{a}$. Prove this.

\mathbf{a} is the accompanying vector of \mathbf{A}.
Orthogonal tensors

If for any vector \(x \)

\[|Q \cdot x| = |x|, \quad (1) \]

\(Q \) is an orthogonal tensor. Prove that it is the same that to require \(Q \cdot Q^\top = E \), that \(\det Q = \pm 1 \) and that \(Q_1 \cdot Q_2 \) is orthogonal if \(Q_1, Q_2 \) are orthogonal.

An orthogonal tensor does not change the angles between vectors.

\[(Q \cdot a) \cdot (Q \cdot b) = a \cdot b. \]

Proof: \((Q \cdot a) \cdot (Q \cdot b) = a \cdot Q^\top \cdot Q \cdot b = a \cdot E \cdot b = a \cdot b. \)

Note:

\[[(Q \cdot e_1) \times (Q \cdot e_2)] \cdot (Q \cdot e_3) = \pm [e_1 \times e_2] \cdot e_3. \]

If \(\det Q = 1 \), the tensor \(Q \) does not change the orientation of a vector basis (tensor of turn).

If \(\det Q = -1 \), it changes the orientation of a triadic (tensor of reflection).
** Orthogonal tensors. Identities **

Prove what you can

\[
Q \cdot (a \times Q^\top) = Q \cdot (a \times E) \cdot Q^\top = \det Q[(Q \cdot a) \times E],
\]

\[
(Q \times a) \cdot Q^\top = Q \cdot (E \times a) \cdot Q^\top = \det Q[(Q \cdot a) \times E],
\]

\[
\text{tr} \left(Q \cdot A \cdot Q^\top \right) = \text{tr} A,
\]

\[
\det(Q \cdot A \cdot Q^\top) = \det A,
\]

\[
I_2(Q \cdot A \cdot Q^\top) = I_2(A),
\]

\[
\text{tr} \left((Q \cdot A \cdot Q^\top)^n \right) = \text{tr} (A^n)
\]
Tensor of turn

Tensor of turn is an orthogonal tensor whose determinant is 1:
\[P \cdot P^\top = E, \quad \det P = 1. \]

Theorem by Euler: any tensor of turn (except \(E \)) can be represented in a unique way as

\[P(\theta m) = (1 - \cos \theta) m m + \cos \theta(E - m m) + \sin \theta m \times E, \quad -\pi < \theta < \pi, \]

\(\theta \) is an angle of turn and \(m \) is an axis of turn (fixed vector of \(P \)).

Verify: \(P(\theta m) \cdot m = m \cdot P(\theta m) = m \).

Calculate \(P(\theta m) \cdot n \), where \(n \cdot m = 0 \).

If \(d_k \) is a basis and \(D_k = P \cdot d_k \), it holds \(P = D_k d^k \) (verify it).
Tensor of turn. Properties

Is $P_1 \cdot P_2$ equal to $P_2 \cdot P_1$ or not?
Answer: sometimes. Generally speaking, NO (draw examples). It is true only when axes of turn coincide. (Prove if you have a wish.)

Calculate the vector of turn for tensor $P_2 \cdot P_1$ for the case when the axes of turns 1,2 coincide.

A tensor of turn is represented as a composition of three turns about three fixed axes (the second does not coincide neither with the first one nor with the third one):

$$P = P_3(\psi m_0) \cdot P_2(\theta n_0) \cdot P_1(\varphi l_0)$$ \hspace{1cm} (2)

If $m_0 = l_0$, $m_0 \cdot n_0 = l_0 \cdot n_0 = 0$, ψ, θ, φ are angles of precession, nutation, proper rotation.
Angular velocity and angular strains

Equation of Poisson: \(\dot{\mathbf{P}} = \mathbf{\omega} \times \mathbf{P} \). Prove that \(\mathbf{\omega} \) exists and find it.
(Help: Prove that \(\dot{\mathbf{P}} \cdot \mathbf{P}^\top \) is an antisymmetric tensor. Calculate its accompanying vector.)

Spatial analogue for the equation of Poisson: if \(q^i \) are co-ordinates, \(\partial_i = \frac{\partial}{\partial q^i} \), \(\partial_i \mathbf{P} = \Phi_i \times \mathbf{P} \).

1) Prove that if \(\mathbf{P} = \mathbf{P}_2 \cdot \mathbf{P}_1 \), then \(\mathbf{\omega} = \mathbf{\omega}_2 + \mathbf{P}_2 \cdot \mathbf{\omega}_1 \).
2) Calculate the angular velocity \(\mathbf{\omega} \) for the case when the axes of turns \(\mathbf{P}_1 \) and \(\mathbf{P}_2 \) coincide.
3) Obtain the formula for \(\mathbf{\omega} \) in terms of the angles of precession, nutation, proper rotation.
4) **Homework:** prove that

\[
\partial_i \mathbf{\omega} = \dot{\Phi}_i \times \mathbf{\omega}.
\]
Infinitesimal turn

If the angle of turn θ is infinitesimal,
$P \approx E + \theta \times E$, $\theta = \theta m$, $\omega \approx \dot{\theta}$. Obtain it from Euler theorem.
Calculate $P_2 \cdot P_1$ and the angular velocity if P_1, P_2 are small turns with vectors of turn θ_1, θ_2, respectively.
Derivatives

If scalar U is a function of vector θ,

$$dU = d\theta \cdot \frac{\partial U}{\partial \theta}.$$

If scalar U is a function of tensor A,

$$dU = dA^\top \cdot \left(\frac{\partial U}{\partial A} \right)$$

If tensor τ is a function of tensor A,

$$d\tau = dA^\top \cdot \frac{\partial \tau}{\partial A}$$
Lecture 3.

Test.

What is the mechanics of the Cosserat media?
Prove that if P is a tensor of turn and a, b are vectors, then

$$P \cdot (a \times b) = (P \cdot a) \times (P \cdot b).$$
Use the definition of the determinant of a tensor

\[
\det A = \frac{[(A \cdot a) \times (A \cdot b)] \cdot (A \cdot c)}{[a \times b] \cdot c},
\]

where \(A \) is a tensor of the 2nd rank, \(a, b, c \) are any vectors, and the expression for the tensor of turn

\[
P = D_k d^k,
\]

where \(d^k \) is the dual basis for a vectorial basis \(d_k \), and \(D_k = P \cdot d_k \).
How to deduce equations of an elastic continuum

The fundamental laws give us a general frame. Using symmetry considerations, we essentially reduce it.

- balance of forces (1st law of dynamics of Euler, balance of impulse)
- balance of couples (2nd law of dynamics of Euler, balance of kinetic moments)
- balance of energy
- principle of material frame indifference
- 2nd law of thermodynamics satisfied (elasticity, no heat)

We write down the laws of balance in the integral form for a representative volume of the medium. We obtain its local form. Combining the balance of energy with dynamic laws, we obtain its form that depends only on internal stresses and strains. This lets us to express the stresses via the strain energy and strain tensors (constitutive equations).
How to deduce equations of the elastic continuum

The principle of material frame indifference (independence on the system of reference) is: if a piece of material in any system of reference performs a rigid motion, the stresses rotate in the same way and do not change with the rigid translation. It does not matter if the system of reference is inertial or not. Physically this means that if an observer moves or walks around the material, this material does not change its constitutive behaviour. This law yields in very important restrictions for the strain energy (it cannot change under rigid motion). Linearity (if it is the case) and symmetry give more restrictions. For instance we obtain with this reasoning equations of an elastic classical linear isotropic medium (with Poisson coefficient and Young modulus depending on each material).

For inelastic media we have to use 2nd law of thermodynamics.
Models of continua

Classic medium: continuum that consists of mass points

\[U = U (\vec{\nabla} R) \]

Reference configuration (before the deformation)

Actual configuration (after the deformation)

\[U \] — elastic energy, \(\vec{\nabla} \) — nabla operator with respect to \(r \),
\[u \] — translational displacement.

Inertial characteristics of each point: mass density \(\rho \).
Each point is subjected to forces.
Models of continua

Cosserat medium: continuum consisting of infinitesimal rigid bodies. At each point there are two fields: displacement u and tensor of turn (tensor of rotation) P such that $P \cdot d_k = D_k$.

Inertial characteristics of each point: mass density ρ and density of tensor of inertia ρI. Each point is subjected to forces and couples.
Models of continua

Reduced Cosserat medium: Cosserat medium that does not react to the gradient of rotation.

Rotations and translations are independent kinematically, but the strain energy does not depend on \(\nabla P \).

Inertial characteristics of each point: mass density \(\rho \), density of tensor of inertia \(\rho I \). Each point is subjected to forces and couples.
Models of continua

Reduced Cosserat medium: why do we choose this model for a granular material?

\[U = U (\nabla R, P, \nabla P) \]

There is no “rotational spring” that tries to reduce the relative turn of particles \(\implies\) there is no ordered structure of rotations. We shall see that this may produce instabilities in the material.
References. (Take critically even the best works!)

Cauchy, Green: classical nonlinear elasticity

Brothers **Cosserat**: Cosserat medium

Eringen, Kafadar: full Cosserat continuum

Zhilin: method to obtain constitutive equations via the balance of energy

Many works on Cosserat continua: Green, Naghdi, Rivlin, Erbay, Suhubi, Nowacki, Palmov, Aero,…

Books to read by: Zhilin; Eremeyev, Lebedev, Altenbach; Eringen; Maugin; Nowacki; Erofeyev;…

Granular media in terms of full Cosserat continua: Vardoulakis, Besdo, Metrikine, Askes, Suiker, de Borst, Sulem

Granular media as a linear reduced isotropic Cosserat medium: **Schwartz, Johnson, Feng**

Waves in the linear elastic reduced Cosserat medium: Herman, Kulesh, Shardakov, Grekova
Lecture 4.

Balance of momentum and balance of kinetic moment.

Existence of the stress and couple stress tensors.
Balance of forces: 1st law of dynamics by Euler

We write down the laws of dynamics in inertial systems of reference. Consider a material volume V with a surface S. Suppose that there is no volumetric income of impulse.

\[
\left(\int_V \rho \mathbf{v} dV \right) = \int_V \rho \mathbf{F} dV + \int_S \mathbf{T}(n) dS
\]

\(\cdot\) is a material derivative with respect to time (we follow the same point bodies), \mathbf{F} is the density of external volumetric force, $\mathbf{v} = \dot{\mathbf{R}}$, \mathbf{R} position vector of the centre of mass of a point body, $\mathbf{T}(n)$ the force acting upon a unit surface S with vector of normal \mathbf{n} (from the part of other point bodies outside of the volume V).
Comments on the balance of moments

To write down the balance of moments we have to choose two points: reference point (a fixed point or a centre of mass of the body) and the centre of reduction.

Kinetic moment consists of moment of momentum (impulse) that depends on the reference point, and of proper kinetic moment that does not depend on the reference point.

The full moment consists of the moment of force and couple (proper moment, torque). Torque does not depend on the reference point, and the moment of force does. Torque makes the body rotate about the centre of reduction. Thus torque depends on it. The full moment does not depend on the centre of reduction, though depends on the reference point.
Comments on the balance of moments

Here we take the origin of an inertial system of reference as the reference point and the centre of mass of a point-body as the reduction centre.

Mass density of the moment of momentum equals $\mathbf{R} \times \mathbf{v}$, $\mathbf{v} = \dot{\mathbf{R}}$. Proper kinetic moment equals $\mathbf{I} \cdot \omega$, ω is the angular velocity of the point body ($\dot{\mathbf{P}} = \omega \times \mathbf{P}$, \mathbf{P} — tensor of turn), $\mathbf{I} = \mathbf{P} \cdot \mathbf{I}_0 \cdot \mathbf{P}^\top$ is the tensor of inertia of the point body.

The mass density of the full external moment acting upon a point body in the volume consists of the mass density of moment of force $\mathbf{R} \times \mathbf{F}$ and the mass density of torque (couple) \mathbf{L}.

The full moment acting upon the unit surface (part of the surface limiting volume V) from the part of the material outside of V, equals the moment of force $\mathbf{R} \times \mathbf{T}(n)$ and the torque $\mathbf{M}(n)$.
Balance of moments: 2nd law of dynamics by Euler

Suppose that there is no income of the volumetric kinetic moment. We write down balance of moments taking origin as the reference point. The moment is calculated relatively to the centre of mass of a point body.

\[
\left(\int_V \rho K_2 dV \right)' = \int_V \rho (\mathbf{R} \times \mathbf{F} + \mathbf{L}) dV + \int_S (\mathbf{R} \times \mathbf{T}_n + \mathbf{M}_n) dS \quad (5)
\]

The density of kinetic moment \(K_2 = \mathbf{R} \times \mathbf{v} + \mathbf{I} \cdot \omega \), \(\mathbf{L} \) is the density of the external volumetric torque, \(\mathbf{M}_n \) the torque acting upon a unit surface \(S \) with vector of normal \(\mathbf{n} \) (from the part of other point bodies outside of the volume \(V \)).
Cosserat medium. Stress tensors

If $t(n)$ is a force acting upon a unit surface with normal n from the outer part of the volume, there exist a stress tensor (of forces) τ such that

$$T(n) = n \cdot \tau$$

τ is called Cauchy stress tensor. To prove it Cauchy considered a small tetrahedron and wrote the balance of forces.

If $M(n)$ is a couple (torque) acting upon a unit surface with normal n, there exist a tensor μ such that

$$M(n) = n \cdot \mu$$

μ is called couple stress tensor.

τ works on ∇v (gradient of the translational velocity in the actual configuration, $v = \dot{u}$), and on ω (angular velocity); μ works on $\nabla \omega$ (gradient of the angular velocity in the actual configuration).
Existence of the stress tensor

Proof (for the tetrahedron see A.I. Lurie, “Theory of elasticity”).
Let us consider an infinitesimal volume V limited by a closed surface S that has a flat part S_1 ($S = S_1 \cup S_2$). Then $V = o(S)$.

We shall use in the proof:

1. balance of force for V and S_1
2. that surface S is closed
3. $V = o(S)$ at $V \to 0$.

S is closed $\implies \oint_S n \, dS = 0$ \implies

$$ - \int_{S_2} n \, dS = \int_{S_1} n \, dS = n_1 S_1 $$

Arguments of the function $Q_{(n)}(ndS)$.

$$ Q_{(n)}(ndS) = T_{(n)} dS $$

Lecturer: Elena F. Grekova (elgreco@pdmi.ras.ru): Introduction to the mechanics of Cosserat media
Existence of the stress tensor

Balance of force for the surface $S_1 \implies$

$$Q(n)(-n_1S_1) = -Q(n)(n_1S_1)$$

Balance of forces for V (if there are no singularities in K, \dot{v}):

$$\oint_{S} Q(n) = \int_{V} \rho(\dot{v} - K)dV = O(V) = o(S)$$

Up to the next orders

$$\int_{S_2} Q(n)(ndS) = -\int_{S_1} Q(n) = -Q(n)(n_1S_1)$$

$$= Q(n)(-n_1S_1) = Q(n)(\int_{S_2} ndS)$$
Existence of the stress tensor

Thus we have for any S_2 (such that $S_2 \gg V$ at $V \to 0$)

$$Q(n) \left(\int_{S_2} n \, ds \right) = \int_{S_2} Q(n)(n \, ds)$$

Therefore $Q(n) = T(n) \, ds$ is a linear function of $n \, ds$, and, consequently, the traction $T(n)$ is the linear function of $n \implies$ there exist a 2nd rank tensor τ such that

$$T(n) = n \cdot \tau.$$

τ is called the stress tensor.

Hometask: prove that there exist a 2nd rank tensor μ (couple stress tensor) such that $M(n) = n \cdot \mu$.

Lecturer: Elena F. Grekova (elgreco@pdmi.ras.ru) : Introduction to the mechanics of Cosserat media
Lecture 5.

Balance of energy.

Local form of the balance laws.
Divergence theorem (Ostrogradsky theorem, Gauss theorem) for 3D space

For a volume V which is compact and has a piecewise smooth boundary S with normal n, if G is a continuously differentiable tensor field defined on a neighborhood of V, then we have:

$$\int_{V} \nabla \cdot G \, dV = \oint_{S} n \cdot G \, dS$$

Lagrange (1762), Gauss (1813), Ostrogradsky (1826, the first proof of the general theorem), Green (1828)...
In the classical medium $\mathbf{I} = \mathbf{0}$, $\mathbf{M}(n) = \mathbf{0}$, $\mathbf{L} = \mathbf{0}$. Using the divergence theorem (theorem by Ostrogradsky–Gauss) and the 1st law of dynamics by Euler obtain that the 2nd law of dynamics by Euler is reduced to $\tau = \tau^\top$.
Classical medium

Proof. The 1st law of dynamics by Euler can be rewritten using the fact that $T(n) = n \cdot \tau$ and the divergence theorem as

$$\int_V (\nabla \cdot \tau + \rho F - \rho \dot{v}) dV = 0.$$

Since V is arbitrary, we may obtain the local form of this law

$$\nabla \cdot \tau + \rho F - \rho \dot{v} = 0.$$

The 2nd law of dynamics by Euler reduces to

$$\left(\int_V \rho (R \times v) dV \right) \cdot = \int_V \rho (R \times F) dV + \int_S R \times T(n) dS$$

We rewrite it using that $T(n) = n \cdot \tau$ and the divergence theorem as

$$\int_V (-\nabla \cdot (\tau \times R) + R \times F - R \times v) dV = 0.$$
It is easy to show that \(\nabla \cdot (\tau \times R) = (\nabla \cdot \tau) \times R - \tau \times \). We see that due to the 1st law of dynamics by Euler almost all the terms vanish, and we obtain

\[
\int_V \tau \times dV = 0.
\]

Since \(V \) is arbitrary, it gives us \(\tau \times = 0 \), or \(\tau = \tau^\top \).
Continue with the Cosserat medium. Balance of energy

The density of the kinetic energy is \(K = \frac{v^2}{2} + \omega \cdot \mathbf{I} \cdot \omega / 2 \). The density of the strain energy \(U \) depends on the deformation in the medium.

\[
\left(\int_{V} \rho (K + U) dV \right) = \int_{V} \rho (F \cdot v + L \cdot \omega) dV + \int_{S} (T(n) \cdot v + M(n) \cdot \omega) dS \quad (6)
\]

This is true for elastic media in the absence of heat effects. Generally speaking, we have the contribution of heat apart from work of forces and couples.

We want to eliminate external forces and couples from this law using the laws of dynamics. We will have only stresses, strains and strain energy. (For inelastic media there will be a contribution of the flux of heat and we will need the 2nd law of thermodynamics to write down the constitutive equations.)
The first law of dynamics by Euler. Local form.

Using the theorem by Ostrogradsky–Gauss we can rewrite (4) (Exercise 4: do it) as

\[\nabla \cdot \tau + \rho \mathbf{F} = \rho \ddot{\mathbf{u}}. \]

(7)

NB: All this and what we discuss further is valid only if functions are sufficiently smooth (continuous or “piece-wise” continuous).

NB: Operator gradient in the reference configuration (e.g. inicial) \(\overset{\circ}{\nabla} \neq \nabla \) (operador gradient in actual configuration).
2nd law of dynamics by Euler. Local form.

Using the 1st law of dynamics by Euler, the theorem by Gauss–Ostrogradsky, (5) can be rewritten as

\[
\nabla \cdot \mu + \tau \times + \rho L = \rho (I \cdot \omega). \tag{8}
\]

Here \(\tau \times = \tau_{mn} r^m \times r^n = \tau \cdot (E \times E) \).

Verify again that for the classical medium \(\tau = \tau^\top \).

Proof. \(T(n) = n \cdot \tau, \ M(n) = n \cdot \mu \), therefore

\[
\int_V \left(-\nabla \cdot (\tau \times R) + \nabla \cdot \mu + \rho (R \times F + L - (R \times v + I \cdot \omega)) \right) dV = 0.
\]

\[
\int_V (R \times \nabla \cdot \tau + \tau \times + \nabla \cdot \mu + \rho (R \times F + L - (R \times \dot{v} + I \cdot \omega))) dV = 0.
\]

\[
\int_V (\nabla \cdot \mu + \tau \times + \rho L - \rho (I \cdot \omega)) dV = 0.
\]
Balance of energy. Local form

Exercise 5. Prove that $\mathbf{\omega} \cdot (\mathbf{I} \cdot \mathbf{\omega}) = \dot{\mathbf{\omega}} \cdot \mathbf{I} \cdot \mathbf{\omega}$.

Lemma. It holds $\rho \dot{\mathbf{K}} = (\nabla \cdot \mathbf{\tau} + \rho \mathbf{F}) \cdot \mathbf{v} + (\nabla \cdot \mathbf{\mu} + \mathbf{\tau}_x + \rho \mathbf{L}) \cdot \mathbf{\omega}$.

Proof. We will use the previous exercises and the laws of dynamics.

$$\rho \dot{\mathbf{K}} = \frac{1}{2} \rho (\mathbf{v} \cdot \mathbf{v} + \mathbf{\omega} \cdot \mathbf{I} \cdot \mathbf{\omega}) = \frac{1}{2} \rho (2\mathbf{v} \cdot \dot{\mathbf{v}} + \dot{\mathbf{\omega}} \cdot \mathbf{I} \cdot \mathbf{\omega} + \mathbf{\omega} \cdot (\mathbf{I} \cdot \mathbf{\omega}))$$

$$= \rho (\dot{\mathbf{v}} \cdot \mathbf{v} + \mathbf{\omega} \cdot (\mathbf{I} \cdot \mathbf{\omega})) = (\nabla \cdot \mathbf{\tau} + \rho \mathbf{F}) \cdot \mathbf{v} + (\nabla \cdot \mathbf{\mu} + \mathbf{\tau}_x + \rho \mathbf{L}) \cdot \mathbf{\omega}$$

Theorem. 1st law of thermodynamics (6) can be rewritten in the local form:

$$\rho \dot{\mathbf{U}} = \mathbf{\tau}^\top \cdot \nabla \mathbf{v} - \mathbf{\tau}_x \cdot \mathbf{\omega} + \mathbf{\mu}^\top \cdot \nabla \mathbf{\omega} \quad (9)$$

(Balance of energy combined with the dynamic laws)

NB: If nothing works on $\nabla \mathbf{\omega}$, then $\mathbf{\mu} = \mathbf{0}$, and $\mathbf{\tau}$ can be asymmetric. This kind of continuum is called “reduced Cosserat medium”.

Lecturer: Elena F. Grekova (elgreco@pdmi.ras.ru) : Introduction to the mechanics of Cosserat media
Balance of energy. Local form

Proof. We shall use the previous exercise, representation of forces and torques via Cauchy tensors, and divergence theorem. Rewrite the right part of (6) as

\[
\int_V \rho (\mathbf{F} \cdot \mathbf{v} + \mathbf{L} \cdot \mathbf{ω}) dV + \int_S (\mathbf{n} \cdot \mathbf{τ} \cdot \mathbf{v} + \mathbf{n} \cdot \mathbf{μ} \cdot \mathbf{ω}) dS
\]

\[
= \int_V \rho (\mathbf{F} \cdot \mathbf{v} + \mathbf{L} \cdot \mathbf{ω}) dV + \int_V (\nabla \cdot (\mathbf{τ} \cdot \mathbf{v}) + \nabla \cdot (\mathbf{μ} \cdot \mathbf{ω})) dV
\]

\[
= \int_V (\rho (\mathbf{F} \cdot \mathbf{v} + \mathbf{L} \cdot \mathbf{ω}) + (\nabla \cdot \mathbf{τ}) \cdot \mathbf{v} + i^k \mathbf{τ} \cdot \partial_k \mathbf{v} + (\nabla \cdot \mathbf{μ}) \cdot \mathbf{ω} + i^k \mathbf{μ} \cdot \partial_k \mathbf{ω})) dV
\]

\[
= \int_V ((\nabla \cdot \mathbf{τ} + \rho \mathbf{F}) \cdot \mathbf{v} + \mathbf{τ}^\top \cdot \nabla \mathbf{v} + (\nabla \cdot \mathbf{μ} + \rho \mathbf{L}) \cdot \mathbf{ω} + \mathbf{μ}^\top \cdot \nabla \mathbf{ω})) dV
\]
Balance of energy. Local form

Using the lemma

$$
\rho \dot{K} = (\nabla \cdot \tau + \rho F) \cdot \mathbf{v} + (\nabla \cdot \mu + \tau_\times + \rho \mathbf{L}) \cdot \omega
$$

proved above, we see that (6) takes form

$$
\int_V \rho \dot{U} dV = \int_V (\tau^\top \cdot \nabla \mathbf{v} - \tau_\times \cdot \omega + \mu^\top \cdot \nabla \omega) dV
$$

Since it holds for an arbitrary volume V, we obtain

$$
\rho \dot{U} = \tau^\top \cdot \nabla \mathbf{v} - \tau_\times \cdot \omega + \mu^\top \cdot \nabla \omega
$$

Quod erat demonstrandum.
Lecture 6.

Material frame indifference

Strain tensors of the Cosserat medium

Balance of energy in terms of “energetic tensors”

Constitutive equations

(sketch)
In a few words

During last lectures we have written

- the balance of forces, balance of moments and balance of energy for a material volume V limited by surface S (integral form)
- the local form (at a point) of the balance of force, using the divergence theorem by Ostrogradsky–Gauss
- the local form of the balance of moments, using the divergence theorem and the balance of force (in the local form)
- the local form of the balance of energy, using the divergence theorem and the balances of force and moments in the local form. External forces and moments do not enter there.

Now we will formulate

- the principle of material frame indifference.
Principle of material frame indifference

If a piece of material performs a rigid motion, its stresses rotate together with it and do not depend on the translation. It does not matter if the system of reference is inertial or not. In other words, if the observer moves or rotates, the material does not change its physical behaviour.

Mathematically: if in the material there exist stresses $\tau(R), \mu(R)$ and it performs the motion $R' = Q(t) \cdot (R - R_c) + R_c + R_0(t)$, $P' = Q \cdot P$, where R' is the position vector and P' is a turn of point body of the material subjected to the rigid motion, the turn tensor $Q(t), R_0(t), R_c$ do not depend on R, then stresses in this motion will be equal to $\tau' = Q \cdot \tau \cdot Q^T$, $\mu' = Q \cdot \mu \cdot Q^T$ (stresses are materially objective, frame indifferent).

NB: If the stresses depend only on the strain tensors which are frame indifferent, i.e. rotate together with the piece of material when it performs a rigid motion, the principle holds.
Material frame indifference

Exercise 6. Prove that any 2nd rank tensor, a function of a frame indifferent 2nd tensor is also frame indifferent. Help: expand it in series in its argument.

Note: $\vec{\nabla}R$ is not frame indifferent. Under the rigid motion with a turn tensor Q we have $\vec{\nabla}R' = \vec{\nabla}R \cdot Q^\top$.

Proof.

$$
\vec{\nabla}R' = \vec{\nabla}(Q \cdot (R - R_c)) + \vec{\nabla}(R_c + R_o) = \vec{\nabla}(Q \cdot R)
$$

$$
= i^k Q \cdot \partial_k R = i^k \partial_k R \cdot Q^\top = \vec{\nabla}R \cdot Q^\top.
$$

It yields that constitutive equation (in classical elasticity) $\tau = 4C \cdot \vec{\nabla}R$ cannot be valid. However, $\varepsilon = (\vec{\nabla}R)^\top \cdot \vec{\nabla}R$ is frame indifferent (check it!), and any $\tau(\varepsilon)$ is also frame indifferent.
Material frame indifference and linearity

When we have nonlinear equations, under some conditions we may linearize them near a certain state.
Question: what happens with the requirement of the material frame indifference for the linear theory?
Answer: we have to require the same, but for infinitesimal turns.
Strain tensors in the Cosserat medium

The Poisson equation is $\dot{\mathbf{P}} = \omega \times \mathbf{P}$. If we differentiate it not with respect to time, but in space (with respect to co-ordinate q^i), we have $\partial_i \mathbf{P} = \Phi_i \times \mathbf{P}$.

Exercise 7: prove that $\partial_i \omega = \Phi_i + \Phi_i \times \omega$.

Define the Cosserat deformation tensor $\mathbf{A} = \nabla R \cdot \mathbf{P}$ and transposed wryness tensor $\mathbf{K} = r^i \Phi_i \cdot \mathbf{P}$.

Exercise 8. Find out an invariant expression for \mathbf{K}.

Exercise 9(!). Prove that \mathbf{A}, \mathbf{K} do not change under rigid motion.

Proof for \mathbf{A}.

$$
\mathbf{A}' = \nabla R' \cdot \mathbf{P}' = \nabla R \cdot \mathbf{Q}^\top \cdot \mathbf{Q} \cdot \mathbf{P} = \nabla R \cdot \mathbf{P} = \mathbf{A}
$$
Balance of energy. Local form with “energetic tensors”. Constitutive equations

Exercise 10: prove that the law of balance of energy can be rewritten as

\[\rho \dot{U} = \tau^\top \cdot \dot{A} + \mu^\top \cdot \dot{K}, \]

where we introduce “energetic tensors” \(\tau_* = \bigcirc \nabla R^{-\top} \cdot \tau \cdot P, \)

\(\mu_* = \bigcirc \nabla R^{-\top} \cdot \mu \cdot P. \) (Pavel Zhilin for 2D)
Constitutive equations

Consider a hyperelastic medium: elastic energy is a function of strain tensors. If \(U = U(A, K) \), we obtain from (10)

\[
\tau^* = \frac{\partial U}{\partial A}, \quad \mu^* = \frac{\partial U}{\partial K}.
\]

(11)

These equations are called “constitutive equations”: it is the relation between internal forces/torques and deformations in the medium. They do not depend on nothing external.

Check that since \(A, K \) do not change under rigid motion, \(\tau \) and \(\mu \) are frame indifferent.
Questions

1) Is it true that equations (11) satisfy the principle of material frame indifference? Why?

2) Can we choose any $U(A, K)$ and state that such a material may exist? (e.g., its existence does not violate basic principles). Why?

3) Have we now a closed system of equations? If we have initial and/or boundary conditions, can we resolve any problem?

4) Can other constitutive equations of the elastic Cosserat medium, that do not enter in this frame, exist?

5) What to do with stability?

6) Has it to be simpler everything for the classical medium in the sense of material frame indifference?
Lecture 7.

Material frame indifference

Strain tensors of the Cosserat medium

Balance of energy in terms of “energetic tensors”

Constitutive equations
(full and reduced Cosserat media)
(continuation)
Strain tensors in the Cosserat medium

Exercise 9 from lecture 6: K does not change under rigid motion.

Proof.

$$\partial_i P' = (\partial_i (Q \cdot P)) = Q \cdot \partial_i P = Q \cdot (\Phi_i \times P) = (Q \cdot \Phi_i) \times (Q \cdot P) = (Q \cdot \Phi_i) \times P'$$

$$\implies \Phi'_i = Q \cdot \Phi_i = \Phi_i \cdot Q^\top.$$

$$K' = r^i \Phi' \cdot P' = r^i \Phi_i \cdot Q^\top \cdot Q \cdot P = r^i \Phi_i \cdot P = K$$

Note: If f is a function of A, K and not of any other types of deformation, f does not change under rigid motion, and $\frac{\partial f}{\partial A}$, $\frac{\partial f}{\partial K}$ do not change under rigid motion.

Note: For any vector w it holds $\tilde{\nabla} w = \tilde{\nabla} R \cdot \nabla w$

(another form: $\tilde{\nabla} R^{-1} \cdot \tilde{\nabla} w = \nabla w$).

Proof. The increment of w in space

$$dr \cdot \tilde{\nabla} w = dR \cdot \nabla w = dr \cdot (\tilde{\nabla} R) \cdot \nabla w \implies \tilde{\nabla} w = \tilde{\nabla} R \cdot \nabla w$$
Balance of energy. Local form with “energetic tensors”.

Theorem (following the formulation and proof by Pavel Zhilin for 2D):
The law of balance of energy can be rewritten as
\[\rho \dot{U} = \tau_\ast \cdot \dot{A} + \mu_\ast \cdot \dot{K}, \]
where “energetic tensors”
\[\tau_\ast = \nabla R^{-\top} \cdot \tau \cdot P, \quad \mu_\ast = \nabla R^{-\top} \cdot \mu \cdot P. \] (12)

Proof.
We use the local form of balance of energy
\[\rho \dot{U} = \tau^\top \cdot \nabla v - \tau_\times \cdot \omega + \mu^\top \cdot \nabla \omega = \tau^\top \cdot (\nabla v + \omega \times E) + \mu^\top \cdot \nabla \omega, \]
the Poisson equation \(\dot{P} = \omega \times P \),
the relation \(\partial_i \omega = \dot{\Phi}_i + \Phi_i \times \omega \) proved as an exercise,
and identities \((X \cdot Y) \cdot Z = X \cdot (Y \cdot Z) = Y \cdot (Z \cdot X)\),
\[X \cdot (w \times E) = -X_\times \cdot w, \] and \(\nabla R^{-1} \cdot \nabla w = \nabla w. \)
Balance of energy. Local form with “energetic tensors”.

\[\dot{A} = (\dot{\nabla} R \cdot P)^\top = \dot{\nabla} v \cdot P + \dot{\nabla} R \cdot (\omega \times P) = (\dot{\nabla} v + (\dot{\nabla} R) \cdot (\omega \times E)) \cdot P \]

(By the way we obtained \(\dot{A} = (\dot{\nabla} v + \dot{\nabla} R \times \omega) \cdot P \).)

\[\tau^\top \cdot \dot{A} = (\dot{\nabla} R^{-1} \cdot \tau \cdot P)^\top \cdot ((\dot{\nabla} v + (\dot{\nabla} R) \cdot (\omega \times E)) \cdot P) \]

\[= (P^\top \cdot \tau^\top \cdot (\dot{\nabla} R^{-1})) \cdot ((\dot{\nabla} v + (\dot{\nabla} R) \cdot (\omega \times E)) \cdot P) \]

\[= \tau^\top \cdot (\dot{\nabla} R^{-1} \cdot \dot{\nabla} v) + \tau^\top \cdot (\omega \times E) = \tau^\top \cdot \nabla v - \tau^\top \times \omega. \]
Balance of energy. Local form with “energetic tensors”.

\[
\dot{K} = (r^i \Phi_i \cdot P) = r^i \Phi_i \cdot P + r^i \Phi_i \cdot (\omega \times P) \\
= r^i (\partial_i \omega + \omega \times \Phi_i) \cdot P + r^i \Phi_i \cdot (\omega \times P) \\
= (\hat{\nabla} \omega + r^i \omega \times \Phi_i) \cdot P + r^i \Phi_i \cdot (\omega \times P) \\
= (\hat{\nabla} \omega - r^i \Phi_i \times \omega) \cdot P + r^i (\Phi_i \times \omega) \cdot P = \hat{\nabla} \omega \cdot P.
\]

\[
\mu^\top \circ \dot{K} = (\nabla R^{-\top} \cdot \mu \cdot P)^\top \cdot (\hat{\nabla} \omega \cdot P) \\
= (P \cdot \mu^\top \cdot \nabla R^{-1}) \cdot (\hat{\nabla} \omega \cdot P) = \mu^\top \cdot \nabla \omega.
\]

Thus we have

\[
\tau^\top \cdot \dot{A} + \mu^\top \circ \dot{K} = \tau^\top \cdot \nabla v - \tau \times \cdot \omega + \mu^\top \cdot \omega = \rho \dot{U}, \quad (13)
\]

quod erat demonstrandum.
Constitutive equations of the full Cosserat medium

Consider a hyperelastic medium: elastic energy is a function of strain tensors. If $U = U(A, K)$, we obtain from (10)

$$\tau_* = \frac{\partial U}{\partial A}, \quad \mu_* = \frac{\partial U}{\partial K}.$$

These equations are called “constitutive equations”: it is the relation between internal forces/torques and deformations in the medium. They do not depend on nothing external.

Write down the constitutive equations in terms of Cauchy stress and couple stress tensors, using

$$\tau = \mathring{\nabla} R^\top \cdot \tau_* \cdot P^\top, \quad \mu = \mathring{\nabla} R^\top \cdot \mu_* \cdot P^\top.$$

$$\tau = \mathring{\nabla} R^\top \cdot \frac{\partial U}{\partial A} \cdot P^\top, \quad \mu = \mathring{\nabla} R^\top \cdot \frac{\partial U}{\partial K} \cdot P^\top. \quad (14)$$
Reduced Cosserat medium. Constitutive equations.

\[\rho \dot{U} = \tau^\top \cdot ((\mathbf{v} + \omega \times \mathbf{E}) \cdot \mathbf{P}) = \tau_*^\top \cdot \dot{\mathbf{A}}, \]

Strain energy depends only on \(\mathbf{A} = \nabla \mathbf{R} \cdot \mathbf{P} \) (the Cosserat deformation tensor): \(U = U(\mathbf{A}) \).

\[\tau_* = \frac{\partial U}{\partial \mathbf{A}}, \]

\[\tau = \nabla \mathbf{R}^\top \cdot \frac{\partial U}{\partial \mathbf{A}} \cdot \mathbf{P}^\top, \]

\[\mu = \mu_* = 0. \quad (15) \]
Questions

1) Is it true that equations (14) satisfy the principle of material frame indifference? Why?

2) Can we choose any $U(A, K)$ and state that such a material may exist? (e.g., its existence does not violate basic principles). Why?

3) Have we now a closed system of equations? If we have initial and/or boundary conditions, can we resolve any problem?

4) Can other constitutive equations of the elastic Cosserat medium, that do not enter in this frame, exist?

5) What to do with stability?

6) Has it to be simpler everything for the classical medium in the sense of material frame indifference?
Answers

1) Yes; 2) Yes; 3) Yes, if we know $U(A, K)$.
4) Only hypoelastic (or with singularities?)
5) The condition of the stability of the material is not a basic principle. There may exist unstable materials even in the sense of translation. Examples: explosion, phase transitions, possibly flow surfaces. Instability in the sense of rotation not necessarily yields in the destruction of the material. Perhaps there are exist regimes of unstable rotations. There are many works on stability in nonlinear classical elasticity and much less for the Cosserat media.
6) Not much. The energy cannot depend on turns of the material.

A frame indifferent strain tensor is $\nabla R^\top \cdot \nabla R$ (left Cauchy–Green deformation tensor, Finger deformation tensor). A strain tensor not influenced by rigid motion is $\nabla R \cdot \nabla R^\top$ (right Cauchy–Green deformation tensor, Green’s strain tensor).
Material frame indifference of τ, μ

Consider a material subjected to the strains A, K with stresses τ and couple stresses μ in our frame of references, and the same material under the same strains subjected to the rigid motion $R' = Q(t) \cdot (R - R_c) + R_c + R_0(t)$, $P' = Q \cdot P$. Then

$$\tau' = \nabla R'^T \cdot \frac{\partial U}{\partial A'} \cdot P'^T = (\nabla R \cdot Q^T)^T \cdot \frac{\partial U}{\partial A} \cdot (Q \cdot P)^T$$

$$= Q \cdot \nabla R^T \cdot \frac{\partial U}{\partial A} \cdot P^T \cdot Q^T = Q \cdot \tau \cdot Q^T.$$

Analogously

$$\mu' = Q \cdot \mu \cdot Q^T. \quad (16)$$

Therefore for any $U(A, K)$ the principle of material frame indifference holds. All the fundamental laws are satisfied.
Second law of thermodynamics

In hyperelasticity we suppose that U is determined by the state of material, i.e. by strain tensors A, K. The work of mechanical forces in a cyclic process (passing from a certain state (*) of material to the same state (†)) is equal to the change of the strain energy $U(A_*, K_*) - U(A_*, K_*)$, which is zero. Since we consider no heat effects (e.g. adiabatic processes), no energy is lost, and the second law of thermodynamics holds identically (equality as a particular case of the non-strict inequality).
Classical elastic medium

The law of balance of energy for the classical elastic medium reduces to

$$\rho \dot{U} = \tau \cdot \nabla v, \quad (17)$$

$$\tau = \tau^\top \quad \text{(due to the balance of moments for the classical medium).}$$

Tensor $\varepsilon = \nabla R \cdot (\nabla R)^\top = \varepsilon^\top$ has 6 independent components (as τ) and does not change under rigid motion, so in a hyperelastic medium $U = U(\varepsilon)$. Calculating $\dot{U}(\varepsilon)$, after transformations (see next page) we have

$$\rho \dot{U} = \rho(\nabla R^\top \cdot \frac{\partial U}{\partial \varepsilon} \cdot \nabla R) \cdot \nabla v, \quad (18)$$

therefore

$$\tau = \rho(\nabla R^\top \cdot \frac{\partial U}{\partial \varepsilon} \cdot \nabla R). \quad (19)$$

We see that τ is frame indifferent (since $\nabla R' = \nabla R \cdot Q^\top$).
Classical elastic medium (proofs for the previous page)

1. Let us calculate $\dot{U}(\varepsilon)$. We shall use that the contraction of a symmetric and antisymmetric tensor is zero (if $U^\top = U$, $W^\top = -W$, then $U \cdot W = 0$), $\varepsilon = \varepsilon^\top \implies \frac{\partial U}{\partial \varepsilon} = \frac{\partial U}{\partial \varepsilon}^\top$.

$$
\dot{U}(\varepsilon) = \left(\frac{\partial U}{\partial \varepsilon}\right)^\top \cdot \dot{\varepsilon} = \left(\frac{\partial U}{\partial \varepsilon}\right)^\top \cdot \left(\overset{\circ}{\nabla} \mathbf{v} \cdot \overset{\circ}{\nabla} R^\top + \overset{\circ}{\nabla} R \cdot \overset{\circ}{\nabla} \mathbf{v}^\top\right)
$$

$$
= \left(\frac{\partial U}{\partial \varepsilon}\right)^\top \cdot \left(\overset{\circ}{\nabla} \mathbf{v} \cdot \overset{\circ}{\nabla} R^\top\right) = \left(\overset{\circ}{\nabla} R^\top \cdot \left(\frac{\partial U}{\partial \varepsilon}\right)^\top\right) \cdot \overset{\circ}{\nabla} \mathbf{v}
$$

$$
= \left(\overset{\circ}{\nabla} R^\top \cdot \left(\frac{\partial U}{\partial \varepsilon}\right)^\top\right) \cdot \left(\overset{\circ}{\nabla} \mathbf{R} \cdot \overset{\circ}{\nabla} \mathbf{v}\right) = \left(\overset{\circ}{\nabla} R^\top \cdot \left(\frac{\partial U}{\partial \varepsilon}\right)^\top \cdot \overset{\circ}{\nabla} \mathbf{R}\right) \cdot \left(\overset{\circ}{\nabla} \mathbf{v}\right)
$$

2. $\tau' = \rho\left(\overset{\circ}{\nabla} R'^\top\right) \cdot \frac{\partial U}{\partial \varepsilon'} \cdot \overset{\circ}{\nabla} R' = \rho\left(\overset{\circ}{\nabla} R \cdot Q^\top\right) \cdot \frac{\partial U}{\partial \varepsilon} \cdot \overset{\circ}{\nabla} R \cdot Q$

$$
= \rho Q^\top \cdot \overset{\circ}{\nabla} R^\top \cdot \frac{\partial U}{\partial \varepsilon} \cdot \overset{\circ}{\nabla} R \cdot Q = \rho Q^\top \cdot \tau \cdot Q^\top.
$$
Lecture 8.
Linear full and reduced Cosserat media
Linear Cosserat medium. Linearization in kinematics

Consider small displacements $u = R - r = o(1)$ and turns $\theta = o(1)$.

Lemma 1. A tensor of infinitesimal turn looks as $E + \theta \times E$, where θ is the vector of an infinitesimal turn. Its angular velocity $\omega = \dot{\theta}$.

Proof. Indeed, at $\theta \to 0$

$$P = (1 - \cos \theta)mm + \cos \theta E + \sin \theta m \times E \overset{\theta \to 0}{\approx} E + \theta m \times E$$

$$= E + \theta \times E,$$ where $\theta = \theta m$.

$\dot{P} \approx \dot{\theta} \times E \approx \dot{\theta} \times (E + \theta \times E) \approx \dot{\theta} \times P$.

Lemma 2. $\nabla = \nabla + o(1)$

Proof. Let f be an arbitrary function depending on R.

$$df = dr \cdot \nabla f = dR \cdot \nabla f = (dr + du) \cdot \nabla f.$$

Therefore $dr \cdot (\nabla f - \nabla f) = du \cdot \nabla f$. Since $du \ll dr$, we have

$\nabla f - \nabla f = o(1)$. It is so for each f and $dr \implies \nabla = \nabla + o(1)$.

Lecturer: Elena F. Grekova (elgreco@pdmi.ras.ru): Introduction to the mechanics of Cosserat media
Linear Cosserat medium. Strain tensors

Theorem. In the linear approximation in the vicinity of the natural configuration (zero stresses)

\[\rho \approx \rho_0, \quad A \approx E + \nabla u + \theta \times E, \quad K \approx \nabla \theta, \] (20)

\(\tau \) and \(\mu \) are linear functions of \(\nabla u + \theta \times E \) and \(\nabla \theta \).

Proof. \(dm = \rho_0 dV_0 = \rho dV = \rho \det(\nabla R) dV_0 \approx \rho dV_0. \)

\[A = \nabla R \cdot P \approx \nabla (r + u) \cdot (E + \theta \times E) \]

\[= (E + \nabla u) \cdot (E + \theta \times E) \approx E + \nabla u + \theta \times E. \]

\[\Phi_i = -\frac{1}{2} [\partial_i P \cdot P^\top] \times \approx -\frac{1}{2} [\partial_i (E + \theta \times E) \cdot (E + \theta \times E)^\top] \times \]

\[\approx -\frac{1}{2} [(\partial_i \theta) \times E] \times = \partial_i \theta \]

\[K = r^i \Phi_i \cdot P \approx r^i \partial_i \theta \cdot (E + \theta \times E) \approx \nabla \theta \approx \nabla \theta \]
Linear Cosserat medium. Stress tensor

\[\tau = \nabla \! R^\top \cdot \tau_* \cdot P^\top \approx (E + \nabla \! u)^\top \cdot \tau_* \cdot (E + \theta \times E)^\top \approx \tau_* \]

\[\approx [\tau_*]_0 + \nabla \! u^\top \cdot [\tau_*]_0 - [\tau_*]_0 \times \theta \]

\[+ \left[\frac{\partial \tau_*}{\partial A} \right]_0 \cdot (\nabla \! u + \theta \times E) + \left[\frac{\partial \tau_*}{\partial K} \right]_0 \cdot \nabla \theta \]

⚠️: This step is not always possible. \(U(A, K) \) has to be “nice enough” for this. For instance, if \(U \) is can be expanded into the series in \(\sqrt{A \cdot A^\top}, \sqrt{K \cdot K^\top} \) (with non-zero odd terms), this step cannot be done. There are media where the linear theory cannot be applied even for small strains. Here we suppose it to be valid. It is a strong hypothesis.

If are in the natural configuration (\([\tau]_0 = 0\)), then \([\tau_*]_0\), and \(\tau \) is a linear function of linear strain tensors.
Linear Cosserat medium. Couple stress tensor

Analogously, if U can be expanded into the series at least up to the second term of the magnitude in the vicinity of natural configuration,

$$\mu \approx [\mu_*]_0 + \nabla u^\top \cdot [\mu_*]_0 - [\mu_*]_0 \times \theta$$

$$+ \left[\frac{\partial \mu_*}{\partial \mathbf{A}} \right]^\top_0 \cdot (\nabla u + \theta \times \mathbf{E}) + \left[\frac{\partial \mu_*}{\partial \mathbf{K}} \right]^\top_0 \cdot \nabla \theta$$

If the reference configuration is natural, first three terms in the expression for μ vanish.
Linear Cosserat medium. Constitutive equations

Another way to obtain constitutive equations is to expand the law of balance of energy (10) into the series with respect to the linear strain tensors. Take into account that near the natural configuration $\tau_* = \tau + o^2(1) = o(1), \quad \mu_* = \mu + o^2(1) = o(1)$, both of them functions of the linear strain tensors, and we have to keep only quadratic terms in U whose approximation is also a function of the linear strain tensors.

In the vicinity of natural configuration for such U nonlinear constitutive equations (14) give in the linear approximation

$$\tau = \rho \frac{\partial U}{\partial \nabla u + \theta \times E}, \quad \mu = \rho \frac{\partial U}{\partial \nabla \theta},$$

(21)

\Box is the quadratic approximation of U expanded in u, θ.

Lecturer: Elena F. Grekova (elgreco@pdmi.ras.ru) : Introduction to the mechanics of Cosserat media
Linear Cosserat medium

Note: \((\nabla u + \theta \times E) \dot{} = (\nabla v + \omega \times E) \dot{}, \quad (\nabla \theta) \dot{} = \nabla \omega\).

Nonlinear \(\tau, \mu\) work on material derivatives of **linear strain** tensors \(\nabla u + \theta \times E, \quad \nabla \theta\).

Note: In the reduced Cosserat medium in the vicinity of the natural configuration

\[
\tau = \rho \frac{\partial U}{\partial (\nabla u + \theta \times E)} = 4X \cdot (\nabla u + \theta \times E), \quad \mu = 0.
\]
Linear classical elastic medium

Let us linearize the nonlinear constitutive equation near the natural configuration, provided that U can be expanded into series in ε at least up to the second order of magnitude.

$$\tau = \rho (\mathbf{\nabla} R^\top \cdot \frac{\partial U}{\partial \varepsilon} \cdot \mathbf{\nabla} R).$$

$$\mathbf{\nabla} R = \mathbf{E} + \mathbf{\nabla} u \approx \mathbf{E} + \nabla u,$$

$$\varepsilon = \mathbf{\nabla} R \cdot \mathbf{\nabla} R^\top \approx (\mathbf{E} + \nabla u) \cdot (\mathbf{E} + \nabla u)^\top = \mathbf{E} + 2(\nabla u)^S + o^2(1).$$

In the natural configuration $\left[\frac{\partial U}{\partial \varepsilon} \right]_0 = 0$, therefore

$$\tau \approx 2\rho \left[\frac{\partial^2 U}{\partial \varepsilon^2} \right]_0 \cdot (\nabla u)^S.$$
Linear Cosserat medium

Questions.
1) Are linear stress and couple stress tensors frame indifferent?
2) Can τ, μ exist that depend in a nonlinear way on linear strain tensors?
Linear Cosserat medium. Answers

1) NO. (Prove that stresses do not rotate when the material is subjected to a final rigid turn.) However, they are frame indifferent in the infinitesimal sense (for any rigid translation and infinitesimal turn). Also prove that.
Linear Cosserat medium. Answers

2) Often it is not correct (even if published in journals with high impact factor). Vice versa yes; we can have stresses that depend linearly on nonlinear \mathbf{A}, \mathbf{K} ("physically linear and geometrically nonlinear material"). If we consider a physically nonlinear but geometrically linear material, often it yields that when linearizing equations (11) we have kept some terms and neglected other ones of the same order. (Find examples.) There are exceptions: “piece-wise linear equations” for heteromodular media, non-linearizable equations near 0 (for instance, with U function of $\sqrt{\nabla^\circ \theta \cdot \nabla^\circ \theta^\top}$, cases when there are other small parameters, cases when the equation in reality is one-dimensional etc.) Each time we must specify the orders of magnitude and explain why we can neglect one term and keep another one.
Exercises

Exercise 11.
Verify that \mathbf{X}, \mathbf{Z} are polar, \mathbf{Y} is axial, and if they are isotropic, $\mathbf{Y} = 0$, and each of \mathbf{X} and \mathbf{Z} contains three independent constants. Obtain that they have a form

$$\mathbf{X} = \lambda \mathbf{EE} + 2\mu (i_m i_n)^S (i^m i^n)^S + 2\alpha (i_m i_n)^A (i^m i^n)^A, \quad (22)$$

$$\mathbf{Z} = \beta \mathbf{EE} + 2\gamma (i_m i_n)^S (i^m i^n)^S + 2\varepsilon (i_m i_n)^A (i^m i^n)^A. \quad (23)$$

Exercise 12.
Verify that in the linear case $\omega = \dot{\theta}$ and $(\mathbf{l} \cdot \omega) = \mathbf{l}_0 \cdot \ddot{\theta}$, $\rho = \rho_0$, where \mathbf{l}_0 is \mathbf{l} in the reference configuration.
Lecture 9.

Isotropic full and reduced Cosserat media

Brief overview of the course.

Ideas and equations

Look ahead: wave propagation
Linear isotropic Cosserat medium. Elastic energy

For any linear Cosserat medium the elastic energy looks as

\[U = \frac{1}{2} (\nabla u + \theta \times E)^\top \cdot X \cdot (\nabla u + \theta \times E) + \]
\[(\nabla u + \theta \times E)^\top \cdot Y \cdot \nabla \theta + \frac{1}{2} \nabla \theta^\top \cdot Z \cdot \nabla \theta \] \hspace{1cm} (24)

Principle by Curie–Neumann yields: for an isotropic material \(X, Y, Z \) are isotropic.

Exercise 13. Verify that \(X, Z \) are polar, \(Y \) is axial, and if they are isotropic, \(Y = 0 \), and each of \(X \) and \(Z \) contains three independent constants. Prove that they have a form

\[X = \lambda EE + 2\mu (i_m i_n)^S (i_m i_n)^S + 2\alpha (i_m i_n)^A (i_m i_n)^A, \] \hspace{1cm} (25)
\[Z = \beta EE + 2\gamma (i_m i_n)^S (i_m i_n)^S + 2\varepsilon (i_m i_n)^A (i_m i_n)^A. \] \hspace{1cm} (26)
Isotropic linear Cosserat medium. Elastic energy

Lemma: An axial isotropic 4th rank tensor is zero.

Proof. An isotropic tensor of the fourth rank $Y^{mnkl}i_m i_n i_k i_l$ does not change under any rotation. Let us choose polar unit vectors i_1, i_2, and the axial vector $i_3 = i_1 \times i_2$: an orthonormal basis, oriented by the right hand screw rule.

Rotate it at π about i_1. Then i_2 will change to $-i_2$, i_3 to $-i_3$, and i_1 will not change. Then rotate it at π about i_2, etc. Since rotated tensors are equal to the initial one, non-zero components must have even number of repeating indices (Y^{1122}, Y^{2332}, Y^{1111} etc.)

Now if this tensor is axial, the change of orientation of space will change its sign. At the same time it will change sign of all vector products, and in particular of $i_3 = i_1 \times i_2$. Since in all non-zero components each index repeats even number of times, change of sign of i_3 will not influence Y. On the other hand, it has to change the sign. Thus an axial fourth rank isotropic tensor equals zero.
Isotropic linear Cosserat medium. Constitutive equations

Full Cosserat continuum:

\[\tau = \frac{\partial U}{\partial (\nabla u + \theta \times E)} = \mathbf{X} \cdot (\nabla u + \theta \times \mathbf{E}) \]
\[= \lambda \nabla \cdot u \mathbf{E} + 2\mu \nabla u^S + 2\alpha (\nabla u + \theta \times \mathbf{E})^A, \]

\[\mu = \frac{\partial U}{\partial \nabla \theta} = \mathbf{Z} \cdot \nabla \theta = \beta \nabla \cdot \theta \mathbf{E} + 2\gamma \nabla \theta^S + 2\varepsilon (\nabla \theta)^A. \]

Reduced Cosserat continuum:

\[\tau = \frac{\partial U}{\partial (\nabla u + \theta \times E)} = \mathbf{X} \cdot (\nabla u + \theta \times \mathbf{E}) \]
\[= \lambda \nabla \cdot u \mathbf{E} + 2\mu \nabla u^S + 2\alpha (\nabla u + \theta \times \mathbf{E})^A, \]

\[\mu = 0. \] For anisotropic media expressions for \(\tau \) may differ in reduced and full Cosserat continuum.
Isotropic linear Cosserat medium. Dynamic equations

Exercise 14. Verify that in the linear case \((I \cdot \omega) = I_0 \cdot \dot{\theta}\).

Solution. \((I \cdot \omega) \approx ((E + \theta \times E) \cdot I_0 \cdot (E + \theta \times E)\top \cdot \dot{\theta}) = I_0 \cdot \dot{\theta}\)

Substitute the expressions for \(\tau, \mu\) in dynamic laws and obtain their form in displacements:

\[
(\lambda + 2\mu)\nabla \nabla \cdot u - (\mu + \alpha)\nabla \times (\nabla \times u) + 2\alpha\nabla \times \theta + \rho F = \rho \ddot{u},
\]

\[
(\beta + 2\gamma)\nabla \nabla \cdot \theta - (\gamma + \varepsilon)\nabla \times (\nabla \times \theta) + 2\alpha(\nabla \times u - 2\theta) + \rho L = \rho I \cdot \ddot{\theta}.
\]

Verify that if elastic rotational constants \(\alpha, \beta, \gamma, \varepsilon\) and tensor of inertia \(I\) are zero, we have equations of a classical isotropic linear elastic medium.
Equations of the linear isotropic reduced Cosserat medium

We can obtain it from the equations for the full linear isotropic Cosserat medium, considering $\beta, \gamma, \varepsilon$ to be zero.

\[
(\lambda + 2\mu)\nabla \nabla \cdot \mathbf{u} - (\mu + \alpha)\nabla \times (\nabla \times \mathbf{u}) + 2\alpha \nabla \times \theta = \rho \ddot{\mathbf{u}}
\]

\[
2\alpha \nabla \times \mathbf{u} - 4\alpha \theta = \rho l \ddot{\theta}
\]

If $\alpha = 0$, we have a classical linear isotropic elastic medium.
Brief overview of the course. Ideas

- We considered elastic Cosserat continua: media, where particles (point bodies) can move and rotate, possess density and tensor of inertia and are subjected to forces and couples.

- We introduced stress tensor and couple stress tensor. Force acting upon a point body in the medium depends on the stress tensor, and full moment depend both on stress and couple stress.

- We have written fundamental laws of mechanics for these continua: balance of force, balance of moments, balance of energy. From their integral form (for a material volume V) we passed to the local form by means of theorem by Ostrogradsky–Gauss.

- Second law of thermodynamics holds identically for elasticity.
Brief overview of the course. Ideas

- Combining the law of balance of energy with other laws of balance, we obtained the frame for the constitutive equations (how stresses depend on the deformations in the medium). Strain tensors (Cosserat deformation tensor, transposed wryness tensor) appear naturally in the balance of energy.

- Nonlinear stress and couple stress work on derivatives of linear strain tensors

- Cosserat deformation tensor and transposed wryness tensor do not change under rigid motion

- We checked that stress and couple stress obeying these constitutive equations, are frame indifferent (no additional elastic energy appears in the material if we walk around it)
Brief overview of the course. Ideas

- We linearized these equations (under supposition that it is allowed)
- We have written the equations for the linear isotropic Cosserat medium
- We considered also reduced Cosserat medium, where rotations and translations are also independent, but the couple stress is zero (nothing works on the gradient of angular velocity)
- We obtained also constitutive equations, linear and nonlinear, for classical elasticity
Brief overview of the course. Equations

General theory:

\[\nabla \cdot \tau + \rho F = \rho \ddot{u} \]
(27)

\[\nabla \cdot \mu + \tau \times + \rho L = (I \cdot \omega) \]
(28)

\[\tau = \nabla R^\top \cdot \rho \frac{\partial U}{\partial A} \cdot P^\top, \quad \mu = \nabla R^\top \cdot \rho \frac{\partial U}{\partial K} \cdot P^\top. \]
(29)

\[A = \nabla R \cdot P, \quad K = r^i \Phi_i \cdot P, \quad \partial_i P = \Phi_i \times P. \]
(30)

Reduced Cosserat theory:

\[\nabla \cdot \tau + \rho F = \rho \ddot{u} \]
(31)

\[\tau \times + \rho L = (I \cdot \omega) \]
(32)

\[\tau = \nabla R^\top \cdot \frac{\partial U}{\partial A} \cdot P^\top, \quad \mu = 0 \]
(33)
Brief overview of the course. Equations

Linear theory (natural configuration, zero initial stresses):

\[\tau = X \cdot (\nabla u + \theta \times E) + Y \cdot (\nabla \theta) \] \hspace{1cm} (34)

\[\mu = ((\nabla u + \theta \times E)^\top \cdot Y)^\top + Z \cdot \nabla \theta \] \hspace{1cm} (35)

Reduced Cosserat theory:

\[\tau = X \cdot (\nabla u + \theta \times E), \quad \mu = 0. \] \hspace{1cm} (36)

Linear isotropic theory: \(Y = 0 \), \(X \) and \(Z \) are determined by 3 independent constants each one.

Full linear Cosserat isotropic theory: 6 constants.

Reduced linear Cosserat isotropic theory: 3 constants.

Linear classical isotropic elasticity: 2 constants.
Brief overview of the course.

Full Cosserat theory: τ, μ. Stress tensor is not symmetric: $\tau \neq \tau^T$.
Reduced Cosserat theory: $\tau \neq \tau^T$, $\mu = 0$.
Classical elasticity: $\tau = \tau^T$, $\mu = 0$.

Lecturer: Elena F. Grekova (elgreco@pdmi.ras.ru) : Introduction to the mechanics of Cosserat media
Linear isotropic medium with isotropic spherical inertia
Dispersion curves

If $I = I \mathbf{E}$, the initial term in the balance of terms is $\rho I \ddot{\theta}$. In this case, considering free waves ($\mathbf{F} = 0, \mathbf{L} = 0$), we obtain curves of dispersion.

\[
\begin{align*}
c_l^2 &= \frac{\rho}{\lambda + 2\mu}, \\
c_{lr}^2 &= \frac{\rho I}{\beta + 2\gamma}, \\
c_s^2 &= \frac{\rho}{\mu}, \\
c_{s\alpha}^2 &= \frac{\rho}{\mu + \alpha}, \\
c_{sr}^2 &= \frac{\rho I}{\gamma + \varepsilon}, \\
\omega_0^2 &= \frac{4\alpha}{\rho_0 I}.
\end{align*}
\]
Linear isotropic reduced Cosserat medium: dispersion relation

\[
\omega_0^2 = \frac{4\alpha}{(\rho_0 l)}, \\
\omega_1^2 = \omega_0^2/(1 + \alpha/\mu), \\
C_s^2 = \mu/\rho, \\
C_{s\alpha}^2 = (\mu + \alpha)/\rho, \\
C_l^2 = (\lambda + 2\mu)/\rho.
\]

There is a forbidden band where the waves of free-rotation do not propagate. (Acoustic metamaterial.) This is because one spring is absent (the medium does not to \(\nabla \theta\).) These waves are localized.