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Preface

Originating in the late 1960s, now the theory of coherent configurations
has become the central part of algebraic combinatorics understood in the
spirit of the Bannai–Ito monograph [10]. One of the main goals of this
theory is to provide a common method to study symmetries of (mostly fi-
nite) algebraic, geometrical, and combinatorial objects. It is therefore not
so surprising that a rich source of coherent configurations is the permutation
group theory providing a natural way to deal with automorphism groups of
the objects. This line goes back to the method of Schur rings introduced
by I. Schur (1933) and then developed by H. Wielandt in 1960s. The Schur
rings can be considered as a special case of coherent configurations defined
by D. Higman (1971) (see [63]) as a tool to study permutation groups via
analyzing invariant binary relations; in particular, the coherent configura-
tion associated with a permutation group is formed by the minimal invariant
binary relations. In this way, it was proved that some permutation repre-
sentations of classical groups are uniquely determined by subdegrees, and
a sporadic simple group (the Higman–Sims group) was found. It should
be also mentioned that the proof of a tight upper bound for the order of a
uniprimitive group, found by L. Babai (1981), is also based on using coherent
configurations.

Another source of coherent configuration is closely related with the
Graph Isomorphism Problem: to find a most efficient algorithm to test
isomorphism of finite graphs. In 1968, B. Weisfeiler and A. Leman de-
scribed a rather simple procedure (called now the Weisfeiler–Leman algo-
rithm), which given a graph constructs a matrix algebra that keeps all the
information on the automorphism group of the graph. This algebra has a
uniquely determined linear basis consisting of {0, 1}-matrices and the binary
relations underlying these matrices form a coherent configuration. The use
of the Weisfeiler–Leman algorithm for graph isomorphism testing forced re-
searchers to study these coherent configurations. The results obtained in this
way by S. Evdokimov and I. Ponomarenko in 2000s show that this algorithm
tests isomorphism correctly in various classes of graphs. A culmination of
the coherent configuration approach to the Graph Isomorphism Problem
became an outstanding result of L. Babai (2015) giving a quasipolynomial
algorithm testing isomorphism of arbitrary graphs.

The last but not the least source of coherent configurations is the asso-
ciation scheme theory originated in 1950s in papers of R. Bose concerning
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designs in statistics and studied by F. Delsarte in 1970s in connection with
coding theory. In some sense, association schemes form the commutative
part of the coherent configuration theory. Probably, the most impressive
results here were obtained for a special class of association schemes that
arise from distance-regular graphs. There are some signs (see [1]) that non-
commutative analogs of these schemes correspond to the spherical buildings.
This is not so surprising in view of theory of the Coxeter schemes developed
by P.-H. Zieschang (1995) and showing that the spherical buildings of finite
order can naturally be considered as (homogeneous) coherent configurations.

Each of the above mentioned topics is a living and constantly developing
field of mathematics, presented in a series of remarkable monographs con-
cerning permutation groups [23, 33], association schemes [10, 128], and
distance-regular graphs [17]. Although in each of them coherent configu-
rations are mentioned in one way or another, none of them can serve as
a complete introduction to the whole theory. On the other hand, some
parts of the theory are distributed in a number of overlapping papers with
different motivations and notations. Thus our primary goal is to create
a comprehensive and self-contained introduction to the theory of coherent
configurations.

Our approach to the theory of coherent configurations emphasizes on
two interrelating basic problems common for all of the above mentioned
topics. These problems have never been discussed in detail in monographs
and our secondary goal is to fill this gap. In the following two paragraphs
we explain the problems separately.

As already noted above, each permutation group defines a coherent con-
figuration. The reverse statement is not true and this is not so obvious. As
H. Wielandt wrote in [126, p.54] “Schur had conjectured for a long time
that every Schur ring is determined by a suitable permutation group”; the
same story happened to “cellular algebras” 1 introduced by B. Weisfeiler and
A. Leman (but this fallacy was overcome in a year). However, it turns out
that overwhelming majority of the coherent configurations are not schurian,
i.e., they do not come from permutation groups. It seems quite interesting
and important to find a “border” between schurian and non-schurian case,
or in other words, a place of the group theory within the theory of coherent
configurations; in what follows, we refer to this as the schurity problem. For
example, the solution to this problem in the class of Coxeter schemes and
in the class of symmetric schemes of rank 3 is nothing else than the Tits
theorem on spherical buildings and the classification of the rank 3 groups,
respectively.

Any coherent configuration X comes with a natural set of invariants,
namely, the intersection number array. When X is associated with a per-
mutation group K, it is just the structure constant tensor of the centralizer
algebra of K with respect to the linear basis of primitive idempotents under

1They are essentially the adjacency algebras of coherent configurations.
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the Hadamard multiplication. We say that X is separable if the intersection
number array determines X up to isomorphism. Among such configurations,
one can see the coherent configurations of classical distance-regular graphs
and designs, of groups uniquely determined by their character tables, of
spherical buildings of finite order and rank at least 3, etc. Furthermore, the
isomorphism of any graph, the coherent configuration of which is separable,
with any other graph can be efficiently tested by the Weisfeiler–Leman algo-
rithm. All we said shows the importance of the separability problem, which
consists in, roughly speaking, identifying separable coherent configurations.

Keeping in mind the schurity and separability problems, we cannot cover
in this book many interesting parts of the theory of coherent configurations.
In particular, we only touch on issues such as structure theory, represen-
tation theory, connections with the Graph Isomorphism Problem; we refer
the reader to Zieschang’s monograph on homogeneous coherent configura-
tions [128] and to the exhaustive surveys [55] on representation theory,
and [108] on a logical approach to testing graph isomorphism. On the other
hand, trying to give a self-contained and detailed introduction to coherent
configurations, we provided each chapter with a set of exercises. Considered
as a part of the main text, they enable to get much deeper understanding
of the whole theory. Let us briefly go through the chapters of the book.

Chapter 1 is a little bit eclectic collection of notations and concepts
concerning binary relations, matrices, and permutation groups that are used
throughout the text. Some of the notation are not standard and some of
the concepts are not widespread. It is assumed that the readers are familiar
with the basics of graph theory, linear algebra, and group theory.

Chapter 2 lays the foundation of the whole theory. We start with exact
definitions and then analyze the structure of an arbitrary coherent config-
uration. The Galois correspondence between the coherent configurations
and permutation groups provides us with numerous examples of schurian
coherent configurations. At this point the schurity problem is introduced.
Remaining within the framework of algebra, we establish a one-to-one cor-
respondence between the coherent configurations and coherent algebras,
which are the matrix algebras closed under the Hermitian conjugation and
the Hadamard multiplication. This enables us to illustrate the concept of
an algebraic isomorphism playing the key role in the separability problem.
The schurity and separability problems remain nontrivial for a historically
first class of coherent configurations, namely, the Cayley schemes which
are in one-to-one correspondence with the Schur rings. This is made even
more obvious when we pass to coherent configurations associated with finite
geometries: projective and affine planes, and designs. In the last part of
this chapter, we introduce the concept of the coherent closure, which can be
considered as a functor from the category of graphs to the category of co-
herent configurations. This naturally leads to distance-regular and strongly
regular graphs which are discussed in the context of coherent configurations.
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In Chapter 3, we present basic constructions and techniques for studying
coherent configurations. The most of them are dual to that of permutation
groups in the sense of the Galois correspondence. For example, the concept
of quotient corresponds to taking the permutation group induced by the ac-
tion of a group on the classes of an invariant equivalence relation, the direct
sum and tensor product correspond to the direct product of permutation
groups acting on the disjoint union and Cartesian product of underlying
sets, respectively, and the coherent closure extension with respect to a set
of points corresponds to the pointwise stabilizer of this set in a permutation
group. The latter enables us to introduce the concept of the base of a co-
herent configuration and establish an upper bound for the base number of
a primitive coherent configuration (the Babai theorem). The situation with
wreath product is a little bit complicated and we consider several construc-
tions, including the canonical and generalized wreath product of coherent
configurations, and exponentiation of a coherent configuration by a per-
mutation group. We are particularly interested in conditions under which
the resulting coherent configuration is schurian or separable. The last two
sections provide us with introductions to multidimensional constructions
corresponding to actions of a permutation group on the Cartesian powers of
the underlying set, and to representation theory of coherent configurations
over the complex number field.

Chapter 4 contains a collection of results from different parts of the
theory. We start with quasiregular coherent configurations; they are schurian
and separable only locally. The developed theory is used for constructing
coherent configurations which are so far away from being schurian or/and
separable as far as it is possible at all. On the other hand, the same theory
is used to get a group-theoretical characterizations of homogeneous coher-
ent configurations with at most two different valencies. In studying the
problem of separability for cyclotomic schemes over a finite field, we show
a way to apply a classification of Schur rings over a cyclic group obtained
by K. H. Leung and S. H. Man in [89, 90]. Each of the two last topics
includes as a special case the schemes of prime degree. In this connection,
we present all known results on these schemes including the Hanaki–Uno
theorem. The last section concerns the Weisfeiler–Leman method and the
connections of it with the Graph Isomorphism Problem, with the first order
logic with bounded number of variables, and with theory of multidimensional
extensions of coherent configurations and algebraic isomorphisms.

The exercises given at the end of each chapter vary in complexity from
very simple to moderately difficult. In the latter case, we provide a reference
to a paper containing full proof (however, the presence of such a reference
does not mean that the exercise is really difficult). Including the full proof for
each exercise would increase the size of the book at least by half. Therefore,
we decided to collect all the proofs in a separate text and provide free access
to it at (http://www.pdmi.ras.ru/~inp/coherent configurations.ans-

wers.pdf). Some of the exercises, as well as some statements in the main
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text, are of a computational nature. Therefore, it is very useful for the
reader to make calculations using the computer package GAP [51]. We also
recommend an additional free package COCO2P intended for calculations
with association schemes and coherent configurations [84].

A large part of this book appeared in more than twenty joint papers
of Sergei Evdokimov and the second author in 1990-2000s. Sergei suddenly
passed away in 2016. However, his influence on the content of this book
is hard to overestimate. Unfortunately, some important results obtained
by himself have not been published in the form of papers and can only
be found in his habilitation thesis written in Russian [35]. These results
include algebraic foundations of coherent configurations, constructing the
multidimensional extensions of the wreath product, and establishing a re-
lationship between coherent configuration and factorization of polynomials
over a finite field. Together with the second author, Sergei gave a course on
algebraic combinatorics in St. Petersburg State University (St. Petersburg,
Russia, 1999). The notes of the course and two other courses on coherent
configurations given by the second author in Institute for Advanced Studies
in Basic Science (Zanjan, Iran, 2004), and by both authors in Central China
Normal University (Wuhan, China, 2017) are used in preparing this text.

Work on the book was supported by the NSFC No. 11571129 and
No.11611530678 for the first author, and by the RFBR Grant No. 17-51-
53007 GFEN a and by the RAS Program of Fundamental Research “Modern
Problems of Theoretical Mathematics” for the second author.

This book would never have appeared without communications and dis-
cussions with a number of researchers and friends, among whom we espe-
cially thank Akihide Hanaki (Shinshu University, Japan), Mitsugu Hirasaka
(Pusan National University, Republic of Korea), Mikhail Muzychuk (Ben-
Gurion University of the Negev, Israel), Andrei Vasil’ev (Sobolev Institute of
Mathematics, Russia), Oleg Verbitsky (Institut für Informatik, Humboldt-
Universität zu Berlin, Germany), Paul-Hermann Zieschang (University of
Texas, USA). Finally, we thank our wives Amanda and Olga who have con-
tinued to support and encourage us in this project.

Gang Chen, Ilia Ponomarenko
November 11, 2018



CHAPTER 1

Preliminaries

Three basic languages using in studying coherent configurations come
from graphs, matrix algebras, and groups. This gives some freedom to
choose the most relevant way to describe a concrete situation, and makes
difficulties in developing a general theory. In fact, this explains why at
present, there is no one generally accepted system of notations and concepts
in the coherent configuration theory. The system adopted in our book is
based on a combination of suitable terminology and notation used in stan-
dard texts on graph theory and permutation groups. In this chapter, we
tried to list them in a more or less compact form.

Let us start with general notation. In what follows, Ω denotes a finite set
of order |Ω| = n. The elements of Ω are written by lowercase Greek letters
and called the points. For a collection T of subsets of Ω, we set T ♮ = T \{∅}.

Given a positive integer m, the Cartesian m-power of Ω is denoted
by Ωm. The diagonal of the latter is set to be

Diag(Ωm) = {(α, . . . , α) ∈ Ωm : α ∈ Ω},

and for brevity, we put 1Ω = Diag(Ω2) and write 1 instead of 1Ω where
this cannot lead to a misunderstanding. The ith coordinate of an m-tuple
α ∈ Ωm is denoted by αi; in particular, α = (α1, . . . , αm). The concatenation
of the m-tuples α and β is defined by α · β = (α1, . . . , αm, β1, . . . , βm).

The symmetric group consisting of all permutations of elements of Ω
is denoted by Sym(Ω), or by Sym(n) if Ω = {1, . . . , n}. Similar notations
Alt(Ω) and Alt(n) are used for the alternating group.

As usual, Z, Q, and C are the ring of integers and the field of rational
and complex numbers, respectively. The ring of integers modulo n and the
finite field of order n are denoted by Zn and Fn, respectively.

We use standard notations GL(n, q), AGL(n, q), PSL(n, q), and PΓL(n, q)
for general linear, affine general linear, projective special linear, and projec-
tive semilinear groups of dimension n over field Fq. Cyclic group of order n
and dihedral group of order 2n are denoted by Cn and D2n, respectively.

For any two objects X and Y of the same category (e.g., graphs, abstract
or permutation groups, etc.), the set of all isomorphisms from X to Y is
denoted by Iso(X ,Y).

Logarithms are always of base 2.

1



2 1. PRELIMINARIES

1.1 Relations and graphs

Let s ⊆ Ω2 be a (binary) relation on Ω. It is said to be reflexive if
s ⊇ 1Ω, symmetric if s equals the transpose relation

s∗ = {(β, α) : (α, β) ∈ s},

irreflexive if s∩ 1Ω = ∅, and antisymmetric if s∩ s∗ = ∅. The support Ω(s)
of s is defined to be the union of the sets

Ω−(s) = {α ∈ Ω : αs ̸= ∅} and Ω+(s) = {α ∈ Ω : αs∗ ̸= ∅},

where
αs = {β ∈ Ω : (α, β) ∈ s}

is the neighborhood of α in s. Any point of αs is called an s-neighbor of α.
For a pair of sets ∆,Γ ⊆ Ω, the restriction of s to the product ∆× Γ is

defined by
s∆,Γ = s ∩ (∆× Γ)

and denoted by s∆ if ∆ = Γ. The image of s with respect to a bijection f
from Ω to another set is denoted by

sf = {(αf , βf ) : (α, β) ∈ s}.

For relations r and s (not necessarily on the same set), we consider two
different products, namely the composition

r · s = {(α, β) ∈ Ω−(r)× Ω+(s) : αr ∩ βs∗ ̸= ∅},

which is a relation on the union of the supports, and the tensor product

(1.1.1) r⊗s = {((α, α′), (β, β′)) ∈ (Ω(r)×Ω(s))2 : (α, β) ∈ r, (α′, β′) ∈ s},

which is a relation on the Cartesian product of the supports. Both products
are associative and distributive with respect to the union.

We extend the above notation for a set S of relations on Ω. Namely, S∗

is defined to be the set of all s∗, s ∈ S, the neighborhood αS of α ∈ Ω
in S is defined to be the union of all αs, s ∈ S. The restriction S∆,Γ with
∆,Γ ⊆ Ω consists of all nonempty s∆,Γ, s ∈ S; we also set S∆ := S∆,∆. For

a bijection f , the set of all sf , s ∈ S, is denoted by Sf . The composition
S · T and product S ⊗ T , where T is a set of relations on Ω, are defined to
be, respectively, the sets of all s · t and all s⊗ t, s ∈ S, t ∈ T .

Let s be a relation on Ω. For points α and α′, the notation α
s→ α′ means

that there is an s-path connecting α and α′, i.e., a sequence α0, α1, . . . , αd
of points (d ≥ 0) such that α0 = α, αd = α′, and

αi+1 ∈ αis, i = 0, 1, . . . , d− 1.

The number d is called the length of the path. This path is said to be closed

if α0 = αd. The relation s is said to be strongly connected if α
s→ α′ for any

α, α′ ∈ Ω(s).
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A relation e ⊆ Ω2 is said to be transitive if the conditions β ∈ αe and
γ ∈ βe imply γ ∈ αe for all points α, β, and γ. If this relation is also
symmetric, we say that e is a partial equivalence relation on Ω. In this case,
the support Ω(e) is a disjoint union of subsets called the classes of e; the
corresponding partition is denoted by Ω/e. Moreover, the union

e =
⋃

∆∈Ω/e

∆×∆

is also disjoint. If e is also reflexive, then Ω(e) = Ω and hence e is an
equivalence relation on Ω. In particular, any partial equivalence relation e
is an equivalence relation on Ω(e).

With each relation s ⊆ Ω2, we associate two natural partial equivalence
relations, the equivalence closure and radical defined, respectively, as follows:

(1.1.2) ⟨s⟩ = min{e : s ⊆ e} and rad(s) = max{e : e · s = s · e = s},

where in both cases e runs over the partial equivalence relations on Ω with
Ω(e) = Ω(s). Equivalent and more constructive definitions are given in
Exercises 1.4.1 and 1.4.3. One can see that rad(s) ⊆ ⟨s⟩ with equality if and
only if s is an equivalence relation on Ω.

Let e be a partial equivalence relation on Ω. The quotient of s ⊆ Ω2

modulo e is a relation on Ω/e defined as follows:

(1.1.3) sΩ/e = {(∆,Γ) ∈ (Ω/e)2 : s∆,Γ ̸= ∅}.

Assume that e is an equivalence relation on Ω. Then the classes of e are the
sets αe, α ∈ Ω, and the mapping

(1.1.4) πe : Ω → Ω/e, α 7→ αe

is a surjection. It induces a surjection s 7→ sΩ/e between the relations

on Ω and on Ω/e. This induced surjection is also denoted by πe. Thus,
sΩ/e = πe(s) and

πe(1∆) = 1πe(∆) and πe(s
∗) = πe(s)

∗

for all ∆ ⊆ Ω and all s.
A relation s ⊆ Ω2 is said to be thin or a matching if |αs| ≤ 1 and

|αs∗| ≤ 1 for all α ∈ Ω. In this case, the mapping

(1.1.5) fs : Ω−(s) → Ω+(s)

taking a point α to the unique s-neighbor of α, is a bijection; in particular, if,
in addition, Ω−(s) = Ω+(s) = Ω, then fs is a permutation of Ω, fs∗ = (fs)

−1,
and s is the graph of the permutation g = fs, i.e.,

(1.1.6) s = sg = {(α, αg) : α ∈ Ω}.
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Under a (directed) graph on Ω, we mean a pair X = (Ω, D) with D ⊆ Ω2;
the elements of

Ω = Ω(X) and D = D(X)

are called the vertices and arcs of X, respectively. The graph X is said
to be undirected, loopless, or tournament if, respectively, D is symmetric,
irreflexive, or antisymmetric and D∪D∗ = Ω2 \ 1Ω. The vertices α and β of
an undirected graph X are called adjacent if both (α, β) and (β, α) are arcs
of X. The subgraph of X induced by a set ∆ ⊆ Ω is defined to be the graph
X∆ = (∆, D∆).

The graph X is said to be strongly connected if so is the relation D. A
(connected) component of X is defined to be a class of the partial equivalence
relation ⟨D⟩. The graph X is said to be connected if it has exactly one
connected component. The distance between α and β in X is defined to be
the smallest number d = d(α, β) such that there exists a D-path of length d
connecting α and β. The maximal distance between two vertices is called
the diameter of X.

The valency of a vertex α of X is defined to be the cardinality |αD| of
the neighborhood of α in D. A graph X is said to be regular of valency d
if the valency of each vertex equals d; when d = 3, the graph X is said to
be cubic. A tournament X is said to be doubly regular if every two of its
vertices have exactly (n− 3)/4 common neighbors (recall that n = |Ω|).

Let s = sg, where g ∈ Sym(Ω) is an n-cycle. A graph X is called a
directed cycle (respectively, undirected cycle) if the arc set of X coincides
with s (respectively, s ∪ s∗). An undirected graph is said to be complete or
a clique if any two of its vertices are adjacent, and empty if the arc set of it
is empty.

The automorphism group Aut(X) of the graph X consists of all per-
mutations k ∈ Sym(Ω) such that Dk = D. The graph X is said to be
vertex-transitive (respectively, arc transitive) if Aut(X) acts transitively on
the vertex set (respectively, the arc set) of X.

Sometimes it will be convenient to consider colored structures. Under a
coloring of a set Ω, we mean any function c : Ω → N. The color of α ∈ Ω
with respect to the coloring c is defined to be c(α). The elements of the same
color form a color class of c; the number of color classes (or equivalently, the
colors of c) is denoted by |c|. Thus the color classes of c form a partition Pc
of the set Ω into |c| classes.

A graph X together with a coloring cX : D(X) → N of the arc set is said
to be a colored graph if for any (α, α), (β, γ) ∈ D(X),

β ̸= γ ⇒ cX(α) ̸= cX(β, γ),

where cX(α) = cX(α, α).
Two colored graphs are said to be isomorphic if there exists a bijection

of their vertex sets preserving the colors of arcs. Any such bijection is called
an isomorphism of these graphs. The group of all isomorphisms of X to itself



1. PRELIMINARIES 5

is denoted by Aut(X) and called the automorphism group of X. A colored
graph X′ is called a subgraph of X if

Ω(X′) ⊆ Ω(X), D(X′) ⊆ D(X), cX′ = cX |D(X′),

and an induced subgraph if D(X′) equals the restriction of D(X) to Ω(X′).
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1.2 Matrices and algebras

The linear space of all complex rectangular matrices with rows and
columns indexed by the elements of sets Ω and Ω′ is denoted by

MatΩ,Ω′ = MatΩ,Ω′(C).

When Ω = Ω′, this space becomes the standard algebra MatΩ = MatΩ(C) of
all n×n complex matrices. We set IΩ and JΩ to be the identity and the all
one matrices in MatΩ, respectively; the all one matrix in MatΩ,Ω′ is denoted

by JΩ,Ω′ . The transposed matrix of A is denoted by AT . For Ω = {1, . . . , n},
we set Matn = MatΩ(C), In = IΩ, and Jn = JΩ.

The Hadamard product A ◦B of the matrices A,B ∈ MatΩ is defined by
the formula

(A ◦B)α,β = Aα,βBα,β

for all α, β ∈ Ω. The Kronecker product A1⊗A2 of the matrices A1 ∈ MatΩ1

and A2 ∈ MatΩ2 is the matrix in MatΩ1×Ω2 defined by

(A1 ⊗A2)α,β = (A1)α1,β1(A2)α2,β2 ,

where α = (α1, α2) and β = (β1, β2).
The adjacency matrix of a relation s ⊆ Ω2 is defined to be a {0, 1}-matrix

As ∈ MatΩ such that

(As)α,β = 1 ⇔ (α, β) ∈ s.

The adjacency matrix of a graph is defined to be the adjacency matrix of
its arc set.

The permutation matrix Pk of a permutation k ∈ Sym(Ω) is defined to
be the adjacency matrix of the graph of k. Thus, Pk is the {0,1}-matrix
in MatΩ such that

(Pk)α,β =

{
1, if αk = β,

0, otherwise.

The linear space over the field C spanned by the elements of Ω is denoted
by LΩ,

LΩ =
{∑
α∈Ω

aαα : aα ∈ C for all α
}
.

Any of its elements is a formal linear combination of points of Ω with complex
coefficients. In particular, for any ∆ ⊆ Ω, the formal sum

∆ =
∑
α∈∆

α

is considered as a vector of LΩ, and the point α ∈ Ω is represented by the
vector {α}.

It is assumed that the readers are familiar with basics on linear repre-
sentations of algebras and groups, at least in the amount of the first two
chapters of [28]. Very briefly, let A be a subalgebra of MatΩ. Then the
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linear space LΩ can be treated as an A-module. If A is semisimple, i.e.,
has no nontrivial nilpotent two-sided ideal, then LΩ is decomposed into the
direct sum of irreducible A-modules. Each irreducible module L affords an
irreducible representation

π : A → End(L).

The (irreducible) character associated with π is defined to be the complex-
valued function taking a matrix A ∈ A to its trace

tr(A) =
∑
α∈Ω

Aα,α.

The character does not depend on the choice of a representation in a class
of equivalent representations of A. For the irreducible characters, the or-
thogonality relations hold; in particular, the irreducible characters of non-
equivalent representations are orthogonal with respect to a standard scalar
product.
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1.3 Abstract and permutation groups

It is assumed that the readers are familiar with basics on group theory
including such things as the Sylow theorems, composition series, automor-
phism groups, and basics on permutation groups at least in the amount of
the first two chapters of [33].

Let G be a finite group. The standard notation Aut(G) and Inn(G) are
used for the groups of all and inner automorphisms of G, respectively. Let
g ∈ G. For a group H ≤ G, the subsets gH and Hg are called, respectively,
the left and right cosets of H in G. We define the permutations

gleft : x 7→ g−1x, x ∈ G and gright : x 7→ xg, x ∈ G,

corresponding to the left and right multiplications by g. The groups

Gright = {gright : g ∈ G} and Gleft = {gleft : g ∈ G}

form respectively, the right and left regular representations of G in Sym(G).
The group ring of G is denoted by CG. It is obviously closed under

taking componentwise inverse and multiplication defined by(∑
agg
)−1

=
∑

agg
−1 and

(∑
agg
)
◦
(∑

bgg
)
=
∑

agbgg,

where the sums are taken over all g ∈ G and all the ag and bg are complex
numbers. For any set X ⊆ G, the quantity

X =
∑
x∈X

x

is treated as an element of CG.
As usual, G×K and G⋊K denote the direct product of the groups G

and K, and the semidirect product of G by K, respectively. Note that in
the latter case, the group G ⋊ K is not defined uniquely and depends on
action of K on G. For example, if the action is given by the mapping

(g, k) 7→ gk, g ∈ G, k ∈ K,

then the multiplication of the pairs (g1, k1) and (g2, k2) in G⋊K is defined
by formula

(g1, k1)(g2, k2) = (g1g
k−1
1

2 , k1k2).

Assume that K ≤ Sym(Ω) for a set Ω. To define the wreath product G≀K
of G by K, let us consider the pairs (f, k), where f : Ω → G is a function
and k ∈ K. The natural action of the group K on the set GΩ consisting of
the functions f that is given by

fk(α) := f(αk
−1
), α ∈ Ω, k ∈ K,
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defines a multiplication on the pairs (f, k), as follows:

(f1, k1)(f2, k2) = (f1f
k−1
1

2 , k1k2), f1, f2 ∈ GΩ, k1, k2 ∈ K.

Now the set G ≀ K of all the pairs (f, k) is a group with respect to this
operation. Clearly, it is isomorphic to the semidirect product GΩ⋊K of the
base group GΩ by the group K.

Let G = Cn. Then every automorphism of G is defined by raising to a
power coprime to n (see Exercise 1.4.17). Furthermore,

Aut(G) =
∏
p∈P

Aut(Gp),

where P is the set of primes dividing n and Gp is the Sylow p-subgroup of G.

Let n = pk for a prime p and k ≥ 1. If p is odd, then Aut(G) is isomorphic
to C(p−1)pk−1 . If p = 2, then Aut(G) is trivial for k = 1, and isomorphic
to C2 × C2k−2 for k ≥ 2.

Let K be a permutation group on a set Ω, i.e., K ≤ Sym(Ω). The
number n = |Ω| is called the degree of K. The set of all orbits of K (the
K-orbits for brevity) is denoted by

Orb(K) = Orb(K,Ω).

A relation s on Ω is said to be K-invariant if sk = s for all k ∈ K.
The setwise and pointwise stabilizers of a set ∆ in K are defined to be the
permutation groups

K{∆} = {k ∈ K : ∆k = ∆} and K∆ = {k ∈ K : αk = α for all α ∈ ∆},

respectively. If ∆ = {α, β, . . .}, then the pointwise stabilizer K∆ is also
written as Kα,β,.... The restriction of K to ∆ is defined to be the group

K∆ = {k∆ : k ∈ K{∆}},

where k∆ ∈ Sym(∆) is the permutation induced by k.
The group K ≤ Sym(Ω) is said to be

– transitive if Orb(K) = {Ω};
– semiregular if Kα = 1 for all α ∈ Ω;
– regular if K is transitive and semiregular;
– quasiregular if K∆ is regular for all ∆ ∈ Orb(K,Ω);
– 1/2-transitive if all the orbits of K are of the same cardinality;
– 3/2-transitive if K is transitive and Kα is 1/2-transitive on Ω\{α};
– 2-transitive if the componentwise action ofK on Ω2\1Ω is transitive.

A transitive group K is said to be primitive if the only equivalence relations
invariant with respect to K are 1Ω and Ω2, and imprimitive otherwise.
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Let K ′ ≤ Sym(Ω′). A bijection f : Ω → Ω′ is called a permutation group
isomorphism from K onto K ′ if

K ′ = {f−1kf : k ∈ K}.

The set of all permutation isomorphisms from the group K onto K ′ is de-
noted by Iso(K,K ′).

The direct product K1 ×K2 of two permutation groups K1 ≤ Sym(Ω1)
and K2 ≤ Sym(Ω2) has two natural actions: on the disjoint union Ω1 ∪ Ω2,

(1.3.1) α(k1,k2) =

{
αk1 , if α ∈ Ω1,

αk2 , if α ∈ Ω2,

and on the Cartesian product Ω1 × Ω2,

(1.3.2) (α1, α2)
(k1,k2) = (αk11 , α

k2
2 ).

The first of these actions is always intransitive, whereas the second one is
transitive if and only if each factor is transitive.

A similar situation takes place for the wreath product G≀K of the groups
G ≤ Sym(∆) and K ≤ Sym(Ω). Namely, the imprimitive action of G ≀K is
defined on the set ∆× Ω so that for any (f, k) ∈ G ≀K,

(δ, α)(f,k) = (δf(α), αk), δ ∈ ∆, α ∈ Ω.

In this case, the base group GΩ acts on the disjoint union of |Ω| copies of ∆.
The primitive action or exponentiation G ↑ K is defined on the set Ω∆

of the functions λ : Ω → ∆ by

(1.3.3) λ(f,k)(δ) = λ(δk
−1
)f(δ

k−1
), δ ∈ Ω.

In this case, the base group GΩ acts on the Cartesian product of |Ω| copies
of ∆.
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1.4 Exercises

1.4.1 For a set S of relations on Ω, denote by S∞ the union of all finite
compositions r · s · · · with r, s, . . . belonging to S. Then given s ⊆ Ω2,

(1.4.1) ⟨s⟩ = {1Ω(s), s, s
∗}∞.

1.4.2 Let s ⊆ Ω2. Then the points α and α′ belong to the same class

of the partial equivalence ⟨s⟩ if and only if α
s∪s∗→ α′.

1.4.3 Let s ⊆ Ω2. Then rad(s) is equal to the largest partial equivalence
relation e on Ω(s) for which

(1.4.2) s =
⋃

∆,Γ∈Ω/e:
∆×Γ⊆s

∆× Γ.

1.4.4 Let e be an equivalence relation on Ω. Then the mapping πe
induces a surjection from the set of (partial) equivalence relations on Ω that
contain e to the set of (partial) equivalence relations on Ω/e.

1.4.5 Let e ⊆ Ω2 be an equivalence relation and s a relation on Ω/e.
Then

e · π−1
e (s) · e = π−1

e (s).

In particular, e ⊆ rad(π−1
e (s)).

1.4.6 Let r and s be thin relations on Ω. Then so are the relations
s∗ and r · s. Furthermore, if t is a thin relation on ∆, then s ⊗ t is a thin
relation on Ω×∆.

1.4.7 The mapping s 7→ As defines a one-to-one correspondence between
the relations on Ω and {0, 1}-matrices of MatΩ.

1.4.8 Given relations r, s ⊆ Ω2,

(1) Ar∗ = (Ar)
T ;

(2) Ar∩s = Ar ◦As;
(3) Ar∪s = Ar\s+As\r+Ar∩s; in particular, Ar∪s = Ar+As if r∩s = ∅;
(4) |αr ∩ βs∗| = (ArAs)α,β for all α, β ∈ Ω.

1.4.9 For any relations r and s, we have Ar⊗s = Ar ⊗As.
1.4.10 For any permutations k, k′ ∈ Sym(Ω),

(1.4.3) Pkk′ = PkPk′ .

In particular, Pk−1 = (Pk)
−1, and the mapping k 7→ Pk is a linear represen-

tation of the group Sym(Ω).
1.4.11 For a relation s ⊆ Ω2 and a permutation k ∈ Sym(Ω),

(1.4.4) Ask = P−1
k AsPk.

1.4.12 For any relation s ⊆ Ω2,

(1.4.5) Asα = αs∗, α ∈ Ω.
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1.4.13 For any group G,

⟨Gleft, Gright⟩ = Gleft Inn(G) = Gright Inn(G).

1.4.14 For any group G, the mapping

(1.4.6) τ : CG→ MatG(C), g 7→ Pgleft ,

is an algebra monomorphism. Moreover,

(1) τ(1) = IG and τ(G) = JG;
(2) τ(ξ−1) = τ(ξ)T for all ξ ∈ CG;
(3) τ(ξ ◦ η) = τ(ξ) ◦ τ(η) for all ξ, η ∈ CG.

1.4.15 For any group G and any set X ⊆ G,

τ(X−1) = As

where

(1.4.7) s = {(g, xg) : x ∈ X, g ∈ G}.

This relation is Gright-invariant. The mapping

(1.4.8) ρ : X 7→ s

is a bijection between the subsets of G and the Gright-invariant relations
on G. The inverse of ρ is defined by formula

(1.4.9) ρ−1(s) = αs

where α is the identity of G.
1.4.16 Let G be a group, and let ρ be the mapping from Exercise 1.4.15.

Then for any sets X,Y ⊆ G,

(1) ρ(X) = 1G if and only if X consists of the identity of G;
(2) ρ(X) = G×G if and only if X = G;
(3) ρ(X−1) = ρ(X)∗;
(4) ρ(X) ⊆ ρ(Y ) if and only if X ⊆ Y ;
(5) ⟨ρ(X)⟩ = ρ(⟨X⟩);
(6) X ≤ G if and only if ρ(X) is an equivalence relation the classes of

which are the cosets of X in G;
(7) rad(ρ(X)) = ρ(rad((X)) with rad(X) = {g ∈ G : gX = Xg = X}.

1.4.17 For an abelian group G of order n, the center of Aut(G) consists
of all mappings

(1.4.10) σm : G→ G, g 7→ gm,

where m is coprime to n.
1.4.18 The identity element of the wreath product G ≀ K is the pair

(f1, 1), where the function f1 takes any element to the identity of G. The
element inverse to (f, k) is given by (f, k)−1 = ((fk)−1, k−1).
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1.4.19 Let e be a partial equivalence relation on Ω. Suppose that e
is invariant with respect to a group K ≤ Sym(Ω). Then the natural action

of K on Ω/e induces the homomorphism k 7→ kΩ/e from K to Sym(Ω/e)
with the image and kernel equal to

(1.4.11) KΩ/e = {kΩ/e : k ∈ K} and Ke =
⋂

∆∈Ω/e

K{∆},

respectively.
1.4.20 Any abelian permutation group is quasiregular, and is regular

if and only if it is transitive.
1.4.21 A normal subgroup of a transitive group is 1/2-transitive.





CHAPTER 2

Basics and examples

Most of the concepts studied in the first three sections of the present
chapter are well known in the theory of permutation groups. In many cases,
it is somehow clear how to translate the relevant parts of the theory into
the language of coherent configurations. In the other three sections, we
give examples from algebra, geometry, and combinatorics that illustrate the
introduced concepts.

2.1 Coherent configurations

In this section, the main definitions and concepts concerning coherent
configurations are introduced. Some parts of the presented material can be
found in many papers, e.g., [48, 65, 67], and monographs, e.g., [123, 128].
However, our notation and terminology are different from those used there.
The main reason is that in most of these sources, the subject was focused on
special cases of coherent configurations, like association schemes, or on the
adjacency algebras of them. Nevertheless, we try to maintain continuity, at
least at the level of concepts.

2.1.1 Rainbows

Let S be a partition of the Cartesian square Ω2 = Ω×Ω. Each element
of S is a binary relation, and the set of all unions of these relations is denoted
by S∪.

Definition 2.1.1. A pair X = (Ω, S) is called a rainbow on Ω if
(CC1) 1Ω ∈ S∪;
(CC2) S∗ = S.

The numbers |Ω| and rk(X ) := |S| are called the degree and rank of X ,
respectively. The rainbow X is associated with a complete colored graph
X = X(X ) defined by

Ω(X) = Ω and D(X) = Ω2 and PcX = S,

where cX is a coloring of Ω2; any such coloring is said to be standard and
is denoted also by cX . In particular, the colors of loops are different from
the colors of the other arcs (the condition (CC1)) and the permutation
(α, β) 7→ (β, α) of Ω2 preserves the set of color classes (the condition (CC2)).

Two obvious examples are the trivial and discrete rainbows TΩ and DΩ,
respectively; they are also denoted by Tn and Dn if the set Ω is not essential.
The trivial rainbow is of rank at most 2; in this case, S consists of 1Ω and

15
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(if n ≥ 2) its complement in Ω2. The discrete rainbow is of rank n2: in this
case, S consists of all n2 singleton relations {(α, β)} with α, β ∈ Ω.

The elements of the sets S = S(X ) and S∪ = S(X )∪ are called the
basis relations and relations of the rainbow X , respectively. The unique
basis relation containing a pair (α, β) is denoted by r(α, β) = rX (α, β). In
particular,

r(β, α)∗ = r(α, β).

From the conditions (CC1) and (CC2), it follows that every basis re-
lation is either reflexive1 (and then is contained in 1Ω) or irreflexive, and
either symmetric or antisymmetric. A rainbow is called symmetric (respec-
tively, antisymmetric) if all (respectively, all irreflexive) basis relations are
symmetric (respectively, antisymmetric). Sometimes, a relation s ∈ S∪ is
considered as a (basis) graph of s, i.e., as a graph with vertex set Ω(s) and
arc set s. In this sense, the relation s is said to be connected, regular, etc.

Example 2.1.2. The trivial and discrete rainbows are symmetric and
antisymmetric, respectively. They are equal if and only if n = 1. The
irreflexive basis graph of a trivial rainbow is complete.

There is a natural partial order ≤ on the set of all rainbows on Ω
with the smallest and greatest elements equal to TΩ and DΩ, respectively.
Namely, for rainbows X and X ′ on Ω, set

X ≤ X ′ ⇔ S∪ ⊆ (S′)∪,

where S = S(X ) and S′ = S(X ′). In this case, X ′ is called an extension or
fission of X and X is called a fusion of X ′. It is easily seen that X ≤ X ′

only if |S| ≤ |S′|, and if and only if every basis relation of X is a union of
basis relations of X ′.

For any ∆ ⊆ Ω, the set S∆ forms a partition of ∆2. This partition
obviously satisfies the conditions (CC1) and (CC2). Therefore, for any rain-
bow X on Ω, the pair

X∆ = (∆, S∆)

is also a rainbow; it is called the restriction of X to ∆.
The concept of rainbow is probably too general to hope that the theory

could be rich in content. However, it becomes such if we add a coherence
condition.

Definition 2.1.3. A rainbow X is called a coherent configuration if
(CC3) for any r, s, t ∈ S, the number ctrs = |αr ∩ βs∗| does not depend

on the choice of (α, β) ∈ t.

In other words, ctrs is equal to the number of the r-neighbors of α that
are s∗-neighbors of β, i.e., the number of triangles of the form depicted in
Fig. 2.1 below with fixed points α and β.

1More exactly, reflexive on its support.
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Figure 2.1 A triangle corresponding to ctrs.

Two obvious examples of coherent configurations are the trivial and
discrete rainbows. In the former case, the only nontrivial number ctrs = n−2
is obtained for n ≥ 2 and the irreflexive relation r equal to both s and t,
whereas in the latter case the number ctrs equals 0 unless

r = {(α, γ)}, s = {(γ, β)}, t = {(α, β)},

for some points α, β, and γ. The coherent configurations of degree at most 7
were classified in [88] without computer; for computer classification of small
coherent configurations, see [56, 85].

Proposition 2.1.4. Let X be a rainbow and S = S(X ). Then the
set S∪ is closed under taking complement, union, and intersection. If X is
a coherent configuration, then S∪ is also closed under the composition.

Proof. The statements on the complement, union, and intersection fol-
low from the definition of S∪. Now let X be a coherent configuration and
r, s ∈ S∪. Without loss of generality, we may assume that r, s ∈ S. If a
relation t ∈ S intersects the composition r · s, then by the condition (CC3)
we have ctrs ̸= 0. Consequently, all the pairs of t lie in this composition.
Therefore, t ⊆ r · s. Thus,

r · s =
⋃

t: ctrs ̸=0

t

and hence r · s ∈ S∪, as required. □

By Proposition 2.1.4, the composition r · s of the relations r and s
of the coherent configuration X is a union of basis relations. The set of
these relations is denoted by rs and is called the complex product or, briefly,
product of r and s. In particular, if r, s ∈ S, then

rs = {t ∈ S : ctrs ̸= 0}.

This product is associative (statement (4) of Exercise 2.7.6) but can be equal
to the empty set. One can easily verify that

rs = r′s′ ⇔ r · s = r′ · s′

for all relations r′ and s′ of X .

Definition 2.1.5. A set ∆ ⊆ Ω is called a fiber of the rainbow X if
1∆ ∈ S. The set of all fibers of X is denoted by F (X ).
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Obviously,
1 ≤ |F (X )| ≤ |Ω|

with equalities for the trivial and discrete coherent configurations, respectively.
Since S is a partition of Ω2, the condition (CC1) implies that the union

Ω =
⋃

∆∈F (X )

∆

is disjoint. If X is a coherent configuration, then this partition induces (see
Proposition 2.1.6 below) a partition of S into the sets

(2.1.1) S∆,Γ = {s ∈ S : s ⊆ ∆× Γ},

where ∆ and Γ are fibers of X (this notation agrees with the notation from
Section 1.1). However, these sets do not necessarily form a partition of S
for a general rainbow.

Proposition 2.1.6. Let X be a coherent configuration. Then

∆× Γ ∈ S∪ for all ∆,Γ ∈ F,

where S = S(X ) and F = F (X ). In particular, the union

(2.1.2) S =
⋃

∆,Γ∈F
S∆,Γ

is disjoint.

Proof. Let ∆,Γ ∈ F . Clearly, Ω2 ∈ S∪ and hence

1∆ · Ω2 = ∆× Ω and Ω2 · 1Γ = Ω× Γ

are relations of the coherent configuration X , see Proposition 2.1.4. By the
same proposition, this implies that

∆× Γ = (∆× Ω) ∩ (Ω× Γ)

is a relation of X . This proves the first statement and shows that ∆ × Γ
contains each basis relation intersecting it. Thus equality (2.1.2) holds. □

Corollary 2.1.7. For each basis relation s of a coherent configuration,
there exist uniquely determined fibers ∆ and Γ such that s ⊆ ∆× Γ.

The set of all unions of fibers of the rainbow X is denoted by F (X )∪; any
element of this set is called a homogeneity set of X . From formula (2.1.2), it
follows that if X is a coherent configuration, then for any two homogeneity
sets ∆ and Γ the union

S∆,Γ :=
⋃

∆′∈F,
∆′⊆∆

⋃
Γ′∈F,
Γ′⊆Γ

S∆′,Γ′

is disjoint.
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Furthermore, any relation s ∈ S∆ belongs to S∆′,Γ′ for some fibers ∆′

and Γ′ contained in ∆. Therefore for all α ∈ ∆, the set αs is either empty
or contained in ∆. Thus,

|αr ∩ βs∗ ∩∆| = |αr ∩ βs∗| = ctrs

for all r, s, t ∈ S∆ and all α, β ∈ ∆ such that r(α, β) = t. This implies
that the condition (CC3) is satisfied for the rainbow X∆ and hence it is a
coherent configuration on ∆. If the latter set is a fiber, then X∆ is called
the homogeneous component of X (associated with ∆).

Example 2.1.8. Let X be a rainbow on the set Ω = ∆ ∪ Γ, where
∆ = {1, 2} and Γ = {3, 4, 5}. Set

S∆,∆ = S(T∆), SΓ,Γ = S(TΓ), S∆,Γ = {∆× Γ}, SΓ,∆ = {Γ×∆}.

Then X is a coherent configuration of degree 5 and rank 6. It has two
fibers ∆ and Γ, and the homogeneous components associated with them
are T∆ and TΓ, respectively.

Definition 2.1.9. A coherent configuration X on Ω is said to be homo-
geneous, or association scheme, or, briefly, a scheme if the set F (X ) is a
singleton, or equivalently, if 1Ω ∈ S(X ).

In the homogeneous case, the only reflexive basis relation is 1Ω, and the
set of all other basis relations is denoted by S(X )#. In particular, the trivial
coherent configuration is always homogeneous, whereas the discrete one is
homogeneous if and only if n = 1.

Let ∆ and Γ be two distinct fibers of a coherent configuration X . Then
the set S contains at least four elements: 1∆, 1Γ, and two distinct antisym-
metric relations, one from S∆,Γ and another from SΓ,∆. This shows that
any symmetric coherent configuration as well each non-discrete coherent
configuration of rank at most 4 is homogeneous.
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2.1.2 Intersection numbers

Let X = (Ω, S) be a coherent configuration. The nonnegative integers
in the condition (CC3) are called the intersection numbers of X . We may
interpret the intersection number ctrs as the number of all triangles in Fig. 2.1
with vertices α, β, γ ∈ Ω that have a fixed base (α, β) ∈ t, and the other two
sides (α, γ) and (γ, β) belong to r and s, respectively. This interpretation
immediately implies that

(2.1.3) ctrs = ct
∗
s∗r∗ , r, s, t ∈ S.

To find more relations connecting the intersection numbers, let s ∈ S.
By Corollary 2.1.7, there exists a fiber ∆ such that s ∈ S∆,Ω.

Definition 2.1.10. The number ns = c1∆ss∗ is called the valency of s.

Clearly, the valency of any reflexive basis relation equals 1. Interpreting
this intersection number as the number of triangles in Fig. 2.1 with α = β,
we immediately see that the valency equals the number of s-neighbors of the
point α ∈ ∆ in the relation s, i.e.,

(2.1.4) ns = |αs|, α ∈ ∆, s ∈ S∆,Ω.

This shows that the valency of a vertex in the basis graph of s equals ns. It
follows that the number |s| of arcs of this graph is equal to the sum of the
numbers |αs|, where α runs over ∆. Consequently,

(2.1.5) |s| = ns|∆|, s ∈ S∆,Ω.

In general, one cannot assign the valency to an arbitrary (not necessar-
ily basis) relation s of a coherent configuration, because the number |αs|
depends on the point α ∈ Ω−(s). However, if the coherent configuration is
homogeneous, then Ω−(s) = Ω and the valency of s can be defined as the
sum of the valencies of the basis relations contained in s.

Example 2.1.11. Let s be a basis relation of the coherent configuration
in Example 2.1.8. Then

ns =


1, if s ∈ S∆,∆,

1 or 2, if s ∈ SΓ,Γ,

3, if s ∈ S∆,Γ,

2, if s ∈ SΓ,∆.

Of course, the valencies of the trivial scheme of degree n are 1 and n−1,
whereas all the valencies of the discrete coherent configuration are equal
to 1.

Proposition 2.1.12. Let X = (Ω, S) be a coherent configuration. Then
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(2.1.6)
∑
s∈S:
αs ̸=∅

ns = n, α ∈ Ω,

(2.1.7)
∑
t∈S

crst = ns, r, s ∈ S,

(2.1.8)
∑
t∈S

ntc
t
rs = nrns, r, s ∈ S, rs ̸= ∅,

(2.1.9) |t| ct∗rs = |r| cr∗st = |s| cs∗tr , r, s, t ∈ S.

Proof. Since S is a partition of Ω2, the nonempty sets αs, s ∈ S,
form a partition of Ω. Note that αs ̸= ∅ if and only if α ∈ Ω−(s). Thus
equality (2.1.6) follows from (2.1.4).

To prove equality (2.1.7), let r, s ∈ S, and let α, β ∈ Ω be such that
r = r(α, β). Since the nonempty sets βt∗, t ∈ S, form a partition of Ω, we
obtain ∑

t∈S
crst =

∑
t∈S

|αs ∩ βt∗| =
∣∣⋃
t∈S

(αs ∩ βt∗)
∣∣ = |αs| = ns.

To prove equalities (2.1.8) and (2.1.9), we consider the triangles (α, β, γ)
satisfying some of the following conditions:

(2.1.10) (α, β) ∈ r, (β, γ) ∈ s, (γ, α) ∈ t.

In the former case, we count in two ways the amount of the triangles
with fixed point α and arbitrary β, γ satisfying the first two conditions
in (2.1.10); in the latter case, we count the triangles satisfying all the
conditions in (2.1.10), but this time in three different ways. □

The identities for the intersection numbers can be simplified a little if the
coherent configuration X is homogeneous. In this case, in formula (2.1.5),
we have ∆ = Ω, which immediately implies the first two statements of the
corollary below. The other two statements follow from identities (2.1.6)
and (2.1.9), respectively.

Corollary 2.1.13. If the coherent configuration X is homogeneous, then

|s| = nsn = ns∗n, s ∈ S,(2.1.11)

ns = ns∗ , s ∈ S,(2.1.12) ∑
s∈S

ns = n,(2.1.13)

ntc
t∗
rs = nrc

r∗
st = nsc

s∗
tr , r, s, t ∈ S.(2.1.14)
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More relations between the intersection numbers of a coherent configu-
ration can be found in Exercise 2.7.6.

An important invariant expressed via the intersection numbers is the
indistinguishing number of a relation s ∈ S, which is defined as follows:

(2.1.15) c(s) =
∑
t∈S

cstt∗ .

It counts how many isosceles triangles have a fixed element of s as the base
(here the term “isosceles” means that two sides of the triangle belong to
the same basis relation). One can see that c(s) = n if and only if the basis
relation s is reflexive.

Under an equivalenced or 3/2-homogeneous scheme of valency k we mean
a one for which the valency of any irreflexive basis relation is equal to k. In
the following statement, we find the arithmetical mean of the numbers c(s),
s ∈ S#, for an equivalenced scheme.

Lemma 2.1.14. Let (Ω, S) be an equivalenced scheme of valency k ≥ 1.
Then ∑

s∈S#

c(s) = (k − 1) |S#|.

Proof. Set

T = {(α, β, γ) ∈ Ω3 : β ̸= γ, r(α, β) = r(α, γ)}.

Then for any β and γ, the number of all α for which (α, β, γ) ∈ T is equal
to c(s), where s = r(β, γ). For a fixed s, this gives c(s) |s| triples belonging
to T . However, |s| = nk by formula (2.1.11) and the assumption. Thus,

|T | =
∑
s∈S#

c(s)|s| = nk
∑
s∈S#

c(s).

On the other hand, given α ∈ Ω and s ∈ S#, there are exactly ns(ns−1)
triples (α, β, γ) ∈ T such that r(α, β) = s. Therefore,

|T | = n
∑
s∈S#

ns(ns − 1) = n (k − 1)k |S#|.

Thus the required statement follows from the above two formulas. □
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2.1.3 Parabolics

Among the relations of a coherent configuration X = (Ω, S), the partial
equivalence relations are of special interest. The following definition goes
back to D. Higman [68].

Definition 2.1.15. An equivalence (respectively, a partial equivalence)
relation of a coherent configuration X is called a parabolic (respectively,
partial parabolic) of X . The set of partial parabolics of X is denoted by
E = E(X ).

The set E always contains trivial parabolics 1Ω and Ω2. They are the
only partial parabolics of the trivial coherent configuration TΩ. On the other
hand, the set E(DΩ) consists of all partial equivalence relations on Ω.

Example 2.1.16. Let e be a partial equivalence relation on Ω, each class
of which is a homogeneity set of the coherent configuration X ; for example,
the classes of e could be the fibers of X . Then e ∈ E by Proposition 2.1.6.

Let e ∈ E and ∆ ∈ Ω/e. Recall that the set S∆ consists of nonempty
relations s∆ with s ∈ S; note that each such s is contained in e, because e
is a union of basis relations of the coherent configuration X . Furthermore,
if α, β ∈ ∆ and r, s ∈ S are such that r∆ and s∆ are not empty, then

(2.1.16) αr∆ ∩ β(s∆)∗ = αr ∩ βs∗.

It follows that the cardinality of the set on the left-hand side equals ctrs,
where t = r(α, β). Note that the relation t∆ is nonempty. Therefore, the
rainbow X∆ satisfies the condition (CC3) and is a coherent configuration.
Certainly, the restriction of X to a homogeneity set ∆ is obtained as a special
case with e = ∆×∆.

In the following statement, we introduce an important numeric invariant
of a partial parabolic that will be used in Subsection 3.1.2 to define a quotient
coherent configuration modulo parabolic.

Proposition 2.1.17. For any e ∈ E, s ∈ S, and ∆,Γ ∈ Ω/e, we have

s∆,Γ = ∅ or |s∆,Γ| =
∑
u,v⊆e

∑
w∈S

cwusc
s
wv,

where the external sum is taken over u, v ∈ S. In particular, the number

ne(s) = |s∆,Γ|

does not depend on the classes ∆ and Γ for which the relation s∆,Γ is not
empty.

Proof. Let (α, β) ∈ s∆,Γ. Then the number |s∆,Γ| is equal to the number
of distinct pairs (γ1, γ2) ∈ Ω2 such that

(α, γ1) ∈ e, (γ1, γ2) ∈ s, (γ2, β) ∈ e.
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γ1 s // γ2

v
��

α

u
OO
w

<<

s
// β

Figure 2.2 The configuration in Proposition 2.1.17.

For a fixed γ2 ∈ Γ, the number of ways to choose γ1 equals the sum of cwus
with w = r(α, γ2), where u = r(α, γ1) runs over the basis relations contained
in e.

On the other hand, the number of ways to choose γ2 equals the sum
of cswv, where v = r(γ2, β) runs over the basis relations contained in e (see
Fig. 2.2). Thus the total number of the pairs (γ1, γ2) is equal to

|s∆,Γ| =
∑
v⊆e

∑
w∈S

cswv

(∑
u⊆e

cwus

)
=
∑
u,v⊆e

∑
w∈S

cwusc
s
wv

and we are done. □

The join e = e1 ∨ e2 of the partial equivalence relations e1 and e2 on Ω
is defined to be the equivalence closure ⟨e1 ∪ e2⟩. Clearly,

Ω(e) = Ω(e1) ∪ Ω(e2)

and each class of ei is contained in some class of e (i = 1, 2). The following
statement shows that if the coherent configuration X is homogeneous, then E
is a lattice with respect to intersection and join; the minimal and maximal
elements of it are 1Ω and Ω2.

Proposition 2.1.18. The set E is closed under intersections and joins,
and contains the partial equivalence relations ⟨s⟩ and rad(s) for each s ∈ S∪.

Proof. Since the intersection and join of two partial equivalence relations
are also partial equivalence relations, the part concerning intersections, joins,
and ⟨s⟩ is an easy consequence of Proposition 2.1.4 and formula (1.4.1).
Next, in accordance with Exercise 1.4.3,

rad(s) = e(s) ∩ e(s∗)

for all s ⊆ Ω2, where e(s) and e(s∗) are the partial equivalence relations
defined in statement (1) of Exercise 2.7.8. Now if s is a relation of X , then
the same statement implies that e(s), e(s∗) ∈ E. Hence, rad(s) ∈ E. □

Corollary 2.1.19. E = {⟨s⟩ : s ∈ S∪}.

A set T ⊆ S is said to be closed if the union of all relations lying in T is
a partial parabolic of X . In particular, if e ∈ E then the set {s ∈ S : s ⊆ e}
is closed. It can easily be verified that the set T is closed if and only if the
set of basis relations in (TT ∗)♮ coincides with T .
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The concept of the closed set plays a key role in the theory of homoge-
neous coherent configurations developed in [128]. In our book, we prefer to
deal with partial parabolics which up to the language give the same concept.

Definition 2.1.20. A nonempty partial parabolic e of X is said to be
indecomposable if e is not a disjoint union of two nonempty partial parabolics
of X ; otherwise e is said to be decomposable.

The parabolic Ω2 is always indecomposable, and 1Ω is indecomposable
if and only if X is homogeneous.

Every partial parabolic e ∈ E is uniquely represented as a disjoint union
of indecomposable partial parabolics; each of them is called an indecom-
posable component of e. Indeed, if e′ is an indecomposable component of e
and

e = e1 ∪ · · · ∪ ek
is a decomposition of e into indecomposable partial parabolics ei, then e′

equals the union of the partial parabolics e′ ∩ ei ∈ E (Proposition 2.1.4).
But this is possible only if e′ coincides with a certain ei, 1 ≤ i ≤ k.

Lemma 2.1.21. The supports of distinct indecomposable components of
a partial parabolic are disjoint.

Proof. Let e1 and e2 be indecomposable components of a partial para-
bolic of a coherent configuration. Assume that there exists a point

α ∈ Ω(e1) ∩ Ω(e2).

Then obviously 1α ⊆ e1 ∩ e2. By the uniqueness of the indecomposable
components, this implies that e1 = e2. □

Theorem 2.1.22. Let e ∈ E be an indecomposable partial parabolic.
Then

(1) if s ∈ S, then s ⊆ e if and only if s∆ ̸= ∅ for each ∆ ∈ Ω/e;
(2) the classes of e have the same cardinality;
(3) |∆ ∩ Λ| = |Γ ∩ Λ| for all ∆,Γ ∈ Ω/e and any Λ ∈ F intersecting

both ∆ and Γ.

Proof. The sufficiency in statement (1) is obvious. To prove the neces-
sity, we assume on the contrary that there exists s ⊆ e such that s∆ = ∅
for some ∆ ∈ Ω/e.

Denote by Ω′ the union of all Γ ∈ Ω/e such that sΓ = ∅. Then ∆ ⊆ Ω′

and e is the disjoint union of two nonempty partial equivalence relations
e1 = eΩ′ and e2 = eΩ(e)\Ω′ . However,

Ω(e) \ Ω′ = Ω(e · s · e)

is a homogeneity set (Exercise 2.7.4). Therefore so is Ω′. Consequently,
both e1 and e2 belong to E. Thus the partial parabolic e is decomposable,
a contradiction.
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To prove statement (2), let ∆ and Γ be classes of e. Take any fiber
Λ ∈ F intersecting ∆, say in a point α. Then s = 1Λ being a basis rela-
tion, is contained in e. By statement (1), this implies that sΓ ̸= ∅, i.e., Γ
intersects Λ, say in a point β. Thus,

∆ = αT and Γ = βT,

where T is the set of all relations belonging to SΛ,Ω and contained in e.
Since |αt| = nt = |βt| for all t ∈ T , we conclude that

|∆| = |αT | =
∑
t∈T

|αt| =
∑
t∈T

nt =
∑
t∈T

|βt| = |βT | = |Γ|,

as required.
To prove statement (3), we note that the coherent configuration XΛ is

homogeneous. By Lemma 2.1.21 this implies that any parabolic of XΛ is
indecomposable. In particular, so is eΛ. Since ∆ ∩ Λ and Γ ∩ Λ are classes
of eΛ, we are done by statement (2). □

It should be noted that statement (3) of Theorem 2.1.22 remains true if
the partial parabolic e is decomposable.

The statement below is formally a consequence of Lemma 2.1.21 and
statement (2) of Theorem 2.1.22. In fact, it has been verified in the last
part of the proof of that theorem.

Corollary 2.1.23. Every partial parabolic e of a homogeneous coherent
configuration is an indecomposable parabolic. Moreover, each class of e is of
cardinality ne; in particular, |Ω/e| divides |Ω|.
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2.1.4 Thin relations

Among the basis relations of any coherent configuration, one always
find thin relations (see p. 3), for example, all reflexive relations are thin.
In general, the more thin basis relations we find, the more the coherent
configuration looks like a group. In the limit case, when all the basis relations
are thin, the theory of coherent configurations reduces to group theory.

Let r and s be basis relations of a coherent configuration X = (Ω, S).
From Proposition 2.1.4, we know that the composition r ·s is a relation of X .
Assume that s is thin. Then the relation s ·s∗ is reflexive. If the composition
contains a relation t ∈ S, then this implies that

t · s∗ ⊂ (r · s) · s∗ = r · (s · s∗) = r.

Since r ∈ S, this implies that t · s∗ = r and hence r · s = t is also a basis
relation. The same argument works if r is thin and s ∈ S. Thus we arrive
at the following useful statement.

Lemma 2.1.24. The composition of two basis relations one of which is
thin is either basis or empty relation.

Denote by S1 = S1(X ) the set of all thin relations s ∈ S∪ with full sup-
port, which means that Ω−(s) = Ω+(s) = Ω; in particular, the bijection fs
defined by formula (1.1.5) is a permutation of Ω. Note that in view of the
condition (CC1), the set S1 always contains 1Ω and hence is nonempty.

Theorem 2.1.25. Let X be a coherent configuration. Then

(1) for each thin r ∈ S, there exists s ∈ S1 such that r ⊆ s;
(2) S1 is a group with respect to the composition;
(3) the mapping S1 → Sym(Ω), s 7→ fs is a group monomorphism;
(4) if T ≤ S1, then the union of all relations in T belongs to E.

Proof. Let r ∈ S∆,Γ, where ∆ and Γ are fibers of X , and Λ is the
complement of ∆∪Γ in Ω. Set s to be r ∪ 1Λ or r ∪ r∗ ∪ 1Λ depending on
whether ∆ = Γ or not. Then s ∈ S1 and r ⊆ s. This proves statement (1).

Next for each s ∈ S1 the mapping fs is a permutation of Ω. Furthermore,
1Ω ∈ S1 and

fr∗ = f−1
r , fr·s = frfs for all r, s ∈ S1.

This proves statement (2) and shows that the mapping in statement (3) is
a homomorphism. The injectivity of it follows from the fact that s is the
graph of fs.

Finally, denote by t the union of all relations in a set T ≤ S1. Then
obviously T · T ∗ = T and hence t = ⟨t⟩. Thus statement (4) follows from
Proposition 2.1.18. □
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A parabolic of X is said to be thin if it is the union of some relations
belonging to S1. From statement (2) of Theorem 2.1.25, we obtain the
following statement.

Lemma 2.1.26. The join of thin parabolics of a coherent configuration
is also thin.

From Lemma 2.1.26, it follows that there exists the largest thin parabolic
of a coherent configuration X that is the join of all thin parabolics. It is
called the thin radical parabolic of X . Clearly, the thin radical parabolic is
equal to the union of all relations of S1.

Definition 2.1.27. The set of all basis relations contained in the thin
radical parabolic of X is called a thin radical of X .

In particular, the thin radical of a scheme X coincides with S1(X ). In
general case this is not true, because the support of some thin basis relations
can be different from Ω.

Statement (3) of Theorem 2.1.25 defines a mapping from the coherent
configurations to permutation groups. In general, it is neither injective or
surjective. On the other hand, as we will see below, it induces a functor from
the category of finite groups to the category of coherent configurations. The
image of this functor consists of regular schemes defined as follows.

Definition 2.1.28. A scheme X is called regular if S(X ) = S1(X ).

The following obvious statement gives two more equivalent definitions
of the regular scheme.

Theorem 2.1.29. For a scheme X , the statements below are equivalent:

(1) X is regular;
(2) ns = 1 for all s ∈ S;
(3) |S| = |Ω|;
(4) the thin radical parabolic of X equals Ω2.

Statement (3) of Theorem 2.1.25 shows that every regular coherent
configuration can be considered as an abstract group. Conversely, if G
is a group, then for any g ∈ G, the graph sg of the permutation gright
(see (1.1.6)) is a thin relation. Since

1Ω = s1 and (sg)
∗ = sg−1 and sg · sh = sgh

for all g, h ∈ G, the pair X = (Ω, S) is a regular coherent configuration.
Thus the group theory is really “embedded” to the theory of coherent con-
figurations.

Definition 2.1.30. A coherent configuration X is said to be semiregular
if ns = 1 for all relations s ∈ S.
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Every discrete coherent configuration is semiregular. The class of all
semiregular coherent configurations is obviously closed under taking fissions
and restrictions. Thus every regular coherent configuration is semiregular
and each homogeneous component of a semiregular coherent configuration
is regular. Further properties of semiregular coherent configurations are in
Exercise 2.7.13.



30 2. BASICS AND EXAMPLES

2.2 Galois correspondence

In this section, we consider the Galois correspondence between the coher-
ent configurations and permutation groups, which was explicitly established
by M. Klin and his colleagues in 1970s (for the historical remarks, we refer
to survey [49]). This correspondence expresses the basic principle of our
methodology in the study of coherent configurations and leads to the first of
the two main problems that are discussed in this book, namely, the schurity
problem.

2.2.1 Isomorphisms

Let X = (Ω, S) and X ′ = (Ω′, S′) be rainbows.

Definition 2.2.1. A bijection f : Ω → Ω′ is called a combinatorial
isomorphism or, briefly, an isomorphism from X onto X ′ if

S′ = Sf .

The set of all of them is denoted by Iso(X ,X ′). Two rainbows X and X ′ are
said to be combinatorially isomorphic or isomorphic if Iso(X ,X ′) ̸= ∅.

For any bijection f from Ω to another set, one can define a rainbow
X f = (Ωf , Sf ). Clearly, X f is a rainbow isomorphic to X .

Example 2.2.2. Let X be a coherent configuration, s ∈ S1, and fs a
permutation of Ω defined in (1.1.5). Then

rfs = s∗ · r · s

is a basis relation of X for all r ∈ S (Lemma 2.1.24). It follows that Sfs = S
and hence fs ∈ Iso(X ,X ) and X fs = X .

It is easily seen that Iso(X ) = Iso(X ,X ) is a permutation group on Ω. In
a natural way it acts also on the set S and the kernel of this action is a normal
subgroup of Iso(X ). It is denoted by Aut(X ) and called the automorphism
group of X ; any element of this group is called the automorphism of X .
Thus,

Aut(X ) = {f ∈ Sym(Ω) : sf = s for all s ∈ S}.
This group is obviously equal to the intersection of the automorphism groups
of basis graphs of X .

Definitely, it would be more natural to consider Iso(X ) rather than
Aut(X ) as the automorphism group of X , but here we follow a long tra-
dition in accordance with which a rainbow is treated as a colored graph.

One can easily check that

Iso(TΩ) = Aut(TΩ) = Sym(Ω)

and

(2.2.1) Iso(DΩ) = Sym(Ω) and Aut(DΩ) = {idΩ},



2. BASICS AND EXAMPLES 31

where idΩ is the identity permutation of Ω.
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2.2.2 Coherent configuration of a permutation group

For every permutation group K ≤ Sym(Ω), one can define a natural
partition S of the set Ω2 into the orbitals or 2-orbits of K, i.e., the orbits in
the induced action of K on Ω2: a permutation k ∈ K takes a pair (α, β) to
the pair (αk, βk). Thus,

S = Orb(K,Ω2).

It is easily seen that the pair (Ω, S) satisfies the conditions (CC1) and (CC2).
Furthermore, any relation t ∈ S consists of the pairs (α, β)k with k ∈ K

and fixed (α, β) ∈ t. Therefore,

|αr ∩ βs∗| = |(αr ∩ βs∗)k| = |αkrk ∩ βk(s∗)k| = |αkr ∩ βks∗|

for all r, s ∈ S, which proves the condition (CC3). Thus the rainbow (Ω, S)
is a coherent configuration.

Definition 2.2.3. The pair

Inv(K) = Inv(K,Ω) = (Ω,Orb(K,Ω2))

is called the coherent configuration associated with the group K ≤ Sym(Ω).

The coherent configurations associated with the groups Sym(Ω) and
{idΩ} are equal to TΩ and DΩ, respectively.

Cyclotomic schemes. Let F = Fq be a finite field with q elements,
and let M be a subgroup of its multiplicative group F×. Denote by K a
subgroup of Sym(F) consisting of the permutations

x 7→ a+ bx, x ∈ F,

where a ∈ F and b ∈ M . The group K is transitive and the 2-orbits of K
are the relations

su := (0, u)K = {(α, β) ∈ F× F : β − α ∈Mu},

where u ∈ F. It follows that the irreflexive basis relations of the scheme

Cyc(M,F) := Inv(K,F)

associated with the group K are exactly the relations su, which are in one-
to-one correspondence with the cosets Mu of the group M in F×. We say
that Cyc(M,F) is a cyclotomic scheme over the field F. The rank of this
scheme is one more than the index of the group M in F×.

Let

m = |M | and m′ =
q − 1

m
.

Denote by ξ a primitive element of the field F. Then the group M consists
of the elements ξm

′i, where i runs over the set I = {0, 1, . . . ,m− 1}. Now if
α is the zero of F and u, v, w ∈ F×, then

αsu = {uξm′i : i ∈ I} and ws∗v = {w − vξm
′j : j ∈ I}.
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It follows that the intersection number cswsusv = |αsu ∩ ws∗v| is equal to the

number of pairs (i, j) ∈ I2 with

uξm
′i = w − vξm

′j .

The explicit evaluation of these integers called the cyclotomic numbers is a
hard number-theoretic problem (see [91, p.247]).

The following result, first proved by R. McConnel in [94], shows, in
particular, that the automorphism group of a nontrivial cyclotomic scheme
is solvable. The proof of this result goes beyond the material of this book;
the references to several known proofs can be found in survey paper [81,
Sec. 9].

Theorem 2.2.4. The automorphism group of a nontrivial cyclotomic
scheme over a finite field F is contained in the one-dimensional affine semi-
linear group

(2.2.2) AΓL(1,F) = {α 7→ a+ ασb, α ∈ F : a ∈ F, b ∈ F×, σ ∈ Aut(F)}.

Assume that the order q of the field F is odd. Then the multiplicative
group F× is cyclic of even order and hence contains a subgroupM of index 2.
It follows that the cyclotomic scheme Cyc(M,F) contains a basis relation

s = {(α, β) ∈ F× F : β − α is a square in F}.

If q = 1 (mod 4), then the element −1 is a square in F and the relation s
is symmetric. The (undirected) basis graph of s is called a Paley graph; for
q = 5, this graph is isomorphic to the pentagon. If q = 3 (mod 4), then the
relation s is antisymmetric and the (directed) basis graph of s is called a
Paley tournament.

Permutation groups via coherent configurations. Let us return
to the general case. A number of concepts concerning permutation groups
can be expressed in terms of the associated coherent configurations. In the
following statement, we consider the basic ones.

Proposition 2.2.5. Let K ≤ Sym(Ω) and X = Inv(K,Ω). Then

(1) Orb(K,Ω) = F (X );
(2) Orb(K,Ω2) = S(X );
(3) Orb(Kα,Ω) = {αs : s ∈ S(X )}♮, where α ∈ Ω;
(4) if K ′ ≤ Sym(Ω′) and X ′ = Inv(K ′,Ω′), then Iso(K,K ′) ⊆ Iso(X ,X ′).

Proof. Statement (1) follows from the obvious fact that

∆ ∈ Orb(K,Ω) ⇔ 1∆ ∈ Orb(K,Ω2).

Statements (2) and (4) are direct consequences of the definition of the co-
herent configuration associated with group.

To prove statement (3), let ∆ ∈ Orb(Kα,Ω). Then any two pairs in
{α} ×∆ belong to the same orbital. Therefore, it suffices to check that for
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any s ∈ S,
α ∈ Ω−(s) ⇒ αs ∈ Orb(Kα,Ω).

However, any two pairs (α, β) and (α, β′) in the relation s belong to the
same orbit orbital of K. It follows that (α, β)k = (α, β′) for some k ∈ K.
Then

αk = α and βk = β′.

Consequently, k ∈ Kα and αs is contained in an orbit of Kα. On the other
hand, (αs)Kα ⊆ αs, because sK = s. Thus, αs is equal to that orbit. □

The first two statements of Corollary 2.2.6 below are straightforward
consequences of Proposition 2.2.5; the third one follows from statements (3)
and (4) of Exercise 2.7.17. In what follows, a coherent configuration is said
to be half-homogeneous if all of its fibers have the same cardinality. In
particular, any semiregular coherent configuration is half-homogeneous.

Corollary 2.2.6. Let K ≤ Sym(Ω) and X = Inv(K,Ω). Then

(1) K is m-transitive with m = 1/2 (respectively, m = 1, 3/2, 2)
if and only if X is half-homogeneous (respectively, homogeneous,
equivalenced, trivial);

(2) K is regular (respectively, semiregular, quasiregular2) if and only
if X is regular (respectively, semiregular, quasiregular);

(3) K is a p-group (respectively, a group of odd order) if and only if |s|
is a p-power for all s ∈ S (respectively, X is antisymmetric).

Coherent configuration on cosets. It is well known that any transi-
tive group K is permutation isomorphic to the group induced by the action
of K on the right cosets of a point stabilizer by right multiplication. In what
follows, we are interested in the coherent configuration associated with the
induced permutation group and establish a connection between this config-
uration and Inv(K) for arbitrary (not necessarily transitive) group K.

In the notation of Proposition 2.2.5, let Λ ⊆ Ω be a set intersecting each
fiber of the coherent configuration X in exactly one point. Given λ, µ ∈ Λ,
denote by Sλ,µ the set S∆,Γ for which λ ∈ ∆ and µ ∈ Γ, and put

ΩΛ =
⊔
λ∈Λ

K/Kλ,

where K/Kλ is the set of right cosets of Kλ in K. Taking here the disjoint
union, we mean that the groups Kλ are not necessarily distinct subgroups
of K.

For each point α ∈ Ω, there exists a unique point λα ∈ Λ lying in the
same fiber as α. By statement (1) of Proposition 2.2.5, there is a permutation
k = kα belonging to K such that

(λα)
k = α, α ∈ Ω.

2Quasiregular coherent configurations are defined in Exercise 2.7.19 .
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Note that for a fixed α, the coset Kλαk does not depend on the choice of
the permutation k, and the mapping

(2.2.3) fΛ : Ω → ΩΛ, α 7→ Kλαkα

is a bijection.
Let s ∈ Sλ,µ. Fix a point β ∈ λs. Then the permutations kγ can be

chosen so that
(kβ)

−1kγ ∈ Kλ for all γ ∈ λs.

It immediately follows that

(2.2.4) (λs)fΛ = {Kµkγ : γ ∈ λs} = {C ∈ K/Kµ : C ⊆ KµkβKλ}.

The left-hand side and hence the right-hand side does not depend on the
choice of β. Thus the basis relation s ∈ Sλ,µ is associated with the double
coset

Ds = KµksKλ,

where ks = kβ. This double coset is also treated as a subset of ΩΛ, i.e.,
the elements of Ds are the right cosets of the group Kµ that are contained
in Ds. Put

DΛ(K) =
⊔

λ,µ∈Λ
{KλkKµ : k ∈ K}.

Theorem 2.2.7. In the above notation, the group K acts on the set ΩΛ

by right multiplications, and

(1) fΛ ∈ Iso(X ,Y), where X = Inv(K,Ω) and Y = Inv(K,ΩΛ);
(2) F (Y) = {K/Kλ : λ ∈ Λ};
(3) the mapping S → DΛ(K), s 7→ Ds is a bijection;

(4) if λ, µ ∈ Λ and s ∈ Sλ,µ, then ns =
|Ds|
|Kµ| and ns

∗ = |Ds|
|Kλ| .

Proof. By the definition of f = fΛ, we have

f(αk) = f(α)k, α ∈ Ω, k ∈ K.

Therefore, f is a permutation isomorphism from the group K ≤ Sym(Ω)
onto K ≤ Sym(ΩΛ). Thus statement (1) follows from statement (4) of
Proposition 2.2.5.

The group Kλα does not depend on the point α belonging to a fixed
fiber of X . Therefore the image of this fiber with respect to fΛ coincides
with the set K/Kλ of all right cosets of Kλ in K, where λ = λα. This proves
statement (2).

To prove statement (3), it suffices to verify that

Ds ∩Ds′ = ∅

for all distinct s, s′ ∈ S. Without loss of generality, we may assume that
s, s′ ∈ Sλ,µ for suitable λ, µ ∈ Λ. Now if k ∈ Ds ∩Ds′ , then Ds = Ds′ and
the relations s and s′ have a common pair (λ, f−1(Kµk)). But then s = s′.
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Finally, the mapping f is a bijection. By formula (2.2.4) this implies
that for any s ∈ Sλ,µ,

ns = |λs| = |(λs)f | = |{C ∈ K/Kµ : C ⊆ KµkβKλ}| =
|Ds|
|Kµ|

,

which proves statement (4). □

The Galois correspondence. Let X ′ and X be rainbows on Ω. As-
sume that X ≤ X ′. Then each automorphism of X ′ is also an automorphism
of X . Therefore,

(2.2.5) X ≤ X ′ ⇒ Aut(X ) ≥ Aut(X ′),

i.e., the mapping Aut from the set of all rainbows on Ω to the set of permu-
tation groups on Ω reverses the partial order.

On the other hand, the larger permutation group has always smaller
orbits. It follows that if K and K ′ are permutation groups on Ω, then

(2.2.6) K ≤ K ′ ⇒ Inv(K) ≥ Inv(K ′).

Therefore, the mapping Inv from the set of all permutation groups on Ω to
the set of coherent configurations on Ω also reverses the partial order.

Theorem 2.2.8. The mappings X 7→ Aut(X ) and K 7→ Inv(K) form
a Galois correspondence between the coherent configurations on Ω and the
permutation groups on Ω, i.e., together with (2.2.5) and (2.2.6),

(2.2.7) X ≤ Inv(Aut(X )), K ≤ Aut(Inv(K)).

In particular,

(2.2.8) Aut(X ) = Aut(Inv(Aut(X ))), Inv(K) = Inv(Aut(Inv(K))).

Proof. Every basis relation of a coherent configuration X is an Aut(X )-
invariant and hence is the union of some 2-orbits of the group Aut(X ). This
implies that

S(X ) ⊆ Orb(Aut(X ),Ω2)∪ = S(Inv(Aut(X ),Ω))∪,

where the equality follows from statement (1) of Exercise 2.7.17. This proves
the first of inclusions in (2.2.7).

The second inclusion holds, because every basis relation of the coherent
configuration Inv(K) is obviously K-invariant. The first equality in (2.2.8)
follows from the first inclusion in (2.2.7) and formula (2.2.5):

Aut(X ) ≥ Aut(Inv(Aut(X ))) ≥ Aut(X ).

The second equality in (2.2.8) is proved similarly. □

Definition 2.2.9. A coherent configuration X is said to be schurian if
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X = Inv(Aut(X )),

and a group K ≤ Sym(Ω) is said to be 2-closed if

K = Aut(Inv(K)).

Thus the schurian coherent configurations and 2-closed permutation
groups are exactly the Galois closed objects with respect to the Galois cor-
respondence from Theorem 2.2.8. By the general properties of a Galois
correspondence [106, Chap.11], the mappings

X 7→ Aut(X ) and K 7→ Inv(K)

are mutually inverse one-to-one correspondences between schurian coherent
configurations and the 2-closed groups, and between the 2-closed groups and
schurian coherent configurations, respectively.

The Galois correspondence from Theorem 2.2.8 is nontrivial in the sense
that there are many non-schurian coherent configurations and non-2-closed
permutation groups. In the following two sections, we construct the corre-
sponding examples.
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2.2.3 Schurian coherent configurations

Computer computations show that all coherent configurations of de-
gree at most 13 are schurian and up to isomorphism, there is a unique
non-homogeneous coherent configuration of degree 14 which is not schurian,
see [85]. It should be noted that the smallest degree of non-schurian scheme
equals 15 and again the corresponding example is unique up to isomorphism:
it is an antisymmetric scheme of rank 3 (for the explicit construction of this
scheme, we refer to Section 4.5).

The smallest non-schurian coherent configuration [85]. The group

K = SL(2, 3) = Q8 ⋊ C3,

where Q8 is the quaternion group, has a permutation representation of de-
gree 14 with two orbits of cardinalities 6 and 8. Namely, let Ω1 and Ω2 be the
sets of right cosets of K by cyclic subgroups of order 4 and 3, respectively,

|Ω1| = 6 and |Ω2| = 8.

Then K acts (intransitively) by right multiplications on the set Ω = Ω1∪Ω2.
The coherent configuration X = Inv(K,Ω) is of degree 14, rank 12, and

has exactly two fibers Ω1 and Ω2. The homogeneous components XΩ1 and
XΩ2 of X are non-symmetric schemes of rank 4 with valencies belonging to
the multisets

{1, 1, 2, 2} and {1, 1, 3, 3}.
There are four more basis relations of X : two in SΩ1,Ω2 each of valency 4,
and two in SΩ2,Ω1 each of valency 3.

Denote by T the set obtained from S(X ) by replacing the two basis rela-
tions of valency 2 (in SΩ1,Ω1) by their union. Then Y = (Ω, T ) is a coherent
configuration of degree 14, rank 11, and two homogeneous components of
rank 3 and 4. Since

Y < X and Aut(Y) = Aut(X )3,

this coherent configuration is non-schurian.

Theorem 2.2.10. For a coherent configuration X on Ω, the following
statements are equivalent:

(1) X is schurian;
(2) there exists a group K ≤ Sym(Ω) such that X = Inv(K);
(3) there exists a group K ≤ Aut(X ) such that Orb(K) = F (X ) and

Orb(Kα) = {αs : s ∈ S}♮ for all α ∈ Ω.

Proof. The implication (1) ⇒ (2) follows for K = Aut(X ) from the
definition of schurian coherent configuration. The implication (2) ⇒ (3)
follows from statements (1) and (3) of Proposition 2.2.5.

3This equality can be verified with the help of the computer package COCO2P [84].
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To prove the implication (3) ⇒ (1), let s ∈ S(X ). Then for each pair
(α, β) ∈ s, the assumption of statement (3) implies that

s =
⋃

γ∈Ω−(s)

{γ} × γs =
⋃
k∈K

{αk} × αksk =
⋃
k∈K

({α} × αs)k = (α, β)K ,

It follows that s ∈ Orb(K,Ω2) = Orb(Aut(X ),Ω2). Thus,

S(X ) = Orb(Aut(X ),Ω2)

and hence X = Inv(Aut(X )) as required. □

Schurian coherent configuration are usually studied in the frames of per-
mutation group theory. However, as we will see later, most of coherent
configurations are non-schurian and because of this the theory of coherent
configurations is sometimes called “group theory without groups” (see [10,
p.i]). In fact, finding a border between schurian and non-schurian coherent
configurations presents one of the most fundamental problems in this theory.

Schurity problem. Given a class K of coherent configurations identify
all schurian coherent configurations in K.

One more motivation for the schurity problem comes from the Graph
Isomorphism Problem, which is a computational problem of determining
whether two finite graphs are isomorphic (see also Subsection 4.6.1). At
this point, we mention that this problem is equivalent to finding the orbits
of the automorphism group of a given coherent configuration. However, if
the coherent configuration is schurian, then the orbits coincide with fibers
(statement (1) of Proposition 2.2.5), which can be found efficiently if the
coherent configuration is explicitly given. (Of course, the latter argument
does not help to test isomorphism of schurian coherent configurations.)

In general, the schurity problem (even for a class consisting of only one
coherent configuration) can be quite difficult. The following statement gives
a complete solution to it for the class of regular schemes (for semiregular
coherent configurations, see Exercise 2.7.35).

Theorem 2.2.11. Let X = (Ω, S) be a regular scheme. Then S is
a group with respect to the composition. Moreover, for a fixed α ∈ Ω, the
mapping

f : Ω → S, β 7→ r(α, β)∗

is a bijection satisfying the following conditions:

(1) S(X f ) = Sleft;
(2) Aut(X f ) = Sright;
(3) X f = Inv(Sright, S).

In particular, every regular scheme is schurian and the automorphism group
of it is regular.
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Proof. The regularity of X implies that S = S1(X ). Thus, S is a group
with respect to the composition by statement (2) of Theorem 2.1.25. Since
also r(α, β) = r(α, β′) if and only if β = β′, the mapping f is a bijection.
To prove statement (1), let s ∈ S. Then

sleft = {(x, s∗ · x) : x ∈ S}.

For each x ∈ S, let β and γ be such that βf = x and γf = s∗ · x. Then
by the definition of f , we have

(α, β) ∈ x∗ and (α, γ) ∈ x∗ · s.

Consequently,
(β, γ) ∈ x · x∗ · s = s.

This shows that the f -preimage of sleft is equal to s, as required.
The group Sright centralizes the group Sleft. By statement (1), this

implies that
Sright ≤ Aut(X f ).

On the other hand, the orbits of the group Aut(X )α are contained in the
sets αs, s ∈ S. Since the scheme X is regular, these sets and hence the
orbits are singletons. Consequently, the groups Aut(X )α and Aut(X ) are
trivial and of order n, respectively. Thus,

n = |Sright| ≤ |Aut(X f )| = |Aut(X )| = n,

and hence Aut(X f ) = Sright, which proves statement (2).
To prove statement (3), it suffices to note that the schemes X f and

Inv(Sright) have the same rank (namely, n), whereas

X f ≤ Inv(Aut(X f )) = Inv(Sright)

by statement (2). □
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2.2.4 Closed permutation groups

It is more convenient to discuss the 2-closedness concept in more general
setting. The theory presented below was developed by H. Wielandt in [126]
in the framework of the method of invariant relations that he used to study
permutation groups.

The m-closure. Let m be a positive integer. In the induced action of a
group K ≤ Sym(Ω) on the Cartesian power Ωm, a permutation k ∈ K takes
an m-tuple α = (α1, . . . , αm) to the m-tuple

αk = (αk1 , . . . , α
k
m).

Any orbit of this action is called an m-orbit of K.

Definition 2.2.12. Two permutation groups K and L on the same set Ω
are said to be m-equivalent if

(2.2.9) Orb(K,Ωm) = Orb(L,Ωm).

Everym-ary relation on Ω that is invariant with respect to the groupK is
obviously the disjoint union of some m-orbits of K. Therefore, the groups K
and L are m-equivalent if and only if they have the same set of invariant
m-ary relations.

Example 2.2.13. All transitive (respectively, 2-transitive) groups on the
same set are 1-equivalent (respectively, 2-equivalent). The groups K and L
are 2-equivalent if and only if Inv(K,Ω) = Inv(L,Ω).

The projection of an m-tuple α ∈ Ωm to the coordinates belonging to a
set I ⊆ {1, . . . ,m}, is denoted by prI(α). It is easily seen that

(2.2.10) prI(α)
k = prI(α

k), k ∈ Sym(Ω).

This immediately implies that the projections of an m-orbit of a group K
with respect to the set I of cardinality l, is an l-orbit of K. It follows that
any two m-equivalent groups are also l-equivalent for all 1 ≤ l ≤ m.

Let S be a set of relations of arbitrary arities on the set Ω. The auto-
morphism group of S is defined to be the group

(2.2.11) Aut(S) = {k ∈ Sym(Ω) : sk = s, s ∈ S}.

In particular, if S consists of one binary relation, then Aut(S) equals the
automorphism group of the corresponding graph, whereas if S = S(X ) for
a rainbow X , then Aut(S) = Aut(X ). Obviously,

(2.2.12) S ⊆ T ⇒ Aut(S) ≥ Aut(T ),

and the automorphism group of S is the largest subgroup of Sym(Ω) with
respect to which all the relation of S are invariant.

Definition 2.2.14. The m-closure of K ≤ Sym(Ω), is defined to be the
group
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K(m) = Aut(Orb(K,Ωm)),

or equivalently, the automorphism group of the set of all K-invariant rela-
tions of arity m.

In particular, the 1-closure of K equals the direct product of the groups
Sym(∆) with ∆ ∈ Orb(K) (statement (1) of Exercise 2.7.23), whereas the
2-closure of K is equal to the automorphism group of the coherent configu-
ration Inv(K). The following statement shows that taking the m-closure is
indeed a closure operator.

Theorem 2.2.15. Let K ≤ Sym(Ω) and m ≥ 1. Then

(1) K ≤ K(m);

(2) K and K(m) are m-equivalent;

(3) K(m) = L(m) whenever K and L are m-equivalent.

Proof. Statement (1) is obvious. By statement (1), any m-orbit s of

the group K(m) is a union of some m-orbits of the group K. On the other
hand, s cannot be larger than an orbit of K by the definition of m-closure.
Thus, K(m) and K have the same m-orbits, which proves statement (2).

Finally, if the groups K and L are m-equivalent, then equality (2.2.9)
holds and hence

K(m) = Aut(Orb(K,Ωm)) = Aut(Orb(L,Ωm)) = L(m)

which proves statement (3). □

Definition 2.2.16. The group K is said to be m-closed if K(m) = K.

By the above remark on the 1-closure, the 1-closed groups are the intran-
sitive direct products of the symmetric groups (taken in the natural action).
For m = 2, our definition coincides with that given earlier because of the
following natural characterization of m-closed groups as the automorphism
groups of m-ary relations.

Theorem 2.2.17. A permutation group K ≤ Sym(Ω) ism-closed if and
only if there exists a set S of m-ary relations on Ω such that K = Aut(S).

Proof. The necessity follows for S = Orb(K,Ωm). To prove the suffi-
ciency, let K = Aut(S), where S is a set of m-ary relations on Ω. Then
every relation of S is K-invariant. On the other hand, by statement (2) of
Theorem 2.2.15,

Orb(K(m),Ωm) = Orb(K,Ωm).

Thus every relation of S is also K(m)-invariant. Therefore,

Aut(S) ≥ K(m).

Now by statement (1) of Theorem 2.2.15,

K(m) ≥ K = Aut(S) ≥ K(m)
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implying K = K(m). □

Corollary 2.2.18. A permutation group K is 2-closed if and only if K
is the automorphism group of a coherent configuration.

From Theorem 2.2.15, it follows that K(m) is the largest subgroup in
the class of groups m-equivalent to K. In particular, each class of the m-
equivalence relation contains exactly one m-closed group and this group
equals the m-closure of any group in this class. If such a class consists of
exactly one group, then this group is equal to K = K(m); in this case, the
group K is said to be m-isolated, and is uniquely determined by the set of
m-orbits.

Example 2.2.19. The dihedral group K = D2n acting on n-points is
2-isolated. Indeed, K is the automorphism group of an indirected cycle with
n vertices. Therefore, K is 2-closed, and acts regularly on the 2n arcs of
the cycle. No proper subgroup of K can have the latter property. Thus, K
is 2-equivalent to no proper subgroup.

The base number. A sufficient condition for a group K ≤ Sym(Ω)
to be m-closed can be formulated in terms of the base number of K that is
defined below.

Definition 2.2.20. A set ∆ ⊆ Ω is called a base of K if the pointwise
stabilizer

K∆ = {k ∈ K : αk = α for all α ∈ ∆}
of ∆ in K is trivial.

Let ∆ = {α1, . . . , αb}. The group K∆ is equal to the stabilizer of the
point α = (α1, . . . , αb) in the action of K on Ωb. Therefore, ∆ is a base of K
if and only if the b-orbit αK is regular and faithful. In particular, the order
of K equals the cardinality of this orbit and hence

(2.2.13) |K| ≤ nb(K),

where
b(K) = min{|∆| : ∆ is a base of K}

is the base number of K. Clearly,

0 ≤ b(K) ≤ n− 1

with equalities if K = {id} and K = Sym(Ω), respectively. The following
theorem was proved by H. Wielandt [126, Theorem 5.12].

Theorem 2.2.21. A permutation group having a base of cardinality b
is (b+ 1)-closed.
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Proof. Let {α1, . . . , αb} be a base of a group K ≤ Sym(Ω). By state-
ment (1) of Theorem 2.2.15, it suffices to verify that

K(b+1) ≤ K.

To this end, let k ∈ K(b+1). Since the (b + 1)-orbits of the groups K

and K(b+1) coincide, for any α ∈ Ω there exists permutation kα ∈ K such
that

(2.2.14) (α1, . . . , αb, α)
k = (α1, . . . , αb, α)

kα .

It follows that for each β ∈ Ω,

(αi)
kβ = (αi)

k = (αi)
kα , i = 1, . . . , b.

Therefore,
kαk

−1
β ∈ Kα1,...,αb

= {id}.
Consequently, the permutation k0 := kα does not depend on α ∈ Ω. By
formula (2.2.14), this implies that

αk = αk0 for all α ∈ Ω.

Thus, k = k0 ∈ K, as required. □

Corollary 2.2.22. Any permutation group with base number b is (b+1)-
closed.

LetK be a semiregular permutation group. Then any point of the under-
lying set forms a base of K. Thus the following statement is an immediate
consequence of Corollary 2.2.22.

Corollary 2.2.23. Any semiregular permutation group is 2-closed.

The group K = Sym(n) is 1-closed but b(K) = n − 1. Therefore, the
bound in Theorem 2.2.21 can be arbitrarily far from the minimal number m
for which the group K is m-closed. On the other hand, Corollary 2.2.23
shows that the bound is attained for semiregular groups.

From formula (2.2.10), it follows that given l ≤ m, the induced action

of the group K(m) on the set Ωl leaves each l-orbit of K fixed (as a set).
Therefore,

l ≤ m ⇒ K(m) ≤ K(l).

In other words, the greater is m, the less is K (m). However, K (m) always
contains K (statement (1) of Theorem 2.2.15). Thus by Theorem 2.2.21,
the series of the m-closures collapses to K when m ≥ b+ 1.

Corollary 2.2.24. For any permutation group K of degree n and base
number b,

K(1) ≥ K(2) ≥ · · · ≥ K(b+1) = K = · · · = K(n).
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Non-closed groups from MDS-codes. Using Corollary 2.2.23, one
can easily find a 2-closed permutation group which is not 1-closed. However,
examples of (m+1)-closed groups which are not m-closed for m > 1 are not
so obvious.

Example 2.2.25. For m = 2, one can take the group of degree 6, given
by

(2.2.15) K = ⟨(1, 2)(3, 4), (3, 4)(5, 6)⟩.

A straightforward check shows that {1, 3} is a base of K. Therefore, K is
3-closed by Theorem 2.2.21. However, K is not 2-closed, because

|Aut(Inv(K))| = 8 and |K| = 4.

The above example is a special case of a general construction producing
a permutation group from an MDS-code. In accordance with [93, Chap. 11],
such a code can be thought as an m-dimensional subspace U of an n-
dimensional linear space V = (Fq)n that satisfies the following condition:

(2.2.16) dim(UI) = dim(U) for all I ⊆ {1, . . . , n}, |I| = m,

where UI = {prI(u) : u ∈ U}.
The additive group of U has a natural action on the disjoint union Ω

of n copies of F = Fq: given an element u = (u1, . . . , un) belonging to U ,
and an element α belonging to the ith copy Ωi,

αu = α+ ui.

This action defines an elementary abelian group K ≤ Sym(Ω) such that

Orb(K,Ω) = {Ω1, . . . ,Ωn} and KΩi ∼= F+.

One can see that the group defined by formula (2.2.15) is obtained for n = 2,
q = 2, m = 1, and U = Diag(F2).

Proposition 2.2.26. In the above notation, suppose that m < n. Then
the group K is (m+ 1)-closed but not m-closed.

Proof. Denote by L be the intransitive direct product of the groupsKΩi ,
i = 1, . . . , n. Then

L ≤ Sym(Ω) and Orb(L) = Orb(K).

In view of condition (2.2.16),

(2.2.17) KΩI = LΩI for all I ⊆ {1, . . . , n}, |I| = m,

where ΩI is the union of Ωi with i ∈ I.
Every m-orbit of K or L is contained in the product Ωi1 × · · · × Ωim ,

where ij ∈ {1, . . . , n} for all j. Therefore from formula (2.2.17), it follows
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that K and L are m-equivalent. Taking into account that m < n and hence
K < L, we conclude that

K < L ≤ L(m) = K(m),

i.e., K is not m-closed.
On the other hand, condition (2.2.16) implies that the restriction homo-

morphism K → KΩI with I = {1, . . . ,m} is an isomorphism. Taking into
account that the group KΩi , being abelian and transitive, is regular for all i,
we have

Kα1,...,αm = {id}
for any points αi ∈ Ωi with i ∈ I. Thus, {α1, . . . , αm} is a base of K, and
hence K is (m+ 1)-closed by Theorem 2.2.21. □
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2.3 Coherent algebras

With any permutation group K, one can associate the algebra of all
complex matrices centralizing the permutation matrices of the elements
of K. This algebra is called a centralizer algebra of K; it is closed under
the Hermitian conjugation and is a unitary algebra with respect to both
ordinary and Hadamard multiplications. Following D. Higman [66], every
matrix algebra satisfying these conditions is said to be coherent; the cellular
algebras introduced by B. Weisfeiler and A. Leman in [124] differ from the
coherent algebras: the algebra with respect to matrix multiplication is not
necessarily unitary.

There is a one-to-one correspondence between the coherent configura-
tions and coherent algebras that takes schurian coherent configurations to
the centralizer algebras of permutation groups, and symmetric schemes to
the well-known Bose–Mesner algebras. In the present section, we introduce
the coherent algebras and establish the above correspondence. This enables
us to define another type of isomorphisms for coherent configurations that
leads to the separability problem.

2.3.1 Adjacency algebra

Let X = (Ω, S) be a rainbow. The subset of the full matrix algebra
MatΩ, defined by

M = M(X ) = {As : s ∈ S},
consists of {0, 1}-matrices, which are pairwise orthogonal with respect to the
Hadamard multiplication (statement (2) of Exercise 1.4.8). Therefore, M is
a linear basis of the subspace spanned by the matrices of M,

A = Adj(X ) = SpanCM.

Definition 2.3.1. The linear basis M of the space A is called the stan-
dard basis of the rainbow X .

The rainbow axioms imply that the linear space A contains the identity
matrix IΩ, the all one matrix JΩ, and is closed under transposition. The
following statement is straightforward.

Proposition 2.3.2. The mapping s 7→ As, s ∈ S∪, defines a one-to-one
correspondence between the relations of X and {0, 1}-matrices of A. This
mapping takes S onto M. For any rainbow X ′ on Ω,

(2.3.1) X ≤ X ′ ⇔ Adj(X ) ≤ Adj(X ′).

From now on, we assume that X is a coherent configuration. Then by
statement (4) of Exercise 1.4.8 for all r, s ∈ S,

(2.3.2) Ar As =
∑
t∈S

ctrsAt.
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This means that the linear space A is an algebra of dimension |S| and the
intersection numbers of X are the structure constants of A with respect to
the standard basis M.

Definition 2.3.3. The matrix algebra A is called the adjacency algebra
of the coherent configuration X .

It is easily seen that

Adj(DΩ) = MatΩ and Adj(TΩ) = SpanC{IΩ, JΩ}.

It should be noted that exactly in the same way, one can define the adjacency
algebra of a coherent configuration over any field, and even over a ring; for
details, see [55].

Example 2.3.4. Let G be a group and X = Inv(Gright). Each basis
relation of X is of the form

sg = {(x, g−1x) : x ∈ G}

for some g ∈ G, and the standard basis M(X ) consists of the permutation
matrices

Asg = Pgleft .

It follows that the monomorphism defined by equality (1.4.3) induces an
algebra isomorphism from CG to Adj(X ). Thus the adjacency algebra of X
is isomorphic to the group algebra of G.

Now assume that the coherent configuration X is associated with a per-
mutation group K on Ω. Then for any s ∈ S and all k ∈ K, we have sk = s,
which implies by formula (1.4.4) that

As = P−1
k AsPk.

Since any matrix of the algebra A = Adj(X ) is a linear combination of the
basis matrices As, this shows that A is a subalgebra of the centralizer algebra
of the group K, i.e., the algebra of all A ∈ MatΩ that commute with each
permutation matrix Pk, k ∈ K.

Conversely, for any such matrix A,

Aα,β = (P−1
k APk)α,β = Aαk,βk

for all α, β ∈ Ω and k ∈ K. Therefore, A is a linear combination of the
matrices As, where s runs over the set Orb(K,Ω2) = S, i.e., A ∈ A. This
proves the following statement.

Proposition 2.3.5. The adjacency algebra of the coherent configuration
associated with a permutation group coincides with the centralizer algebra of
this group.

It should also be noted that if the group K is transitive and H is a point
stabilizer of K, then the bijection s 7→ Ds, s ∈ S, defined in statement (3) of
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Theorem 2.2.7, induces a linear isomorphism As 7→ Ds∗ from the adjacency
algebra of the coherent configuration Inv(K) to the algebra of double cosets
of HkH, k ∈ K. Exercise 2.7.20 shows that this linear isomorphism is an
algebra antiisomorphism.

The following characterization of the adjacency algebras in the class
of all matrix algebras immediately follows from the definition of coherent
configuration and Exercise 1.4.8.

Theorem 2.3.6. The adjacency algebra A of a coherent configuration
on Ω is coherent, i.e., satisfies the following conditions:

(A1) A is closed under the Hermitian conjugation;
(A2) A is an algebra with identity IΩ with respect to the matrix multi-

plication;
(A3) A is an algebra with identity JΩ with respect to the Hadamard mul-

tiplication.

Let A be a coherent subalgebra of MatΩ. With respect to the Hadamard
multiplication, A is a commutative algebra. It is also semisimple, because
contains no nonzero nilpotent elements. Therefore, there is a unique unity
decomposition

(2.3.3) JΩ = E1 + · · ·+ Ed,

where d is the dimension of A and the summands are pairwise orthogonal
idempotents.

Each matrix Ei, being an idempotent with respect to the Hadamard
multiplication, is a {0, 1}-matrix. Therefore Ei is the adjacency matrix of a
relation si on Ω. Set

S = {si : i = 1, . . . , d}.

Theorem 2.3.7. The pair X = (Ω, S) is a coherent configuration, and
A = Adj(X ).

Proof. All the matrices JΩ, E1, . . . , Ed are {0, 1}-matrices. In view of
formula (2.3.3), this implies that the set S forms a partition of Ω2. The
identity matrix IΩ is an idempotent of A and hence is the sum of some
idempotents Ei. Therefore, the condition (CC1) holds. The condition (CC2)
follows from the condition (A1).

Finally, since the matrices E1, . . . , Ed form a linear basis of the alge-
bra A, we have

EiEj =

d∑
k=1

ckijEk

for all i, j and integers ckij . In accordance with statement (4) of Exer-
cise 1.4.8, we have

ckij = |αsi ∩ βs∗j |.
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This proves the condition (CC3). Thus, X is a coherent configuration. The
fact that A = Adj(X ) is obvious from the construction. □

Corollary 2.3.8. A unitary algebra A ⊆ MatΩ is coherent if and only if
it has a linear basis consisting of {0, 1}-matrices, the sum of which equals JΩ,
that is closed under transposition.

Theorems 2.3.6 and 2.3.7 establish a one-to-one correspondence between
the coherent configurations on Ω and coherent subalgebras of MatΩ. This
gives us a freedom to use combinatorial or algebraic language in studying
coherent configurations. In the rest of this section, we present examples
showing interaction between these languages. Other examples appear in
Section 3.6 concerning the representation theory of the adjacency algebras.

The adjacency algebra A of the coherent configuration X is commutative
(with respect to the matrix multiplication) if and only if ArAs = AsAr for
all r, s ∈ S, or equivalently, if

ctrs = ctsr, r, s, t ∈ S.

In this case, the coherent configuration X is said to be commutative. Clearly,
the trivial scheme is commutative, whereas the discrete coherent configura-
tion of degree at least 2 is not.

Proposition 2.3.9. Let X be a coherent configuration. Then

X is symmetric ⇒ X is commutative ⇒ X is homogeneous.

Proof. Set A = Adj(X ). Assume that X is symmetric. Then A consists
of symmetric matrices. It follows that for all A,B ∈ A,

AB = ATBT = (BA)T = BA,

which proves the first implication.
To prove the second implication, let s ∈ S∆,Γ, where ∆ and Γ are distinct

fibers of X . Then obviously,

I∆As = A1∆·s = As and AsI∆ = As·1∆ = 0,

where I∆ ∈ MatΩ is the adjacency matrix of 1∆. It follows that I∆ and As
do not commute. Thus if X is commutative, then it is homogeneous. □

Our second example is presented by theWielandt principle. It enables us
to construct relations of a coherent configuration from a given matrix of its
adjacency algebra. This principle appears as Proposition 22.3 in book [125],
as a special case. Some applications of the Wielandt principle can be found
in Exercises 2.7.24 and 2.7.25.

Theorem 2.3.10. Let X be a coherent configuration on Ω. Then for
any matrix A ∈ Adj(X ) and any function f : C→ {0, 1}, the relation

(2.3.4) sf (A) = {(α, β) ∈ Ω2 : f(Aα,β) = 1}
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belongs to S(X )∪.

Proof. Since M(X ) is a linear basis of the algebra A = Adj(X ), there
exist complex numbers cs, s ∈ S, such that

A =
∑
s∈S

csAs.

All linear combinations of the basis matrices As belong to A. Therefore, the
algebra A contains the matrix

Af :=
∑
s∈S

f(cs)As.

It is a {0, 1}-matrix by the choice of f . Consequently, Af = Ar for some
relation r on Ω. This relation belongs to S(X )∪ by Proposition 2.3.2. Since
for all α, β ∈ Ω,

f(Aα,β) = 1 ⇔ f(cr(α,β)) = 1 ⇔ (Af )α,β = 1 ⇔ (Ar)α,β = 1,

we conclude that sf (A) = r belongs to S(X )∪. □

Our third example concerns the intersection of coherent configurations
on Ω. A naive idea to define this concept via the intersection of the sets of
basis relations does not work, because in this way one cannot get a partition
of Ω2. However, it is easy to define the intersection of coherent configurations
via the intersection of their adjacency algebras. Let us discuss this approach
in detail.

Let X1 and X2 be coherent configurations on Ω. The adjacency algebras
of them are coherent by Theorem 2.3.6. It is easily seen that the intersection
of these algebras satisfies the conditions (A1), (A2), and (A3) and hence is
also a coherent algebra on Ω. By Theorem 2.3.7, it is the adjacency algebra
of a certain coherent configuration on Ω. It is denoted by X1∩X2 and called
the intersection of X1 and X2. Thus,

(2.3.5) Adj(X1 ∩ X2) = Adj(X1) ∩Adj(X2).

The following statement gives an equivalent definition of the intersection
X1 ∩ X2 in terms of relations of X1 and X2.

Theorem 2.3.11. For any coherent configurations X1 and X2 on the
same set,

(2.3.6) S(X1 ∩ X2)
∪ = S(X1)

∪ ∩ S(X2)
∪.

In particular, X1 ∩ X2 is the largest common fusion of X1 and X2.

Proof. By Proposition 2.3.2, the set S(X1 ∩ X2)
∪ is in a one-to-one

correspondence with the set of {0, 1}-matrices of the algebra Adj(X1 ∩ X2).
This set is obviously equal to the intersection of the set of {0,1}-matrices
of Adj(X1) and the set of {0,1}-matrices of Adj(X2). Using Proposition 2.3.2
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again, we obtain equality (2.3.6). Now the second statement of the theorem
follows from this equality, because

X ≤ X1 and X ≤ X2 ⇒ S(X )∪ ⊆ S(X1)
∪ ∩ S(X2)

∪

for any coherent configuration X . □

At this point, one can define the lattice structure on the set of coherent
configurations on Ω. Namely, the meet and join of X1 and X2 are defined
to be the intersection X1 ∩ X2, and the intersection of all common fissions
of X1 and X2 (note that the discrete configuration on Ω is one of these
fissions), respectively. The minimal and maximal elements of the lattice
are, of course, the trivial and discrete configurations. Formula (2.3.5) shows
that the mapping X 7→ Adj(X ) is, in fact, a lattice isomorphism.

The following statement shows that the intersection is partially preserved
under the Galois correspondence between the coherent configurations and
permutation groups.

Theorem 2.3.12. For any groups K1,K2 ≤ Sym(Ω),

(2.3.7) Inv(K1) ∩ Inv(K2) = Inv(⟨K1,K2⟩),

and for any coherent configurations X1 and X2 on the same set,

(2.3.8) Aut(X1 ∩ X2) ≥ ⟨Aut(X1),Aut(X2)⟩.

Proof. To prove the second statement, let X1 and X2 be two coherent
configuration on the same set. Then X1 ∩ X2 ≤ X1 and X1 ∩ X2 ≤ X2

(Theorem 2.3.11). In view of the Galois correspondence (formula (2.2.5)),
this implies that

Aut(X1 ∩ X2) ≥ Aut(X1) and Aut(X1 ∩ X2) ≥ Aut(X2)

which proves inclusion (2.3.8). Substituting the coherent configurations
associated with groups K1,K2 ≤ Sym(Ω) to this inclusion, we obtain

Aut(Inv(K1) ∩ Inv(K2)) ≥ ⟨Aut(Inv(K1)),Aut(Inv(K2))⟩ ≥ ⟨K1,K2⟩,

where the latter inclusion follows from the right-hand side of formula (2.2.7).
Again by the Galois correspondence (formula (2.2.6)), this yields

Inv(Aut(Inv(K1) ∩ Inv(K2))) ≤ Inv(⟨K1,K2⟩).

However, by the left-hand side of formula (2.2.7), we have

Inv(K1) ∩ Inv(K2) ≤ Inv(Aut(Inv(K1) ∩ Inv(K2))).

Thus from the last two formulas, we obtain the inclusion

Inv(K1) ∩ Inv(K2) ≤ Inv(⟨K1,K2⟩).
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Conversely, both K1 and K2 are contained in ⟨K1,K2⟩ and hence

Inv(K1) ≥ Inv⟨K1,K2⟩ and Inv(K2) ≥ Inv⟨K1,K2⟩.

Thus the required inclusion follows from the Galois correspondence and
Theorem 2.3.11. □

Note that inclusion (2.3.8) can be strict. Indeed, let p be a prime, and
let K ≤ Sym(p) be a 2-transitive Frobenius group of order p(p− 1). Then

K = ⟨K1,K2⟩,

where K1 and K2 are cyclic subgroups of K of the orders p and p − 1,
respectively. By formula (2.3.7),

(2.3.9) Inv(K1) ∩ Inv(K2) = Inv(⟨K1,K2⟩) = Inv(K) = Tp,

where the latter equality holds by the 2-transitivity of K.
On the other hand, the group K1 is regular and the group K2 acts

regularly on p−1 points. Consequently, they are 2-closed by Theorem 2.2.21.
Thus,

(2.3.10) K1 = Aut(Inv(K1)) and K2 = Aut(Inv(K2)).

Now set
X1 = Inv(K1) and X2 = Inv(K2).

Then equalities (2.3.9) and (2.3.10) imply respectively that

|Aut(X1 ∩ X2)| = |Aut(Tp)| = p!

and
|⟨Aut(X1),Aut(X2)⟩ = |K| = p(p− 1).

Thus, ⟨Aut(X1),Aut(X2)⟩ is a proper subgroup of Aut(X1 ∩ X2) for p ≥ 5.

Corollary 2.3.13. The intersection of schurian coherent configurations
is schurian.

Proof. Follows from formula (2.3.7). □
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2.3.2 Algebraic isomorphisms

One more type of isomorphisms of coherent configurations comes from
matrix algebra isomorphisms of the corresponding adjacency algebras. More
precisely, let X = (Ω, S) and X ′ = (Ω′, S′) be coherent configurations.

Definition 2.3.14. A bijection

(2.3.11) φ : S → S′, s 7→ s′

is called an algebraic isomorphism from X to X ′ if

(2.3.12) ctrs = ct
′
r′s′ for all r, s, t ∈ S.

The set of all such algebraic isomorphism φ is denoted by Isoalg(X ,X ′).
The coherent configurations X and X ′ are said to be algebraically isomorphic
if this set is not empty. Clearly,

Autalg(X ) := Isoalg(X ,X )

is a permutation group on S; its elements are called algebraic automorphisms
of X . Obviously, the group Autalg(TΩ) is trivial.

Example 2.3.15. Let X be a commutative scheme. Then from (2.1.3),
it follows that the bijection φ : s 7→ s∗ is an algebraic automorphism of X .

Example 2.3.16. Let ∆ and Γ be classes of an indecomposable partial
parabolic of a coherent configuration X = (Ω, S). Then by statement (1) of
Theorem 2.1.22, the mapping

φ∆,Γ : S∆ → SΓ, s∆ 7→ sΓ

is a bijection. Equalities (2.3.12) follow from formula (2.1.16). Thus,

φ∆,Γ ∈ Isoalg(X∆,XΓ).

An algebraic isomorphism φ ∈ Isoalg(X ,X ′) is said to be induced by a
bijection f : Ω → Ω′ if

φ(s) = sf for all s ∈ S.

In this case, f takes S to S′ and hence is an isomorphism from X to X ′.
Conversely, each isomorphism f ∈ Iso(X ,X ′) obviously preserves the

intersection numbers and hence induces an algebraic isomorphism

φf : S → S′, s 7→ sf .

It should be emphasized that the set

Iso(X ,X ′, φ) := {f ∈ Iso(X ,X ′) : φf = φ}
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may be empty. This is exactly the case when the algebraic isomorphism φ is
induced by no bijection. Such a situation is quite common (see Section 2.5)
and leads to the separability problem discussed below.

In general, the mapping

(2.3.13) Iso(X ) → Autalg(X ), f 7→ φf ,

is a group homomorphism which is an epimorphism if and only if the set
Iso(X ,X , φ) is not empty for all φ ∈ Autalg(X ). The kernel of this homo-
morphism coincide with the automorphism group of X , because

Iso(X ,X , idS) = Aut(X ).

To see how the algebraic isomorphisms relate with isomorphisms of adja-
cency algebras, let A = Adj(X ) and A′ = Adj(X ′). Every bijection (2.3.11)
induces a bijection

M(X ) → M(X ′), As 7→ As′

between the standard basises of A an A′. This bijection is extended to a
linear space isomorphism between these algebras; it is convenient to denote
this isomorphism again by φ. Note that it obviously respects the Hadamard
multiplication.

If the initial bijection is an algebraic isomorphism, then φ preserves the
structure constants with respect to the standard basis (see formula (2.3.12)).
Thus,

(2.3.14) φ : A → A′,
∑
s∈S

asAs 7→
∑
s′∈S′

asAs′

is an algebra isomorphism with respect to the matrix multiplication. This
proves the necessity in the following statement.

Proposition 2.3.17. Let X and X ′ be coherent configurations. Then a
bijection φ : S(X ) → S(X ′) is an algebraic isomorphism from X to X ′ if
and only if

(2.3.15) φ(AB) = φ(A)φ(B) and φ(A ◦B) = φ(A) ◦ φ(B)

for all A,B ∈ Adj(X ).

Proof. By the above remark, it suffices to verify the sufficiency only.
Assume that equalities (2.3.15) hold. The right-hand side formula implies
that φ takes the primitive idempotents of the algebra Adj(X ) with respect
to the Hadamard multiplication, to those of the algebra Adj(X ′). Therefore,

M(X )φ = M(X ′).

Thus the mapping S(X ) → S(X ′), s 7→ s′ such that φ(As) = As′ , is a
bijection. In view of formula (2.3.2), the left-hand side formula in (2.3.15)
implies that this bijection satisfies condition (2.3.12). Thus, φ is an algebraic
isomorphism from X to X ′. □
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Let s be a relation of the coherent configuration X , i.e., s = s1 ∪ · · · ∪ sk
for some k ≥ 1 and basis relations si, i = 1, . . . , k. Then

(2.3.16) φ(s) := φ(s1) ∪ · · · ∪ φ(sk)

is a relation of the coherent configuration X ′. It is easily seen that the map-
ping s 7→ φ(s) is a bijection from S∪ onto (S′)∪. The main properties of this
bijection are presented in several statements below; some other properties
are given in Exercises 2.7.29–2.7.32.

Proposition 2.3.18. For any r, s ∈ S∪,

(1) r ⊆ s implies φ(r) ⊆ φ(s);
(2) φ(r · s) = φ(r) · φ(s);
(3) s is reflexive if and only if so is φ(s);
(4) φ(s∗) = φ(s)∗.

Proof. Obviously, r ⊆ s if and only if Ar ◦As = Ar. By the right-hand
side of formula (2.3.15), this implies statement (1). In the rest of the proof,
we may assume that r, s ∈ S. Now statement (2) immediately follows from
the fact that r · s is the union of all t ∈ S for which ctrs ̸= 0. Next,

s ⊆ 1Ω ⇔ AsAs = As and As ◦As = As.

Thus statement (3) is a consequence of Proposition 2.3.17. Finally, state-
ment (4) follows from statement (3) and statement (1) of Exercise 2.7.6. □

Remark 2.3.19. Proposition 2.3.17 together with statement (4) of Propo-
sition 2.3.18 show that the algebraic isomorphisms are nothing else than the
coherent algebra isomorphisms.

Corollary 2.3.20. ns = nφ(s) for all s ∈ S.

Let us define the image of a fusion Y of the coherent configuration X
with respect to the algebraic isomorphism φ by

Yφ = (Ω′, φ(T )),

where T = S(Y). By statement (1) of Exercise 2.7.29, the set φ(T ) forms
a partition of Ω′, and statements (3) and (4) of Proposition 2.3.18 show
that Yφ is a rainbow.

For any basis relations r, s, and t of Y, and any points α′, β′ ∈ Ω′, the
number

|α′r′ ∩ β′s′| =
∑

u∈S,u⊆r

∑
v∈S,v⊆s

cwuv∗

depends neither on the relation w ⊆ t, nor on the pair (α′, β′) ∈ t′. This
proves the following statement.

Corollary 2.3.21. In the above notation, Yφ is a coherent configuration
and the restriction of φ to S(Y) is an algebraic isomorphism from Y to Yφ.
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Although the algebraic isomorphism φ is not defined on the points of X ,
one can extend φ to homogeneity sets of X . Namely, in view of statement (3)
of Proposition 2.3.18, for any homogeneity set ∆ of X the relation φ(1∆) is
reflexive. It follows that it equals 1∆′ for some homogeneity set ∆′ of X ′.

Denoting the set ∆′ by ∆φ, we have

φ(1∆) = 1∆φ , ∆ ∈ F (X )∪.

Since φ induces a bijection between the reflexive relations of X and X ′, the
mapping ∆ 7→ ∆φ is a bijection from F∪ onto (F ′)∪ that takes F = F (X )
to F ′ = F (X ′).

Proposition 2.3.22. For all ∆,Γ ∈ F∪,

(1) φ(S∆,Γ) = S′
∆φ,Γφ ;

(2) |∆| = |∆φ|.
Proof. By statement (2) of Proposition 2.3.18, for all s ∈ S,

φ(1∆ · s · 1Γ) = 1∆φ · φ(s) · 1Γφ .

It follows that
φ(S∆,Γ) ⊆ S′

∆φ,Γφ .

The reverse inclusion is obtained in the same way with φ replaced by φ−1.
This proves statement (1).

Next, set ∆′ = ∆φ. From formula (2.1.13) applied for the coherent
configurations X∆ and X ′

∆′ , it follows that

|∆| =
∑
s∈S∆

ns and |∆′| =
∑
s′∈S′

∆′

ns′ .

Since φ(S∆) = S′
∆′ by statement (1), and ns = ns′ by Corollary 2.3.20, we

conclude that |∆| = |∆′|. □

Corollary 2.3.23. For any s ∈ S∪,

(1) |s| = |φ(s)|;
(2) Ω±(s)

φ = Ω±(φ(s)); in particular, Ω(s)φ = Ω(φ(s)).

Proof. Let ∆ ∈ F∪ be such that s ∈ S∆,Ω. Then by Proposition 2.3.22,
we have

s′ ∈ S′
∆′,Ω′ and |∆| = |∆′|,

where s′ = φ(s) and ∆′ = ∆φ. By formula (2.1.5) and Corollary 2.3.20, this
implies that

|s| = |∆| · ns = |∆′| · ns′ = |s′|.
This proves statement (1). Statement (2) follows from statement (1) of
Proposition 2.3.22. □

Corollary 2.3.24.Algebraically isomorphic coherent configurations have
the same degree, rank, and the number of fibers.
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Let ∆ be a homogeneity set of a coherent configuration X . From state-
ment (1) of Proposition 2.3.22, it follows that the algebraic isomorphism φ
induces a bijection

φ∆ : S∆ → S′
∆′ s∆ 7→ φ(s)∆′ ,

which is obviously an algebraic isomorphism from X∆ to X ′
∆′ ; it is called the

restriction of φ to ∆. Thus the homogeneous components of X are in one-
to-one correspondence with those of X ′, and the algebraic isomorphism φ
induces by restriction the algebraic isomorphisms between the corresponding
homogeneous components of X and X ′.

Let e be a relation of the coherent configuration X . From Corollary 2.1.19
and statement (2) of Exercise 2.7.29, it follows that e is a partial parabolic
of X if and only if φ(e) is a partial parabolic of X ′. This proves the first
part of the following proposition.

Proposition 2.3.25. The algebraic isomorphism φ induces a bijection
from E = E(X ) onto E′ = E(X ′). Moreover, for any e ∈ E,

(1) φ induces a bijection between the indecomposable components of e
and φ(e);

(2) e is indecomposable if and only if so is φ(e);
(3) |Ω/e| = |Ω′/φ(e)|.

Proof. The induced bijection φ : E → E′ takes any representation of e
as a disjoint union of nonempty partial parabolics contained in E to the
corresponding representation of e′ with the same number of the summands.
This proves statement (1) and hence statement (2).

To prove statement (3), we may assume that e and e′ are indecomposable.
By statement (2) of Corollary 2.3.23, we have Ω(e)φ = Ω(e′) and hence

(2.3.17) |Ω(e)| = |Ω(e′)|

by statement (2) of Proposition 2.3.22. Since all the classes of e have
the same cardinality, and the same is true for e′ (statement (2) of Theo-
rem 2.1.22), it suffices to verify that there exist ∆ ∈ Ω/e and ∆′ ∈ Ω′/e′

such that
|∆| = |∆′|.

But this is an immediate consequence of the fact that in accordance with
Exercise 2.7.31 and Corollary 2.3.24, the coherent configurations X∆ and X ′

∆′

are algebraically isomorphic. □
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2.3.3 Algebraic fusions

Let X = (Ω, S) be a coherent configuration, and let Φ be a group of
algebraic automorphisms of X . Given s ∈ S, set

sΦ =
⋃
φ∈Φ

φ(s).

Clearly, the relations rΦ and sΦ have nonempty intersection if and only if
r and s belong to the same orbit of Φ acting on S, and in the latter case
rΦ = sΦ. Therefore the set

SΦ = {sΦ : s ∈ S}

forms a partition of Ω2. Furthermore, statements (3) and (4) of Proposi-
tion 2.3.18 imply that the pair

XΦ = (Ω, SΦ)

is a rainbow. Note that XΦ ≤ X with equality if and only if the group Φ is
trivial.

Lemma 2.3.26. The rainbow XΦ is a coherent configuration.

Proof. By Theorem 2.3.7, it suffices to verify that the linear space

AΦ = Adj(XΦ)

is a coherent algebra with the standard basis {AsΦ : s ∈ S}. Since AΦ

is closed under the Hermitian conjugation and the Hadamard multiplica-
tion, we only need to verify that it is closed also with respect to matrix
multiplication.

By Proposition 2.3.17, the group Φ acts as an automorphism group of
the algebra A = Adj(X ), where the action is as in formula (2.3.14). In
particular, for any s ∈ S,

(As)
Φ :=

∑
φ∈Φ

Aφ(s) = |Φs|AsΦ ,

where Φs is the stabilizer of s in Φ. It follows that for any φ ∈ Φ,(
|Φs|AsΦ

)φ
=
(∑
ψ∈Φ

Aψ(s)

)φ
=
∑
ψ∈Φ

Aψφ(s) =
∑
ψ′∈Φ

Aψ′(s) = |Φs|AsΦ ,

where ψ′ = ψφ. Consequently, the linear space AΦ consists of all matrices
of A that are fixed by any element of the group Φ,

AΦ = {A ∈ A : AΦ = A}.

Since the right-hand side is obviously closed under the matrix multiplication,
we are done. □
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Definition 2.3.27. The coherent configuration XΦ is called the algebraic
fusion of X with respect to the group Φ.

In a special case when we are given a group K ≤ Iso(X ) such that

Φ = ΦK = {φf : f ∈ K},

the coherent configuration XK := XΦK is called the algebraic fusion of X
with respect to K. In this case, K normalizes Aut(X ) (Exercise 2.7.18 for
X = Inv(K)). Therefore, each 2-orbit of the group Aut(X )K equals the
union of the relations

(α, β)Aut(X )k = (α, β)kAut(X )

where α, β ∈ Ω and k ∈ K. Since this union is a 2-orbit of Aut(X )K, we
arrive at the following statement.

Proposition 2.3.28. Let X be schurian and K ≤ Iso(X ). Then

(2.3.18) XK = Inv(Aut(X )K,Ω).

In particular, the algebraic fusion XK is schurian.

Now let X = DΩ. Then the group Aut(X ) is trivial and formula (2.3.18)
implies that

(2.3.19) (DΩ)
K = Inv(K,Ω).

This shows that every schurian coherent configuration on Ω is the algebraic
fusion of the discrete configuration DΩ.
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2.3.4 Separable coherent configurations

An old problem in permutation group theory is to characterize a given
permutation group up to isomorphism by its combinatorial invariants, e.g.,
by subdegrees [61, 62].4 Similar problems arise in combinatorics where one
would like to characterize up to isomorphism a combinatorial structure, for
instance a design, by its parameters, see, e.g., [13]. To deal with problems
of this type, it is convenient to give the following definition.

Definition 2.3.29. A coherent configuration X is said to be separable
with respect to a class K of coherent configurations if for any X ′ ∈ K, every
algebraic isomorphism from X to X ′ is induced by an isomorphism, i.e.,

Iso(X ,X ′, φ) ̸= ∅ for all X ′ ∈ K and φ ∈ Isoalg(X ,X ′).

Certainly, X is separable with respect to any class not containing a
coherent configuration algebraically isomorphic to X . If the class K consists
only of X , then the separability of X with respect to K is equivalent to the
surjectivity of the homomorphism (2.3.13).

Separability problem. Given any two classes K1 and K2 of coherent
configurations identify all coherent configurations in K1 that are separable
with respect to K2.

We are often interested in the case where K1 consists of a single coherent
configuration and K2 is the class of all coherent configurations.

Definition 2.3.30. A coherent configuration separable with respect to
the class of all coherent configurations is said to be separable.

Thus a separable coherent configuration is determined up to isomorphism
by the intersection numbers (more exactly, by the tensor of them). In this
sense, aforementioned results [61, 62] show that the coherent configura-
tions of certain permutation groups are separable with respect to the class
of schurian coherent configurations.

Example 2.3.31. The trivial and discrete coherent configurations are
separable, because they are determined up to isomorphism by the degree and
rank, which are preserved by algebraic isomorphisms (Corollary 2.3.24).

In accordance with computations made by A. Hanaki (2017), every
scheme X of degree up to 14 is separable and there are several non-separable
schemes of degree 15 (the smallest degree for which there exist algebraically
isomorphic but not isomorphic schemes is equal to 16). Among them, one
can find a unique antisymmetric scheme of degree 15 and rank 3, which was
mentioned as the non-schurian scheme of the smallest degree.

4The subdegrees of a transitive group K are the cardinalities of the orbits of a point
stabilizer of K.
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Example 2.3.32. Let X be the coherent configuration of degree 14 that
was used in Subsection 2.2.3 to construct the smallest non-schurian coherent
configuration. Denote by φ the transposition in Sym(S) interchanging two
basis relations of valency 2 in SΩ1,Ω2. A computer calculation shows that

φ ∈ Autalg(X ).

This implies that the algebraic fusion X ⟨φ⟩ is the smallest non-schurian co-
herent configuration. It follows that φ is not induced by a bijection (Propo-
sition 2.3.28). Thus the coherent configuration X is not separable.

At present, the coherent configuration in Example 2.3.32 is the only
known non-separable coherent configuration of degree at most 14. It would
also be interesting to find infinitely many non-schurian coherent configura-
tions that are separable.

The question of whether a given coherent configuration is separable
seems to be very difficult. For example, the scheme of conjugacy classes
of a group (Example 2.4.3) is separable only if this group is determined up
to isomorphism by the character table (Exercise 3.7.58).

In the following sections, we will meet many examples of separable and
non-separable coherent configurations and find some sufficient conditions
for a coherent configuration to be separable. At this point, we solve the
separability problem in the case when K1 and K2 are the classes of regular
and all coherent configurations, respectively (for the semiregular coherent
configurations, see Exercise 2.7.35).

Theorem 2.3.33. Every regular scheme is separable.

Proof. Let X = (Ω, S) be a regular scheme, X ′ = (Ω′, S′) a coherent
configuration, and φ ∈ Isoalg(X ,X ′). By Corollary 2.3.24,

|Ω| = |Ω′| and |S| = |S′|.

The regularity of X implies that |Ω| = |S|, which yields

|Ω′| = |Ω| = |S| = |S′|.

Consequently, X ′ is a regular scheme (Theorem 2.1.29). By Theorem 2.2.11,
we may assume that Ω = G, Ω′ = G′, and

(2.3.20) S = Gleft and S′ = G′
left,

where G and G′ are groups of the same order. Hence, φ : Gleft → G′
left

is a group isomorphism (statement (2) of Proposition 2.3.18). It induces a
group isomorphism f : G→ G′ defined by the equality

φ(gleft) = f(g)left, g ∈ G.

This isomorphism obviously induces φ, and by virtue of (2.3.20) takes S
to S′. Thus, f ∈ Iso(X ,X ′, φ). Since φ was arbitrary, the scheme X is
separable. □
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Corollary 2.3.34. Let G and G′ be groups. Then the schemes Inv(Gright)
and Inv(G′

right) are algebraically isomorphic if and only if the groups G
and G′ are isomorphic.
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2.4 Cayley schemes and Schur rings

Two opposite poles in the world of coherent configurations are repre-
sented by the coherent configurations with trivial automorphism group and
schurian coherent configurations. An intermediate position is occupied by
the coherent configurations admitting a regular automorphism group. From
combinatorial and algebraic points of view they can be considered as the
Cayley schemes (also called the translation schemes in [17]) and the Schur
rings (also called S-rings in [125]), respectively. This section provides an
introduction in the theory of these objects.

Definition 2.4.1. Let G be a group. A coherent configuration X =
(Ω, S) is called a Cayley scheme over G if

(2.4.1) Ω = G and Aut(X ) ≥ Gright.

Conditions (2.4.1) imply that the group Aut(X ) is transitive. Therefore
the coherent configuration X is homogeneous. Each relation s ∈ S is the
arc set of a Cayley graph over G,

Cay(G,X) = (G, {(x, y) ∈ G2 : yx−1 ∈ X}),

where X is the neighborhood of the identity of G in the relation s. Thus
a Cayley scheme over G can be considered as a special partition of the
Cartesian product G2 into Cayley graphs over G.

In view of the Galois correspondence, the second inclusion in (2.4.1)
implies that the Cayley scheme X has a regular fission which is the scheme
associated with the group Gright,

(2.4.2) Inv(Gright, G) ≥ X .

This fission is the largest element in the inherited partial order on the set
of all Cayley schemes over G. The smallest one is obviously the trivial
scheme TG.

It follows from definition that the Galois correspondence in Theorem 2.2.8
induces a Galois correspondence between the Cayley schemes over G and the
permutation groups on G that contain Gright as a subgroup.

Example 2.4.2. Any cyclotomic scheme over a field F is a Cayley
scheme over the additive group F+ of this field.

This example is easily generalized to the schemes Inv(K,G), where G
is the additive group of an n-dimensional linear space over a field F and
K ≤ AGL(n,F) contains G as a subgroup.

Example 2.4.3. For any group G, the coherent configuration X =
Inv(K,G) with K = ⟨Gright, Gleft⟩ is a Cayley scheme over G.

In the above examples, the stabilizer of the identity of G in K is a
subgroup of Aut(G). This situation can easily be generalized as follows.
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Definition 2.4.4. A cyclotomic scheme over a group G associated with
a group M ≤ Aut(G) is defined to be the scheme

(2.4.3) Cyc(M,G) := Inv(GrightM,G).

Note that Example 2.4.3 is obtained as a special case with M = Inn(G)
(Exercise 1.4.13).

The relations of a Cayley scheme X over a group G admit a description
in terms of this group. Namely, let s ∈ S∪. Inclusion (2.4.2) implies that
s is the union of the relations gleft for some g ∈ G (see statement (1) of
Theorem 2.2.11 for f = idG). Since the element g is a unique neighbor of
the identity of G in gleft, the set Xs of all of these g coincides with the
neighborhood of the identity in s. Thus,

(2.4.4) s =
⋃
g∈Xs

gleft and As =
∑
g∈Xs

Pgleft .

In particular, if the group G is abelian, then the matrices Pgleft commute
with each other. But then so do the matrices As, which implies that the
algebra Adj(X ) is commutative.

Proposition 2.4.5. Every Cayley scheme over an abelian group is
commutative.

Let X and X ′ be Cayley schemes over groups G and G′, respectively.

Definition 2.4.6. A group isomorphism f : G → G′ is called a Cayley
isomorphism from X to X ′ if f ∈ Iso(X ,X ′); in this case, X and X ′ are
said to be Cayley isomorphic. The set of all Cayley isomorphisms from X
to X ′ is denoted by Isocay(X ,X ′).

Certainly,
Isocay(X ,X ′) ⊆ Iso(X ,X ′).

The reverse inclusion is not true because an isomorphism do not necessarily
sends the identity element of G to the identity element of G′. The group

Isocay(X ) := Isocay(X ,X )

contains a normal subgroup

Autcay(X ) := Aut(X ) ∩ Isocay(X ).

Any element of this subgroup is called the Cayley automorphism of the
Cayley scheme X . One can see that

Autcay(X ) ≤ Aut(G).

Example 2.4.7. Let X = Inv(Gright) and X ′ = Inv(G′
right). Since any

isomorphism between X and X ′ preserves the composition of basis relations
(statement (2) of Proposition 2.3.18), Theorem 2.2.11 implies that
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Isocay(X ,X ′) = Iso(G,G′).

For X = X ′, this shows that

Isocay(X ) = Aut(G)

and the group Autcay(X ) is trivial.

A homogeneous coherent configuration can be isomorphic to Cayley
schemes over non-isomorphic groups: for example, Tn is isomorphic to the
Cayley scheme TG over any group G of order n. A Cayley representation
of a scheme X with respect to a group G is defined to be an isomorphism
from X to a Cayley scheme over G. Two such representations fY : X → Y
and fZ : X → Z are equivalent if sfYσ = sfZ for all s ∈ S(X ) and some
σ ∈ Aut(G). All Cayley representations of Tn with respect to a fixed group
of order n are obviously equivalent. The following statement goes back to
the Babai lemma [4, Lemma 3.1].

Theorem 2.4.8. The classes of equivalent Cayley representations of a
scheme X with respect to a group G are in one-to-one correspondence with
the conjugacy classes of regular subgroups of Aut(X ) that are isomorphic
to G.

Proof. Let X be a scheme on Ω. For every Cayley representation fY ∈
Iso(X ,Y), we set

GY = fYGrightf
−1
Y .

Obviously, GY is a regular subgroup of Aut(X ). If two Cayley repre-
sentations fY and fZ are equivalent, then there exists an automorphism
σ ∈ Aut(G) such that sfYσ = sfZ for all s ∈ S(X ). In particular,

(2.4.5) (GY)
fYσf

−1
Z = (Gright)

f−1
Z = GZ .

and the permutation fYσf
−1
Z is an automorphism of X . Thus this per-

mutation conjugates the groups GY and GZ inside Aut(X ) (see (2.4.5)).
Conversely, any automorphism of X that conjugates GY and GZ can be
written in the form fYσf

−1
Z for some σ ∈ Aut(G). □

Any partial parabolic of a Cayley scheme is a parabolic, and all the
parabolics are parametrized by some subgroups of the underlying group.
Namely, let e be a parabolic of a Cayley scheme X over a group G. Denote
by X the class of e that contains the identity element of G, and set

(2.4.6) H = {g ∈ G : Xg = X}.

ThenH is a subgroup of G isomorphic to the setwise stabilizer ofX in Gright.
Furthermore, H ⊆ X as X contains the identity element of G.

On the other hand, any x ∈ X belongs to the group H: indeed, xright

being an automorphism of X , preserves the parabolic e and takes the identity
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element of G to x ∈ X. Therefore,

X = Xxright = X x.

It follows that x ∈ H and hence X ⊆ H.
Thus, X coincides with H, and so is a subgroup of G. Since the group

Gright is transitive, any class of e is of the form Hg for some g ∈ G. This
proves the following useful statement.

Proposition 2.4.9. The classes of any parabolic of a Cayley scheme
over a group G are the right cosets of a certain subgroup of G.

To formulate the next result known as the Schur theorem on multipliers,
we need some preparation. Let G be a group of order n. Given an integer m
coprime to n, the mapping σm defined in (1.4.10) is a permutation of the
elements of G. The number m is called the multiplier of a Cayley scheme X
over G if

σm ∈ Iso(X ),

or equivalently, if sσm ∈ S for all s ∈ S, where S = S(X ). One can see that
the set of all multipliers modulo n, is a subgroup of the multiplicative group
of the ring Zn.

Theorem 2.4.10. Let X be a Cayley scheme over an abelian group G
of order n. Then any integer m coprime to n is a multiplier of X . In
particular,

σm ∈ Isocay(X ).

Proof. Let s ∈ S and m ∈ Z. Since sσm1m2 = sσm1σm2 for all integers
m1 and m2 coprime to n, without loss of generality we may assume that
m = p is a prime.

We make use of the well-known fact that the coefficient at xa11 · · ·xadd
of the polynomial (x1 + · · · + xd)

p in the variables x1, . . . , xd equals the
multinomial number (

p

a1, . . . , ad

)
=

p!

a1! · · · ad!
,

where the ai are nonnegative integers whose sum is p. By the primality of p,
this number is divided by p only if one of the ai is equal to p.

Using the right-hand side of formula 2.4.4, we obtain

(2.4.7) (As)
p = (

∑
g∈Xs

Ag)
p ≡

∑
g∈Xs

(Ag)
p =

∑
g∈Xs

Agp = Asσp (mod p),

where Xs is the neighborhood of the identity of G in the relation s and Ag
is the permutation matrix corresponding to the left multiplication by g−1.

It follows that
sσp = sf (A

p
s),
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where f is the function such that f(x) = 0 if x is not integer or p divides x,
and f(x) = 1 otherwise, and the operator sf is defined by (2.3.4). By the
Wielandt principle (Theorem 2.3.10), this implies that

sσp ∈ S∪.

We claim that sσp ∈ S. Indeed, otherwise X has a basis relation t
contained in sσp . Denote by p′ the inverse of p in Z×

n . Then (p′, n) = 1 and
pp′ = 1 (mod n). Consequently,

tσp′ ⊊ sσpp′ = s.

However, by the first part of the proof, tσp′ ∈ S∪. Thus, s ̸∈ S, a contradic-
tion. □

One can use Theorem 2.4.10 to get a direct proof that every Cayley
scheme over a (cyclic) group of prime order p is isomorphic to a cyclotomic
scheme over the field Fp. However, we deduce this fact in Section 4.5 from
a more general statement.

In accordance with Corollary 2.2.18, the automorphism groups of the
Cayley schemes X over a group G are exactly the 2-closed permutation
groups containing Gright as a subgroup. When this subgroup is normal
in Aut(X ),

Gright ⊴ Aut(X ),

we say that X is a normal Cayley scheme over the group G. Obviously, any
regular Cayley scheme is normal.

Example 2.4.11. A nontrivial cyclotomic scheme over a finite field F
is a normal Cayley scheme over the additive group of F (Theorem 2.2.4).

In general, a normal Cayley scheme is neither schurian nor separable.
A lot of examples can be found in the class of affine schemes defined later
in Subsection 2.5.2. On the other hand, any normal Cayley scheme over a
cyclic group is schurian, and separable with respect to the class of all Cay-
ley schemes over a cyclic group (Exercise 4.7.38). The following statement
shows, in particular, that any normal schurian Cayley scheme is cyclotomic
(note that the converse is not true).

Theorem 2.4.12. A Cayley scheme X over a group G is normal if
and only if

Aut(X ) ≤ Gright Aut(G).

Proof. The sufficiency is obvious. Conversely, we assume that X is
normal. Let k be an automorphism of X . Since Aut(X ) contains Gright,
without loss of generality we may assume that k leaves the identity α of the
group G fixed.
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The normality of X implies that k induces by conjugation an automor-
phism of Gright. Hence there exists σ ∈ Aut(G) such that

(2.4.8) k−1grightk = (gσ)right for all g ∈ G.

The images of the point α with respect to the permutations on the left- and
right-hand sides are equal to

(αk
−1
g)k = (αg)k = gk and αgσ = gσ,

respectively. By formula (2.4.8), this implies that gk = gσ for all g ∈ G. It
follows that k = σ belongs to Aut(G), as required. □

Corollary 2.4.13. The automorphism groups of the normal Cayley
schemes over a group G are exactly the 2-closed subgroups of Gright Aut(G).

Concluding the discussion of Cayley schemes, we note that among them
one can find many non-schurian and non-separable, see Example 2.6.15 and
Exercise 2.7.61.

The rest of the section is devoted to the Schur rings, which provide a
very convenient tool simplifying computations with adjacency algebras. To
explain the method of Schur rings introduced in [115], let us fix a group G
with identity element α.

Definition 2.4.14. A subring A of the group ring ZG is called a Schur
ring (S-ring, for short) over G if there exists a partition S = S(A) of G
such that

(SR1) {α} ∈ S;
(SR2) X ∈ S ⇒ X−1 ∈ S;
(SR3) A = SpanS, where S = {X : X ∈ S}.

The elements of S and the number rk(A) = |S| are called respectively
the basic sets and the rank of the S-ring A. Any union of basic sets is called
an A-set. Each subgroup of G that is at the same time A-set, is called
A-group; the set of all of them is denoted by E(A). The condition (SR3)
implies that for any X,Y ∈ S,

X Y =
∑
Z∈S

cZX,Y Z,

where cZX,Y are nonnegative integers.

Example 2.4.15. Let G be the additive group of the ring Z5; here α = 0
and the multiplication in G is written in the additive form. The sets

X = {0}, Y = {1,−1}, Z = {2,−2}

form a partition S of G. This partition obviously satisfies the condition
(SR1), and satisfies (SR2), because X−1 = X, Y −1 = Y , and Z−1 = Z.
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Since
Y 2 = 2X + Z and Z2 = 2X + Y

and
Y Z = Z Y = Y + Z

the linear space A defined by the condition (SR3) is an S-ring over G.

The set of all S-rings over G is partially ordered under inclusion. The
smallest and largest elements in this order are the trivial S-ring corresponding
to the partition of G into the singleton {α} and (if |G| ≥ 2) its complement
in G, and the group ring corresponding to the partition of G into singletons.

Let A be an S-ring over a group G; in what follows we extend A linearly
to a subalgebra of CG. Then the image of A with respect to the monomor-
phism τ defined in (1.4.6) is a subalgebra of MatG. By Exercise 1.4.14,
this subalgebra satisfies the conditions (A1), (A2), and (A3) and hence is
coherent. It follows that Aτ is the adjacency algebra of a coherent configu-
ration X = X (G,A) (Theorem 2.3.7), and the standard basis of it coincides
with S(A)τ (see the condition (SR3)). Thus,

(2.4.9) Aτ = Adj(X ) and S(A)τ = M(X ).

The monomorphism τ preserves inclusion between the subalgebras of
the group algebra CG. Since the latter is the largest S-ring over G, it
immediately implies that

(CG)τ ≥ Aτ .

In accordance with Example 2.3.4 and the first equality in (2.4.9), this means
that inclusion (2.4.2) holds.

Finally in view of the Galois correspondence, we have

Gright ≤ Aut(X ),

i.e., X is a Cayley scheme over G. The construction of this scheme from the
S-ring A is obviously reversible. Thus we arrive to the following statement.

Theorem 2.4.16. For any group G, the mapping A 7→ X (G,A) defined
by formulas (2.4.9) is a partial order isomorphism between the S-rings over G
and Cayley schemes over G.

Let us clarify the relationship between an S-ring A over a group G and
the corresponding Cayley scheme X . For any basic setX ∈ S(A), the matrix
τ(X) belongs to the set M(X ) (see the second equality in (2.4.9)). In terms
of the mapping ρ defined in Exercise 1.4.15, we have

(2.4.10) Aρ(X) = τ(X−1)

and so ρ(X) ∈ S(X ). This defines a one-to-one correspondence X 7→ ρ(X)
between the basic sets of A (respectively, the A-sets) and the basis relations
(respectively, the relations) of X .
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The monomorphism τ takes the structure constants with respect to the
basis S(A) to those with respect to the basis M(X ). Therefore,

c
ρ(Z)
ρ(X),ρ(Y ) = cZ

−1

X−1,Y −1

for all X,Y, Z ∈ S(A).
Finally, by statement (6) of Exercise 1.4.16, a set X ⊆ G is an A-group

if and only if ρ(X) is a parabolic of X .
We summarize what we said above in the following statement.

Theorem 2.4.17. Let G be a group, A an S-ring over G, and let X =
X (G,A). Then

S(A)ρ = S(X ), (S(A)∪)ρ = S(X )∪, E(A)ρ = E(X ).

Theorems 2.4.16 and 2.4.17 explains why the Cayley schemes and S-rings
are the same up to language. The isomorphisms, algebraic isomorphisms,
and Cayley isomorphisms for S-rings are defined via the corresponding Cayley
schemes. The same can be said on the concepts of schurity, separability,
cyclotomicity, and normality.

The following statement is an immediate consequence of Theorem 2.4.17
and Exercise 1.4.15. It suggests a way to construct the S-ring corresponding
to a Cayley scheme.

Corollary 2.4.18. Let X be a Cayley scheme and A the corresponding
S-ring. Then

S(A) = {αs : s ∈ S(X )}.



72 2. BASICS AND EXAMPLES

2.5 Finite geometries

A huge source of coherent configurations comes from finite geometries:
two of the oldest constructions are the schemes of generalized polygons in-
troduced by D. Higman in [64] and the rank 3 schemes of partial geometries
studied by R. Bose in [16]. It does not look amazing, because many nice
geometries correspond to invariant relations of permutation groups.

On the other hand, not all geometries have rich automorphism group
and the corresponding coherent configurations are often neither schurian
nor separable. In this section, we deal with coherent configurations arising
from projective and affine planes, and from a special type of designs which
are called here coherent. More detail on finite geometries can be found
in [19].

2.5.1 Coherent configurations of a projective plane

A projective plane is a triple consisting of a set of points, a set of lines,
and an incidence relation between the points and lines, and satisfying the
following axioms:

(P1) any two different points are incident to a unique line;
(P2) any two different lines are incident to a unique point;
(P3) there exist four different points any three of which are incident to

no line.

An isomorphism of projective planes is a bijection taking the points (respec-
tively, lines) of one plane to the points (respectively, lines) of the other, and
preserving the incidence relation.

An important example of a projective plane is given by the Galois plane,
the points and lines of which are the lines and planes of a 3-dimensional
linear space over a (finite) field and the incidence is defined by inclusion.
The smallest Galois plane is obtained for a field F2 and is known as the Fano
plane: it has seven points and seven lines, each of the points is incident to
exactly three lines and each line contains exactly three points. In Fig. 2.3,
the points and lines of the Fano plane are depicted by the seven small black
circles and six segments together with the big circle, respectively.

Figure 2.3 The Fano plane.
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Let P be a projective plane, and let P and L be the point and line sets
of P, respectively. In the finite case (which we are only interested in), there
exists an integer q ≥ 2, called the order of P, such that

|P | = |L| = q2 + q + 1,

each line is incident to exactly q + 1 points, and each point is incident to
exactly q+1 lines. The order of the Galois plane is equal to the order of the
corresponding finite field; in particular, the order of the Fano plane equals 2.
Note that the Galois planes are precisely those finite projective planes for
which the well-known Desargues theorem is true (see [20]). Though there
is a lot of non-Galois finite projective planes, it is not known if there exists
such a plane, the order of which is not a prime power.

In order to construct a coherent configuration associated with the pro-
jective plane P, denote by I ⊆ P × L the incidence relation of P: the
pair (p, l) belongs to I if and only if the point p is incident to the line l. We
consider I as a relation on the set Ω of all elements of P (points and lines).

The relations

s1 = 1P , s2 = 1L, s3 = P 2 \ 1P , s4 = L2 \ 1L,(2.5.1)

s5 = I, s6 = s∗5, s7 = (P × L) \ I, s8 = s∗7,(2.5.2)

obviously form a partition of the set Ω2. This partition satisfies the condi-
tion (CC1), because 1Ω = s1 ∪ s2, and the condition (CC2), because

si = s∗i (i ≤ 4), s∗5 = s6, s∗7 = s8.

Thus the pair X = (Ω, S) with S = {s1, . . . , s8}, is a rainbow.
Assume that the projective plane P is of order q. Then for each i, any

point in Ω−(si) has exactly ni := nsi neighbors in si, where

(2.5.3) ni =


1, if i = 1, 2,

q2 + q, if i = 3, 4,

q + 1, if i = 5, 6,

q2, if i = 7, 8.

More generally, the following statement holds.

Lemma 2.5.1. For any i, j, k ∈ {1, . . . , 8}, the number |αsi ∩ βs∗j | is a

polynomial in q that does not depend on the pair (α, β) ∈ sk.

Proof. Let (α, β) ∈ sk. Without loss of generality, we assume that
si ·sj ̸= ∅, otherwise |αsi∩βs∗j | = 0. Next, if i = 1 or j = 1, then obviously,

|αsi ∩ βs∗j | =

{
δk,j , if i = 1,

δk,i, if j = 1.
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In the case k = 1, we are done with |αsi ∩ βs∗j | = nk, see formula (2.5.3).
Similarly, one can prove the required statement if i = 2, j = 2, or k = 2.
The nontrivial remaining cases are

(i, j, k) = (3, 5, 5) or (4, 6, 6) and (i, j, k) = (5, 6, 3) or (6, 5, 4).

By the duality between the points and lines, we consider the cases (3, 5, 5)
and (5, 6, 3) only.

In the first case, α is a point and β is a line incident to α. Since the
number of points other than α and incident to β equal the cardinality of the
line β reduced by one,

|αs3 ∩ βs∗5| = q.

In the second case, α and β are different points, and the required number
equals the number of lines incident both α and β. Thus in view of the
conditions (P1) and (P2),

|αs5 ∩ βs∗6| = 1,

which completes the proof. □

Lemma 2.5.1 shows that the rainbow X satisfies the condition (CC3).
Together with the definition of the basis relations of X , this immediately
implies the following theorem.

Theorem 2.5.2. For any projective plane P of order q,

(1) the rainbow X is a coherent configuration of degree 2(q2 + q + 1)
and rank 8;

(2) for any indices i, j, k, there exists a polynomial pijk(x) such that
csksisj = pijk(q);

(3) F (X ) = {P,L} and the homogeneous components of X are trivial
schemes.

We say that the coherent configuration X from statement (1) of Theo-
rem 2.5.2 is associated with the projective plane P. Any coherent configura-
tion algebraically isomorphic to X is the coherent configuration associated
with a certain projective plane. Indeed, given φ ∈ Isoalg(X ,X ′), we have

c
s′3
s′5s

′
6
= 1 and c

s′4
s′6s

′
5
= 1,

where s′i = φ(si) for all i. This implies that the conditions (P1) and (P2) are
satisfied for the incidence structure P ′ consisting of the point set P ′ = Pφ,
the line set L′ = Lφ, and the incidence relation I ′ = s′5. If, in addition,
q ≥ 2, then the condition (P3) is also satisfied. Thus, P ′ is a projective
plane and the coherent configuration X ′ is associated with P ′.

Theorem 2.5.3. The coherent configuration associated with a finite pro-
jective plane P is schurian if and only if P is a Galois plane.
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Proof. By the main theorem of projective geometry, the automorphism
group Aut(P) of the Galois plane P of order q is equal to the full projective
semilinear group PΓL(3, q). This group acts 2-transitively on the points and
on the lines of P; moreover, the induced actions of Aut(P) on the flags and
on the antiflags are transitive (here, the flags and antiflags are the pairs
belonging to the relations s5 and s7, respectively). It follows that

X = Inv(Aut(P),Ω),

where X is coherent configuration associated with the plane P and Ω is the
union of the points and lines of P. The sufficiency is proved.

Conversely, we assume that the coherent configuration X associated with
a projective plane P is schurian. Then by statement (3) of Theorem 2.5.2
and statement (1) of Corollary 2.2.6, the group Aut(X ) acts 2-transitively
on the point set of P. Since

Aut(X ) = Aut(P),

P is a Galois plane by the Ostrom–Wagner theorem stating that a projective
plane P is isomorphic to a Galois plane whenever the group Aut(P) acts
2-transitively on the points of P [14, p. 114]. □

Let X and X ′ be the coherent configurations associated with projec-
tive planes P and P ′, respectively. It is easily seen that X and X ′ are
not algebraically isomorphic unless the order of P equals the order of P ′

(Corollary 2.3.24 and statement (1) of Theorem 2.5.2).
Assume that P and P ′ have the same order, say q. Then by statement (2)

of Theorem 2.5.2, the bijection

φ : S → S′, si 7→ s′i,

is an algebraic isomorphism, where S = S(X ) and S′ = S(X ′). Thus we
come to the following statement.

Theorem 2.5.4. The coherent configurations associated with projective
planes P and P ′ are algebraically isomorphic if and only if the orders of P
and P ′ are equal.

The duality principle for the projective planes expresses the symmetry
of the roles played by points and lines in the definitions and theorems of the
theory of projective planes. One of the consequences of this principle is that
the coherent configurations associated with projective planes P and P ′ are
isomorphic if and only if P is isomorphic to P ′ or to the dual of P ′ (which
is obtained by interchanging points and lines and reversing the incidence
relation).

Another consequence of the duality is that the mapping

(2.5.4) φ : S → S, si ↔ si+1 (i = 1, 3, 5, 7),
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is an algebraic automorphism of the coherent configuration X associated
with a projective plane P. If q is the order of P, then by Theorem 2.5.4 this
implies that X is separable if and only if any projective plane of order q is
isomorphic to P.

For each q ≤ 8, there is a unique projective plane of order q. Therefore
the coherent configuration X is separable for q ≤ 8. However, for q = 9,
there are two non-isomorphic projective planes: the Galois plane and the
Hall plane (see [53, Chap. 20]). Thus none of the corresponding coherent
configurations is separable. Such a situation occurs for infinitely many prime
powers q, see, e.g., [14].

The coherent configuration X associated with a projective plane P has
a homogeneous fusion. Namely, denote by Φ the subgroup of Autalg(X )
generated by the algebraic automorphism of X defined in (2.5.4). Then
|Φ| = 2 and the algebraic fusion

XΦ = (Ω, SΦ)

is a homogeneous scheme of rank 4. The valencies of the basis relations of
this scheme are 1, q2 + q, q + 1, q2. The graph associated with the relation
s5 ∪ s6 is distance-regular and has diameter 3 (see Subsection 2.6.2).
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2.5.2 Affine schemes

An affine plane is an incidence structure consisting of a set Ω of points
and a set L of lines being subsets of Ω and such that

(AP1) any two different points α and β belong to a unique line αβ;5

(AP2) for any point α and any line l not containing α, there exists a
unique line containing α and parallel to l (i.e., the line does not
intersect l);

(AP3) there exist three different points not belonging to the same line.

An isomorphism of two affine planes is defined to be a line-preserving
bijection between their point sets. In what follows, the set Ω is assumed to
be finite. In this case, there exists an integer q ≥ 2, called the order of the
plane, such that

|Ω| = q2 and |L| = q2 + q,

and each line consists of q points. There are exactly q+1 classes L1, . . . ,Lq+1

of pairwise parallel (i.e., equal or disjoint) lines so that

|Li| = q, i = 1, . . . , q + 1.

The affine Galois plane of order q is obtained from a two-dimensional
space over the field Fq by taking as the points and lines, the 0- and 1-
dimensional affine subspaces of this space. The minimal example is obtained
for q = 2, see below.

Example 2.5.5. Let X be an undirected complete graph with four ver-
tices. Then the vertex and edge sets of X can be considered, respectively, as
the points and lines of an affine plane of order 2. It has 4 points and 6 lines
partitioned in three parallel classes each of which consists of two disjoint
edges.

Let A be an affine plane with point set Ω and line set L. Denote by S
the partition of Ω2 into q + 2 classes: 1Ω and q + 1 classes of the form

{(α, β) ∈ Ω2 : α ̸= β and αβ ∈ Li}, i = 1, . . . , q + 1.

Thus the irreflexive relations in S are in one-to-one correspondence with
the parallel classes of A, and each such relation is the disjoint union of q
undirected loopless complete graphs of order q whose vertex sets are the lines
belonging to the corresponding class. In Example (2.5.5), the partition S
consists of three relations, each of which is the graph with 4 vertices and
two disjoint undirected edges.

Theorem 2.5.6. The pair X = (Ω, S) is a symmetric scheme whose
nonzero intersection numbers ctrs with 1 ̸∈ {r, s}, are as follows:

5The line αβ is not uniquely determined if α = β.
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(2.5.5) ctrs =


q − 1, if r = s and t = 1,

q − 2, if r = s = t,

1, if r ̸= s ̸= t ̸= r.

Proof. The definition of S implies that X is a symmetric rainbow. We
have to prove that given relations r, s, t ∈ S, the number |αr ∩ βs| does not
depend on the choice of the pair (α, β) ∈ t.

Without loss of generality, we may assume that 1 ̸∈ {r, s} and t inter-
sects r · s. In particular,

α ̸= β and |{r, s, t}| = 1 or 3.

The first statement is clear. To prove the second one, we assume that two
relations of r, s, t, say r and s, are equal. Taking into account that

t ∩ (r · s) ̸= ∅,

we see that the lines αγ and γβ are also equal. Therefore, αβ = αγ = γβ.
Thus either r = s = t or r ̸= s ̸= t ̸= r.

Let r = s = t. Recall that r = e \ 1, where e is an equivalence relation
on Ω with q classes each of cardinality q. It follows that

ArAs = (Ae − I)(Ae − I) = qAe − 2Ae + I = (q − 2)At + (q − 1)I,

where I = IΩ. Taking the (α, β)-entry of the matrices on the left-hand and
right-hand sides, we conclude that

|αr ∩ βs| =

{
q − 2, if t ̸= 1,

q − 1, otherwise.

This proves the first two equalities in formula (2.5.5) (see statement (4) of
Exercise 1.4.8).

Now let r ̸= s ̸= t ̸= r. Denote by α1, . . . , αq−1 the points other
than α that belong the line αr ∈ L. Then no two distinct lines among
βα1, . . . , βαq−1 are parallel (they have a common point β). It follows that
the basis relations si = r(β, αi) are pairwise distinct. Thus,

αr ∩ βs =

{
{αi}, if s = si for some i ∈ {1, . . . , q − 1},
∅, otherwise.

which proves the third equality in formula (2.5.5). □

The scheme X from Theorem 2.5.6 is said to be affine or the scheme of
the affine plane A. Formula (2.5.5) implies that ns = q− 1 for all irreflexive
s ∈ S. Consequently, X is an equivalenced scheme of valency q − 1.

Theorem 2.5.7. The scheme of a finite affine plane A is schurian if
and only if A is an affine Galois plane.
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Proof. By the well-known result of finite geometries (see, e.g., [31]), a
finite affine plane A is either non-Desarguesian or an affine Galois plane. In
the latter case, the scheme of A coincides with the coherent configuration
associated with the group

AG ≤ AGL(2, q),

where A is the translation group of the underlying linear space and G is the
center of the group GL(2, q). This proves the sufficiency.

To prove the necessity, let X be the scheme of an affine plane A. Assume
that X is schurian. We have to verify thatA is Desarguesian, i.e., given three
lines containing a common point δ and given points α, α′ lying on the first
line, β, β′ lying on the second line, and γ, γ′ lying on the third line,

αγ ∥ α′γ′ and βγ ∥ β′γ′ ⇒ αβ ∥ α′β′,

where ∥ denotes the relation of parallelism, see Fig 2.4.

α′

α
β

β′
γ′

γ

δ

Figure 2.4 The points and lines of a Desarguesian configuration.

To this end, we note that r(δ, γ) = r(δ, γ′), because δγ = δγ′. The
schurity assumption implies that there exists an automorphism k ∈ Aut(X )
such that

δk = δ and γk = γ′.

Since k preserves the basis relations of X , we have

r(α, δ) = r(αk, δ) and r(α, γ) = r(αk, γ′).

By the first equality, αk ∈ αδ, and by the second equality, αγ ∥ αkγ′. In
view of αγ ∥ α′γ′, the axiom (AP2) for l = αγ and α = γ′ shows that

αkγ′ = α′γ′.

This line intersects αδ in the point αk (see above) and in the point α′ (by
the assumption). By the axiom (AP1), this proves the first of the following
equalities

αk = α′ and βk = β′,

the second one is proved similarly. On the other hand, r(α, β) = r(αk, βk)
or equivalently, αβ ∥ αkβk. Since αkβk = α′β′, we conclude that αβ ∥ α′β′

as required. □
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Let X = (Ω, S) and X ′ = (Ω′, S′) be affine schemes. If the underlying
affine planes have different orders, then the degrees of X and X ′ are dif-
ferent. Therefore these schemes cannot be algebraically isomorphic (Corol-
lary 2.3.24).

Suppose that the affine planes have the same order q. Then

|S| = q + 2 = |S′|,

From formula (2.5.5), it follows that for any bijection φ : S → S′, s 7→ s′

taking 1Ω to 1Ω′ , we have

ctrs = ct
′
r′s′ , r, s, t ∈ S.

Therefore, φ is an algebraic isomorphism from X to X ′.

Theorem 2.5.8. Two affine schemes are algebraically isomorphic if and
only if the underlying affine planes have the same order. Moreover, for any
affine scheme X ,

Autalg(X ) = Sym(S(X ))1Ω .

As in the case of coherent configurations, one can easily prove that a
bijection f between the point sets of two affine planes is an isomorphism if
and only if f is an isomorphism of the schemes of the corresponding planes.
By Theorem 2.5.8, this implies that the scheme of an affine plane A of
order q is separable if and only if A is a unique (up to isomorphism) affine
plane of order q. However, for infinitely many prime powers q, there exist
at least two non-isomorphic affine planes of order q. In each of these cases,
the scheme of any affine plane of order q is not separable.

The affine schemes were introduced and studied in [52]. A stronger
version of Theorem 2.5.7 can be found in [102].
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2.5.3 Designs

Let Ω be a set of cardinality n, and let B be a collection of subsets
of Ω, all of cardinality k ≥ 1; the elements of Ω and B are called points
and blocks, respectively. A pair (Ω,B) is called a design with parameters
(n, k, λ), or (n, k, λ)-design, if any two distinct points belong to exactly λ
blocks. Note that if λ = 0, then k = 1 and B consists of singletons. A
huge literature on designs can be found in [13] (see also [18] and references
therein).

Example 2.5.9. Every projective plane P of order q produces a natural
(q2 + q+1, q+1, 1)-design, in which Ω is the point set of P and B consists
of all sets of points incident to a line of P.

Example 2.5.10. Any affine plane A of order q is a (q2, q, 1)-design,
in which Ω is the point set of A and B consists of the lines of A.

In Example 2.5.9, the points consist a fiber of the coherent configuration
associated with projective plane and the homogeneous component of this
fiber is trivial (statement (3) of Theorem 2.5.2). The following observation
shows that inside any coherent configuration X having trivial homogeneous
component, one can find several designs whose parameters are among the
intersection numbers of X .

Proposition 2.5.11. Let X = (Ω, S) be a coherent configuration. Sup-
pose that X∆ = T∆ for some fiber ∆ of X . Then for each irreflexive s ∈ SΩ,∆,
the collection

Bs = {αs : α ∈ Ω−(s)}
is the set of blocks of an (n, k, λ)-design, where

n = |∆|, k = ns, λ = cts∗s

with t = ∆2 \ 1∆.

Proof. Let s ∈ SΩ,∆ be a irreflexive relation, and let δ, γ ∈ ∆ be distinct
points. Then (δ, γ) ∈ t, and for any α ∈ Ω−(s),

δ, γ ∈ αs ⇔ α ∈ δs∗ ∩ γs∗.

Therefore the number of sets αs containing δ and γ equals the intersection
number |δs∗ ∩ γs∗| = cts∗s. □

The designs from Proposition 2.5.11 can naturally be called coherent.
More precisely, a design D is said to be coherent if there exists a coherent
configuration X which has a trivial homogeneous component X∆ and a basis
relation s such that D = (∆,Bs). In this case,

(2.5.6) AsAs∗ =
k∑
i=0

iAi,



82 2. BASICS AND EXAMPLES

where k = ns and Ai is the adjacency matrix of the relation ti consisting of
all pairs of blocks having exactly i common points; in particular, tk = 1Γ,
where Γ = Ω−(s). The set

T = {t0, . . . , tk}

forms a partition of Γ2 that defines a (symmetric) rainbow (Γ, T ). By the
Wielandt principle, formula (2.5.6) implies that T ⊆ S(X )∪. It follows that
the rainbow has a homogeneous fission, namely, XΓ.

In a similar way for any (n, k, λ)-designD, one can define a rainbow X (D)
of rank at most k+1 on the block set: the basis relations consist of all pairs
of blocks with fixed cardinality of their intersection. The following state-
ment proved in the previous paragraph gives a strong necessary condition
for a design to be coherent.

Proposition 2.5.12. A design D is coherent only if the rainbow X (D)
is a fusion of a certain scheme.

In the extremal case, the scheme from Proposition 2.5.12 coincides with
the rainbow X (D), i.e., this rainbow is a symmetric scheme. As we will see
below, this is always true if the rank of the rainbow X (D) is at most 3; in this
case, the designD is said to be quasisymmetric. Thus, D is a quasisymmetric
design if and only if there exists constants x and y such that any two distinct
blocks of D intersect at either x or y points.

The designs associated with projective and affine planes are examples
of quasisymmetric designs (in the former case, x = y = 1, and in the latter
case, x = 0 and y = 1). In the proof of the theorem below, we follow that
of [79, Theorem 8.2.14].

Theorem 2.5.13. Every quasisymmetric design is coherent.

Proof. Let D = (∆,B) be a quasisymmetric (n, k, λ)-design. Assume
that any two distinct blocks intersect in either x or y points. If x = y, then
the required statement follows from Exercise 2.7.47. Let x > y.

Denote by r the number of blocks containing a point of ∆ (Exercise 2.7.46),
and set A to be rectangular {0, 1}-matrix with rows and columns indexed
by ∆ and B, respectively, and such that Aα,B = 1 if and only if α ∈ B. By
the definition of design, we have

(2.5.7) J∆A = kJ∆,B and AJB = rJ∆,B,

and

(2.5.8) ATJ∆ = kJB,∆ and JBA
T = rJB,∆.

Lemma 2.5.14.

(2.5.9) AAT = λ(J∆ − I∆) + rI∆.

In particular, the matrix AAT has exactly two eigenvalues, both nonzero.
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Proof. The first statement follows from the definition of λ and r. For-
mula (2.5.9) implies that ∆ and each column of the matrix I∆ − 1

nJ∆ are

eigenvectors of the matrix AAT that correspond to the eigenvalues

r + λ(n− 1) and r − λ,

respectively. Since the multiplicities of the them are 1 and n − 1, we are
done. □

Denote by Az the adjacency matrix of the relation tz ⊆ B2, which
consists of all pairs of blocks intersecting in exactly z points. Since the
design D is quasisymmetric, this matrix is nonzero only if z = k, x, or y. It
follows that

(2.5.10) JB = IB +Ax +Ay and ATA = kIB + xAx + yAy.

Lemma 2.5.15. The linear space AB = Span{IB, Ax, Ay} is a 3-dimensional
coherent algebra.

Proof. From formulas (2.5.7) and (2.5.8), it follows that

ATAJB = rATJ∆,B = krJB = rJB,∆A = JBA
TA.

It follows that AB consists of pairwise commuting matrices; in particular,
the symmetric matrices IB, Ax, and JB are pairwise commute.

By a well-known result in linear algebra, one can find an orthogonal
matrix C such that the matrices CTAxC and CTJBC are diagonal. In view
of (2.5.10), the matrix

CTATAC = CT (kIB + xAx + yAy)C

= CT ((k − y)IB + (x− y)Ax + yJB)C(2.5.11)

= (k − y)IB + (x− y)CTAxC + yCTJBC

is also a diagonal one. The matrices AAT and ATA have the same nonzero
eigenvalues (including multiplicities). By Lemma 2.5.14, this implies that
ATA has exactly two nonzero eigenvalues: one of multiplicity 1 and the
other one of multiplicity n− 1.

One can see that B is a common eigenvector of the largest eigenvalues
of the matrices ATA and JB. Thus up to permutation of indices,

CTATAC = diag(λ, µ, . . . , µ, 0, . . . , 0) and CTJBC = diag(ν, 0, . . . , 0)

for some reals λ, µ, and ν. Consequently, the linear space

Span{IB, CTAxC,CTJBC} = Span{IB, CTAxC,CTAyC} = CTABC

and hence the space AB, is a 3-dimensional commutative algebra. It has a
linear basis {IB, Ax, Ay} consisting of symmetric {0, 1}-matrices. Thus it is
coherent by Corollary 2.3.8. □
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Let Ω = ∆ ∪ B. From now on, it is convenient to consider the linear
spaces Mat∆, MatB, Mat∆,B, and MatB,∆ as subspaces of MatΩ via the

natural injections ∆ → Ω and B → Ω. In particular, the matrices A, AT ,
I∆, IB, . . . are treated as the matrices of MatΩ.

Let X be a rainbow on Ω corresponding to the partition of Ω2 into the
relations belonging to the union of the sets

S∆ = S(T∆), SB = S(XB), S∆,B = {s, s′}, SB,∆ = S∗
∆,B,

where XB is the coherent configuration corresponding to the algebra AB

(Lemma 2.5.15 and Theorem 2.3.7), and s and s′ are relations on Ω such
that

As = A and As′ = J∆,B −A.

In these notation, B = Bs. Thus it suffices to verify that A = Adj(X ) is
a coherent algebra, or even that A is an algebra with respect to the matrix
multiplication (Corollary 2.3.8).

In view of formulas (2.5.7) and (2.5.8), and Lemmas 2.5.14 and 2.5.15,
the only non-obvious case is to verify that AuAv ∈ A for u ∈ S∆,B and
v ∈ SB. Assume that u = s and v = tx (the statement for the other
possibilities follows from this one). Then by formulas (2.5.7) and (2.5.9),

(AAT )A = (λ(J∆ − I∆) + rI∆)A = λkJ∆,B + (r − λ)A,

whereas by formulas (2.5.10) and (2.5.7),

A(ATA) = A((k − y)IB + (x− y)Ax + yJB)

= (k − y)A+ (x− y)AuAv + yJ∆,B.

This shows that the product AuAv is the linear combination of the matrices
A = As and J∆,B = As +As′ , as required. □

The type of a coherent configuration (Ω, S) with two fibers Ω1 and Ω2

is defined to be a 2 × 2 matrix, the (i, j)-entry of which equals the num-
ber |SΩi,Ωj |. By Proposition 2.5.11, any coherent configuration of type

(2.5.12)

(
2 2
2 2

)
or

(
2 2
2 3

)
produces two complementary designs, which are obviously quasisymmetric;
the points and blocks of the design complementary to a design D are the
points ofD and the complements of the blocks ofD, respectively. Conversely,
the coherent configuration constructed in the proof of Theorem 2.5.13 for a
quasisymmetric design, has one of the two above types.

Corollary 2.5.16. The pairs of complementary quasisymmetric designs
are in 1-1 correspondence with the coherent configurations of types (2.5.12).

Numerous examples of quasisymmetric designs can be found in mono-
graph [116]. Here, we mention only the Steiner designs, i.e., those with
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λ = 1. In such a design, no two distinct blocks have more than one common
point. Therefore, all the Steiner designs are quasisymmetric (with x ≤ 1
and y = 1) and hence coherent (Theorem 2.5.13). The examples of Steiner
designs include the designs of projective and affine planes, and the designs
whose blocks form a Steiner triple system (k = 3).

The schurity problem for the coherent configurations corresponding to
the coherent designs is reduced to determining the subgroups of 2-transitive
groups, which are known modulo the Classification of Finite Simple Groups
(see [23, Sec. 7.3, 7.4]). Indeed, statement (1) of Corollary 2.2.6 implies the
following proposition.

Proposition 2.5.17. Let X be a schurian coherent configuration for
which the hypothesis of Proposition 2.5.11 is satisfied. Then the group
Aut(X )∆ is 2-transitive.

The separability problem in the class K seems to be hopeless, because
it includes identifying all Steiner designs determined by its parameters up
to isomorphism. Concerning this problem, we refer the reader to [116].
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2.6 Graphs

Every graph can be considered as a relation of a coherent configuration,
for instance, the discrete one. Among such coherent configurations, there is
the smallest one, the coherent closure, and it is exactly one constructed by
the Weisfeiler–Leman algorithm applied to the original graph.

The coherent closure controls the automorphisms and isomorphisms of
the graph in question. In this section, we will see in which sense this is true
and what happens in the most interesting case of distance-regular graphs.
These graphs are quite well studied (see e.g. [17]) and lead to various nice
coherent configurations.

2.6.1 Coherent closure

Let T be a collection of relations on Ω. Denote by T the set of all
coherent configurations on Ω that contain T as a set of relations,

T = T(Ω, T ) = {X ≤ DΩ : T ⊆ S(X )∪}.

In particular, T includes the discrete configuration and hence is nonempty.
On the other hand, T is closed under intersections, see Subsection 2.3.1.
Consequently, T has the smallest element, namely, the intersection of all
coherent configurations in T,

WL(T ) =
⋂

X∈T(Ω,T )

X .

Definition 2.6.1. The coherent configuration WL(T ) is called the co-
herent closure of the collection T .

The notation WL is explained by the fact that the coherent closure can
explicitly be found with the help of the Weisfeiler–Leman algorithm (the
WL-algorithm), see below. The mapping

(2.6.1) X 7→ WL(X ),

defines a closure operator on the rainbows on Ω (Exercise 2.7.49), where
WL(X ) is defined to be the coherent closure of T = S(X ).

Example 2.6.2. Let us find the coherent closure X of T = {s}, where s
is the arc set of an undirected 6-cycle on Ω = {1, . . . , 6}, see the first graph
in Fig. 2.5.

Among the relations of X , there are obviously s0 = 1 and s1 = s. By
Proposition 2.1.4,

s2 = (s · s) \ s0 and s3 = Ω2 \ (s0 ∪ s1 ∪ s2)

are also relations of X , see the second and third graph in Fig.2.5. It is easily
seen that

{s0, s1, s2, s3} = Orb(K,Ω2),
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0 1

5 2

4 3

0 1

5 2

4 3

0 1

5 2

4 3

Figure 2.5 The coherent configuration of an undirected 6-cycle.

where K = D12 is the dihedral group of degree 6. The scheme Inv(K,Ω)
belongs to T, and is a fusion of WL(T ) = X . By the minimality of the
coherent closure, this shows that X = Inv(K,Ω).

In general, the technique based on Proposition 2.1.4 only does not help
to find the coherent closure (like as in Example 2.6.2) and a reason is that
this technique does not take into account the intersection numbers of the
resulting coherent configuration. A solution is to replace Proposition 2.1.4
by the Wielandt principle (Theorem 2.3.10). To explain this in more detail,
we need some preparation.

In finding the coherent closure of a collection T of relations, we may
assume (without loss of generality) that T equals the set S of basis relations
of a rainbow X on Ω (Exercise 2.7.51). For any integer k ≥ 0 and any
r, s, t ∈ S, define the relation

wk(r, s; t) = {(α, β) ∈ t : |αr ∩ βs∗| = k}.

Certainly, this relation is empty if k > n, and equals t if X is a coherent
configuration and k = ctrs. Furthermore, it is easily seen that

(2.6.2) wk(r, s; t)
∗ = wk(s

∗, r∗; t∗).

Denote by S′ the partition of Ω2 such that (α, β) and (α′, β′) belong to the
same class if and only if for every integer k ≥ 0 and any r, s, t ∈ S,

(α, β) ∈ wk(r, s; t) ⇔ (α′, β′) ∈ wk(r, s; t).

Lemma 2.6.3. Let X = (Ω, S) be a rainbow and S′ as above. Then

(1) X ′ = (Ω, S′) is a rainbow;
(2) X ≤ X ′, and X = X ′ if and only if X is a coherent configuration;
(3) WL(S) = WL(S′).

Proof. Statement (1) follows from Exercise 2.7.51. The obvious inclu-
sion wk(r, s; t) ⊆ t that holds for all k and r, s, t, proves the inclusion in
statement (2). Note that

wk(r, s; t) = t ⇔ |αr ∩ βs∗| = k for all (α, β) ∈ t.
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Therefore, X = X ′ if and only if the rainbow X satisfies the condition (CC3),
i.e. is a coherent configuration.

To prove statement (3), we note that the relations of S′ are intersec-
tions of the relations wk(r, s; t). Thus it suffices to verify that wk(r, s; t)
is a relation of the coherent configuration WL(S) for all k and r, s, t. By
statement (4) of Exercise 1.4.8, we have

wk(r, s; t) = t ∩ sf (ArAs),

where sf (·) is as in formula (2.3.4) with f(x) = δx,k (the Kronecker delta).
Since t is a relation of WL(S), it remains to prove that so is sf (ArAs).
However, this is a consequence of the Wielandt principle, because r and s
are relations of WL(S) and so the matrix ArAs belongs to the adjacency
algebra of WL(S). □

Lemma 2.6.3 suggests the following algorithm for finding the coherent
closure of a rainbow.

The Weisfeiler–Leman algorithm

Input a rainbow X = (Ω, S).
Output the coherent closure WL(X ).

Step 1 Find the set S′ defined in Lemma 2.6.3.

Step 2 If |S| < |S′|, then S := S′ and go to Step 1.

Step 3 Output WL(X ) = (Ω, S′).

At each iteration except for the last one, the number |S| ≤ n2 strictly
increases. Therefore, the algorithm stops after at most n2 − |S| iterations.
By statements (2) and (3) of Lemma 2.6.3, the resulting rainbow is equal to
the coherent closure of X .

To make the algorithm more clear, let us take noncommuting variables
xs, s ∈ S. Then at each iteration, one needs to calculate a polynomials(∑

s∈S
xsAs

)2
α,β

=
∑
γ∈Ω

xr(α,γ)xr(γ,β) =
∑
r,s∈S

arsxrxs

for each pair (α, β) ∈ Ω2, where ars are suitable integers. Using the set of all
these linear combinations, the set S′ can easily be constructed by comparing
the corresponding multivariable polynomials, because

(α, β) ∈ wk(r, s; t) ⇔ r(α, β) = t and ars = k.

This modification of Step 1 leads to the standard Weisfeiler–Leman algo-
rithm or the 2-dim WL; for details, see Section 4.6.

The most important property of the coherent closure is that it preserves
the automorphism group of the initial collection of relations. In this sense,
taking the coherent closure reduces the problem of finding the automorphism
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group of a collection of relations on Ω to that of a coherent configuration
on Ω.

Theorem 2.6.4. Let T and T ′ be sets of relations on Ω and Ω′, respec-
tively. Denote by Iso(T, T ′) the set of all bijections Ω → Ω′ taking T to T ′.
Then

(2.6.3) Iso(T, T ′) ⊆ Iso(X ,X ′) and Aut(T ) = Aut(X ),

where X = WL(T ) and X ′ = WL(T ′).

Proof. Let f ∈ Iso(T, T ′). Then obviously,

X ∈ T(Ω, T ) ⇔ X f ∈ T(Ω′, T ′).

Consequently, f ∈ Iso(X ,X ′), which proves the first inclusion in (2.6.3).
To prove the equality, we note that every automorphism of the coherent

configuration X leaves any of its relation, in particular, any relation of T ,
fixed. Thus,

Aut(X ) ≤ Aut(T ).

Conversely, each relation of T is obviously Aut(T )-invariant. By state-
ment (1) of Exercise 2.7.17, this implies that

Inv(Aut(T )) ∈ T(Ω, T ).

It follows that
Inv(Aut(T )) ≥ X

and hence by the Galois correspondence (Theorem 2.2.8),

Aut(Inv(Aut(T ))) ≤ Aut(X ).

The left-hand side contains Aut(T ) (see the second inclusion in (2.2.7)).
Thus, Aut(T ) ≤ Aut(X ), as required. □

Definition 2.6.5. The coherent configuration of a graph X on Ω with
arc set D is defined to be the coherent closure

WL(X) := WL({D}),

i.e., the smallest coherent configuration on Ω that contains D among of its
relations.

Clearly, the coherent configuration of a complete or empty graph on Ω is
equal to TΩ. This shows that the coherent configurations of non-isomorphic
graphs can be equal. However, the following corollary of Theorem 2.6.4
shows that such graphs always have the same automorphism groups.

Corollary 2.6.6. Let X be a graph and X = WL(X). Then

(2.6.4) Aut(X ) = Aut(X).

In particular,
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(1) if X is vertex-transitive, then X is homogeneous;
(2) if X is arc-transitive, then the arc set of X is a basis relation of X ;
(3) X is a Cayley graph if and only if X is a Cayley scheme.

By definition, the arc set of a graph X is a relation of its coherent con-
figuration X . It follows that the adjacency matrix of X belongs to the
adjacency algebra of X . The use of the Wielandt principle enables us to get
some information on the relations of X .

Theorem 2.6.7. Let X be a graph, X = WL(X), and d ≥ 0 an integer.
Then

(1) the vertices of X of valency d form a homogeneity set of X ;
(2) the pairs of vertices of X at distance d form a relation of X .

Proof. Denote by Ωd the set of all vertices of X that have valency d.
Clearly,

α ∈ Ωd ⇔ (AAT )α,α = d,

where A is the adjacency matrix of X. It follows that

1Ωd
= 1Ω ∩ sf (AA

T ),

where sf (·) is as in formula (2.3.4) with f(x) = δd,x (the Kronecker delta).
Note that A ∈ Adj(X ). By the Wielandt principle, this implies that 1Ωd

is
a relation of X , which proves statement (1).

To prove statement (2), let i ≥ 0 be an integer and

Ai =
i∑

j=0

Aj .

It is easily seen that for any vertices α and β of the graph X,

(2.6.5) d(α, β) ≤ i ⇔ (Ai)α,β > 0.

Denote by f the function such that f(x) = 1 or 0 depending on whether
or not x is a positive integer. By the Wielandt principle,

si := sf (Ai)

is a relation of X for all i. It follows that so is the relation sd \sd−1. In view
of (2.6.5), it coincides with the relation “to be at distance d”, which proves
statement (2). □

The following useful property of the coherent configuration of a graph X
concerns the equivalence relation econ(X) corresponding to the partition of
the vertices of X into the vertex sets of connected components. It immedi-
ately follows from Proposition 2.1.18.

Proposition 2.6.8. For any graph X, econ(X) is a parabolic of the co-
herent configuration WL(X).
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It was proved in [7], that almost all graphs have pairwise distinct valen-
cies. By statement (1) of Theorem 2.6.7, the coherent configuration of any of
these graphs is discrete and hence does not contain any specific information
about the initial graph. In fact, the theory of coherent configurations can
help in the study of only those graphs that have a sufficiently large combina-
torial symmetry and the measure of this symmetry is precisely the coherent
closure: the smaller a configuration is, the more information it gives about
the graph in question.
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2.6.2 Distance-regular graphs

Throughout this subsection, X is a connected undirected loopless graph
on a set Ω. Denote by d the diameter of X. By statement (2) of Theo-
rem 2.6.7, the coherent configuration X of this graph contains d+1 pairwise
disjoint relations

(2.6.6) si = {(α, β) ∈ Ω2 : d(α, β) = i},

where i = 0, 1, . . . , d.
It may happen that all of these relation are basis ones; in this case

the Weisfeiler–Leman algorithm (applied to the rainbow formed by the si)
stops after the first iteration. Then X is a symmetric scheme of rank d+ 1.
Moreover, the intersection numbers

bi = csisi+1,s1 and ci = csisi−1,s1

satisfy the condition

(2.6.7) |αsi ∩ βs1| =

{
bi−1, if d(α, β) = i− 1,

ci+1, if d(α, β) = i+ 1

for any two vertices α, β ∈ Ω and all i.

Example 2.6.9. The undirected 6-cycle in Example 2.6.2 has diame-
ter 3. The four basis relations of its coherent configuration are exactly the
relations defined by formula (2.6.6) (see Fig. 2.5). A direct calculation shows
that

(b0, b1, b2) = (2, 1, 1) and (c1, c2, c3) = (1, 1, 2).

Definition 2.6.10. A graph X is said to be distance-regular if there
exist integers b0, . . . , bd−1 and c1, . . . , cd for which relations (2.6.7) hold for
all vertices α and β and all suitable i. The sequence

IA(X) = {b0, . . . , bd−1; c1, . . . , cd}

is called the intersection array of X.

Note that c1 = 1 and |αs1| = b0 for all vertices α; in particular, X is a
regular graph of valency b0. If the group Aut(X) acts transitively on each
relation si, then the graph X is called distance-transitive.

Theorem 2.6.11. Let X be a distance-regular graph of diameter d and
let S be the partition of Ω2 into the relations si defined by formula (2.6.6),
i = 0, . . . , d. Then

(1) X = (Ω, S) is a symmetric scheme of rank d+1, and WL(X) = X ;
(2) bi = csisi+1,s1 and ci = csisi−1,s1 for all suitable i;

(3) the intersection numbers of X are uniquely determined by IA(X);
(4) X is schurian if and only if X is distance-transitive;
(5) X is separable if and only if X is uniquely determined by IA(X).
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Proof. The arc set of X is equal to s1. Therefore if α and β are vertices
of X at distance i ∈ {1, . . . , d−1}, then the set βsj ∩ αs1 is obviously empty
for all j other than i− 1, i, and i+ 1. Thus,

αs1 ⊆ βsi−1 ∪ βsi ∪ βsi+1.

In particular, the number ai = |αs1 ∩βsi| is equal to b0− ci− bi (recall that
b0 = |αs1|). Since the graph X is distance-regular, formula (2.6.7) implies
that

(2.6.8) A1Ai = bi−1Ai−1 + aiAi + ci+1Ai+1,

where Ai is the adjacency matrix of si for all i. Furthermore, A0 = I, and
also ci+1 ̸= 0 by the connectedness of X. Therefore using induction on i,
one can see that Ai is a polynomial in A1 of degree i.

Now the linear space

A = Span{A0, A1, . . . , Ad}

is closed under multiplication by A1. Therefore, A is a commutative subal-
gebra in MatΩ. Moreover, the matrices A0, A1, . . . , Ad are {0, 1}, symmetric,
and form a linear basis of A. Consequently, A is a coherent algebra (Corol-
lary 2.3.8) and X is a symmetric scheme of rank d + 1. Since A = Adj(X )
is a minimal coherent algebra containing As1 , we conclude that

(2.6.9) X = WL(X),

which completes the proof of statement (1).
Statement (2) follows from formula (2.6.8). This formula allows to ex-

press the coefficients of the polynomial in A1 defining Ai via the intersection
array of X. Therefore, the intersection numbers of X are uniquely deter-
mined by IA(X). This proves statement (3) and hence statement (5). Fi-
nally, formulas (2.6.4) and (2.6.9) imply that Aut(X ) = Aut(X), and hence
the schurity of X exactly means that the graph X is distance-transitive. This
proves statement (4) and completes the proof of the theorem. □

We will not go into the theory of distance-regular graphs. Instead, we
present three infinite classical families of distance-transitive graphs (all the
details can be found in [17]). By statement (4) of Theorem 2.6.11, the
corresponding schemes are schurian. In Subsection 4.2.3, we return to the
question of their separability.

The Hamming graph. Let d ≥ 0 and q ≥ 2 be integers. The
Hamming graph H(d, q) has vertex set Ω = {1, . . . , q}d and two vertices
are adjacent if and only if the corresponding d-tuples differ in exactly one
coordinate. Thus, H(d, 2) is the graph of a d-dimensional cube. For all d
and q, the Hamming graph is distance-transitive, has diameter d, and

Aut(Hd,q) = Sym(q) ≀ Sym(d)
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(the wreath product is taken in the primitive action).
The coherent configuration of the graph H(d, q), the Hamming scheme,

is a symmetric scheme of degree qd and rank d+ 1; the ith basis relation of
this scheme is of the form

si = {(α, β) ∈ Ω2 : |{j : αj ̸= βj}| = i},

and has valency
(
d
i

)
(q − 1)i, where αj and βj are the jth entries of the

d-tuples α and β, respectively.

The Johnson graph. Let n, k be nonnegative integers, k ≤ n. The
Johnson graph J(n, k) has vertex set

(
n
k

)
(the k-subsets of {1, . . . , n}) and

two vertices are adjacent if the corresponding k-subsets have exactly k − 1
common elements. Thus, J(n, 1) is a complete graph with n vertices. For
all possible n and k, the Johnson graph J(n, k) is distance-transitive, has
diameter d = min{k, n− k}, and

Aut(Jn,k) = Sym(n)(
n
k), n ̸= 2k,

where the group in the right-hand side is induced by the action of Sym(n)
on the set

(
n
k

)
.

The coherent configuration of the graph J(n, k), the Johnson scheme, is
a symmetric scheme of degree

(
n
k

)
and rank d + 1; the ith basis relation of

this scheme is of the form

si = {(α, β) ∈ Ω2 : |α ∩ β| = k − i},

and has valency
(
k
k−i
)(
n−k
i

)
.

The Grassmann graph. Let n and k be integers, 1 ≤ k ≤ n − 1.
The Grassmann graph Jq(n, k) has as the vertex set Ω the k-subspaces of an
n-dimensional linear space Vn,q over the field Fq, and two vertices α and β
are adjacent if and only if the subspace α ∩ β has dimension k − 1. Thus,
Jq(n, 1) and Jq(n, n−1) are complete graphs. For all q, n, k, the Grassmann
graph is distance-transitive, has diameter d = min(k, n− k), and

Aut(Jq(n, k)) = PΓL(Vn,q), 1 < n < k and 2k ̸= n.

The coherent configuration of the graph Jq(n, k), theGrassmann scheme,
is a symmetric scheme of degree[

n

k

]
q

=
(qn − 1) · · · (qn − qk−1)

(qk − 1) · · · (q − 1)

and rank 1 + min{k, n − k}; the ith basis relation of this scheme is of the
form

si = {(α, β) ∈ Ω2 : dim(α ∩ β) = k − i}
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and

nsi =

[
k

k − i

]
q

[
n− k

i

]
q

.
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2.6.3 Strongly regular graphs

An undirected graph X with arc set s is said to be strongly regular if there
exist nonnegative integers k, λ, µ such that for any two vertices α and β,

(2.6.10) |αs ∩ βs| =


k, if α = β,

λ, if (α, β) ∈ s,

µ, if α ̸= β and (α, β) ̸∈ s.

The number n of vertices together with the numbers k, λ, µ are called the
parameters of X. In what follows, we exclude the trivial cases k = 0 and
k = n− 1, in which X is the empty and complete graph, respectively.

Example 2.6.12. Any strongly regular graph with parameters (5, 2, 0, 1)
is isomorphic to a pentagon. Any strongly regular graph with parameters
(10, 3, 0, 1) is isomorphic to the Petersen graph, i.e., the complement of the
Johnson graph J(5, 2) (see Fig. 2.6).

•

•

• • • •

• •

• •

Figure 2.6 The Petersen graph.

Let X be a connected strongly regular graph. Then there are at least
two vertices at distance 2 unless X is a complete graph. It follows that µ > 0
and hence the diameter of X is equal to 2. Define the relations s0, s1, and s2
by formula (2.6.6). Then from the definition of λ and µ, it easily follows
that condition (2.6.7) is satisfied for i = 1, b0 = k, c2 = µ, and for i = 2,
b1 = k − 1− λ; for i = 0, the condition is satisfied trivially. This proves the
following statement.

Proposition 2.6.13.A connected strongly regular graph with parameters
(n, k, λ, µ) is either complete or a distance-regular graph of diameter 2 with
the intersection array (k, k − 1− λ; 1, µ).

Proposition (2.6.13) and statement (1) of Theorem 2.6.11 imply that
the coherent configuration X of a connected non-complete strongly regular
graph X is a symmetric scheme of rank 3. The irreflexive basis relations
s = s1 and s′ := s2 have valencies k and n− k − 1, respectively, and

csss = λ and cs
′
ss = µ.
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By formula (2.1.8), this shows that

k2 = nsns = ns0c
s0
ss + nsc

s
ss + ns′c

s′
ss = k + kλ+ (n− k − 1)µ,

which shows that the parameters of a strongly regular graph are not inde-
pendent and satisfy the relation

k(k − 1− λ) = (n− k − 1)µ.

In contrast to general distance-regular graphs, the distance-transitive
strongly regular graphs, called the rank 3 graphs, are in principle known.
Indeed, for any rank 3 graph X, there exists a group K ≤ Aut(X) acting
transitively on the set of vertices, on the set of ordered pairs of adjacent
distinct vertices, and on the set of ordered pairs of nonadjacent vertices.
Such a group K is called a rank 3 group and all such groups are known,
see [25]. Using this result, a solution to the schurity problem for the coherent
configurations of rank at most 3 is given by the following theorem.

Theorem 2.6.14. Let X be a coherent configuration of rank 3 and X a
basis graph of an irreflexive basis relation of X . Then one of the following
two statements holds:

(1) X is symmetric and X is strongly regular;
(2) X is antisymmetric and X is a doubly regular tournament.

Moreover, X is schurian if and only if either X is a graph of rank 3 or
isomorphic to a Paley tournament.

Proof. Denote by s and s′ the two irreflexive basis relations of X , and
let the arc set of X equal s. If the coherent configuration X is symmetric,
then X is an undirected loopless graph satisfying condition (2.6.10) with

k = ns, λ = csss, µ = cs
′
ss.

Thus in this case the graph X is strongly regular and the schurity criterion
for the scheme X immediately follows from the definition of a rank 3 graph.

To complete the proof, we assume that X is not symmetric. Then s′ = s∗

and X is an antisymmetric scheme of rank 3. Thus, the required statements
follow from Exercises 2.7.57 and 2.7.58. □

The separability question for the schemes of rank 3 seems to be hopeless.
There are strongly regular graphs determined up to isomorphisms by its pa-
rameters, e.g., the pentagon, the Petersen graph, etc. In all these cases, the
scheme of such a graph is separable (statement (5) of Theorem 2.6.11). On
the other hand, a lot of non-separable schemes of rank 3 can be constructed
as fusions of the affine schemes.

Example 2.6.15. Let X be the scheme of the affine Galois plane of
prime order p > 2. From Theorem 2.5.8, it follows that for each positive
integer m ≤ p+ 1, there are
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N =

(
p+ 1

m

)
≈ (p+ 1)m

distinct equivalenced schemes of rank 3: each of them is the algebraic fu-
sion XΦ, where Φ ≤ Sym(p + 1) is the setwise stabilizer of an m-subset
of S(X )#.

For a fixed m, all the above schemes are algebraically isomorphic and
can be treated as Cayley schemes over the same group Cp × Cp. Among
them, there are at most

N0 =
Aut(Cp × Cp)

|F×|
=

|GL(2, p)|
|p2 − 1|

=
(p2 − 1)(p2 − p)

(p2 − 1)

cyclotomic schemes of rank 3 over a field F = Fp2: these schemes are in a
one-to-one correspondence with groups

Cp2−1 ≤ GL(2, p)

considered as the multiplicative groups of the fields F ⊂ Mat2(Fp). It follows
that each of these schemes is not separable whenever N > N0.

The latter inequality is obviously true if p ≥ 5 and m = (p + 1)/2.
Under the latter condition, N > |GL(2, p)| which implies that there are
exponentially many schemes XΦ that are not schurian.

The construction in Example 2.6.15 can be generalized by replacing the
affine scheme with any amorphic scheme defined as follows. For any coherent
configuration X on Ω, and any partition Π of the set S = S(X ), put

SΠ =
{⋃
s∈T

s : T ∈ Π
}
.

Following [52], a scheme X is said to be amorphic if the pair

XΠ = (Ω, SΠ)

is a coherent configuration for any partition Π such that {1} ∈ Π. The
examples of amorphic schemes include all schemes of rank 3, and all affine
schemes (Exercise 2.7.59).

One can easily see that any amorphic scheme of rank at least 4 is sym-
metric. It follows that if s ∈ S is irreflexive and

Π = {{1}, {s}, S# \ {s}},

then XΠ is a symmetric scheme of rank 3, i.e., the basis graph s is strongly
regular (Theorem 2.6.14). Thus the basis graphs of an amorphic scheme are
strongly regular. A survey on amorphic schemes can be found in [120].

Let us mention one more general construction of strongly regular graphs
that can be treated as a faithful functor from the category of finite groups
to the category of symmetric Cayley schemes of rank 3. Namely, given a
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group G, denote by XG a graph on Ω = G×G with the arc set

(2.6.11) sG = {(α, β) ∈ Ω2 : α1 = β1 or α2 = β2 or α−1
1 α2 = β−1

1 β2 },

where α = (α1, α2) and β = (β1, β2) are distinct.
The following statement is straightforward; some other properties of the

graph XG can be found in Exercise 2.7.61.

Proposition 2.6.16. Let G be a group of order n > 1. Then XG is a
Cayley graph over the group G × G, and strongly regular with parameters
(n2, 3n− 3, n, 6).

Example 2.6.17. Let G = C4 and G′ = C2 × C2. Then the graphs XG
and XG′ are strongly regular with parameters (16, 9, 4, 6). The complement
of the first graph is known as the Shrikhande graph, whereas the complement
of the second one is isomorphic to the Hamming graph H(2, 4).

The schemes of XG and XG′ are, respectively, non-schurian and schurian,
both of degree 16, rank 3, and with valencies {1, 6, 9}. These schemes are
algebraically isomorphic but not isomorphic (Exercise 2.7.61). In particular,
none of them is separable.

We complete the section by mentioning a famous conjecture suggesting
a combinatorial solution to the schurity problem for the class of symmetric
schemes of rank 3. Before proceeding further, we need some preparation.

Let X be an undirected graph. Following [60], two induced subgraphs
of X are said to be of the same type with respect to a pair (α, β) of vertices
if both contain α and β and there exists an isomorphism of one onto the
other mapping α to α and β to β.

Definition 2.6.18. The graph X satisfies the t-vertex condition for t ≥ 2
if the number of t-vertex subgraphs of a given type with respect to a given
pair (α, β) of vertices depends only on whether α and β are equal, adjacent,
or non-adjacent.

The following statement is obvious.

Proposition 2.6.19.An undirected graph is regular (respectively, strongly
regular, of rank 3) if and only if it satisfies the t-vertex condition for t = 2
(respectively, t = 3, t = n).

The smallest examples of non-rank 3 strongly regular graphs satisfying
the 4-vertex condition can be found in [83]. The largest known t for which
there exists a non-rank 3 strongly regular graph satisfying the t-condition,
is equal to 7; the corresponding example was found by S. Reichard in [111].

On the other hand, any strongly regular graph of the form XG, where G
is a group, is of rank 3 if and only if it satisfies the 4-condition [34]. A
similar result is true for another large class of strongly regular graphs [82].
All of the above supports the following conjecture.
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Conjecture 2.6.20. (M.Klin, see [49, p.74]) There exists an integer t0
such that any strongly regular graph satisfying the t0-vertex condition is of
rank 3.

The concept of the t-condition can naturally be extended to colored
graphs. Namely, let X be a colored graph on Ω. Following [49, p.71], for
any sets ∆,Γ ⊆ Ω, the induced colored graphs X∆ and XΓ are said to be
of the same type with respect to a pair (α, β) ∈ (∆ ∩ Γ)2 if there exists an
isomorphism of one onto the other mapping α to α and β to β.

Now a colored graph satisfies the t-condition for t ≥ 2 if the number
of the induced t-vertex colored subgraphs of a given type with respect to a
given pair (α, β) of vertices depends only on the color class containing (α, β).

The t-condition for a rainbow X is defined via associated colored graph;
of course, the fulfillment of this condition does not depend on the chosen
colors of standard coloring of X . We will return to this concept in Subsec-
tion 4.2.2.
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2.7 Exercises

In what follows, unless otherwise stated, X is a coherent configuration
on Ω and S = S(X ), F = F (X ), and E = E(X ). The notations X ′ and Ω′,
S′, F ′, and E′ have the same meaning.

2.7.1 [86] The conditions (CC1), (CC2), and (CC3) are independent.
2.7.2 Find all coherent configurations of degree at most 4.
2.7.3 Denote by si the relation on the vertex set Ω of a three-dimensional

cube that is defined by the property “to be at distance i”, i = 0, 1, 2, 3. Then
the pair (Ω, S) with S = {s0, s1, s2, s3}, is a coherent configuration.

2.7.4 Let ∆,Γ ∈ F and s ∈ S∆,Γ. Then Ω−(s) = ∆ and Ω+(s) = Γ. In
particular, Ω−(r), Ω+(r), and Ω(r) are homogeneity sets of X for all r ∈ S∪.

2.7.5 Let M ⊂ N and T ⊆ S∪. Then {α ∈ Ω : |αs| ∈M for all s ∈ T}
is a homogeneity set of X .

2.7.6 Let r, s, t ∈ S and ∆ ∈ F . Then

(1) c1∆rs ̸= 0 if and only if s = r∗ and Ω−(r) = ∆;
(2) ctrs ≤ min{nr, ns∗};
(3)

∑
s∈SΓ,∆

ns = |∆| for all Γ ∈ F ;

(4)
∑

w∈S c
w
rsc

v
wu =

∑
w∈S c

v
rwc

w
su for all u, v ∈ S.

2.7.7 [123, p.28] Let X be a scheme and r, s, t ∈ S. Then

(1) ctrs is a multiple of nsnt GCD(nr,ns,nt)
GCD(nr,ns)GCD(ns,nt)GCD(nt,nr)

;

(2) ntc
t
rs = 0 (modm), where m = LCM(nr, ns).

2.7.8 Let s ∈ S∪. Then

(1) e(s) = {(α, β) ∈ Ω2 : αs = βs} belongs to E;
(2) s · s∗ ∈ E if s ∈ S and ns = 1.

2.7.9 Let e ∈ E. For α ∈ Ω and ∆ ∈ Ω/e, set

S(α,∆) = {s ∈ S : αs ∩∆ ̸= ∅}.

Then

(1) for any α′ ∈ Ω, the sets S(α,∆) and S(α′,∆) are equal or disjoint;
(2) for any ∆′ ∈ Ω/e, the sets S(α,∆) and S(α,∆′) are equal or dis-

joint.

2.7.10 Let e ∈ E and ∆ ∈ F be such that e∆ ̸= ∅. Then e · 1∆ · e is
an indecomposable component of e.

2.7.11 Let s ∈ S and e ∈ E. Then

(1) the number |αs ∩∆| does not depend on α ∈ Ω and ∆ ∈ Ω/e for
which αs ∩∆ ̸= ∅;

(2) if Ω(s) ⊆ Ω(e) and e · s = s · e, then nsΩ/e
divides ns.

2.7.12 Let X be a regular scheme. Then

(1) the closed subsets of S and the subgroups of S1 are in a one-to-one
correspondence;

(2) any fission of X is semiregular.



102 2. BASICS AND EXAMPLES

2.7.13 Let X be a semiregular coherent configuration. Then

(1) |Ω| = |∆| · |F | and |S| = |F |2 · |∆| for all ∆ ∈ F ;
(2) if ∆,Γ ∈ F and s ∈ S∆,Γ, then fs ∈ Iso(X∆,XΓ);
(3) there exists a full system T of distinct representatives of the family

{S∆,Γ}∆,Γ∈F such that such that every nonempty composition r · s
with r, s ∈ T , belongs to T .

2.7.14 Let s ∈ S be such that ss∗ consists of thin relations. Then

ss∗s = {s}.

2.7.15 Let e be the equivalence relation on Ω such that Ω/e = F . Then
e ∈ E and e · s = s · e for all s ∈ S.

2.7.16 Let X be a cyclotomic scheme over a field F. Then

AΓL(1,F) ≤ Iso(X ).

2.7.17 Let K ≤ Sym(Ω) and X = Inv(K,Ω). Then

(1) S∪ equals the set of all K-invariant relations on Ω;
(2) if e ∈ E and ∆ ∈ Ω/e, then X∆ = Inv(K∆,∆);
(3) K is of odd oder if and only if X is antisymmetric;
(4) K is a p-group if and only if |s| is a p-power for each s ∈ S.6

2.7.18 Let X be a schurian coherent configuration. Then the group
Iso(X ) equals the normalizer of Aut(X ) in Sym(Ω).

2.7.19 Let X be a quasiregular coherent configuration, i.e., every its
homogeneous component is regular. Then the group Aut(X ) is abelian if
each homogeneous component of X is commutative. The converse is true if
X is schurian.

2.7.20 [86] In the notation of Theorem 2.2.7, suppose that the group
K is transitive and H is a point stabilizer of K. Then for any r, s, t ∈ S,
the number |H|ctrs is equal to the number of distinct decomposition z = xy
with a fixed z ∈ Dt∗ and all suitable x ∈ Dr∗ and y ∈ Ds∗ .

2.7.21 Let e ∈ E and ∆ ∈ Ω/e. Then

(1) the mapping S∆ → S, s∆ 7→ s is an injection; it induces injections
from F (X∆) and E(X∆) to F and E, respectively;

(2) the coherent configuration X∆ is schurian whenever so is X ;
(3) the restriction of a schurian coherent configuration to any homo-

geneity set is schurian.

2.7.22 For any 2-orbit s of the group Sym(Ω) acting on Ωm (m ≥ 1),
there exists an equivalence relation e on {1, . . . , 2m} such that

s = {(α, β) ∈ Ωm × Ωm : (α · β)i = (α · β)j ⇔ (i, j) ∈ e}.

Conversely, any such s is a 2-orbit of Sym(Ω) acting on Ωm.

6To prove the sufficiency, one can use a result [110, Theorem 1.1] stating that if X is a
coherent configuration such that |s| is a p-power for each s ∈ S, then any fission of X has
this property.
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2.7.23 Let K ≤ Sym(Ω). Then

(1) K(1) equals the direct product of Sym(∆), ∆ ∈ Orb(K);

(2) K is 2-transitive if and only if K(2) = Sym(Ω);

(3) (K(a))(b) = K(m), where m = min{a, b};
(4) if L ≤ K, then L(m) ≤ K(m).

2.7.24 [39] Given a matrix A ∈ MatΩ, set

(2.7.1) e(A) = {(α, β) ∈ Ω2 : Aα = Aβ ̸= 0}.

Then e(A) ∈ E whenever A ∈ Adj(X ).
2.7.25 Let m ≥ 2 be an integer, r ∈ S, and s1, . . . , sm−1 ∈ S∪. Then

the number pr(α, β; s1, . . . , sm−1) of all tuples (α1, . . . , αm) ∈ Ωm such that

(α1, αm) = (α, β) and r(αi, αi+1) = si, i = 1, . . . ,m− 1,

does not depend on the choice of (α, β) ∈ r.
2.7.26 The scalar product on the adjacency algebra Adj(X ) defined by

the formula

⟨
∑
s∈S

csAs,
∑
s∈S

bsAs⟩ =
1

|Ω|
∑
s∈S

csbs|s|

is associative, i.e., ⟨AB,C⟩ = ⟨B,A∗C⟩ for all A,B,C ∈ Adj(X ).
2.7.27 [102, Lemma 2.3] If X is a scheme and r, s ∈ S#, then

rr∗ ∩ ss∗ = {1Ω} ⇔ ctr∗s ≤ 1 for all t ∈ S.

2.7.28 Let s be a relation of X . Then so is {(α, β) ∈ Ω2 : α
s→ β}.

Moreover, if X is a scheme, then this relation is symmetric.
2.7.29 Let φ ∈ Isoalg(X ,X ′) and r, s ∈ S∪. Then

(1) φ(r ∪ s) = φ(r) ∪ φ(s) and φ(r ∩ s) = φ(r) ∩ φ(s);
(2) φ(⟨s⟩) = ⟨φ(s)⟩ and φ(rad(s)) = rad(φ(s)).

2.7.30 Every algebraic isomorphism from X to X ′ induces a lattice
isomorphism from E to E′.

2.7.31 Let φ ∈ Isoalg(X ,X ′), e an indecomposable partial parabolic
of X , ∆ ∈ Ω/e, and e′ = φ(e). Then for any ∆′ ∈ Ω′/e′, the bijection

φ∆,∆′ : S∆ → S′
∆′ , s∆ 7→ φ(s)∆′

is an algebraic isomorphism from X∆ to X ′
∆′ .

2.7.32 If one of two algebraically isomorphic coherent configurations is
half-homogeneous (respectively, homogeneous, equivalenced, regular, semireg-
ular, quasiregular), then so is the other.

2.7.33 The coherent configuration of a dihedral group D2n of degree n
is separable for all n ≥ 1.

2.7.34 [72] Every quasiregular coherent configuration with at most
three fibers is schurian and separable.

2.7.35 Every semiregular coherent configuration is schurian and sepa-
rable.
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2.7.36 Let K ≤ Iso(X ). Then K ≤ Aut(XK).
2.7.37 Let Ψ ≤ Autalg(X ), φ ∈ Isoalg(X ,X ′), and Ψ′ = φΨφ−1. Then

(1) Ψ′ ≤ Autalg(X ′);

(2) φΨ : S(X Ψ) → S(X ′Ψ′
), sΨ 7→ φ(s)Ψ

′
is a well-defined bijection;

(3) φΨ ∈ Isoalg(X Ψ ,X ′Ψ′
).

2.7.38 Find an example of schurian scheme which is the algebraic fusion
of a non-schurian scheme.

2.7.39 Let G be a group, K = ⟨Gright, Gleft⟩, and X = Inv(K,G).
Then

(1) the stabilizer K1 of the identity of G in K equals Inn(G);
(2) Orb(K1, G) = {xG : x ∈ G};
(3) Adj(X ) is isomorphic to the center of CG;
(4) the scheme X is commutative.

2.7.40 Let X be a Cayley scheme and X ≥ X ′. Then X is normal
whenever so is X ′.

2.7.41 Let X be a cyclotomic scheme over a group G, H a characteristic
subgroup of G, and ρ the mapping in Exercise 1.4.15. Then Hρ ∈ E.

2.7.42 Let A and A′ be S-rings over groups G and G′, respectively.
Then

(1) a ring isomorphism φ : A → A′ is an algebraic isomorphism if and
only if Xφ ∈ S(A′) for all X ∈ S(A);

(2) a bijection f : G→ G′ is an isomorphism from A to A′ if and only
if there exists an algebraic isomorphism φ : A → A′ such that

f(Xy) = Xφyf for all X ∈ S(A), y ∈ G.

2.7.43 Let Ω be the set of flags of a projective plane of order q, where
the flag is a pair of a point and a line incident to it. Every two flags
(p, l) and (p′, l′) belongs to one of the relations in the set S = {s0, . . . , s5}
that are defined as in Fig. 2.7, where the double line and arrow denote

s0 : p // l

p′ // l′
s1 : p // l

p′ // l′
s2 : p // l

p′ // l′
s3 : p //

""
l

p′ // l′
s4 : p // l

p′ //
<<

l′

s5 : p // l

p′ // l′

Figure 2.7 The scheme on flags of a projective plane: basis
relations.

the equality and incidence, respectively, and the absence of any line means
general position. For example, s0 = 1 and s1 consists the pairs of flags
having common point. Then

(1) si = s∗i if and only if i ̸= 3, 4, and s∗3 = s4;
(2) (s3, s4) = (s1 · s2, s2 · s1) and s5 = s1 · s2 · s1 = s2 · s1 · s2;
(3) the rainbow (Ω, S) is a scheme of degree (q2 + q + 1)(q + 1) and

rank 6.
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2.7.44 Any scheme algebraically isomorphic to the scheme associated
with a projective (respectively, affine) plane, is associated with a projective
(respectively, affine) plane of the same order.

2.7.45 Among the affine schemes, there exist

(1) schurian schemes, which are not separable;
(2) normal Cayley schemes, which are not schurian.

2.7.46 In any (n, k, λ)-design, the number r of blocks containing a point
does not depend on the choice of this point. Moreover,

nr = bk and λ(n− 1) = r(k − 1),

where b is the number of blocks.
2.7.47 A design D is said to be symmetric if the number of blocks is

equal to the number of points. The following three statements are equivalent:

(1) D is symmetric;
(2) any two distinct blocks of D have the same number of common

points;
(3) D is a coherent design and the corresponding coherent configuration

of D has type [ 22
2
2 ].

2.7.48 [22] Define a system of linked designs to be a set {Ω1, . . . ,Ωm}
of sets (m ≥ 3) and an incidence relation Iij ⊆ Ωi × Ωj for all distinct i
and j, such that for all distinct i, j, and k,

(LD1) the pair (Ωi, {αIji : α ∈ Ωj}) is a symmetric design;
(LD2) the number of elements in Ωk incident with both α ∈ Ωi and β ∈ Ωj

depends only on whether or not (α, β) ∈ Iij .

Then every such system defines a coherent configuration X on the union of
the Ωi, such that

(1) F = {Ω1, . . . ,Ωm};
(2) XΩi = TΩi for all i;
(3) SΩi,Ωj = {Iij , I ′ij} for all i ̸= j, where I ′ij = (Ωi × Ωj) \ Iij .

2.7.49 The mapping (2.6.1) is a closure operator in the class of all
rainbows X on Ω, i.e., the following statements hold:

(1) X ≤ WL(X );
(2) if X ≤ X ′, then WL(X ) ≤ WL(X ′);
(3) WL(WL(X )) = WL(X ).

2.7.50 Let S and T be sets of relations on Ω. Assume that S∪ ⊆ T∪.
Then WL(S) ≤ WL(T ).

2.7.51 Let T be a collection of relations on Ω. Denote by S the partition
of Ω2 such that (α, β) and (α′, β′) belong to the same class if and only if

∀t ∈ {1Ω} ∪ T ∪ T ∗ : (α, β) ∈ t ⇔ (α′, β′) ∈ t.

Then (Ω, S) is a rainbow and WL(T ) = WL(S).
2.7.52 Let X = (Ω, D) be a colored graph, and let φ be an algebraic

isomorphism from X = WL(PcX) to another coherent configuration. Define



106 2. BASICS AND EXAMPLES

a graph X′ = Xφ by

Ω(X′) = Ωφ and D(X′) = Dφ

with a coloring cX′ each color class of which is of the form (c−1
X (i))φ for some

color i of cX. Then the colored graphs X and Xφ are isomorphic if and only
if φ is induced by an isomorphism.

2.7.53 Let X be an undirected cycle on n vertices. Then WL(X) =
Inv(D2n).

2.7.54 Let X be a vertex-disjoint union of two connected graphs X1

and X2 on Ω1 and Ω2, respectively. Assume that ∆ ∈ F (WL(X)) is such
that

|∆ ∩ Ω1| ≠ |∆ ∩ Ω2|.
Then the graphs X1 and X2 are not isomorphic.

2.7.55 Let X be a graph and φ an algebraic isomorphism from WL(X)
to another coherent configuration. Then

(1) if sd(X) is the relation on Ω(X) consisting of all pairs of vertices at
distance d in X, then sd(X)

φ = sd(X
φ);

(2) if the graph X is distance-regular, then the graph Xφ is also distance-
regular and IA(X) = IA(Xφ).

2.7.56 Let X be a connected but not 2-connected undirected graph7

with at least 3 vertices. Then the coherent configuration of X is not homo-
geneous.

2.7.57 Let X be an antisymmetric scheme of rank 3, and S = {s0, s1, s2},
where s0 = 1. Then the basis graphs of s1 and s2 are doubly regular tour-
naments, ns1 = ns2 = (n − 1)/2, and the intersection numbers of X are
determined from the formulas

(2.7.2) c011 = 0, c012 =
n− 1

2
, c111 = c112 = c212 =

n− 3

4
, c211 =

n+ 1

4
,

where ckij = csksisj for all i, j, k. In particular, n = 3 (mod 4).

2.7.58 [12] An antisymmetric scheme of rank 3 is schurian if and only
if each irreflexive basis graph is isomorphic to a Paley tournament.

2.7.59 [52] The following statements hold:

(1) any affine scheme is amorphic;
(2) the degree of any amorphic scheme of rank at least 4 is a square.

2.7.60 [102] A finite affine plane is Desarguesian if and only if the
corresponding scheme satisfies the 4-condition.

2.7.61 [58, 34] For a group G, denote by XG the scheme of the strongly
regular graph XG defined by formula (2.6.11). Then

(1) Aut(XG) ∼= ((G×G)Aut(G)) Sym(3) whenever |G| ≥ 5;
(2) XG is schurian if and only if it satisfies the 4-condition;

7An undirected graph is said to be k-connected if no two of its vertices are separated by
fewer than k other vertices.
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(3) XG and XG′ are algebraically isomorphic if and only if |G| = |G′|;
(4) XG and XG′ are isomorphic if and only if G and G′ are isomorphic.

2.7.62 A complete colored n-vertex graph X satisfies the t-vertex condi-
tion for t = 3 (respectively, for t = n) if and only if the color classes of X form
a coherent configuration (respectively, a schurian coherent configuration).





CHAPTER 3

Machinery and constructions

This chapter fully deserves the title “group theory without groups”.
Indeed, all the concepts and constructions studied here have direct analogs in
the permutation group theory. Based on the Galois correspondence between
the coherent configurations and permutation groups, one can, more or less
in a natural way, translate the imprimitivity, direct sum and product, as
well as wreath product into the language of coherent configurations.

In order to do the same for the stabilizers and actions on tuples, one
needs the concept of coherent closure (Subsection 2.6.1). The translation
of the representation theory goes much more smoothly due to the fact that
the representations of permutation groups and coherent configurations can
be considered in the framework of the representation theory of coherent
algebras.

3.1 Primitivity and quotients

Let e be an equivalence relation on a set Ω. It is easily seen that the per-
mutation groups on Ω that leave e fixed, form a lattice. Analogously, one can
consider the lattice of coherent configurations on Ω that contain e as a par-
tial parabolic. In this subsection, we will see that the Galois correspondence
between the coherent configurations and permutation groups on Ω induces
the Galois correspondence between these two lattices associated with e.

The results from Subsections 3.1.1 and 3.1.2 are essentially contained in
Chapters H, I, and K of book [123]. The concept of thin residue defined
in Subsection 3.1.3 was introduced and studied for homogeneous coherent
configurations in [128]. In our presentation, we follow papers [45, 103].

3.1.1 Primitive and imprimitive schemes

Let X be a scheme on Ω.

Definition 3.1.1. We say that X is primitive if every parabolic of X
equals 1Ω or Ω2; otherwise X is said to be imprimitive.

Every scheme of prime degree is primitive (Corollary 2.1.23), whereas a
regular scheme of composite degree is always imprimitive (statement (4) of
Theorem 2.1.25).

Example 3.1.2. Let X be an imprimitive scheme of rank 3. Then there
is a nontrivial parabolic e ∈ E(X ). It is the union of at least two basis

109



110 3. MACHINERY AND CONSTRUCTIONS

relations, s0 = 1Ω and s1, and the relation s2 = Ω2 \ e is nonempty. Since
rk(X ) = 3, this implies that

S(X ) = {s0, s1, s2}.

It follows that e = s0∪ s1 and the graph of s1 is the disjoint union of cliques
of the same order.

A statement below, which is an immediate consequence of statement (1)
of Exercise 2.7.21, indicates that every imprimitive scheme has nontrivial
“primitive parts”.

Proposition 3.1.3. Let X be a scheme and e ̸= 1 a minimal parabolic
of X . Then the restriction of X to any class of e is primitive.

The primitivity of a schurian scheme can easily be determined with the
help of the corresponding permutation group. In order to see this, we recall
that a transitive group K ≤ Sym(Ω) is primitive if and only if no nontrivial
equivalence relation on Ω is K-invariant. However, all K-invariant equiv-
alence relations on Ω are exactly the parabolics of the scheme Inv(K,Ω)
(statement (1) of Exercise 2.7.17). Thus the following statement holds.

Proposition 3.1.4. Let K be a transitive group. Then the scheme
Inv(K) is primitive (respectively, imprimitive) if and only if the group K
is primitive (respectively, imprimitive).

Proposition 3.1.4 shows that one of the two mapping in the Galois cor-
respondence (namely, that from permutation groups to coherent configura-
tions) respects the property “to be primitive”. However, the other mapping
does not. First, because the automorphism group Aut(X ) of a primitive
scheme X is not necessarily transitive (for example, if X is the antisymmet-
ric scheme of degree 15 and rank 3, then a computer computation shows
that the group Aut(X ) has three orbits of lengths 1, 7, and 7). Second, even
if Aut(X ) is transitive, then it is not necessarily primitive (for example, take
any scheme XG in Exercise 2.7.61 for which the group G has a nontrivial
characteristic subgroup).

Example 3.1.2 shows that a scheme of rank 3 is imprimitive if and only
if one of its irreflexive basis graphs (namely, s1) is the union of at least
two complete loopless graphs of the same order. In particular, this graph is
disconnected. In fact, the absence of such graphs in a scheme is necessary
and sufficient for the scheme to be primitive.

Theorem 3.1.5. A scheme is primitive if and only if each irreflexive
basis relation of it is strongly connected.

Proof. It suffices to verify that a scheme X is imprimitive if and only
if at least one of its irreflexive basis relations is not strongly connected.
First, we assume that X is imprimitive. Then there is a nontrivial parabolic
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e ∈ E(X ). Take two distinct classes ∆ and Γ, and an irreflexive basis relation
s ⊆ e. We have

α ∈ ∆ and α
s→ α′ ⇒ α′ ∈ ∆.

Thus there is no s-path connecting α with a point belonging to Γ, i.e., s is
not strongly connected.

Conversely, let s be an irreflexive basis relation of X that is not strongly

connected. By Exercise 2.7.28, the relation e = {(α, β) : α
s→ β} is a

parabolic of X . Moreover, e is not trivial, because s is neither reflexive nor
strongly connected. Thus the scheme X is imprimitive. □

Example 2.6.15 shows that there are many primitive schemes of rank 3
which are neither schurian nor separable. In all these schemes, the minimal
valency of basis relation is sufficiently large in comparison with the degree
of a scheme in question. On the other hand, if this valency is at most 2,
then the scheme is schurian and separable. This follows from the theorem
below and Exercises 2.7.35 and 2.7.33.

Theorem 3.1.6. Let X be a primitive scheme on Ω. Assume that the
minimum valency nmin of an irreflexive basis relation of X is at most 2.
Then p := |Ω| is a prime and

(1) if nmin = 1, then X = Inv(Cp,Ω);
(2) if nmin = 2, then X = Inv(D2p,Ω).

Proof. Assume first that nmin = 1, i.e., there exists an irreflexive thin
basis relation. Then the thin radical parabolic of X is different from 1, and
hence is equal to Ω2 by the primitivity assumption. This means that all
basis relations of X are thin, i.e., the scheme X is regular (Theorem 2.1.29).
By Theorem 2.2.11, this implies that

X = Inv(K,Ω),

where K is a regular group. This group must be primitive by Proposi-
tion 3.1.4. Since the only regular group which is primitive is a cyclic group Cp
for a prime p, we conclude that K = Cp and statement (1) holds.

Let nmin = 2, i.e., ns = 2 for some s ∈ S. Using formulas (2.1.12)
and (2.1.8), we obtain

4 = nsns∗ =
∑
t∈S

ntc
t
ss∗ = ns +

∑
t∈S#

ntc
t
ss∗ ≥ 2 + 2

∑
t∈S#

ctss∗ .

Thus, ctss∗ ̸= 0 for exactly one irreflexive basis relation t. Moreover, nt = 2,
and t is symmetric, because t∗ ∈ (ss∗)∗ = ss∗.

Now the basis graph Xt of the relation t is the vertex-disjoint union of
undirected cycles. By Theorem 3.1.5, this graph is connected and hence is
an undirected cycle. Thus in accordance with Exercise 2.7.53,

X ≥ WL(Xt) = Inv(D2n,Ω).



112 3. MACHINERY AND CONSTRUCTIONS

It is not hard to see that any proper fission of the scheme on the right-hand
side has an irreflexive thin basis relation. Therefore, X cannot be proper
fission of WL(Xt). Consequently,

X = Inv(D2n,Ω).

The primitivity of X implies that the dihedral groupD2n is primitive (Propo-
sition 3.1.4). Since this is true only if n is prime, we are done. □

By the Sims conjecture proved in [26] with the help of the Classification
of Finite Simple Groups, the maximal subdegree of a primitive group is
bounded from above by a function of its minimal subdegree. The subdegrees
of a transitive group are equal to the valencies of the corresponding scheme
(statement (3) of Proposition 2.2.5). So the following conjecture is true in
the schurian case (if nmin ≤ 2, then this follows from Theorem 3.1.6).

Conjecture 3.1.7. (L. Babai) The maximal valency nmax of a primitive
scheme is bounded from above by a function of its minimal valency nmin.

In the non-schurian case, the conjecture is true if the degree of a primitive
scheme is prime (this immediately follows from Theorem 4.5.6 to be proved
in Section 4.5). In general case, even for nmin = 3, the validity of the
conjecture is not known (some partial results on primitive schemes with
nmin = 3 can be found in [15] and [69]).

The valencies of a primitive scheme satisfy additional conditions. Some
of them are collected in the following statement.

Theorem 3.1.8. Let X be a primitive scheme and

{ns : s ∈ S#} = {n1, . . . , nk},

where S = S(X ) and

1 = n0 < n1 < n2 < · · · < nk.

Then for i = 1, . . . , k − 1,

(1) ni+1 ≤ n1ni; in particular, nk ≤ nd−1
1 , where d = rk(X );

(2) GCD(ni, nk) ≥ nk
nk−1

> 1;

(3) if p is a prime divisor of ni, then p ≤ n1 [99].

Proof. For any nonempty set I ⊆ {1, . . . , k}, denote by sI the union
of all s ∈ S such that ns = ni with i ∈ I. The relation sI is symmetric
(formula (2.1.12)) and connected (Theorem 3.1.5). Consequently, ⟨sI⟩ = Ω2.
This implies that if J ⊊ {1, . . . , k}, then

sI · sJ ̸⊆ sJ ,

for otherwise ⟨sI⟩ · sJ ⊆ sJ and hence Ω2 ⊆ sJ , a contradiction. This
formula shows that sI ·sJ contains a basis relation belonging to sJ ′ for some
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nonempty set J ′ ⊆ {1, . . . , k} not intersecting J . Thus there exist r, s, t ∈ S
such that

(3.1.1) r ⊆ sI , s ⊆ sJ , t ⊆ sJ ′ , and ctrs ̸= 0.

To prove statement (1), take I = {1} and J = {1, . . . , i}. Then ni < nt.
By formula (2.1.8), this implies that

ni+1 ≤ nt ≤ nrns ≤ n1ni.

To prove statement (2), take I = {i} and J = {k}. Then

(3.1.2) nr = ni, ns = nk, nt ≤ nk−1.

By formulas (2.1.14) and (2.1.12), we have nrc
r∗
st∗ = nsc

s∗
t∗r and this number

equals ntc
t
rs ̸= 0. It follows that the number cr

∗
st∗ is a multiple of the quotient

of ns by GCD(nr, ns). Taking into account that cr
∗
st∗ ≤ nt, we obtain

nt ≥ cr
∗
st∗ ≥ ns

GCD(nr, ns)
.

In view of relations (3.1.2), this immediately implies that

GCD(ni, nk) = GCD(ns, nr) ≥
ns
nt

≥ nk
nk−1

.

To prove statement (3), we assume on the contrary that p > n1. Take
I = {1} and

J = {j ∈ {1, . . . , k} : nj = 0 (mod p)}.
Note that i ∈ J and 1 ̸∈ J . Since ctrs ≤ nr = n1 and t ̸⊆ sJ , we have

GCD(ctrs, p) = 1 = GCD(nt, p).

It follows that GCD(ntc
t
rs, p) = 1. On the other hand,

ntc
t
rs = nsc

s∗
t∗r = 0 (mod p)

by the choice of s, a contradiction. □
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3.1.2 Quotients

For any permutation groupK and anyK-invariant equivalence relation e,
there is a permutation group induced by the action of K on the classes of e.
A similar picture arises for schemes. However, the quotient schemes which
correspond to the induced actions are defined in a more complicated way.
In this subsection, we introduce quotient coherent configurations and trace
how the Galois correspondence respects the operation of taking quotient.

Throughout this subsection, X = (Ω, S) is a coherent configuration,
E = E(X ), and e a parabolic of X . Our first goal is to show that the relations
sΩ/e, s ∈ S, defined by formula (1.1.3), form a coherent configuration on Ω/e.

In view of Proposition 2.1.4, for any s ∈ S the composition

(3.1.3) se = e · s · e =
⋃

(∆,Γ)∈sΩ/e

∆× Γ.

is a relation of X . Set
Se = {se : s ∈ S}

Lemma 3.1.9. Se is a partition of Ω2 satisfying the condition (CC2).

Proof. Assume that the intersection t = re ∩ se is not empty for some
r ∈ S. From the right-hand side equality of formula (3.1.3), it follows that
in this case t ∩ r ̸= ∅. Since r ∈ S and t ∈ S∪, this implies that r ⊆ t.
Therefore,

re = e · r · e ⊆ e · t · e = t ⊆ re.

Consequently, t = re. Similarly, one can check that t = se. Thus any two
relations of Se are disjoint or equal. Since obviously (se)∗ = (s∗)e, we are
done. □

In fact, the partition Se satisfies the coherence condition (CC3). In order
to see this, we need some preparation. Let r, s ∈ S be such that re = se. It
immediately follows that for any ∆ and Γ in Ω/e,

r∆,Γ ̸= ∅ ⇔ s∆,Γ ̸= ∅.

The number ne(r) = |r∆,Γ| does not depend on the classes ∆ and Γ such
that r∆,Γ ̸= ∅ (Proposition 2.1.17). Therefore the number

(3.1.4) n(se) := |(se)∆,Γ| =
∑
r∈S
r⊆se

ne(r)

also does not depend on such Γ and ∆. By formula (3.1.3), this implies that

|se| = n(se) |sΩ/e|.

Note that if s = 1∆ for some ∆ ∈ F , then se is a partial equivalence
relation and, in fact, an indecomposable component of e (Exercise 2.7.10).
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Therefore, in this case each class of se is of cardinality
√
n(se) (statement (2)

of Theorem 2.1.22).

Lemma 3.1.10. Let r, s, t ∈ S and (α, β) ∈ t. Then the set αre∩βse is a
disjoint union of some classes of the parabolic e. Moreover, if ne(r, s, t) and
ce(r, s, t) denote the cardinality of this set and the number of these classes,
respectively, then

(3.1.5) ne(r, s, t) =
∑
u∈S
u⊆re

∑
v∈S
v⊆se

ctuv∗ , ce(r, s, t) = ne(r, s, t)

√
n(te)

n(re)n(se)
.

Proof. The first statement follows from decomposition (3.1.3). The
left-hand side equality in (3.1.5) is true, because

γ ∈ αre ∩ βse ⇔ γ ∈ αu ∩ βv

for some u, v ∈ S such that u ⊆ re and v ⊆ se.
To prove the right-hand side equality, we make use of decomposition (3.1.3)

again to conclude that∑
δ∈∆

|δre ∩ βse| =
∑

r∆,Λ ̸=∅,
sΓ,Λ ̸=∅

|∆× Λ| and
∑
γ∈Γ

|αre ∩ γse| =
∑

r∆,Λ ̸=∅,
sΓ,Λ ̸=∅

|Γ× Λ|,

where Λ runs over the classes of e, ∆ = αe, and Γ = βe. The cardinalities
of the sets ∆ × Λ and Γ × Λ in the above formulas are equal to n(re) and
n(se), respectively. Therefore the first equality in (3.1.5) implies that

|∆|ne(r, s, t) = n(re)ce(r, s, t) and |Γ|ne(r, s, t) = n(se)ce(r, s, t).

Thus,
|∆× Γ|ne(r, s, t)2 = n(re)n(se) ce(r, s, t)

2,

which proves the required equality, because |∆× Γ| = n(te). □

From Lemmas 3.1.9 and 3.1.10, it follows that the pair (Ω, Se) satisfies
the conditions (CC2) and (CC3). However, the condition (CC1) may not
hold and hence the pair is not necessarily a rainbow. On the other hand,
Lemma 3.1.9 and formula (3.1.3) show that for all r, s ∈ S,

rΩ/e = sΩ/e ⇔ re = se.

This implies that the set

SΩ/e = {sΩ/e : s ∈ S}

forms a partition of (Ω/e)2. It immediately follows that

XΩ/e = (Ω/e, SΩ/e)

is a rainbow.
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Furthermore, by the right-hand side equality in (3.1.5), for any r, s, t ∈ S
and any (∆,Γ) ∈ tΩ/e,

(3.1.6) |∆rΩ/e ∩ ΓsΩ/e| = ce(r, s, t).

By Lemma 3.1.10, the number ce(r, s, t) does not depend on the choice of ∆
and Γ. Consequently, the rainbow XΩ/e satisfies the condition (CC3). This
proves the first part of the theorem below; the second part is obvious.

Theorem 3.1.11. The rainbow πe(X ) := XΩ/e is a coherent configura-
tion with intersection numbers

(3.1.7) c
tΩ/e
rΩ/esΩ/e

= ce(r, s
∗, t), r, s, t ∈ S.

The mapping πe defined by formula (1.1.4) induces surjections from S(X ),
F (X ), and E(X ) onto S(XΩ/e), F (XΩ/e), and E(XΩ/e), respectively.

Definition 3.1.12. The coherent configuration XΩ/e from Theorem 3.1.11
is called the quotient of X modulo the parabolic e.

Clearly, the quotient is canonically isomorphic to X whenever e = 1Ω.
It should be mentioned that XΩ/e can be homogeneous even when X does
not; this occurs if the parabolic e is indecomposable (Exercise 3.7.6).

Example 3.1.13. Let X be the coherent configuration of an undirected
6-cycle (Example 2.6.2) and e = s0 ∪ s3. Then

(s0)
e = (s3)

e and (s1)
e = (s2)

e.

In particular,
|Ω/e| = 3 and |SΩ/e| = 2.

Thus the quotient scheme XΩ/e equals TΩ/e.
From Theorem 3.1.11, it follows that the parabolics of the quotient coher-

ent configuration XΩ/e are in a one-to-one correspondence with the parabol-
ics of X that contain e. This observation proves the following statement
providing a reduction of arbitrary schemes to primitive ones.

Proposition 3.1.14. Let X be a scheme on Ω and e ̸= Ω2 a maximal
parabolic of X . Then the quotient scheme XΩ/e is primitive.

Now assume that X is a Cayley scheme over a group G. Then in view
of statement (6) of Exercise 1.4.16, there exists a group H ≤ G such that
e = ρ(H), where ρ is the mapping (1.4.8). In this case,

Ω/e = G/H,

i.e., the classes of e are the right H-cosets of G (Proposition 2.4.9).
If the group H is normal in G, then the mapping πe is the canonical

epimorphism from G to G = G/H such that

grightπe = πegright, g ∈ G,
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where g = Hg = πe(g). It follows that for any s ∈ S,

πe(s)
gright = (se)πegright = (se)grightπe = (se)πe = πe(s).

Thus,
Gright ≤ Aut(XΩ/e),

i.e., the following statement holds.

Proposition 3.1.15. Let X be a Cayley scheme over a group G, and let
e be a parabolic of X . Assume that the group H = ρ−1(e) is normal in G.
Then XG/H := XΩ/e is a Cayley scheme over the group G/H.

For an arbitrary partial parabolic e ∈ E, the support Λ = Ω(e) is a
homogeneity set of X (Exercise 2.7.4) and eΛ is a parabolic of XΛ. The
quotient of X modulo e is defined to be

XΩ/e := (XΛ)Λ/eΛ .

Thus the restriction of a coherent configuration to a homogeneity set ∆ is
canonically isomorphic to the quotient of X modulo 1∆.

A natural analog of quotient in permutation group theory is obtained by
taking the group induced by the action of a permutation group on the classes
of an invariant equivalence relation. The following statement shows to what
extent the operation of taking a quotient respects the Galois correspondence
between the coherent configurations and permutation groups.

Theorem 3.1.16. Let e be a partial equivalence relation on Ω. Then

(3.1.8) Inv(KΩ/e) = Inv(K)Ω/e

for any group K ≤ Sym(Ω) such that e is K-invariant, and

(3.1.9) Aut(XΩ/e) ≥ Aut(X )Ω/e

for any coherent configuration X on Ω such that e is a partial parabolic of X .

Proof. Assume that e is K-invariant. Then K acts on Ω/e. Therefore
statement (1) follows from the obvious equality

Orb(K,Ω× Ω)Ω/e = Orb(KΩ/e,Ω/e × Ω/e).

Next, let s ∈ S. Then any k ∈ Aut(X ) leaves s fixed and permutes the
classes of e. It follows that k also permutes the nonempty sets s∆,Γ with

∆,Γ ∈ Ω/e. Consequently, the permutation kΩ/e leaves the relation sΩ/e
fixed. Thus this permutation is an automorphism of the quotient XΩ/e.
This proves statement (2). □

Corollary 3.1.17. Any quotient of a schurian coherent configuration is
schurian.
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It should be noted that inclusion (3.1.9) may be strict (even if the co-
herent configuration X is schurian). For instance, let p be a prime,

K = Cp ⋊ Cp−1 ≤ Sym(Ω)

a regular group, and X = Inv(K,Ω). Then

e = (Cp−1)
ρ

is a parabolic of X with p classes, each of cardinality p− 1.
One can see thatKΩ/e is a transitive group of degree p and order p(p−1).

In particular, it is 2-transitive. By statement (1) of Proposition 3.1.16, this
implies that

XΩ/e = TΩ/e.
Therefore if p ≥ 5, then

Aut(XΩ/e) = Aut(TΩ/e) ∼= Sym(p) ̸∼= K ∼= KΩ/e.

In contrast to Corollary 3.1.17, the quotient (and, in particular, the
restriction) of a separable coherent configuration is not necessary separable
(a lot of examples can be constructed with the help of the standard wreath
product defined in Section 3.4.1). A reason for this is that some algebraic
isomorphisms of the quotient are not induced, in the sense explained below,
by those of the coherent configuration in question.

Let e be a partial parabolic of X , X ′ = (Ω′, S′) a coherent configuration,
and φ : S → S′, s 7→ s′, an algebraic isomorphism. In view of Propo-
sition 2.3.25, e′ = φ(e) is a partial parabolic of X ′. By statement (2) of
Proposition 2.3.18, we also have

φ(se) = φ(e · s · e) = φ(e) · φ(s) · φ(e) = e′ · s′ · e′ = (s′)e
′
,

for all s ∈ S. It follows that φ induces a bijection from Se onto (S′)e
′
and

hence a bijection

(3.1.10) φΩ/e : SΩ/e → S′
Ω′/e′ , sΩ/e 7→ s′Ω′/e′ .

This bijection preserves the intersection numbers of the quotient coherent
configuration, because of formula (3.1.7) and equalities

ne(r, s, t) = ne′(r
′, s′, t′) and ce(r, s, t) = ce′(r

′, s′, t′)

that hold for all r, s, t ∈ S: the first of them is obvious, whereas the second
one follows from Proposition 2.1.17. Thus,

φΩ/e ∈ Isoalg(XΩ/e ,X
′
Ω′/e′).

We say that φΩ/e is the algebraic isomorphism induced by φ. In the spe-
cial case, when e = 1∆ for a homogeneity set ∆ of X , the algebraic isomor-
phism φΩ/e is denoted by φ∆ and is called the restriction of φ to ∆. It should
also be mentioned that if X = X ′ and e = e′, then the restriction mapping
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φ 7→ φΩ/e is a group homomorphism from Autalg(X ) to Autalg(XΩ/e); in

other words,

(3.1.11) Autalg(X )Ω/e ≤ Autalg(XΩ/e).

We complete this subsection by finding the adjacency algebra of the
quotient XΩ/e. To this end, in what follows for any ∆,Γ ⊆ Ω, we set J∆,Γ
to be the adjacency matrix of the relation ∆×Γ ⊆ Ω2, and put J∆ = J∆,∆.

Let us define a matrix

(3.1.12) P = Pe =
∑

∆∈Ω/e

1

|∆|
J∆.

It is easily seen that P = P 2, and that P is the identity element of the
algebra

P Adj(X )P ⊆ MatΩ .

Lemma 3.1.18. For any s ∈ S, the matrix PAsP is a multiple of Ase.
In particular, {Ase : s ∈ S} is a linear basis of the algebra P Adj(X )P .

Proof. The second statement follows from the first one and Lemma 3.1.9.
To prove the first one, let s ∈ S. Then

PAsP =
∑

∆,Γ∈Ω/e

1

|∆| |Γ|
J∆AsJΓ

=
∑

∆,Γ∈Ω/e
s∆,Γ ̸=∅

ne(s)

|∆| |Γ|
J∆,Γ,

where ne(s) is the number defined in Proposition 2.1.17.
Denote by e′ the indecomposable component of e, the support of which

contains the fiber Ω−(s) (Lemma 2.1.21). Then for each ∆ ∈ Ω/e,

s∆,Ω ̸= ∅ ⇒ ∆ ∈ Ω/e′.

By statement (2) of Theorem 2.1.22, this implies that the cardinality of ∆
with s∆,Ω ̸= ∅, is constant. Denote it by as. Similarly, one can check that

the cardinality of each Γ ∈ Ω/e with sΩ,Γ ̸= ∅ is constant, say bs.
Thus the above formula takes the form

PAsP =
ne(s)

asbs

∑
∆,Γ∈Ω/e
s∆,Γ ̸=∅

J∆,Γ =
ne(s)

asbs
Ase ,

as required. □
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By Lemma 3.1.18, the linear spaces P Adj(X )P and Adj(XΩ/e) are iso-
morphic. In fact, they are isomorphic as algebras and an explicit isomor-
phism is given in the following statement.

Theorem 3.1.19. Let X be a coherent configuration, e a partial par-
abolic of X , and P = Pe the matrix defined by (3.1.12). Then the linear
mapping

(3.1.13) f : P Adj(X )P → Adj(XΩ/e), Ase 7→
√
n(se)AsΩ/e

is an algebra isomorphism.

Proof. The fact that f is a linear isomorphism is a consequence of
Lemma 3.1.18. Next, by Lemma 3.1.10, for all r, s, t ∈ S we have

AreAse =
∑
te∈Se

ne(r, s
∗, t)Ate .

By formulas (3.1.5) and (3.1.7), this implies

(AreAse)
f = (

∑
te∈Se

ne(r, s
∗, t)Ate)

f

=
∑

tΩ/e∈SΩ/e

ne(r, s
∗, t)

√
n(te)AtΩ/e

=
√
n(re)ArΩ/e

√
n(se)AsΩ/e

= (Are)
f (Ase)

f .

Thus, f is an algebra isomorphism. □



3. MACHINERY AND CONSTRUCTIONS 121

3.1.3 Residually thin extension

The quotient scheme considered in the previous subsection is an analog
(in the sense of the Galois correspondence) of the permutation group induced
by the action of a transitive group on the blocks of imprimitivity system.
The kernel of this action also corresponds to a certain coherent configuration.

Let K ≤ Sym(Ω) and e a partial K-invariant equivalence relation. Then
the kernel of the action of K on Ω/e is equal to the group

Ke = {k ∈ K : ∆k = ∆ for all ∆ ∈ Ω/e},

see formula (1.4.11). This group can equivalently be defined as the largest
subgroup of K with respect to which the relation 1∆ is invariant for each
∆ ∈ Ω/e. Thus if X is a coherent configuration on Ω and e is a partial
parabolic of X , then the coherent configuration

Xe = WL(X , {1∆ : ∆ ∈ Ω/e}),

can be considered as a natural analog of Ke, where here and below for a
set T of relations on Ω, we denote by WL(X , T ) the coherent closure of S∪T
with S = S(X ).

Definition 3.1.20. The coherent configuration Xe is called the extension
of X with respect to e.

Certainly, Xe = X if e = Ω2, and Xe = DΩ if e = 1Ω.

Theorem 3.1.21. Let e be a partial equivalence relation on Ω. Then

(3.1.14) Inv(Ke) ≥ Inv(K)e

for any group K ≤ Sym(Ω) such that e is K-invariant, and

(3.1.15) Aut(Xe) = Aut(X )e

for any coherent configuration X on Ω such that e is a partial parabolic of X .

Proof. Let K ≤ Sym(Ω). Then obviously Ke ≤ K, and in view of the
Galois correspondence,

Inv(Ke) ≥ Inv(K).

By the monotonicity of the coherent closure (Exercise 2.7.50), this implies
that

Inv(Ke)e ≥ Inv(K)e.

Since the relation 1∆ is Ke-invariant for all ∆ ∈ Ω/e, the left-hand side
coherent configuration is equal to Inv(Ke), which proves inclusion (3.1.14).
To prove formula (3.1.15), set T := {1∆ : ∆ ∈ Ω/e}. Then

Aut(Xe) = Aut(S(X ) ∪ T ) = Aut(X ) ∩Aut(T ) = Aut(X )e,

as required. □
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It seems that inclusion (3.1.14) can be strict, but no example is known.
In fact, the explicit calculation of the extension of a coherent configuration
with respect to a partial parabolic is not easy, except for some special cases.
One of them is considered in the rest of the subsection.

In what follows, X = (Ω, S) is a coherent configuration, E = E(X ), and
e ∈ E is a parabolic of X . It is assumed that e is proper, i.e., each class of e
is contained in a fiber of X .

Definition 3.1.22. The parabolic e is said to be residually thin if the
coherent configuration XΩ/e is semiregular.

Any coherent configuration has at least one residually thin parabolic:
the classes of it are the fibers. In any scheme, each parabolic with at most
two classes is obviously residually thin.

Example 3.1.23. Let X = Inv(K,Ω), where K ≤ Sym(Ω) is a transitive
group. Let e be a parabolic of X such that K{∆} ⊴ K for some ∆ ∈ Ω/e.
Then

(3.1.16) K{∆} = Ke.

Indeed, the inclusion K{∆} ≥ Ke is obvious, whereas the reverse inclusion
is true, because K{∆} ⊴ K and

K{∆k} = k−1K{∆}k

for all k ∈ K.
Now equality (3.1.16) implies that the group KΩ/e and hence the scheme

Inv(KΩ/e) is regular. However in view of formula (3.1.8),

XΩ/e = Inv(K)Ω/e = Inv(KΩ/e).

Thus the scheme XΩ/e is regular and the parabolic e is residually thin.

The concept of residually thin parabolic is, in a sense, dual to that of
thin parabolic (the exact meaning of this statement can be seen in the class
of Cayley schemes over an abelian group G, where the duality comes from
the group dual to G, see Exercises 3.7.52–3.7.54). Therefore, the fact that
every coherent configuration has the smallest (with respect to inclusion)
residually thin parabolic does not seem too surprising.

Lemma 3.1.24. The intersection of any set of residually thin parabolics
is residually thin.

Proof. Let e1 and e2 be residually thin parabolics of X . Without loss
of generality (see statement (1) of Exercise 3.7.9), we may assume that

e1 ∩ e2 = 1.

We need to verify that X = XΩ/1Ω is semiregular, i.e., |αs| = 1 for all α ∈ Ω
and s ∈ S such that αs ̸= ∅.
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Note that the relations sΩ/e1 and sΩ/e2 being the basis relations of the
semiregular quotients XΩ/e1 and XΩ/e2 are thin. Therefore, there exist
classes ∆1 ∈ Ω/e1 and ∆2 ∈ Ω/e2 such that

(αe1) sΩ/e1 = {∆1} and (αe2) sΩ/e2 = {∆2}.

This implies that αs is contained in the singleton ∆1 ∩∆2, as required. □

By Lemma 3.1.24, there exists the smallest residually thin parabolic
of a coherent configuration X that is the intersection of all residually thin
parabolics. It is called the thin residue parabolic of X . Clearly, X is semireg-
ular if and only if the thin residue parabolic of X is equal to 1Ω.

Definition 3.1.25. The set of basis relations contained in the thin
residue parabolic of X is called the thin residue of X .

An extremely useful property of a residually thin parabolics e as stated in
the theorem below, is that the extension of X with respect to e is completely
under control. This means not only that the basis relations of Xe admit
an explicit description but also that any algebraic isomorphism from X to
another coherent configuration can be extended to an algebraic isomorphism
of Xe.

Theorem 3.1.26. [45, Theorem 2.1] Let X be a coherent configuration
on Ω, e a residually thin parabolic of X , S = S(X ), and Se = S(Xe). Then

(1) Se = {s∆,Γ : s ∈ S, ∆,Γ ∈ Ω/e}♮;
(2) given k ∈ Aut(XΩ/e), the mapping

ψk : Se → Se, s∆,Γ 7→ s∆k,Γk

is an algebraic automorphism of Xe;
(3) X = (Xe)Ψ, where Ψ = {ψk : k ∈ Aut(XΩ/e)};
(4) each φ ∈ Isoalg(X ,X ′) can be extended to φe ∈ Isoalg(Xe ,X ′

e′),
where e′ = φ(e).

Proof. Let us prove that given r, s, t ∈ S and ∆,∆′,∆′′,Γ,Γ′,Γ′′ ∈ Ω/e
such that r∆,Γ ̸= ∅ and s∆′,Γ′ ̸= ∅, we have

(3.1.17) |α r∆,Γ ∩ β s∆′,Γ′ | = δ∆′′,∆δΓ,Γ′δ∆′,Γ′′ctrs∗ , (α, β) ∈ t∆′′,Γ′′ ,

where δ·,· is the Kronecker delta. Without loss of generality we may assume
that

∆′′ = ∆, Γ = Γ′, ∆′ = Γ′′.

Since r∆,Γ ̸= ∅ and s∆′,Γ′ ̸= ∅, the semiregularity of XΩ/e implies that

∆ rΩ/e = {Γ} and ∆′ sΩ/e = {Γ′}.

Therefore,

|αr ∩ βs| = |α r∆,Γ ∩ β s∆′,Γ′ |, (α, β) ∈ ∆×∆′.
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If (α, β) ∈ t, then the left-hand side of the above equality equals ctrs∗
and (3.1.17) follows.

Denote by S′ the set on the right-hand side of the equality in statement (1).
Then obviously the pair X ′ = (Ω, S′) is a rainbow. By formula (3.1.17), this
implies that X ′ is a coherent configuration with the intersection numbers

(3.1.18) c
t∆′′,Γ′′

r∆,Γ sΓ′,∆′ = δ∆′′,∆δΓ,Γ′δ∆′,Γ′′ctrs.

Next, by the definition of the coherent configuration Xe, each class of e
is a homogeneity set of Xe. It follows (Proposition 2.1.4) that

s∆,Γ = 1∆ · s · 1Γ ∈ (Se)
∪ for all ∆,Γ ∈ Ω/e, s ∈ S.

Consequently, S′ ⊆ (Se)
∪ and hence X ′ ≤ Xe. The reverse inclusion follows

from the minimality of the coherent closure Xe. Thus, X ′ = Xe and S′ = Se.
Statement (1) is proved.

Statement (2) immediately follows from (3.1.18) and the definition of ψk.
Furthermore, the coherent configuration XΩ/e is semiregular and so schurian
(Exercise 2.7.35). Consequently, for any s ∈ S, the group Aut(XΩ/e) acts
regularly on sΩ/e. Consequently, the relation s has the form

s =
⋃

(∆,Γ)∈sΩ/e

s∆,Γ =
⋃

k∈Aut(XΩ/e)

s∆k
0 ,Γ

k
0
=
⋃
ψ∈Ψ

(s∆0,Γ0)
ψ = (s∆0,Γ0)

Ψ,

where ∆0 and Γ0 are classes of e such that the relation s∆0,Γ0
is not empty.

This shows that S = (Se)
Ψ, which proves statement (3).

To prove statement (4), let φ ∈ Isoalg(X ,X ′). By formula (3.1.10), this
algebraic isomorphism induces the algebraic isomorphism

φΩ/e ∈ Isoalg(XΩ/e ,X
′
Ω′/e′).

The coherent configuration XΩ/e is semiregular, and hence separable (Exer-

cise 2.7.35). Therefore there exists an isomorphism

fe ∈ Iso(XΩ/e,X
′
Ω′/e′ , φΩ/e)

inducing φΩ/e. Since parabolic e′ is residually thin (Exercise 3.7.15), for-
mula (3.1.18) holds also for all basis relations of X ′ and all classes of e′. It
follows that the mapping

φe : S(Xe) → S(X ′
e′), s∆,Γ 7→ s′∆fe ,Γfe

is an algebraic isomorphism from Xe to X ′
e′ , where s

′ = φ(s). Consequently,

φe(s) =
⋃

(∆,Γ)∈sΩ/e

φe(s∆,Γ) =
⋃

(∆′,Γ′)∈s′
Ω′/e′

s′∆′,Γ′ = s′ = φ(s),

where ∆′ = ∆fe and Γ′ = Γfe . This means that φe extends φ. □
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Remark 3.1.27. The algebraic isomorphism φe in statement (4) of
Theorem 3.1.26 is obviously unique in the following sense: for any algebraic
isomorphism ψ ∈ Isoalg(Xe ,X ′

e′) extending φ,

ψΩ/e = (φe)Ω/e ⇒ ψ = φe.
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3.1.4 Schurity and separability of residually thin extension

The close connection between a coherent configuration X and its exten-
sion Xe with respect to a residually thin parabolic e that was established in
Theorem 3.1.26 suggests that the schurity and separability of X is somehow
related to those of Xe. However, a possible reduction cannot be direct. For
example, an algebraic isomorphism from Xe to another coherent configura-
tion does not necessarily induce an algebraic isomorphism of X , and hence
it is difficult to expect that the separability of X implies the separability
of Xe. The following two theorems were proved in [103].

Theorem 3.1.28. Let X be a coherent configuration and e a residually
thin parabolic of X . Then

(1) if Xe is separable, then X is separable;
(2) if X is schurian, then Xe is schurian.

Proof. To prove statement (1), let φ ∈ Isoalg(X ,X ′). By statement (4)
of Theorem 3.1.26, there exists an algebraic isomorphism

φe ∈ Isoalg(Xe,X ′
e′)

extending φ, where e′ = φ(e). Assume that the coherent configuration Xe
is separable. Then φe is induced by an isomorphism f ∈ Iso(Xe,X ′

e′). Now
if s ∈ S(X ), then s ∈ S(Xe)∪, and

φ(s) = φe(s) = sf .

Thus, f ∈ Iso(X ,X ′, φ), as required.
To prove statement (2), let us verify that each s0 ∈ S(Xe) is a 2-orbit of

the group Aut(Xe). By formula (3.1.15),

(3.1.19) (α0, β0)
Aut(X )e ⊆ s0

for any (α0, β0) ∈ s0. Denote by ∆ and Γ the classes of e that contain α0 and
β0, respectively. By statement (1) of Theorem 3.1.26, there exists s ∈ S(X )
such that

s0 = s∆,Γ.

Assume that the coherent configuration X is schurian. Then s is a 2-
orbit of the group Aut(X ). It follows that there exists a set K0 ⊆ Aut(X )
such that

(3.1.20) s0 = (α0, β0)
K0 .

Clearly, ∆K0 = ∆. On the other hand, the group Aut(X )Ω/e ≤ Aut(XΩ/e) is
semiregular, because the coherent configuration XΩ/e is semiregular. Thus,

(K0)
Ω/e ⊆ (Aut(X ){∆})

Ω/e = {idΩ/e},
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i.e., K0 ⊆ Aut(X )e. Now by formulas (3.1.19) and (3.1.20), we have

s0 = (α0, β0)
K0 ⊆ (α0, β0)

Aut(X )e ⊆ s0,

which shows that s0 is a 2-orbit of Aut(Xe). □

There are examples showing that none of statements of Theorem 3.1.28
can be reversed. However, the situation is changed if the property of a
coherent configuration to be schurian or separable is replaced by the property
to be schurian and separable simultaneously.

Theorem 3.1.29. Let X be a coherent configuration and e a residually
thin parabolic of X . Then X is schurian and separable if and only if Xe is
schurian and separable.

Proof. First, we assume that X is schurian and separable. Then, the co-
herent configuration Y = Xe is schurian by statement (2) of Theorem 3.1.28.
To verify that Y is separable, let Y ′ be a coherent configuration on Ω′ and

φ ∈ Isoalg(Y,Y ′).

Denote by φ the restriction of φ to S = S(X ), and set X ′ = Xφ. Then
by Corollary 2.3.21 applied for Y = X ,

φ ∈ Isoalg(X ,X ′).

In accordance with Exercise 3.7.15, the parabolic e′ = eφ is residually thin
in X ′. Furthermore, the definition of φ implies that

φ(s∆,Γ) = φ(s)∆φ,Γφ , s ∈ S, ∆,Γ ∈ Ω/e.

Thus by statement (1) of Theorem 3.1.26 we have

Y ′ = (X ′)e′ and F (Y ′) = Ω′/e′.

In particular, the algebraic isomorphism φ induces a bijection

g : Ω/e→ Ω′/e′, ∆ 7→ ∆φ.

This bijection induces the algebraic isomorphism φΩ/e, which extends the
algebraic isomorphism φΩ/e. Consequently,

g ∈ Iso(XΩ/e ,X
′
Ω′/e′).

By the separability of the coherent configuration X , there exists an isomor-
phism f̄ ∈ Iso(X ,X ′, φ). Because f̄Ω/e and g induce the same algebraic
isomorphism φΩ/e,

f̄Ω/e g−1 ∈ Aut(XΩ/e).

The schurity of X and the fact that XΩ/e is semiregular, implies that this

automorphism can be extended to an automorphism f̃ of X . After replacing
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f̄ by f̃−1f̄ , we get f̄Ω/e = g and hence

(φe)Ω/e = φΩ/e.

Thus, φ = φe by Remark 3.1.27. Since the isomorphism f̄ induces the
algebraic isomorphism φe, we obtain

f̄ ∈ Isoalg(Y,Y ′) = Iso(Xe,X ′
e′ , φ).

This completes the proof that the coherent configuration Xe is separable.
Now assume that Xe is schurian and separable. Then X is separable by

statement (1) of Theorem 3.1.28. Let us verify that any s ∈ S is a 2-orbit
of the group Aut(X ). To this end, let (α1, β1) and (α2, β2) belong to s. Set

∆i = αie and Γi = βie, i = 1, 2.

Then (∆1,Γ1) and (∆2,Γ2) belong to sΩ/e. Since the quotient XΩ/e is
semiregular and hence schurian, there exists k ∈ Aut(XΩ/e) such that

(∆1,Γ1)
k = (∆2,Γ2).

By statement (2) of Theorem 3.1.26, the automorphism k induces an alge-
braic automorphism ψk ∈ Autalg(Xe) such that

(3.1.21) (∆1)
ψk = ∆2 and (Γ1)

ψk = Γ2.

By the separability of Xe, there exists f ∈ Iso(Xe,Xe, ψk). From the
definition of ψk, it follows that f ∈ Aut(X ). Furthermore by (3.1.21),

(∆1)
f = ∆2 and (Γ1)

f = Γ2.

Thus without loss of generality, we may assume that ∆1 = ∆2 and Γ1 = Γ2.
Denote these sets by ∆ and Γ. Then

(α1, β1), (α2, β2) ∈ s∆,Γ.

The schurity of the coherent configuration Xe implies that s∆,Γ is a 2-orbit of
Aut(Xe) ≤ Aut(X ). Thus the pairs (α1, β1) and (α2, β2) belong to a 2-orbit
of Aut(X ), as required. □

A quite general situation, where a residually thin parabolic arises in
a natural way, was considered in [41, Theorem 2.2]. Namely, let X be a
coherent configuration on Ω. Assume that it admits an isomorphism groupG
acting regularly on the fibers of X . Then

(3.1.22) e =
⋃

∆∈F (X )

∆2,

is a residually thin parabolic of XG. If, in addition, the extension of XG with
respect to e is equal to X , then statement (2) of Theorem 3.1.28 can be re-
versed. Furthermore, the automorphism group of XG is explicitly calculated
modulo the group Aut(X ).
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Theorem 3.1.30. Let X be a coherent configuration, G ≤ Iso(X ), and

f : G→ Sym(F )

the homomorphism induced by the action of G on F = F (X ). Assume that
the following conditions are satisfied:

(1) Im(f) is a regular subgroup of Sym(F );
(2) ker(f) ≤ Aut(X ).

Then

(3.1.23) Aut(XG) = GAut(X ).

Furthermore, the coherent configurations X and XG are schurian or not
simultaneously.

Proof. Equality (3.1.23) is a direct consequence of Lemma 3.1.31 below:
conditions (1) and (2) of this lemma are satisfied by Corollary 2.2.23 and
obvious equality

ker(f) =
⋂
∆∈F

G{∆},

respectively. Furthermore, if X is schurian, then so is XG (Proposition 2.3.28).
The reverse statement immediately follows from statement (2) of Theo-
rem 3.1.28 for X replaced by XG and residually thin parabolic e defined
by formula (3.1.22).

Lemma 3.1.31. In the notation of Theorem 3.1.30, equality (3.1.23)
holds whenever the following conditions are satisfied:

(1) the group Im(f) is 2-closed;
(2) for any ∆1,∆2 ∈ F , the induced action of the group G{∆1}∩G{∆2}

on the set S∆1,∆2 is trivial, where S = S(X ).

Proof. In accordance with Exercise 2.7.36, we have G ≤ Aut(XG).
Furthermore, Aut(X ) ≤ Aut(XG), because X ≥ XG. Thus,

Aut(XG) ≥ GAut(X ).

To prove the reverse inclusion let r ∈ S(XG). Then r = sG for some
s ∈ S. Note that if ∆ and Γ are the fibers of X such that s ∈ S∆,Γ, then
sg ∈ S∆g ,Γg for all g ∈ G. When the element g runs over G, the pair (∆g,Γg)
runs over a certain 2-orbit t of the group Im(f). Therefore,

(3.1.24) r =
⋃

(∆1,∆2)∈t

r∆1,∆2 .

Obviously, r∆1,∆2 is the union of all sg for which (∆1,∆2)
g = (∆1,∆2), or

equivalently g ∈ G{∆1} ∩G{∆2}. By condition (2), this implies that

(3.1.25) r∆1,∆2 ∈ S∆1,∆2 for all (∆1,∆2) ∈ t.
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The parabolic e defined in (3.1.22), being G-invariant, is a parabolic of
the coherent configuration XG. Since F is the set of classes of e, there is a
homomorphism

f ′ : Aut(XG) → Sym(F )

induced by the action of the group Aut(XG) on the set F . Clearly, f ′|G = f .
By formula (3.1.24) the groups f(G) and Im(f ′) have the same 2-orbits.

Therefore, condition (1) implies that

f(G) = Im(f ′).

On the other hand, formula (3.1.25) shows that ker(f ′) ≤ Aut(X ). Thus,

Aut(XG) ≤ GAut(X )

and we are done. □
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3.2 Direct sum and tensor product

The direct product of two permutation groups has two natural actions:
on the disjoint union and on the Cartesian product of the underlying sets.
For coherent configurations these actions correspond to a direct sum and
a tensor product, respectively. In this section, we define them explicitly
and show that both respect the Galois correspondence between the coherent
configurations and permutation groups. The most part of the results goes
back to monograph [123].

Throughout the section, Xi = (Ωi, Si) is a coherent configuration, Fi =
F (Xi), and Ei = E(Xi), i = 1, 2.

3.2.1 The direct sum

Let Ω be the disjoint union of Ω1 and Ω2. Set

S1,2 = {∆1 ×∆2 : (∆1,∆2) ∈ F1 × F2} and S2,1 = S∗
1,2.

Any pair contained in no relation belonging to the union S1,2 ∪ S2,1 lies in
a basis relation of either X1 or X2. Therefore, the set

(3.2.1) S1 ⊞ S2 = S1 ∪ S2 ∪ S1,2 ∪ S2,1,

forms a partition of Ω2. It is easily seen that this partition satisfies the
conditions (CC1) and (CC2). Thus the pair

X1 ⊞ X2 := (Ω1 ∪ Ω2, S1 ⊞ S2)

is a rainbow on Ω.

Theorem 3.2.1. The rainbow X = X1⊞X2 is a coherent configuration of
degree |Ω1|+|Ω2| and rank |S1|+|S2|+2|F1| |F2|. Moreover, F (X ) = F1∪F2,
Ω1 and Ω2 are homogeneity sets of X , and also XΩ1 = X1 and XΩ2 = X2.

Proof. It suffices to verify that X satisfies the condition (CC3). Let
r, s ∈ S, where S = S1 ⊞ S2. Without loss of generality, we may assume
that r · s ̸= ∅. Then one of the following statements holds for i = 1 or 2:

(a) r, s ∈ Si;
(b) r ∈ (Si)∆i,Γi and s = Γi × Γ3−i;
(c) r = ∆3−i ×∆i and s ∈ (Si)∆i,Γi ;
(d) r = ∆3−i ×∆i and s = ∆i × Γ3−i,

where ∆i,Γi ∈ Fi, and ∆3−i,Γ3−i ∈ F3−i.
Let us prove that given t ∈ S, the number |αr ∩ βs∗| does not depend

on the choice of (α, β) ∈ t. This is true in the case (a), because

|αr ∩ βs∗| =

{
ctrs, if t ∈ Si,

0, if t ̸∈ Si.
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In the cases (b) and (c), the assumption implies that t is equal to, re-
spectively, ∆i × Γ3−i and ∆3−i × Γi, and

αr ∩ βs∗ =

{
αr ∩ Γi, if t = ∆i × Γ3−i,

∆i ∩ βs∗, if t = ∆3−i × Γi.

By formula (2.1.4), this implies that |αr∩βs∗| equals, respectively, nr and ns.
In the remaining case (d), the assumption yields t ⊆ ∆3−i × Γ3−i. It

follows that
|αr ∩ βs∗| = |∆i|.

Thus the condition (CC3) is satisfied in each case and we are done. □

Definition 3.2.2. The coherent configuration X1⊞X2 is called the direct
sum of the coherent configurations X1 and X2.

It is straightforward to define the direct sum of more than two coherent
configurations; it is obviously monotonic with respect to each summand,
commutative, and associative. The uniqueness of the decomposition into
the direct sum of indecomposable summands is established in the following
statement.

Theorem 3.2.3. Let X be a coherent configuration. Denote by X =
X(X ) a loopless undirected graph the vertices of which are the fibers of X ,
and two fibers ∆ and Γ are adjacent if and only if |S∆,Γ| > 1. Then

X =
m
⊞
i=1

XΩi ,

where m is the number of connected components of X and Ωi is the union
of fibers belonging to the ith component. Moreover, the restriction XΩi is
indecomposable with respect to the direct sum.

Proof. The first statement is true, because if i ̸= j and ∆i ⊆ Ωi and
∆j ⊆ Ωj are fibers of X , then ∆i and ∆j are not adjacent in the graph X, i.e.,
|S∆i,∆j | = 1 or equivalently, ∆i ×∆j ∈ S. To prove the second statement,
we assume on the contrary that

XΩi = XΛ ⊞ XΛ′ ,

where Λ and Λ′ are disjoint homogeneity sets of X contained in Ωi. Then
no fiber contained in Λ is adjacent to a fiber contained in Λ′. Therefore Λ
and Λ′ lie in different components of the graph X(XΩi). Consequently, this
graph is not connected, a contradiction. □

In the lattice of all coherent configuration on Ω, the direct sum X1 ⊞X2

is distinguished by the minimality condition established in the following
statement.

Theorem 3.2.4. The direct sum X1 ⊞ X2 is the smallest coherent con-
figuration among all coherent configurations X on Ω such that



3. MACHINERY AND CONSTRUCTIONS 133

(3.2.2) Ωi ∈ F (X )∪ and XΩi = Xi, i = 1, 2.

Proof. By Theorem 3.2.1, the coherent configuration X1 ⊞ X2 satis-
fies conditions (3.2.2). Let X be an arbitrary coherent configuration on Ω
satisfying these conditions. For any its basis relation s,

s ∈ S(X )Ωi or s ∈ S(X )Ωi,Ω3−i ,

where i = 1 or 2. This implies that in any case s is contained in a basis
relation of X1 ⊞ X2. Thus, X ≥ X1 ⊞ X2. □

Obviously, every discrete coherent configuration X is the direct sum of
its homogeneous components. Furthermore in this case, X = XΩ1 ⊞ XΩ2 ,
where Ω1 is an arbitrary nonempty subset of Ω, and Ω2 is the complement
of Ω1 in Ω.

The direct sum of coherent configurations is a combinatorial analog of
the direct product of permutation groups in the intransitive action. The
following statement shows that it is invariant with respect to the Galois cor-
respondence between the coherent configurations and permutation groups.

Theorem 3.2.5. Assume that Ω1 and Ω2 are disjoint sets. Then

(3.2.3) Inv(K1 ×K2,Ω1 ∪ Ω2) = Inv(K1,Ω1)⊞ Inv(K2,Ω2)

for all groups K1 ≤ Sym(Ω1) and K2 ≤ Sym(Ω2), and

(3.2.4) Aut(X1 ⊞ X2) = Aut(X1)×Aut(X2)

for all coherent configurations X1 on Ω1 and X2 on Ω2.

Proof. Denote by X the coherent configuration on the left-hand side
of formula (3.2.3). By the definition of the intransitive direct product
(see (1.3.1)),

XΩ1 = Inv(K1,Ω1) and XΩ2 = Inv(K2,Ω2),

and
∆1 ×∆2 ∈ Orb(K1 ×K2, (Ω1 ∪ Ω2)

2)

for any fibers ∆1 and ∆2 of the coherent configurations Inv(K1,Ω1) and
Inv(K2,Ω2), respectively. Thus any basis relation of the direct sum on the
right-hand side of formula (3.2.3) is a 2-orbit of the group

K1 ×K2 ≤ Sym(Ω1 ∪ Ω2).

This proves formula (3.2.3).
To prove formula (3.2.4), set X := X1 ⊞ X2. Clearly, Ω1 and Ω2 are

Aut(X )-invariant sets and

Aut(X )Ω1 ≤ Aut(X1) and Aut(X )Ω2 ≤ Aut(X2).

Therefore, the group on the left-hand side of (3.2.4) is contained in the
group on the right-hand side.
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Conversely, let k ∈ Aut(X1) × Aut(X2), and let s ∈ S. Now if s ∈ Si
for i = 1 or 2, then

sk = ski = s,

where ki is the ith component of k. Assume that s = ∆i ×∆3−i for some
∆i ∈ Fi and ∆3−i ∈ F3−i. Then

sk = (∆i)
ki × (∆3−i)

k3−i = ∆i ×∆3−i = s.

Thus in any case, sk = s. This is true for all s ∈ S, and hence k ∈ Aut(X ),
as required. □

Corollary 3.2.6. X1 ⊞ X2 is schurian if and only if so are X1 and X2.

Proof. The necessity follows from the last statement of Theorem 3.2.1
and the fact that the schurity is preserved under restrictions (Exercise 2.7.21).
To prove the sufficiency, we assume that the coherent configurations X1 and
X2 are schurian, i.e.,

X1 = Inv(Aut(X1)) and X2 = Inv(Aut(X2)).

Then by Theorem 3.2.5,

Inv(Aut(X1 ⊞ X2)) = Inv(Aut(X1)×Aut(X2))

= Inv(Aut(X1))⊞ Inv(Aut(X2))

=X1 ⊞ X2,

i.e., the coherent configuration X1 ⊞ X2 is schurian. □

Certainly, the direct sum of coherent configurations respects the isomor-
phisms. The same is true for the algebraic isomorphisms. The following
statement together with Exercise 3.7.33 completely describes algebraic iso-
morphisms of direct sum. In particular, it shows that any coherent config-
uration algebraically isomorphic to direct sum, is also direct sum.

Theorem 3.2.7. Let X = X1 ⊞ X2 and φ ∈ Isoalg(X ,X ′). Then

(1) X ′ = X ′
1 ⊞ X ′

2, where X ′
1 = X ′

Ωφ
1
and X ′

2 = X ′
Ωφ

2
;

(2) φΩ1
∈ Isoalg(X1,X ′

1) and φΩ2
∈ Isoalg(X2,X ′

2).

Proof. From statement (1) of Proposition 2.3.22, it follows that the
algebraic isomorphism φ induces an isomorphism of the graph X = X(X ) to
the graph X′ = X(X ′) defined in Theorem 3.2.3. Since no edge of X join a
vertex of Ω1 with vertex of Ω2, the same statement holds for X′ and the sets
Ωφ1 and Ωφ2 . This immediately implies statement (1), and also statement (2)
by the definition of the restriction of algebraic isomorphism. □

Under the condition of Theorem 3.2.7, the algebraic isomorphism φ is
uniquely determined by its restrictions φ1 = φΩ1

and φ2 = φΩ2 (see Exer-
cise 3.7.33). It easily follows that

Iso(X ,X ′, φ) ̸= ∅ ⇔ Iso(X1,X ′
1, φ1) ̸= ∅ and Iso(X2,X ′

2, φ2) ̸= ∅.
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This gives the following criterion for the direct sum of coherent configura-
tions to be separable.

Corollary 3.2.8. X1 ⊞ X2 is separable if and only if so are X1 and X2.
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3.2.2 Tensor product

Let Ω = Ω1 ×Ω2; the first and second coordinates of α ∈ Ω are denoted
by α1 and α2, respectively. There are two natural equivalence relations on Ω
defined by the equalities of the first and second coordinates, namely,

(3.2.5) e1 = {(α, β) ∈ Ω2 : α1 = β1}, e2 = {(α, β) ∈ Ω2 : α2 = β2}.

The classes of e1 and e2 are of the form {α1}×Ω2 and Ω1×{α2}, respectively,
and the associated canonical mappings

(3.2.6) f1 : Ω1 → Ω/e1, α1 7→ {α1}×Ω2, f2 : Ω2 → Ω/e2, α2 7→ Ω1×{α2}

are bijections.
The tensor product of any two relations, one on Ω1 and the other on Ω2,

defined by formula (1.1.1), is a relation on Ω. This allows us to define a
rainbow

X1 ⊗X2 = (Ω1 × Ω2, S1 ⊗ S2)

for any rainbows X1 = (Ω1, S1) and X2 = (Ω2, S2). In what follows, any
s ∈ S1 ⊗ S2 is written in the form s = s1 ⊗ s2, where s1 ∈ S1 and s2 ∈ S2.

Theorem 3.2.9. Let X1 and X2 be coherent configurations. Then the
rainbow X = X1 ⊗ X2 is a coherent configuration of degree |Ω1| · |Ω2|, rank
|S1| · |S2|, and intersection numbers

(3.2.7) ctrs = ct1r1s1 · c
t2
r2s2 , r, s, t ∈ S1 ⊗ S2.

In particular, ns = ns1ns2 for all s. Moreover,

(1) F (X ) = {∆1 ×∆2 : ∆1 ∈ F1, ∆2 ∈ F2};
(2) e1 and e2 are parabolics of X ;
(3) f1 ∈ Iso(X1,XΩ/e1) and f2 ∈ Iso(X2,XΩ/e2).

Proof. We have αr = α1r1 × α2r2 for all α ∈ Ω and r = r1 ⊗ r2. It
follows that for all β ∈ Ω and s ⊆ Ω2,

αr ∩ βs∗ = (α1r1 ∩ β1s
∗
1)× (α2r2 ∩ β2s

∗
2).

Consequently, given r, s, t ∈ S the cardinality of the set αr ∩ βs∗ is equal
to the number on the right-hand side of (3.2.7) and does not depend on
the pair (α, β) ∈ t. Thus, X satisfies the condition (CC3) and hence is a
coherent configuration with intersection numbers defined by formula (3.2.7).

Statements (1) and (2) immediately follow from the obvious equalities

1∆1 ⊗ 1∆2 = 1∆1×∆2 ,

where ∆1 ⊆ Ω1 and ∆2 ⊆ Ω2, and

e1 =
⋃
s2∈S2

1Ω1 ⊗ s2 and e2 =
⋃
s1∈S1

s1 ⊗ 1Ω2 .
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The definition of the bijection f1 implies that for all s1 ∈ S1 and s2 ∈ S2,

(s1)
f1 = s1 ⊗ Ω2

2 = (s1 ⊗ s2)Ω/e1 .

Thus, f1 ∈ Iso(X1,XΩ/e1). The second part of statement (3) is proved
similarly. □

Definition 3.2.10. The coherent configuration X1 ⊗ X2 is called the
tensor product of the coherent configurations X1 and X2. It is said to be
nontrivial if the degrees of both X1 and X2 are greater than 1.

The following statement is an immediate consequence of Theorem 3.2.9.

Corollary 3.2.11. The coherent configuration X1 ⊗X2 is homogeneous
(respectively, symmetric, commutative, semiregular) if and only if so are X1

and X2.

Example 3.2.12. For integers n,m ≥ 2, the tensor product X = Tn⊗Tm
is a scheme of degree nm, rank 4, and valencies

{1, n− 1,m− 1, (n− 1)(m− 1)}.

The irreflexive basis relations of valencies n− 1 and m− 1 are

sn ⊗ 1m = e2 \ 1mn and 1n ⊗ sm = e1 \ 1mn,

where sn and 1n (respectively, sm and 1m) are the irreflexive and reflexive
basis relations of Tn (respectively, Tm).

The union of sn⊗1m and 1n⊗sm equals the edge set of so-called n×m-
grid graph; the edge set of the complement graph gives the basis relation of X
that is of valency (n− 1)(m− 1).

Let Y be a fission of the tensor product X = X1⊗X2. Then e1 and e2 are
also parabolics of Y. The quotients YΩ/e1 and YΩ/e2 are definitely fissions
of X1 and X2, respectively.

Definition 3.2.13. The coherent configuration Y ≥ X is called a sub-
tensor product of X1 and X2 if

(3.2.8) YΩ/e1 = X1 and YΩ/e2 = X2.

Thus the tensor product of coherent configurations is a special case of
the subtensor product, and exactly in the same sense as the direct product
in group theory is a special case of the subdirect product.

Example 3.2.14. Let Y be the scheme of the transitive permutation
group K of degree 9 defined as follows:

K = {(k1, k2) ∈ Sym(3)× Sym(3) : f(k1) = f(k2)},

where f : Sym(3) → Sym(2) is the natural epimorphism. Then Y is a fission
of the tensor product X = T3 × T3, and conditions (3.2.8) are satisfied for
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X1 = X2 = T3. Thus, Y is a subtensor product of X1 and X2, but not a
tensor product, because rk(Y) = 5, whereas rk(X ) = 4.

As in the case of the direct sum, the tensor product is distinguished
by the minimality condition in the sense that the rank of the subtensor
product Y of the coherent configurations X1 and X2 is greater than or equal
to rk(X1 ⊗X2) with equality if and only if Y = X1 ⊗X2.

Theorem 3.2.15. The tensor product X1 ⊗ X2 is the smallest coherent
configuration among the subtensor products of X1 and X2.

In order to characterize the subtensor product internally, let e1 and e2
be orthogonal equivalence relations on Ω, i.e.,

(3.2.9) e1 ∩ e2 = 1Ω and e1 · e2 = e2 · e1 = Ω2.

Clearly, if the underlying set is the Cartesian product Ω = Ω1×Ω2, then the
equivalence relations e1 and e2 defined by formulas (3.2.5) are orthogonal.

Thus a necessary condition for a coherent configuration to be isomorphic
to a subtensor product, is the existence of a pair of orthogonal parabolics.
Before proving that this condition is also sufficient (see Theorem 3.2.17
below), we give an explicit example of orthogonal parabolics.

Example 3.2.16. Let X be a semiregular coherent configuration, and
let T ⊆ S be as in statement (3) of Exercise 2.7.13. Then

e1 =
⋃
t∈T

t and e2 =
⋃
∆∈F

∆2

are orthogonal parabolics of X .

Let e1 and e2 be orthogonal equivalence relations on Ω. Set

Ω1 = Ω/e1 and Ω2 = Ω/e2.

Any point α ∈ Ω lies in a unique class α1 ∈ Ω/e1 and in a unique class
α2 ∈ Ω/e2. In view of the first condition in (3.2.9), these classes have at
most one common point, and in our case such a point does exist, namely, α.
So the mapping

(3.2.10) f : Ω → Ω1 × Ω2, α 7→ (α1, α2),

is well-defined and injective.
Furthermore, let β1 ∈ Ω1 and γ2 ∈ Ω2. By the second condition

in (3.2.9), for any points β ∈ β1 and γ ∈ γ2, there exist a point α ∈ Ω
such that

(β, α) ∈ e1 and (α, γ) ∈ e2.

Therefore, α ∈ β1 ∩ γ2 and hence (β1, γ2) = (α1, α2), i.e., f(α) = (β1, γ2).
Thus the mapping f is surjective and hence a bijection. It is called

the standard bijection associated with orthogonal equivalence relations e1
and e2.
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Theorem 3.2.17. Let X be a coherent configuration, e1 and e2 orthogo-
nal parabolics of X , and f the standard bijection associated with them. Then
the coherent configuration X f is the subtensor product of XΩ/e1 and XΩ/e2.

Proof. From the definition of f , it follows that X ′ = X f is a coherent
configuration on Ω′ = Ω1 × Ω2, where Ω1 = Ω/e1 and Ω2 = Ω/e2, and the
parabolics e′1 = (e1)

f and e′2 = (e2)
f are of the form (3.2.5).

Furthermore, for all basis relations s of X ,

(3.2.11) f(se1) = sΩ1
⊗ Ω2

2 and f(se2) = Ω2
1 ⊗ sΩ2

,

where se1 and se2 are defined by formula (3.1.3). It follows that fπe′1 = πe1
and fπe′2 = πe2 , see (1.1.4). Thus,

(3.2.12) X ′
Ω′/e′1

= XΩ/e1 and X ′
Ω′/e′2

= XΩ/e2 .

By formula (3.2.11), for all basis relations r and s of X , the product

rΩ1 ⊗ sΩ2 = (rΩ1 ⊗ Ω2
2) ∩ (Ω2

1 ⊗ sΩ2)

is a relation of X ′. Thus, X ′ is a fission of the tensor product XΩ1 ⊗ XΩ2 .
Together with (3.2.12), this shows that X ′ is the subtensor product of XΩ/e1
and XΩ/e2 . □

Let X = (Ω, S) be a semiregular coherent configuration and e1 and e2
are orthogonal parabolics from Example 3.2.16. In accordance with Exer-
cises 3.7.7 and 3.7.10,

XΩ/e1
∼= X∆ and XΩ/e2 = DF ,

where F = F(X ) and ∆ ∈ F . By Theorem 3.2.17, the coherent configura-
tion X is isomorphic to the subtensor product of DF and X∆. On the other
hand,

rk(X ) = |F |2 · |∆| = rk(DF ) · rk(X∆),

see statement (1) of Exercise 2.7.13. Thus X is isomorphic to DF ⊗ X∆.
This shows that semiregular coherent configurations can be characterized as
follows.

Corollary 3.2.18. Any semiregular coherent configuration X is isomor-
phic to the tensor product of the discrete coherent configuration DF (X ) and
a homogeneous component of X .

The following result shows that under a special commutativity condi-
tion, the subtensor product equals tensor product if one of the factors is
semiregular. In commutative case, it was proved in [43].

Theorem 3.2.19. Let X be the subtensor product of the coherent con-
figurations X1 and X2. Suppose that X1 is semiregular, X2 is homogeneous,
and

(3.2.13) s · e2 = e2 · s for all s ∈ S, s ⊆ e1
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where e1 and e2 are as in (3.2.5), and S = S(X ). Then X = X1 ⊗X2.

Proof. Fix any ∆ ∈ Ω/e1. By the orthogonality of the parabolics e1
and e2, we have se2 ∩∆2 ̸= ∅ for every s ∈ S. Therefore the mapping

S∆ → Se2 , s∆ 7→ se2

is surjective. Moreover, if re2 = se2 for some relations r, s ∈ S contained
in e1, then by condition (3.2.13) we have

r · e2 = e2 · r · e2 = re2 = se2 = e2 · s · e2 = s · e2.

Now if r∆ ̸= ∅ ̸= s∆, then r∆ = (r · e2)∆ = (s · e2)∆ = s∆, because
(e2)∆ = 1∆, and hence r = s. Thus the above mapping is injective and

(3.2.14) |S∆| = |SΩ/e2 | = rk(X2).

The parabolic e1 is proper by the assumption on X2 and condition (3.2.13).
So it is residually thin by the assumption on X1. Every class of e1 is a ho-
mogeneity set of the extension Xe1 of X with respect to e1 (statement (1)
of Theorem 3.1.26). Let us verify that

(3.2.15) |(Se1)∆| = |(Se1)Γ| = |(Se1)∆,Γ|

for all classes ∆ and Γ of the parabolic e1, where Se1 = S(Xe1).
Indeed, the orthogonality of e1 and e2 implies that

s := (e2)∆,Γ

is a thin relation of the restriction (Xe1)∆∪Γ. The bijection fs defined by
formula (1.1.5) is an isomorphism from (Xe1)∆∪Γ to itself (Example (2.2.2))
such that ∆fs = Γ. This proves the first equality in (3.2.15), whereas the
second follows from the fact that

(Se1)∆,Γ = (Se1)∆ · s.

By (3.2.15), the number |(Se1)∆,Γ| does not depend on the classes ∆
and Γ. Consequently, the rank of Xe1 is equal to this number multiplied
by |Ω/e1|2. Taking into account equalities (3.2.14) and (Se1)∆ = S∆ (state-
ment (1) of Theorem 3.1.26), we obtain

rk(Xe1) = rk(X2) · |Ω/e1|2.

Note that |Ω/e1| = |Ω1|. Besides, from statement (3) of Theorem 3.1.26
and the semiregularity of the action of Aut(X1) on Ω1, it follows that rk(X )
is equal to rk(Xe1) divided by |Aut(X1)|. Thus,

(3.2.16) rk(X ) =
rk(X2) · |Ω1|2

|Aut(X1)|
.

Since the coherent configuration X1 is semiregular, the group Aut(X1) acts
regularly on each fiber ∆ and hence its order equals |∆|. By statement (1)
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of Exercise 2.7.13, we obtain

|Ω1|2 = |∆|2 · |F (X1)|2 = |∆| · (|∆| · |F (X1)|2) = |Aut(X1)| · rk(X1).

Together with formula (3.2.16), this implies that

rk(X ) = rk(X2) · rk(X1) = rk(X1 ⊗X2),

and we are done because X ≥ X1 ⊗X2. □

Corollary 3.2.20. A commutative subtensor product of a regular scheme
with any other scheme equals the tensor product of these schemes.

Condition (3.2.13) in Theorem 3.2.19 is essential. Indeed, take X to be
the regular scheme on Ω associated with a Frobenius group with kernelG and
complement H. Then the groups G and H are semiregular, the equivalence
relations e1 and e2 defined by

Ω/e1 = Orb(G,Ω) and Ω/e2 = Orb(H,Ω)

are orthogonal parabolics of X , and the quotient scheme X1 = XΩ/e1 is
regular. By Theorem 3.2.17, X is isomorphic to the subtensor product of
the schemes X1 and X2 = XΩ/e2 . On the other hand, rk(X ) > rk(X1) rk(X2),
and hence X is not isomorphic to the tensor product of these schemes.

The tensor product of coherent configurations is a combinatorial analog
of the direct product of permutation groups in the transitive action. The
following statement shows that it is invariant with respect to the Galois cor-
respondence between the coherent configurations and permutation groups.

Theorem 3.2.21. For arbitrary sets Ω1 and Ω2,

(3.2.17) Inv(K1 ×K2,Ω1 × Ω2) = Inv(K1,Ω1)⊗ Inv(K2,Ω2)

for all groups K1 ≤ Sym(Ω1) and K2 ≤ Sym(Ω2), and

(3.2.18) Aut(X1 ⊗X2) = Aut(X1)×Aut(X2)

for all coherent configurations X1 on Ω1 and X2 on Ω2.

Proof. A straightforward check shows that given (α, β) ∈ (Ω1 × Ω2)
2,

(α, β)K1×K2 = (α1, β1)
K1 ⊗ (α2, β2)

K2 .

This shows that the basis relations of the coherent configuration on the left-
hand side of (3.2.17) coincide with those on the right-hand side, and the
first statement follows.

To prove the second statement, set X = X1 ⊗ X2. Let e1 and e2 be
the equivalence relations on Ω = Ω1 × Ω2 defined in (3.2.5). Without loss
of generality, we may assume that Ω1 = Ω/e1 and Ω2 = Ω/e2. Then by
formula (3.1.9),

Aut(X )Ω1 ≤ Aut(X1) and Aut(X )Ω2 ≤ Aut(X2).
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Therefore, the group on the left-hand side of (3.2.18) is contained in the
group on the right-hand side.

Conversely, let (k1, k2) ∈ Aut(X1)×Aut(X2). Given s1 ⊗ s2 ∈ S(X ),

(s1 ⊗ s2)
(k1,k2) = (s1)

k1 ⊗ (s2)
k2 = s1 ⊗ s2 = s.

Thus, (k1, k2) ∈ Aut(X ) and we are done. □

Corollary 3.2.22. X1⊗X2 is schurian if and only if so are X1 and X2.

Proof. The necessity follows from Corollary 3.1.17. To prove the suffi-
ciency, we assume that the coherent configurations X1 and X2 are schurian.
Then by Theorem 3.2.21,

Inv(Aut(X1 ⊗X2)) = Inv(Aut(X1)×Aut(X2))

= Inv(Aut(X1))⊗ Inv(Aut(X2))

=X1 ⊗X2,

i.e., the coherent configuration X1 ⊗X2 is schurian. □

Let φ ∈ Isoalg(X ,X ′). Assume that e1 and e2 are orthogonal parabolics
of X . Then e′1 = φ(e1) and e

′
2 = φ(e2) are orthogonal parabolics of X ′, and

φΩ1
∈ Isoalg(XΩ1

,X ′
Ω′

1
) and φΩ2

∈ Isoalg(XΩ2
,X ′

Ω′
2
),

where Ωi = Ω/ei and Ω′
i = Ω′/e′i for i = 1, 2. Thus the following statement is

a consequence of Theorem 3.2.17 and the minimality of the tensor product.

Theorem 3.2.23. Let X = X1 ⊗ X2, e1 and e2 the parabolics (3.2.5),
and φ ∈ Isoalg(X ,X ′). Then in the above notations,

(1) (X ′)f
′
= X ′

1 ⊗ X ′
2, where X ′

1 = X ′
Ω′

1
, X ′

2 = X ′
Ω′

2
, and f ′ is the

standard bijection associated with e′1 and e′2;
(2) φΩ1 ∈ Isoalg(X1,X ′

1) and φΩ2 ∈ Isoalg(X2,X ′
2).

Under the condition of Theorem 3.2.23, the algebraic isomorphism φ
is uniquely determined by its restrictions φ1 = φΩ1 and φ2 = φΩ2 (see
statement (1) of Exercise 3.7.33). It easily follows that

Iso(X ,X ′, φ) ̸= ∅ ⇔ Iso(X1,X ′
1, φ1) ̸= ∅ and Iso(X2,X ′

2, φ2) ̸= ∅.

This gives the following criterion for the tensor product of coherent config-
urations to be separable.

Corollary 3.2.24. X1⊗X2 is separable if and only if so are X1 and X2.

The adjacency matrix of a relation s1 ⊗ s2 is equal to the Kronecker
product As1 ⊗As2 (Exercise 1.4.9). When s1 and s2 run over basis relations
of the coherent configurations X1 and X2, the matrix As1 ⊗ As2 runs over
the standard basis of the tensor product Adj(X1) ⊗ Adj(X2). This proves
the following statement.

Theorem 3.2.25. Adj(X1 ⊗X2) = Adj(X1)⊗Adj(X2).
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It is straightforward to define the tensor product of more than two co-
herent configurations; it is obviously noncommutative but associative and
monotonic with respect to each factor.

In general, the decomposition of any coherent configuration into the ten-
sor product of indecomposable factors is not unique. For example, if X is the
scheme of regular elementary abelian p-group G, then each decomposition
of G into the direct product of subgroups of order p induces a decomposition
of X into the tensor product of regular schemes of degree p. The uniqueness
of subtensor product decomposition was proved for commutative schemes
in [50].
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3.3 Point extensions

Use of pointwise stabilizers in permutation group theory seems to be
quite natural. In terms of them, one can express various properties of a
permutation group (e.g., primitivity) and define important invariants (e.g.,
subdegree or base number). A combinatorial analog of the pointwise stabi-
lizer was introduced in [123, p. 111] in algorithmic way. Systematically, this
concept, in the form of a special coherent closure and under the name point
extension, began to be studied since from the late 1990s, see, e.g., [36, 40].

In this section, the point extensions of coherent configurations are con-
sidered in the framework of the Galois correspondence between the coherent
configurations and permutation groups. The three main results proved here
are a combinatorial analog of the Wielandt theorem on imprimitive Frobe-
nius group [125, Theorem 10.4], the Babai theorem on the base number of
a primitive scheme [5], and the schurity and separability of partly regular
coherent configurations [41, Theorem 9.3].

3.3.1 One-point extension

Let X = (Ω, S) be a coherent configuration and T a set of relations
on Ω. Recall that WL(X , T ), the extension of X by T , is the smallest
coherent configuration on Ω that is a fission of X and contains T as a set of
relations. In other words,

WL(X , T ) = WL(S ∪ T ).

In this subsection, we are interested in a special extension, namely, for the
set T = {1α} with α ∈ Ω.

Definition 3.3.1. The coherent configuration

Xα = WL(X , {1α})

is called an α-extension or one-point extension of the coherent configura-
tion X .

Clearly,
X ≤ Xα ≤ DΩ.

Both the equalities are attained: the first if and only if {α} is a fiber of X (see
Corollary 3.3.6 below), and the second if, for example, X is a semiregular
coherent configuration.

Example 3.3.2. Let X = TΩ and α ∈ Ω. Then the minimality of the
direct sum (Theorem 3.2.4) implies that

Xα = D{α} ⊞ TΩ\{α}.
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In view of the monotonicity of the coherent closure operator (Exer-
cise 2.7.49),

(3.3.1) X ≤ X ′ ⇒ Xα ≤ X ′
α

for all coherent configurations X ′ on Ω. Moreover, the one-point extension
respects the Galois correspondence between the coherent configurations and
permutation groups in the following sense.

Proposition 3.3.3. For any α ∈ Ω,

(1) if X is a coherent configuration on Ω, then Aut(Xα) = Aut(X )α;
(2) if K is a permutation group on Ω, then Inv(Kα) ≥ Inv(K)α.

Proof. Statement (1) immediately follows from Theorem 2.6.4. To prove
statement (2), we observe that the inclusion Kα ≤ K and formula (2.2.6)
imply that

Inv(Kα) ≥ Inv(K).

Since {α} is a fiber of the coherent configuration Inv(Kα), this implies that

Inv(Kα) = Inv(Kα)α ≥ Inv(K)α,

as required. □

The inclusion in statement (2) is attained, see, e.g., Example 3.3.2 or
statement (1) of Theorem 4.4.14. In general, the inclusion is not strict; in
other words, a one-point extension of a schurian coherent configuration is not
necessarily schurian.1 On the other hand, there are non-schurian coherent
configurations for which all one-point extensions are schurian.

Example 3.3.4. Let X be a unique antisymmetric coherent configura-
tion of degree 15 and rank 3. Although it is not schurian, all one-point
extensions of X are schurian. Indeed, if this is not true, then there exists a
point α such that

Y = (Xα)Ω\{α}

is a non-schurian coherent configuration of degree 14. A straightforward
computation shows that Y has fibers of cardinality 3 or 7. Therefore, Y
cannot be the unique non-schurian coherent configuration described in Sub-
section 2.2.3. Thus, Y is schurian, a contradiction.

There is also no explicit relationship between the separability of a co-
herent configuration and the separability of its one-point extension. For
example, the coherent configuration X from Example 3.3.4 is not separable
but one can show (and this is a good exercise) that all its one-point exten-
sions are separable. On the other hand, the coherent configurations in the
proof of Theorem 4.2.4 for cn ≥ 2, are non-separable as well as all their
one-point extensions.

1The smallest example we know is obtained for the coherent configuration of the Galois
plane of order 3; the non-schurity of the point extension can be derived from results in [45].



146 3. MACHINERY AND CONSTRUCTIONS

In general, finding the one-point extension of a coherent configuration
in an explicit form is a quite difficult problem. The following statement
can sometimes simplify it. For example, it immediately implies that any
one-point extension of a semiregular coherent configuration is discrete.

Lemma 3.3.5. Let X = (Ω, S) be a coherent configuration, α ∈ Ω.
Then for all r, s, t ∈ S∪,

(1) αr ∈ (Fα)
∪, where Fα = F (Xα);

(2) rs,t ∈ (Sα)
∪, where rs,t = r ∩ (αs× αt) and Sα = S(Xα);

(3) if s, t ∈ S, then |βrs,t| = cstr∗ for all β ∈ αs.

Proof. By the definition of the α-extension,

{α} ∈ Fα and r ∈ S∪ ⊆ (Sα)
∪.

This implies that 1α ·r is a relation of Xα (Proposition 2.1.4). In accordance
with Exercise 2.7.4,

αr = Ω+(1α · r) ∈ (Fα)
∪.

This proves statement (1).
From statement (1), it follows that αt ∈ (Fα)

∪. Therefore, αs×αt is a re-
lation of Xα (Proposition 2.1.6). Consequently, rs,t ∈ (Sα)

∪. Statement (3)
follows from the definition of the intersection numbers. □

Corollary 3.3.6. In the notation of Lemma 3.3.5, αs ∈ Fα for any thin
relation s ∈ S. In particular, if X is semiregular, then Xα = DΩ.

In the schurian case, a little bit more can be said about the structure of
a point extension. In particular, the following statement gives a necessary
condition for a coherent configuration to be schurian in terms of the point
extensions.

Theorem 3.3.7. Let X = (Ω, S) be a schurian coherent configuration.
Then given α ∈ Ω and ∆ ∈ F (X ) containing α,

(1) F (Xα) = {αs : s ∈ S∆,Ω};
(2) for any β ∈ ∆, there is φ ∈ Isoalg(Xα,Xβ) extending idS.

Proof. Let X = Inv(K), where K ≤ Sym(Ω). Then by statement (3)
of Proposition 2.2.5,

αs ∈ Orb(Kα) for all s ∈ S∆,Ω.

By statement (2) of Proposition 3.3.3, this implies that αs is contained in
a fiber of the coherent configuration Xα. However, αs is a homogeneity set
of Xα (statement (1) of Lemma 3.3.5). Thus,

αs ∈ F (Xα).

This proves statement (1).
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Next, the schurity of X implies that ∆ is an orbit of Aut(X ) (state-
ment (1) of Proposition 2.2.5). It follows that there exists an automorphism
f ∈ Aut(X ) taking α to β. By Theorem 2.6.4,

f ∈ Iso(Xα,Xβ).

Thus statement (2) holds for the algebraic isomorphism φf ∈ Isoalg(Xα,Xβ)
induced by f . □

We complete the subsection by an example, in which each one-point
extension of a coherent configuration can be found more or less explicitly. To
explain the example, we recall that any 3/2-transitive permutation group K
is either primitive or a Frobenius group [125, Theorem 10.4]. The latter
means that a point stabilizer of K acts semiregularly on the underlying set
with the fixed point removed. Thus in view of statements (1) and (2) of
Theorem 2.2.6, the following statement proved in [39, Lemma 5.13] is a
generalization of this result to coherent configurations.

Theorem 3.3.8. Let X be an equivalenced imprimitive scheme on Ω.
Then for any α ∈ Ω, the restriction of Xα to Ω \ {α} is semiregular.

Proof. Let k be the valency of an irreflexive basis relation of X , and
let e be a nontrivial parabolic of X . Then for any ∆ ∈ Ω/e,

|∆| =
∑

s∈S, s⊆e
ns = k(a− 1) + 1

where S = S(X ) and a is the number of all s ∈ S contained in e. It follows
that

(3.3.2) GCD(k, |∆|) = 1.

For a point α ∈ Ω, set

T = S(α,∆) = {s ∈ S : αs ∩∆ ̸= ∅}.

Then for different ∆, the sets S(α,∆) either coincide or disjoint (state-
ment (2) of Exercise 2.7.9). Consequently, αT is the union of some classes
of e.

Assume that α ̸∈ ∆. Then

k|T | =
∑
s∈T

ns = m|∆|

for some positive integer m. From formula (3.3.2), it follows that |∆| di-
vides |T |. Since also |T | ≤ |∆|, we conclude that |T | = |∆|. Thus,

(3.3.3) |αs ∩∆| ≤ 1

for all ∆ ∈ Ω/e, α ∈ Ω \∆, and s ∈ S.
Let α ∈ Ω, Sα = S(Xα), and Ω# = Ω\{α}. To prove that the restriction

of the coherent configuration Xα to Ω# is semiregular, it suffices to verify
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that
nr = nr∗ = 1 for all r ∈ (Sα)Ω#×Ω# .

To this end, set ∆ = αe. It is a homogeneity set of Xα by statement (1)
of Lemma 3.3.5. Therefore any fiber of Xα is either contained in or disjoint
with ∆. Let Γ and Γ′ be fibers of Xα such that

Γ ⊆ ∆# and Γ′ ∩∆ = ∅,

where ∆# = ∆ \ {α}. Then by inequality (3.3.3),

r(γ, δ) ̸= r(γ, δ′) for all γ ∈ Γ′ and distinct δ, δ′ ∈ Γ.

It follows that
|(Sα)Γ′,Γ| = |Γ| = |Γ′|.

Consequently,
r ∈ (Sα)∆#,Ω\∆ ⇒ nr = nr∗ = 1.

To complete the proof, it remains to note that each relation of Sα contained
in

∆# ×∆# or (Ω \∆)× (Ω \∆)

can be written as the composition of two relations, one in (Sα)∆#,Ω\∆ and

the other in (Sα)Ω\∆,∆# . □

Under a Frobenius scheme we mean the scheme of a Frobenius group in
its standard permutation representation, in which a point stabilizer coincides
with the Frobenius complement acting semiregularly on the points other
than the fixed one. It should be noted that the automorphism group of a
Frobenius scheme X is not necessarily a Frobenius group, for example, if X
is the scheme of a Paley graph and the ground field is of composite order.

Corollary 3.3.9. An imprimitive equivalenced scheme X is schurian if
and only if X is a Frobenius scheme.

Proof. The sufficiency is trivial. To prove the necessity, let X = Inv(K),
where K = Aut(X ). Then the group K is imprimitive (Proposition 3.1.4).
In view of statement (1) of Proposition 3.3.3, we have Kα = Aut(Xα) for
any point α. By Theorem 3.3.8, this implies that Kα acts semiregularly on
Ω \ {α}. Thus, K is a Frobenius group. □
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3.3.2 The base number

Let X be a coherent configuration on Ω. A base of the group Aut(X ) as
defined in Subsection 2.2.4 is a subset of Ω that controls the automorphisms
of X . In this sense, a combinatorial analog of the base can be defined in
different ways, see survey [9]. The concept introduced below, corresponds
to what was called the EP-base there. We start with a combinatorial analog
of the pointwise stabilizer for a coherent configuration X .

Definition 3.3.10. The extension of X with respect to m ≥ 1 points
α, β, . . ., or briefly an m-point extension of X , is defined to be the coherent
closure

Xα,β,... = WL(X , {1α, 1β, . . .}).
For m = 1, this is the α-extension of X . Note that the ordering of the

points is unessential. From Proposition 3.3.3, one can deduce by induction
on m, that

(3.3.4) Aut(Xα,β,...) = Aut(X )α,β,... and Inv(Kα,β,...) ≥ Inv(K)α,β,...

for all points α, β, . . . and all groups K ≤ Sym(Ω).

Definition 3.3.11. A set {α, β, . . .} ⊆ Ω is called a base of X if the
corresponding point extension is equal to the discrete configuration,

Xα,β,... = DΩ.

The minimum cardinality b(X ) of the base is called the base number of X .

In the definition of the base number, one can assume without loss of
generality that the minimum is taken over the irredundant bases, i.e., those
containing no proper base. It is also clear that

0 ≤ b(X ) ≤ n− 1

with equalities if and only if X = Dn and X = Tn, respectively. From
Corollary 3.3.6, it immediately follows that b(X ) = 1 for any non-discrete
semiregular coherent configuration X .

By the left-hand side equality in (3.3.4), every base of the coherent
configuration X is also a base of the group Aut(X ). Consequently,

(3.3.5) b(K) ≤ b(Inv(K))

for any permutation group K. The equality is attained, for instance, for a
semiregular group K: in this case both numbers in (3.3.5) are equal to 1 (or
to 0 if K = 1).

On the other hand, if K = Cp⋊Aut(Cp) acts naturally on the elements
of Cp, then

b(K) = 2 and b(Inv(K)) = b(Tp) = p− 1.
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We believe that there are 2-closed groups K for which inequality (3.3.5) is
strict, but at present no such example is known.

From formula (3.3.1), it follows that every base of a coherent configura-
tion is also a base of any of its fissions,

X ≤ X ′ ⇒ b(X ) ≥ b(X ′).

It seems that there is no explicit relationship between the base number
of a coherent configuration and that of its quotient. For example, the direct
sum X of trivial coherent configurations of degrees at least 2 has enough
large base number (Exercise 3.7.34), whereas the quotient of X modulo the
parabolic the classes of which are fibers, has the base number 0.

Example 3.3.12. Let M ≤ Aut(Cp2) be the group of order p− 1. Then
the scheme

X = Cyc(M,Cp2)

defined in (2.4.3), has a parabolic e with p classes of cardinality p. In par-
ticular, X is imprimitive. Since it is also equivalenced of valency p − 1,
Theorem 3.3.8 implies that

b(X ) ≤ 2.

On the other hand, the quotient of X modulo e is isomorphic to Tp. Thus
the base number of the quotient equals p− 1.

In the rest of this section, we prove the Babai theorem on the base
number of a primitive scheme, which implies, as a direct consequence, an
upper bound for the order of a uniprimitive permutation group.

Theorem 3.3.13. The base number of a nontrivial primitive scheme of
degree n is at most 4

√
n log n.

The estimate given in the theorem is close to the exact one. Indeed,
let X be the scheme of the Johnson graph J(m, 2). Then X is primitive, has
degree n =

(
m
2

)
, and is nontrivial for m ≥ 4. Moreover,

Aut(X ) = Sym(m).

By inequalities (2.2.13) and (3.3.5), this implies that(
m

2

)b
= nb ≥ nb(K) ≥ |K| = m!,

where b = b(X ) and K = Aut(X ). It follows that b ≥ c
√
n for a positive

constant c.

Proof of Theorem 3.3.13. Let X = (Ω, S) be a scheme of degree n.
For any two points α, β ∈ Ω, set

Ωα,β = {γ ∈ Ω : r(α, γ) ̸= r(β, γ)}.

Lemma 3.3.14. Let α, β ∈ Ω. Then
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(1) Ωα,β = Ωβ,α;

(2) Ωα,α = ∅;
(3) if α ̸= β, then α, β ∈ Ωα,β;

(4) for s ∈ S, the number c(s) := |Ωα,β| does not depend on (α, β) ∈ s.

Proof. The first three statements are obvious, whereas the fourth one
follows from the equality c(s) = n− c(s), see (2.1.15). □

We say that ∆ ⊆ Ω is a test set of the scheme X if for all distinct
α, β ∈ Ω,

∆ ∩ Ωα,β ̸= ∅.
In view of statement (1) of Lemma 3.3.5, no two distinct points belong to
the same fiber of extension of X with respect to the points of a test set.
Therefore, every test set is a base of X .

Thus if the scheme X is nontrivial and primitive, then the required
statement immediately follows from Lemmas 3.3.15 and 3.3.16 below, where
we set

(3.3.6) d = min
α ̸=β

|Ωα,β|.

Lemma 3.3.15. The minimum cardinality of a test set of X is less than
or equal to 2n log n/d.

Proof. Let m + 1 be the minimum cardinality of a test set. For each
pair of points α and β, we define a function

χα,β : Ω{m} → {0, 1}, ∆ 7→

{
1, if Ωα,β ∩∆ = ∅,
0, otherwise.

where Ω{m} is the set of all m-subsets of Ω. Let us calculate the number

a =
∑

∆∈Ω{m}

∑
α ̸=β

χα,β(∆)

in two ways.
First, for fixed distinct α and β, the sum

∑
∆ χα,β(∆) is equal to the

number of ways to choose the m-subset ∆ in the complement of Ωα,β. In
view of (3.3.6), the last set has at least d elements. Therefore,

(3.3.7) a ≤ n(n− 1)

(
n− d

m

)
.

On the other hand, by the definition of m no ∆ ∈ Ω{m} is a test set of X .
Consequently, for each ∆ there exists a pair (α, β) such that Ωα,β ∩∆ = ∅.
This implies that χα,β(∆) = 1, and by statement (1) of Lemma 3.3.14 also

χβ,α(∆) = 1. Summing up over all ∆ ∈ Ω{m}, we obtain

a ≥ 2|Ω{m}| = 2

(
n

m

)
.
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By inequality (3.3.7), this shows that

2 ≤
n(n− 1)

(
n−d
m

)(
n
m

) = n(n− 1)
n∏

k=n−m+1

(
1− d

k

)
< n2

(
1− d

n

)m
.

Taking the logarithm of both parts of the last expression, we derive

1 < 2 log n+m log(1− d/n) < 2 log n−md/n.

Thus, m < n(2 log n− 1)/d. □

Lemma 3.3.16. d >
√
n/2.

Proof. The proof goes in three auxiliary steps.

Claim 1. For each s ∈ S#,

(3.3.8) ns c(s) ≥ n,

where the number c(s) as in statement (4) of Lemma 3.3.14.

Proof. By formula (2.1.5) and statement (4) of Lemma 3.3.14, the num-
ber of all triples (α, β, γ) such that r(β, γ) = s and α ∈ Ωβ,γ , is equal to

(3.3.9)
∑

(β,γ)∈s

|Ωβ,γ | = |s| c(s) = nns c(s).

On the other hand, for any distinct α and β, there exists γ ∈ βs such
that r(α, β) ̸= r(α, γ): otherwise, βs ⊆ αr with r = r(α, β), which implies
that β′s ⊆ αr for all β′ ∈ αr, and then no point in αr is connected by
a directed s-path with a point α, contrary to the primitivity of X (Theo-
rem 3.1.5). Since α and β are arbitrary points, this implies that the number
on the left-hand side of (3.3.9) is greater than or equal to n2, which proves
inequality (3.3.8). □

For any r ∈ S and any nonnegative integer i, denote by ri the set of all
pairs of points at distance i in the graph Xr associated with the relation r∪r∗.

Claim 2. For all r, s ∈ S,

(3.3.10) ri ∩ s ̸= ∅ ⇒ c(s) ≤ i c(r ∪ r∗).2

Proof. Without loss of generality, we may assume that r, s ∈ S#. Take
any pair (α, β) ∈ ri ∩ s. By the primitivity of the scheme X , the graph Xr
(Theorem 3.1.5) is strongly connected. Therefore, there is an (r ∪ r∗)-path

α = α0, α1, . . . , αi = β

2From statements (1) and (4) of Lemma 3.3.14, it follows that c(r) = c(r∗), and hence the
number c(r ∪ r∗) is well-defined and is equal to c(r).
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(Theorem 3.1.5). Now let γ ∈ Ωα,β. Then the relations r(α, γ) and r(β, γ)
are different. Therefore, there exists an index 0 ≤ j ≤ i − 1 such that the
relations r(αj , γ) and r(αj+1, γ) are also different. Hence, γ ∈ Ωαj ,αj+1 .
Thus,

(3.3.11) Ωα,β ⊆
i−1⋃
j=0

Ωαj ,αj+1 .

Now inequality (3.3.10) holds, because the cardinalities of the sets on the
left- and right-hand sides are equal to c(s) and i c(r ∪ r∗), respectively. □

Claim 3. There exists s0 ∈ S# such that

(3.3.12) c(s0) >
√
n.

Proof. Assume the contrary. Then inequality (3.3.8) shows that ns ≥√
n for all s ∈ S#. By formula (2.1.13) with taking into account that

|S#| ≥ 2, this implies that

n2 −
∑
s∈S

n2s =
(∑
s∈S

ns
)2 −∑

s∈S
n2s

=
∑
s∈S

ns(n− ns)

≥
∑
s∈S#

√
n(n− ns)

=
√
n
(∑
s∈S#

n−
∑
s∈S#

ns
)

≥
√
n(2n− n+ 1)

> n
√
n.

On the other hand, for any point γ denote by kγ the number of all pairs

(α, β) such that γ ∈ Ωα,β. Then obviously,

kγ =
∑
r ̸=s

|γr| · |γs| =
∑
r ̸=s

nr ns = n2 −
∑
s∈S

n2s.

In particular, the number k := kγ does not depend on the choice of γ.
Now comparing the left-hand side of the above calculations with the

right-hand side of the last equality, we conclude that every point γ belongs
to at least n

√
n sets Ωα,β. Since there are exactly n(n− 1) such sets (and n

choices for γ), at least one of them, say Ωα,β, contains at least

nk

n(n− 1)
≥ n

√
n

n− 1
>

√
n

points. This implies that c(s) >
√
n for s = r(α, β), a contradiction. □
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To complete the proof of Lemma 3.3.16, let s ∈ S#. We have to verify
that

c(s) >
√
n/2.

Without loss of generality, we may assume that s does not equal s0 in
formula (3.3.12). Now if the basis graph of s ∪ s∗ has diameter 2, then
relation (3.3.10) for r = s, i = 2, and s = s0, yields

c(s0) ≤ 2c(s)

and we are done by (3.3.12).
Let the above graph contains two vertices α and β at distance 3. Then

c(r) = |Ωα,β| ≥ |αs′ ∪ βs′| ≥ 2ns,

where r = r(α, β) and s′ = s∪ s∗. On the other hand, from relation (3.3.10)
for i = 3, r = s, and s = r, it follows that c(r) ≤ 3c(s′). Thus using
inequality (3.3.8), we obtain

c(s)2 = c(s′)2 ≥ c(s′)c(r)

3
≥ 2c(s′)ns

3
>

2n

3
,

whence c(s) >
√
n/2. □

Recently, the upper bound in Theorem 3.3.13 has been reduced to a
function of order cn1/3log n4/3 in the case when the primitive scheme is
nontrivial and other than the schemes of the Johnson graph J(m, 2) and the
Hamming graph H(2,m) for the suitable m [118].
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3.3.3 Partly regular coherent configurations

The class of partly regular coherent configurations studied in this subsec-
tion, occurs in many different situations. A group theoretical counterpart of
it is formed by permutation groups with base number at most 1. Our main
goal is to show that the partly regular coherent configurations are schurian
and separable.

Definition 3.3.17. A coherent configuration X = (Ω, S) is said to be
partly regular3 if there exists α ∈ Ω such that

(3.3.13) |αs| ≤ 1 for all s ∈ S.

Any point α satisfying condition (3.3.13) is called a regular point of X .
By Exercise 2.7.5 for M = {0, 1}, all regular points form a homogeneity
set. The restriction of X to this set is obviously a semiregular coherent
configuration. Of course, every semiregular coherent configuration is partly
regular, and a scheme is partly regular if and only if it is regular.

Theorem 3.3.18. Let K be a permutation group. Then the coherent
configuration Inv(K) is partly regular if and only if b(K) ≤ 1.

Proof. Assume that X := Inv(K) is a partly regular coherent config-
uration. Denote by α any of its regular points. Then each fiber of the
α-extension Xα is a singleton (statement (1) of Theorem 3.3.7) and hence
the coherent configuration Xα is a discrete one. It follows that b(X ) ≤ 1.
Thus, b(K) ≤ 1 by inequality (3.3.5).

Conversely, we assume that the group Kα is trivial for a certain point α.
Take any 2-orbit s ⊆ ∆×Ω, where ∆ is the K-orbit containing α. Then by
statement (3) of Proposition 2.2.5,

αs = βKα = {β} for all β ∈ αs.

This implies that |αs| = 1. Since αs = ∅ for all 2-orbits s ̸⊆ ∆ × Ω of the
group K, we conclude that α is a regular point of Inv(K), i.e., this coherent
configuration is partly regular. □

Theorem 3.3.18 and the following statement show that the Galois corre-
spondence between coherent configurations and permutation groups defines
a one-to-one correspondence between the partly regular coherent configura-
tions and the permutation groups with base number at most 1.

3This concept was introduced in [41] in the form of 1-regular cellular algebras.
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Theorem 3.3.19. Any partly regular coherent configuration is schurian
and separable.

Proof. Let X be a partly regular coherent configuration. Denote by ∆
the set of all regular points of X . Then the restriction X∆ being semiregular
is schurian and separable (Exercise 2.7.35). Furthermore, by the definition
of regular point,

(3.3.14) Γ ∈ F and Γ ∩∆ = ∅ ⇒ ns = 1 for some s ∈ S∆,Γ,

where S = S(X ) and F = F (X ). Thus the required statement follows from
the lemma below.

Lemma 3.3.20. Let X be a coherent configuration satisfying condi-
tion (3.3.14) for some homogeneity set ∆. Then

(1) for any φ ∈ Isoalg(X ,X ′), the restriction map

(3.3.15) Iso(X ,X ′, φ) → Iso(X∆,X ′
∆φ , φ∆), f 7→ f∆

is a bijection; in particular, the restriction map Aut(X ) → Aut(X∆)
is a group isomorphism;

(2) X is schurian (respectively, separable) whenever X∆ is schurian
(respectively, separable).

Proof. For any fiber Γ ∈ F , set

sΓ =

{
s, if Γ ∩∆ = ∅,
1Γ, otherwise,

where s is as in condition (3.3.14). By statement (2) of Exercise 2.7.8, the
composition sΓ · s∗Γ is a partial parabolic of the coherent configuration X .
Any class of this partial parabolic is of the form γs∗Γ, where γ ∈ Γ. Therefore,

(3.3.16) sΓ =
⋃
γ∈Γ

γs∗Γ × {γ}

and the union is disjoint.
Next, for any fibers Γ,Λ ∈ F and any s ∈ SΓ,Λ, choose a basis relation

r ∈ sΓ s s
∗
Λ.

Certainly, r ∈ S∆, see Fig. 3.1. Since the relations sΓ and sΛ have valency 1,
we have s∗Γ · sΓ = 1Γ and s∗Λ · sΛ = 1Λ. Therefore,

s∗Γ · r · sΛ ⊆ s∗Γ · (sΓ · s · s∗Λ) · sΛ = (s∗Γ · sΓ) · s · (s∗Λ · sΛ) = s.

Taking into account that the relation s is a basis one, we conclude that

(3.3.17) s∗Γ · r · sΛ = s.
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Γ
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Λ

Figure 3.1 The relations s ∈ SΓ,Λ and r ∈ S∆.

To prove statement (1), let φ ∈ Isoalg(X ,X ′), where X ′ is a coherent
configuration on Ω′. From Corollary 2.3.20, it follows that X ′ satisfies con-
dition (3.3.14) for ∆ and the sΓ replaced by, respectively, ∆′ = ∆φ and
sΓ′ = φ(sΓ) with Γ′ = Γφ. Since sΓ′ is of valency 1 for all Γ ∈ F ,

(3.3.18) sΓ′ =
⋃
γ′∈Γ′

γ′s∗Γ′ × {γ′}

and the union is disjoint.
It suffices to verify that mapping (3.3.15) is surjective. To this end, let

(3.3.19) f0 ∈ Iso(X∆ ,X ′
∆′ , φ∆).

For each Γ ∈ F , it takes the partial parabolic sΓ · s∗Γ to the partial parabolic
sΓ′ · s∗Γ′ . Therefore, f0 induces a bijection fΓ between the classes of these
two partial parabolics.

For any γ ∈ Γ, denote by γ′ the unique point of Γ′ such that

γ′ s∗Γ′ = (γs∗Γ)
fΓ .

In view of formulas (3.3.16) and (3.3.18), the mapping

(3.3.20) f : Ω → Ω′, γ 7→ γ′

is a bijection, and also
(sΓ)

f = sΓ′ .

This is true for all Γ ∈ F . Therefore equality (3.3.17) with taking into
account that rf = rf0 = rφ shows that

sf = sφ, s ∈ S.

Thus,
f ∈ Iso(X ,X ′, φ).

Since sΓ = 1Γ for all fibers Γ ⊆ ∆, we have

f∆ = f0.

Consequently, the mapping (3.3.15) is surjective. On the other hand, for an
arbitrary isomorphism f ′ ∈ Iso(X ,X ′, φ), the bijection (3.3.20) constructed
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as above for f0 = f ′∆ coincides with f ′. Thus the mapping (3.3.15) is also
injective.

To prove statement (2) suppose first that the restriction X∆ is separable.
Again let X ′ be a coherent configuration on Ω′ and φ ∈ Isoalg(X ,X ′). By
the separability of X∆, one can find an isomorphism of the form (3.3.19).
By statement (1), there exists f ∈ Iso(X ,X ′, φ) such that f0 = f∆. Thus,
the coherent configuration X is separable.

Now assume that the restriction X∆ is schurian. Let s ∈ SΓ,Λ be an
arbitrary basis relation of X , where Γ,Λ ∈ F . Take the relation r ∈ S∆ as
in formula (3.3.17) and set

r = {(γs∗Γ, λs∗Λ) : (γ, λ) ∈ Γ× Λ, (γs∗Γ)r ∩ λs∗Λ ̸= ∅}.

Since nsΓ = nsΛ , formula (3.3.17) implies that the mapping

f : r → s, (γs∗Γ, λs
∗
Λ) 7→ (γ, λ)

is a bijection.
By formula (3.3.16) and the invariance of the relations sΓ and sΛ with

respect to the group Aut(X ), this bijection defines an isomorphism between
the actions of Aut(X ) on the sets r and s. By the schurity of X∆ the group
Aut(X∆) acts transitively on r and hence on r. Therefore, Aut(X ) acts
transitively on s by statement (1). It follows that s is a 2-orbit of the group
Aut(X ). Since this is true for all s ∈ S, the coherent configuration X is
schurian. □
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3.4 Wreath products

It is more or less clear how to define an imprimitive wreath product of
two coherent configurations that respects the Galois correspondence between
the coherent configurations and permutation groups. This is done in the first
part of this section. However, in general, the resulted configuration can be
algebraically isomorphic to a coherent configuration which is not the wreath
product. This explains the fact that the universal embedding theorem [33,
Theorem 2.6A] for the wreath product of permutation groups does not hold
for coherent configurations.

There is no obvious way how to define a combinatorial analog of the
primitive wreath product of permutation groups. In the second part of this
section, a weaker analog, the exponentiation of a coherent configuration by
a permutation group, is introduced and studied.

The third part of the section is devoted to a concept of a generalized
wreath product introduced by D. K. Faddeev for abstract groups in the
early 1950s (see [80, p. 46]). The corresponding construction proved to be
extremely useful in the theory of S-rings over a cyclic group [42, 89, 90]. In
our exposition we deal with the generalized wreath of Cayley schemes only,
a more general construction can be found in [101].

3.4.1 Canonical wreath product

Let X1 = (Ω1, S1) and X2 = (Ω2, S2) be schemes. Define a rainbow
X = (Ω, S) with

Ω = Ω1 × Ω2 and S = S(1) ∪ S(2),

where

(3.4.1) S(1) = {s1 ⊗ 1Ω2 : s1 ∈ S1} and S(2) = {Ω2
1 ⊗ s2 : s2 ∈ S#

2 }.

The union of the relations in S(1) coincides with the equivalence relation e
defined by the equalities of the second coordinates, i.e., one whose classes
are ∆ = Ω1 × {δ}, δ ∈ Ω2. One can identify the class ∆ with Ω1, and the
set Ω/e with Ω2 via the bijections

(3.4.2) π1 : ∆ → Ω1, α 7→ α1 and π2 : Ω/e→ Ω2, Ω1 × {δ} 7→ δ,

respectively.

Theorem 3.4.1. The rainbow X is a homogeneous coherent configura-
tion of degree |Ω1| · |Ω2| and rank |S1|+ |S2| − 1. Moreover, e is a parabolic
of X , and in the above notation,

(3.4.3) X1 = (X∆)
π1 and X2 = (XΩ/e)

π2 .

Proof. It suffices to prove that X satisfies the condition (CC3), i.e.,
that given r, s, t ∈ S, the number |αr ∩ βs∗| does not depend on the choice
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of the pair (α, β) ∈ t. Without loss of generality, we may assume that r · s
intersects t.

Let r, s ∈ S(1). Then obviously, r · s ⊆ e. The assumption implies that
t ⊆ e, i.e., that t ∈ S(1). Thus the points α and β belong to a certain class
∆ ∈ Ω/e. It follows that

(3.4.4) |αr ∩ βs∗| = |α1r1 ∩ β1s∗1| = ct1r1s1 ,

where α1 and β1 are the first coordinates of α and β, and r1, s1, and t1 are
the π1-images of respectively, r, s, and t.

Let r, s ∈ S(2). Then αr ∩ βs∗ is the union of ∆ ∈ Ω/e such that

(α,∆) ∈ rΩ/e and (∆, β) ∈ sΩ/e,

where α = πe(α) and β = πe(β). It follows that

(3.4.5) |αr ∩ βs∗| = |∆| · |αrΩ/e ∩ βs∗Ω/e| = |Ω1|ct2r2s2 ,

where r2 and s2 are the π2-images of rΩ/e and sΩ/e, respectively.

Let r ∈ S(1) and s ∈ S(2) (the case r ∈ S(2) and s ∈ S(1) is considered
similarly). Every point in αr ∩ βs∗ lies in the class ∆ = αe. Moreover, the
assumption implies that tΩ/e = sΩ/e and hence ∆× {β} ⊆ s. Thus,

(3.4.6) αr ∩ βs∗ = αr,

whence |αr ∩ βs∗| = nr. □

Definition 3.4.2. The coherent configuration X from Theorem 3.4.1
is called the canonical wreath product or, briefly, the wreath product of the
coherent configurations X1 and X2, and is denoted by X1 ≀ X2.

The wreath product is said to be nontrivial if the parabolic e is not
trivial. In particular, a nontrivial wreath product must be imprimitive. It is
also easily seen that the wreath product is monotonic with respect to each
factor.

Example 3.4.3. The scheme of an undirected cycle with four vertices
is isomorphic to the wreath product T2 ≀ T2.

One can also define the canonical wreath product for non-homogeneous
coherent configurations. However, the explicit formulas for basis relations
become a little bit more complicated. An alternative way is indicated in the
following statement.

Proposition 3.4.4. In the above notations, X1 ≀ X2 = Y ∩ Z, where

(3.4.7) Y = ⊞
∆∈Ω/e

X∆ and Z = X1 ⊗X2.

Remark 3.4.5. The coherent configuration Y is isomorphic to the direct
sum of |Ω2| copies of the scheme X1.
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Proof. Set X = X1 ≀ X2. In accordance with formulas (3.4.1), we have
S(X ) ⊆ S(Y)∪ and S(X ) ⊆ S(Z)∪. Thus,

S(X ) ⊆ S(Y)∪ ∩ S(Z)∪,

which proves the inclusion

(3.4.8) X ≤ Y ∩ Z.

To prove the reverse inclusion, let us verify that each s ∈ S(Y ∩ Z)
belongs to S(X )∪. Depending on whether or not s is contained in the
parabolic e we consider two cases.

Let s ⊆ e. Then in view of (3.4.8), there exists r ∈ S(1) such that

s ⊆ r =
⋃

∆∈Ω/e

r∆.

Since also Y ∩ Z ≤ Y and r∆ ∈ S(Y), it follows that for all ∆ ∈ Ω/e,

s∆ ̸= ∅ ⇒ s∆ = r∆.

Now if s∆ ̸= ∅ for all ∆, then s = r as required. Assume that s∆ = ∅ for
some ∆. Then the parabolic

e ∈ E(Y) ∩ E(Z) ⊆ E(Y ∩ Z)

is not indecomposable (statement (1) of Theorem 2.1.22). However, this
contradicts Exercise 3.7.6.

Let s ∩ e = ∅. Then in view of (3.4.8), there exists r ∈ S(2) such that

s ⊆ r =
⋃

(∆,Γ)∈r
Ω/e

r∆,Γ.

Since also Y∩Z ≤ Y and r∆,Γ = ∆×Γ belongs to S(Y) for all (∆,Γ) ∈ rΩ/e,

it follows that
s∆,Γ ̸= ∅ ⇒ s∆,Γ = r∆,Γ.

Now if s∆,Γ ̸= ∅ for all suitable pairs (∆,Γ), then s = r and we are done.
Assume that s∆,Γ = ∅ and r∆,Γ ̸= ∅ for some ∆ and Γ. Then

(3.4.9) sΩ/e ⊊ rΩ/e.

On the other hand, Y ∩ Z ≤ Z implies that

(Y ∩ Z)Ω/e ≤ ZΩ/e = X2,

in particular, sΩ/e ∈ (S2)
∪. Besides, rΩ/e ∈ S2 by the assumption on r.

Together with (3.4.9), this shows that sΩ/e = ∅. Therefore, s ⊆ e, a contra-

diction. □

The construction of the wreath product of X1 by X2 with respect to
a family of algebraic isomorphisms (see Exercise 3.7.31), shows that, in
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general, the canonical wreath product X = X1 ≀ X2 is not a unique scheme
on Ω that has a parabolic e such that

X∆ = X1 and XΩ/e = X2

for some ∆ ∈ Ω/e. A weaker minimality condition of the wreath product
established in Exercise 3.7.32 implies that the uniqueness of the canonical
wreath product holds up to algebraic isomorphisms.

The canonical wreath product of schemes is a combinatorial analog of the
wreath product of transitive permutation groups in the imprimitive action.
The following statement shows that it respects the Galois correspondence
between the coherent configurations and permutation groups.

Theorem 3.4.6. For arbitrary sets Ω1 and Ω2,

(3.4.10) Inv(K1 ≀K2,Ω1 × Ω2) = Inv(K1,Ω1) ≀ Inv(K2,Ω2)

for all transitive groups K1 ≤ Sym(Ω1) and K2 ≤ Sym(Ω2), and

(3.4.11) Aut(X1 ≀ X2) = Aut(X1) ≀Aut(X2)

for all schemes X1 on Ω1 and X2 on Ω2.

Proof. Set K = K1 ≀K2 and Ω = Ω1 × Ω2. One can easily see that

K = ⟨L,M⟩,

where L ≤ Sym(Ω) is the base group of K and M = K1 ×K2 ≤ Sym(Ω).
By formula (2.3.7), this implies that

(3.4.12) Inv(K,Ω) = Inv(⟨L,M⟩) = Inv(L) ∩ Inv(M).

The groups L and M are equal to the intransitive direct product of |Ω2|
copies of K1, and the transitive direct product of K1 and K2, respectively.
Thus by formulas (3.2.3) and (3.2.17),

Inv(L) = ⊞
∆∈Ω/e

Inv(K)∆ and Inv(M) = Inv(K1)⊗ Inv(K2).

By Proposition 3.4.4 this implies that

Inv(K1,Ω1) ≀ Inv(K2,Ω2) = Inv(L) ∩ Inv(M),

which proves equality (3.4.10) by formula (3.4.12).
Let us prove equality (3.4.11). The group Aut(X1) ≀Aut(X2) is generated

by the base group Aut(X1)
Ω2 of this wreath product and the transitive

direct product Aut(X1)×Aut(X2). By equalities (3.2.4) and (3.2.18), these
groups are equal to Aut(Y) and Aut(Z), respectively, where Y and Z are
the schemes defined in (3.4.7). Thus,

Aut(X1) ≀Aut(X2) = ⟨Aut(Y),Aut(Z)⟩.
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By Proposition 3.4.4 and formula (2.3.8), this implies that

Aut(X1 ≀ X2) = Aut(Y ∩ Z) ≥ ⟨Aut(Y),Aut(Z)⟩ = Aut(X1) ≀Aut(X2).

To prove the reverse inclusion, let f ∈ Aut(X1 ≀ X2). Denote by e the
parabolic of X1 ≀X2 defined by the equalities of the second coordinates. Then
obviously, ef = e. It follows that for any α2 ∈ Ω2, there exists a uniquely
determined α′

2 ∈ Ω2 such that

(3.4.13) (Ω1 × {α2})f = Ω1 × {α′
2}.

This defines a permutation g of Ω1 × Ω2 taking a pair (α1, α2) to (α1, α
′
2).

We claim that

(3.4.14) g ∈ Aut(X1) ≀Aut(X2).

Indeed, g is equal to the permutation (h, fΩ/e) ∈ Sym(Ω1) ≀Sym(Ω2), where
the function h : Ω2 → Aut(X1) takes any point of Ω2 to the identity

of Aut(X1). Thus the claim follows, because fΩ/e ∈ Aut(X2).

One can easily see that sg = s for all s ∈ S(1) ∪ S(2). Consequently, g
is an automorphism of X1 ≀ X2 and hence

f ′ := g−1f ∈ Aut(X1 ≀ X2).

From (3.4.13) and the definition of g, it follows that the permutation f ′

leaves each class of e fixed (as a set). Therefore,

(f ′)∆ ∈ Aut(X1) for all ∆ ∈ Ω/e.

This shows that the permutation f ′ lies in the base of the wreath product
Aut(X1) ≀Aut(X2). Together with formula (3.4.14), this implies that

f = g(g−1f) = gf ′ ∈ Aut(X1) ≀Aut(X2).

Thus,
Aut(X1 ≀ X2) ≤ Aut(X1) ≀Aut(X2),

and we are done. □

Corollary 3.4.7. X1 ≀ X2 is schurian if and only if so are X1 and X2.

Proof. The necessity follows from formula (3.4.3) and the fact that
the schurity is preserved under restrictions and quotients (statement (2) of
Exercise 2.7.21 and Corollary 3.1.17).

To prove the sufficiency, we assume that the schemes X1 and X2 are
schurian. Then by Theorem 3.4.6,

Inv(Aut(X1 ≀ X2)) = Inv(Aut(X1) ≀Aut(X2))

= Inv(Aut(X1)) ≀ Inv(Aut(X2))

=X1 ≀ X2,

i.e., the scheme X1 ≀ X2 is schurian. □
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The property of a scheme to be isomorphic to the canonical wreath
product is not preserved by algebraic isomorphisms. The reason is that
the restrictions X∆ in the canonical wreath product are pairwise isomorphic
and this is not true for every scheme algebraically isomorphic to X , see the
construction in Exercise 3.7.31.

In order to describe the algebraic isomorphisms φ between two canonical
wreath products X = X1 ≀ X2 and X ′ = X ′

1 ≀ X ′
2, denote by e and e′ the

parabolics of X and X ′ that are defined by the equalities of the second
coordinates. Suppose that e′ = φ(e) and set

φΩ1 = π−1
1 φ∆,∆′ π′1 and φΩ2 = π−1

2 φΩ/e π
′
2,

where ∆ and ∆′ are classes of e and e′, respectively, φ∆,∆′ is the algebraic

isomorphism from Exercise 2.7.31, and π′1 and π′2 are the bijections defined
by formulas (3.4.2). Note that the mapping φΩ1

: S(X1) → S(X2) does not

depend on the choice of the classes ∆ and ∆′.

Theorem 3.4.8. In the above notation,

(1) for any φ ∈ Isoalg(X1 ≀ X2,X ′
1 ≀ X ′

2) such that e′ = φ(e),

φΩ1 ∈ Isoalg(X1,X ′
1) and φΩ2 ∈ Isoalg(X2,X ′

2);

(2) for any φ1 ∈ Isoalg(X1,X ′
1) and φ2 ∈ Isoalg(X2,X ′

2), there exists a
unique algebraic isomorphism

φ ∈ Isoalg(X1 ≀ X2,X ′
1 ≀ X ′

2)

such that e′ = φ(e), φ1 = φΩ1, and φ2 = φΩ2.

Proof. Statement (1) immediately follows from the definitions of alge-
braic isomorphisms φΩ1 and φΩ2 , whereas statement (2) is easily derived
from the explicit formulas (3.4.4), (3.4.5), and (3.4.6) for the intersection
numbers of the canonical wreath product. □

We complete the subsection by the following result showing that the
canonical wreath product respects the separability.

Theorem 3.4.9. X1 ≀ X2 is separable if and only if so are X1 and X2.

Proof. To prove the necessity, let

φ1 ∈ Isoalg(X1,X ′
1) and φ2 ∈ Isoalg(X2,X ′

2)

for some schemes X ′
1 and X ′

2. Let X = X1 ≀ X2 and X ′ = X ′
1 ≀ X ′

2. By
statement (2) of Theorem 3.4.8, there exists φ ∈ Isoalg(X ,X ′) such that
φ(e) = e′,

φΩ1 = φ1 and φΩ2 = φ2.

Assuming X to be separable, one can find an isomorphism

f ∈ Iso(X ,X ′, φ).
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Since ef = φ(e) = e′, any ∆ ∈ Ω/e goes under f to a certain ∆′ ∈ Ω′/e′.
Define the composition

f1 = π−1
1 f∆,∆′ π′1,

where f∆,∆′ : ∆ → ∆′ is the bijection induced by f . Note that f∆,∆′

induces φ∆,∆′ , because f induces φ.

Thus for any s1 ∈ S(X1),

(s1)
f1 = (s1)

π−1
1 f

∆,∆′π
′
1 = φ∆,∆′(s

π−1
1

1 )π
′
1 = φ1(s1).

Therefore, f1 induces φ1. This proves that X1 is separable. Similarly, one
can verify that the composition

f2 = π−1
2 fΩ/eπ′2

induces φ2 and the scheme X2 is also separable.
Let X1 and X2 be separable and φ ∈ Isoalg(X ,X ′) for some scheme X ′.

Then e′ = φ(e) is a parabolic of X ′. The scheme XΩ/e is isomorphic to X2

and hence is separable. Therefore, there exists an isomorphism

f ∈ Iso(XΩ/e ,X
′
Ω′/e′ , φΩ/e).

For each ∆ ∈ Ω/e, set ∆′ = ∆f . The scheme X∆ is isomorphic to X1

and hence is separable. Therefore, there exists an isomorphism

f∆ ∈ Iso(X∆ ,X ′
∆′ , φ∆,∆′),

where φ∆,∆′ is the algebraic isomorphism from Exercise 2.7.31.
At this point, the mapping

f : Ω → Ω′, α 7→ αf∆

is a bijection, where ∆ is the class of e that contains α.
Now if s ∈ S(1), then s ⊆ e and

sf =
(⋃
∆

s∆
)f

=
⋃
∆′

(sf )∆′ =
⋃
∆′

φ∆,∆′(s) =
⋃
∆′

s′∆′ = φ(s).

Similarly, if s ∈ S(2) and s = sΩ/e, then

sf =
( ⋃
(∆,Γ)∈s

∆× Γ
)f

=
⋃

(∆′,Γ′)∈sfΩ/e

∆′ × Γ′ =
⋃

(∆′,Γ′)∈φΩ/e(s)

∆′ × Γ′ = φ(s).

Thus, f ∈ Iso(X ,X ′, φ) and the scheme X is separable. □
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3.4.2 Exponentiation

It is not quite clear how to define a pure combinatorial analog of the
primitive wreath product of permutation groups. Instead, a wreath product
of a coherent configuration and a permutation group is introduced below;
in contrast to the canonical wreath product, the resulting coherent configu-
ration can be primitive. The most part of the material of this subsection is
taken from [39, Section 3].

Let X be a coherent configuration on Ω, and K a permutation group on
a set ∆. Define an action of K on the Cartesian product Ω∆ by

λk(δ) = λ(δk
−1
), δ ∈ ∆, k ∈ K,

where the element λ ∈ Ω∆ is considered as a function λ : ∆ → Ω. The in-
duced permutation group acts on the relations on Ω∆. This action preserves
tensor products,

(3.4.15)
(⊗
δ∈∆

sδ
)k

=
⊗
δ∈∆

s
δk−1 ,

where sδ is a relation on Ω for all δ ∈ ∆. If each sδ is a basis relation of X ,
then the left-hand and right-hand sides of the equality are the basis relations
of the coherent configuration

X∆ = X ⊗ · · · ⊗ X︸ ︷︷ ︸
∆

.

It follows that the groupK can naturally be embedded into the group Iso(X∆).

Definition 3.4.10. The algebraic fusion of X∆ with respect to K is de-
noted by X ↑ K and called the exponentiation of the coherent configuration X
by the group K.

Certainly, the exponentiation of X with trivial group is nothing else
than the tensor power of X . The scheme of the Hamming graph H(d, q) is
isomorphic to the exponentiation Tq ↑ Sym(d), see Exercise 3.7.37.

Proposition 3.4.11. Let X be a coherent configuration and K,L per-
mutation groups. Then there are the following canonical isomorphisms:

(1) X ↑ (K ×L) = (X ↑ K)⊗ (X ↑ L), where the direct product K ×L
acts on the disjoint union of underlying sets;

(2) (X ↑ K) ↑ L = X ↑ (K ≀ L), where K ≀ L is the wreath product in
the imprimitive action.

Proof. Both statements are proved by a straightforward computation.
Let us do this for the second statement. Assume that K ≤ Sym(∆) and
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L ≤ Sym(Γ). For any family {sδγ}δ∈∆,γ∈Γ of basis relations of X , we have⋃
l∈L

⊗
γ∈Γ

( ⋃
k∈K

⊗
δ∈∆

s
δk−1γl−1

)
=
⋃
l∈L

( ⋃
f∈KΓ

⊗
(δ,γ)∈∆×Γ

s
δf(γ)

−1
γl−1

)
=

⋃
(f,l)∈K≀L

⊗
(δ,γ)∈∆×Γ

s
δf(γ)

−1
γl−1

=
⋃

g∈K≀L

⊗
α∈∆×Γ

s
αg−1 .

Since any basis relation of the coherent configuration on the left- (respec-
tively, right-) hand side in the required equality is of the form on the left-
(respectively, right-) hand side of the last formula for a suitable family {sδγ},
we are done. □

The exponentiation of a coherent configuration by a permutation group
is an almost combinatorial analog of the primitive wreath product of per-
mutation groups. The following statement shows that it respects the Ga-
lois correspondence between the coherent configurations and permutation
groups.

Theorem 3.4.12. For any permutation group K,

(3.4.16) Inv(L ↑ K) = Inv(L) ↑ K

for all permutation groups L, and

(3.4.17) Aut(X ↑ K) ≥ Aut(X ) ↑ K

for all coherent configurations X .

Proof. Let L ≤ Sym(Ω) and K ≤ Sym(∆). A straightforward check
shows that

Inv(L∆) ∩ Inv(K,Ω∆) = Inv(L) ↑ K.
By formula (2.3.7), this implies that

Inv(L ↑ K) = Inv(⟨L∆,K⟩) = Inv(L∆) ∩ Inv(K,Ω∆) = Inv(L) ↑ K,

which proves equality (3.4.16). Inclusion (3.4.17) follows from Exercise 2.7.36
and the inclusion

Aut(X ↑ K) ≥ Aut(X )∆,

which is a consequence of the Galois correspondence. □

The equality in inclusion (3.4.17) can be attained, for example, if one
takes X = T2 and K = Alt(5) ≤ Sym(6).

We have no explicit formula for the automorphism group of the expo-
nentiation. However, one can see that

(3.4.18) Aut(X ↑ K) ≤ Aut(X ) ↑ K(1).



168 3. MACHINERY AND CONSTRUCTIONS

Indeed by Exercise 3.7.37, we have

Aut(TΩ ↑ Sym(∆)) = Sym(Ω) ↑ Sym(∆).

Then each permutation from Aut(X ↑ K) is of the form σ = (λ, k) with

λ ∈ Ω∆ and k ∈ K. Moreover, λ(δ) ∈ Aut(X ) for all δ ∈ ∆, and k ∈ K(1),
which follows from considering the action of the permutation σ on the basis
relations of X ↑ K having the form r∆ and rΛ×s∆\Λ, where r, s are different
basis relations of X and Λ is an orbit of the group K.

Theorem 3.4.13. For a nontrivial coherent configuration X ,

Aut(X ↑ K) ≤ Aut(X ) ↑ K(2).

Proof. Let K ≤ Sym(∆). By the hypothesis, there exist two distinct
irreflexive basis relations x and y of X . For any two points δ1, δ2 ∈ ∆, we
define a relation t(δ1, δ2) on Ω∆ consisting of all pairs (λ, µ) such that

(λ(δ1), µ(δ1)) ∈ x, (λ(δ2), µ(δ2)) ∈ y,

and
λ(δ) = µ(δ) for all δ ̸∈ {δ1, δ2}.

One can see that

(3.4.19) t(δ1, δ2)
(f,k) = t(δk1 , δ

k
2 ), f ∈ Sym(Ω)∆, k ∈ Sym(∆).

Since t(δ1, δ2) is a relation of the coherent configuration X∆, this implies
that for any 2-orbit u of the group K,

t(u) =
⋃

(δ1,δ2)∈u

t(δ1, δ2)

is a relation of the exponentiation X ↑ K. Furthermore, in view of the fact
that t(δ1, δ2) and t(δ′1, δ

′
2) are disjoint for (δ1, δ2) ̸= (δ′1, δ

′
2), the mapping

u 7→ t(u) is injective.
Now let (f, k) ∈ Aut(X ↑ K). By formula (3.4.18), we may assume that

(f, k) ∈ Aut(X ) ↑ K(1).

Thus it suffices to verify that k ∈ K(2). To this end, we note that the
relation t(u) is Aut(X ↑ K)-invariant for any 2-orbit u of the group K. By
formula (3.4.19), this implies that

t(u) = t(u)(f,k) = t(uk).

In view of the injectivity of the mapping u 7→ t(u), this shows that uk = u

for all u. Thus, k ∈ K(2). □

The following theorem gives a necessary and sufficient condition for ex-
ponentiation to be schurian. In particular, it shows one more way how given
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a non-schurian coherent configuration one can construct an infinite family
of non-schurian coherent configurations.

Theorem 3.4.14. X ↑ K is schurian if and only if so is X .

Proof. The sufficiency immediately follows from Corollary 3.2.22 and
Proposition 2.3.28. Conversely, we assume that X ↑ K is schurian. Then
the group Aut(X ↑ K) acts transitively on each basis relation of the expo-
nentiation X ↑ K, in particular, on the relation

s∆ ⊇ {(λα, λβ) ∈ (Ω∆)2 : (α, β) ∈ s}

for each s ∈ S(X ), where λα(δ) = α and λβ(δ) = β for all δ ∈ ∆. Therefore
for any two pairs (α, β) and (α′, β′) lying in s, there exists an automorphism
σ ∈ Aut(X ↑ K) such that

(λα)
σ = λα′ and (λβ )

σ = λβ′ .

From Theorem 3.4.13, it follows that σ = (f, k), where f ∈ Aut(X )∆ and

k ∈ K(2). By formula (1.3.3), for any δ ∈ ∆ we have

α′ = (λα)
σ(δ) = αf(δ

′) and β′ = (λβ)
σ(δ) = βf(δ

′)

where δ′ = δk
−1
. Thus the element f(δ′) ∈ Aut(X ) takes (α, β) to (α′, β′).

Consequently, s is a 2-orbit of Aut(X ) as required. □

From Exercise 2.7.37, it follows that every φ ∈ Isoalg(X ,Y) induces an
algebraic isomorphism from X ↑ K to Y ↑ K. In particular,

Isoalg(X ,Y) ̸= ∅ ⇒ Isoalg(X ↑ K,Y ↑ K) ̸= ∅.

However, it is not clear whether or not the reverse statement is true. In fact,
we do not also know whether the structure of exponentiation is preserved
by algebraic isomorphisms. The following example shows that the exponen-
tiation of a separable coherent configuration is not necessarily separable.

Example 3.4.15. Let X and Y be the schemes of the Hamming graph
H(2, 4) and the Shrikhande graph, respectively. In accordance with Exam-
ple 2.6.17, they are algebraically isomorphic. This implies that for all inte-
gers m ≥ 1, so are the schemes

X ′ = X ↑ Sym(m) and Y ′ = Y ↑ Sym(m).

One can see that X ′ = T4 ↑ Sym(2m) is the scheme of the Hamming
graph H(2m, 4) (Exercise 3.7.37); in particular, X ′ is the exponentiation of
a separable scheme.

On the other hand, Y ′ is the scheme of so called Doob graph, which
is distance-regular, has the same intersection array as H(2m, 4), but is
not distance-transitive. It follows that X ′ is schurian, whereas Y ′ is not
(statement (4) of Theorem 2.6.11) and hence X ′ and Y ′ are not isomorphic.
Thus none of X ′ and Y ′ is separable.
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It is easily seen that the coherent configuration X ↑ K is homogeneous if
and only if so is X . The following statement gives a necessary and sufficient
condition for the exponentiation to be primitive. In view of formula (3.4.16),
it generalizes a well-known criterion for the primitivity of the exponentiation
of permutation groups.

Theorem 3.4.16. Let X be a coherent configuration on Ω, and let K ≤
Sym(∆). Assume that |Ω| > 1 and |∆| > 1. Then X ↑ K is primitive if and
only if X is primitive and nonregular and K is transitive.

Remark 3.4.17. If |Ω| = 1, then X ↑ K is of degree one and hence is
primitive, whereas if |∆| = 1, then X ↑ K = X is primitive if and only if so
is X .

Proof. Assume that X ↑ K is primitive. Then X is homogeneous and
each its parabolic e defines a parabolic e∆ of X ↑ K, which is trivial only
if e is trivial. Thus, X is primitive.

Furthermore, if X is regular, then each relation s ∈ S(X ) is thin and
hence s∆ ∈ S1(X∆). Note that the relation s∆ is K-invariant. Therefore,

s∆ ∈ S1(X ↑ K).

Since |Ω| > 1, statement (1) of Theorem 3.1.6 implies that |Ω∆| is prime.
Consequently, |∆| = 1, a contradiction. Thus, X is not regular.

Finally if Γ ⊊ ∆ is an orbit of K, then

{(λ, µ) ∈ (Ω∆)2 : λ(δ) = µ(δ) for all δ ∈ ∆ \ Γ}

is a nontrivial partial parabolic of X ↑ K. Thus, K is transitive.
Conversely, we assume that X is primitive and nonregular and K is

transitive. Then the exponentiation X ↑ K is homogeneous. Let e ̸= 1Ω∆

be a parabolic of X ↑ K.
Denote by T the set of all basis relations of X∆ contained in e. Each of

them can be written in the form

s =
⊗
δ∈∆

sδ,

where sδ ∈ S(X ) for all δ. Choose a relation s ∈ T for which the number

ms = |{δ ∈ ∆ : sδ = 1Ω}|

is as small as possible. Since s ̸= 1Ω∆ (the choice of e), we have ms < |∆|.
We claim that ms = 0. Indeed, let

sδ ̸= 1Ω and sγ = 1Ω

for some δ, γ ∈ ∆. By the transitivity of K, there exists k ∈ K such that
δk = γ. Note that sk ∈ T , because ek = e. It follows that

ssk ⊆ T.
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On the other hand, since X is primitive and nonregular, the complex product
of any two basis relations belonging to ssk is equal to {1Ω} if and only if
both of them equal 1Ω. Since the γ position of ssk is equal to

sγ sγk−1 = 1Ωsδ = sδ ̸= 1Ω,

this implies that there exists t ∈ ssk ⊆ T such that mt < ms, contrary to
the choice of s.

By the above claim sδ ̸= 1Ω for all δ ∈ ∆. Since X is primitive and
nonregular, this implies that there exists a positive integer mδ such that

(sδ)
mδ = S(X ),

see Exercise 3.7.3. It follows that any basis relation of X∆ belongs to sm for
a suitable m (for instance, one can take m to be the product of mδ, δ ∈ ∆).
Since sm ⊆ e, this shows that

e = Ω∆ × Ω∆.

Thus the scheme X ↑ K has only trivial parabolics and hence is primitive.□
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3.4.3 Generalized wreath product of Cayley schemes

Saying on the imprimitive wreath product K ≀ L of the permutation
groups K and L, we do not assume that these groups are connected in some
way. Passing to the generalized wreath product, one needs to require that
K and L have sections of a special form that are permutation isomorphic.

The exact definition of the generalized wreath product of permutation
groups introduced in [46] is too cumbersome to be discussed here. A com-
binatorial analog of this operation for homogeneous coherent configurations
had been studied in [101] under the name “wedge product”. In studying
generalized wreath product we restrict ourselves to Cayley schemes.

Throughout this section, X is a Cayley scheme over a group G. By
Proposition 2.4.9, any parabolic of X is of the form eH = ρ(H) (see also
statement (6) of Exercise 1.4.16) for a uniquely determined subgroup H
of G. Any such subgroup is called an X -subgroup of G; in particular, the
parabolics of X are in one-to-one correspondence with the X -subgroups of G.
In what follows, we also use the following abbreviations:

XH := XeH and XG/H := XG/eH .

Let L and U be X -subgroups of G such that L ≤ U and L ⊴ G. Assume
that for each s ∈ S with S = S(X ),

(3.4.20) s ̸⊆ eU ⇒ eL ⊆ rad(s),

where rad(s) is the radical of s, see (1.1.2). In other words, the parabolic eL
is contained in the radical of each basis relation outside the parabolic eU .

Definition 3.4.18. The scheme X is called an U/L-wreath product of
the Cayley schemes XU and XG/L.4

When the explicit reference to the groups L and U is not important,
we use the term generalized wreath product. The U/L-wreath product is
nontrivial or proper if 1 ̸= L and U ̸= G.

Example 3.4.19. Let p > 2 be a prime, G = Cp3, and M ≤ Aut(G) is
the group of order p. Let L and U be the subgroups of G that are isomorphic
to Cp and Cp2, respectively. Then the cyclotomic scheme Cyc(M,G) is the
U/L-wreath product of two regular Cayley schemes over Cp2.

The basis relations of the U/L-wreath product X are uniquely deter-
mined by the basis relations of the factors XU and XG/L. Indeed, condi-
tion (3.4.20) implies that

(3.4.21) S = πU (SU ) ∪ π−1
L (SG/L),

where SU = S(XU ), SG/L = S(XG/L) and

(3.4.22) πU : SU → S, sU 7→ s and πL : S → SG/L, s 7→ sG/eL .

4The normality of L in G provides that XG/L is a Cayley scheme over G/L.
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This interpretation of the basis relations of X indicates a way how to con-
struct the generalized wreath product from the factors. The following state-
ment shows that the canonical wreath product of Cayley schemes is a special
case of the generalized wreath product.

Proposition 3.4.20. Let X be the U/L-wreath product with U = L.
Then X is isomorphic to the canonical wreath product XU ≀ XG/L.

Proof. Let us choose representatives of the right cosets of U in G. For
an element g ∈ G, the representative of Ug is denoted by vg; in particular,
g = ugvg for a uniquely determined ug ∈ U . Now setting V = G/U , we get
a bijection

f : G→ U × V, g 7→ (ug, Uvg).

Let s ∈ SU and (g, h) ∈ s. Then vg = vh and hence gh−1 = ugu
−1
h . It

immediately implies that
sf = sU ⊗ 1V .

Now let s ̸∈ SU . Then by formula (3.4.20) with taking into account that
L = U , we have

sf = U2 ⊗ sG/eU .

Thus Sf = S(1) ∪ S(2), where the summands are defined by (3.4.1) with
Ω1 = U , S1 = SU and Ω2 = V , S2 = SG/U . Thus,

X f = XU ≀ XG/U ,

as required. □

In contrast to the canonical wreath product, the factors XU and XG/L of
the U/L-wreath product X are not independent. In fact, a certain quotient
of the former is equal to a certain restriction of the latter,

(XU )U/L = (XG/L)U/L,

which follows from the fact that the operations of taking factor and taking
quotient are permutable (statement (2) of Exercise 3.7.9). Thus the gener-
alized wreath product of two Cayley schemes can be considered as “gluing”
them along a common section of the underlying groups.

Let us establish a necessary and sufficient condition for a Cayley scheme X
over a group G to be a generalized wreath product in terms of certain auto-
morphisms of X . This condition shows, in particular, that the automorphism
group of a proper generalized wreath product is always greater that Gright.

Theorem 3.4.21. Let X be a Cayley scheme over a group G, and let
L and U be X -subgroups of G such that L ≤ U and L ⊴ G. Then X is the
U/L-wreath product if and only if

(3.4.23) Aut(X ) ≥
∏

Λ∈G/U

(Lright)
Λ,
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where the group Lright is treated as a permutation group on G induced by
right multiplications by the elements of L.

Proof. To prove the necessity, we assume that X is the U/L-wreath
product. We claim that

(3.4.24) X ≤ ⊞
Λ∈G/U

(XeL)Λ,

where XeL is the extension of X with respect to the parabolic eL. It suffices
to verify that each s ∈ S(X ) is a relation of the direct sum on the right-hand
side.

Now if s ⊆ eU , then we are done, because s is the disjoint union of the sΛ
with Λ ∈ G/U , and

sΛ ∈ S(X )Λ ⊆ (S(XeL))
∪
Λ.

Let s ̸⊆ eU . Then by the definition of generalized wreath product and
formula (1.4.2), we have

(3.4.25) s =
⋃

(∆,Γ)∈sG/eL

∆× Γ.

However, (∆,Γ) ∈ sG/eL only if ∆ and Γ are contained in distinct classes
of eU (for otherwise s ∩ eU ̸= ∅, contrary to the assumption). Therefore,
∆ and Γ are homogeneity sets of different summands of the direct sum on
the right-hand side of (3.4.24). Thus, ∆×Γ is a relation of this direct sum,
which implies that so is s.

Taking the automorphism groups of the coherent configurations on both
sides of inclusion (3.4.24) and using formula (3.2.4), we obtain

(3.4.26) Aut(X ) ≥
∏

Λ∈G/U

Aut((XeL)Λ) ≥
∏

Λ∈G/U

Aut(XeL)
Λ.

In view of formula (3.1.15), we have

Aut(XeL) = Aut(X )eL ≥ (Gright)eL = Lright.

Together with (3.4.26), this completes the proof of the necessity.
To prove the sufficiency, let s be a basis relation of X not contained

in the parabolic eU . We have to verify that s is of the form (3.4.25), or
equivalently, that

s∆,Γ = ∆× Γ

for all ∆,Γ ∈ G/L such that s∆,Γ ̸= ∅.
To this end, denote by Λ∆ and ΛΓ the right cosets of U in G that contain

∆ and Γ, respectively. Then Λ∆ ̸= ΛΓ, because s ̸⊆ eU . By the assumption,

(Lright)
Λ∆ × (Lright)

ΛΓ ≤ Aut(X )Λ∆∪ΛΓ

and hence the group

K := (Lright)
∆ × (Lright)

Γ
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is contained in Aut(X )∆∪Γ. Recall that ∆ and Γ are cosets of L in G.
Therefore for any (α, β) ∈ s∆,Γ, we have

∆× Γ = (α, β)K ⊆ s∆,Γ ⊆ ∆× Γ

as required. □

Corollary 3.4.22. Let X be a Cayley scheme. Assume that X is a
proper generalized wreath product. Then a point stabilizer of Aut(X ) is
nontrivial.

It should be remarked that the generalized wreath product of schurian
(respectively, separable) Cayley schemes is not necessarily schurian (respec-
tively, separable). The first examples of non-schurian and non-separable
Cayley schemes over a cyclic group was constructed in [42] just by using
the generalized wreath product, see Exercise 3.7.40. Furthermore, as was
proved later in [41], every non-schurian or non-separable Cayley scheme over
a cyclic group is a proper generalized wreath product.

On the other hand, there are some criteria for the schurity and separa-
bility of generalized wreath product. Most of them are applicable only for
Cayley schemes over abelian groups [47, 113, 114]. A general result of such
a type is given below (the schurity part of it was proved in [101]).

Theorem 3.4.23. The generalized wreath product of two regular Cayley
schemes is schurian and separable.

Proof. Let X be a Cayley scheme over a group G. Assume that X is
the U/L-wreath product such that the schemes XU and XG/L are regular.
In this case, eL is obviously a residually thin parabolic of X .

By statement (1) of Theorem 3.1.26,

S(XeL) = {s∆,Γ : s ∈ S, (∆,Γ) ∈ sG/eL},

where XeL is the extension of X with respect to eL. In particular, the fibers
of XeL are the cosets of L. This and formula (3.4.20) imply that given two
such cosets ∆ and Γ, and a relation s̸⊆ eU , we have

Λ∆ ̸= ΛΓ ⇒ s∆,Γ = ∆× Γ,

where Λ∆ and ΛΓ are the right cosets of U that contain ∆ and Γ, respectively.
It follows that

XeL = ⊞
Λ∈G/U

(XeL)Λ.

For each coset Λ, the scheme XΛ is algebraically isomorphic to the regular
scheme XU (Example 2.3.16). Therefore, XΛ is regular. Consequently, the
coherent configuration

(XeL)Λ ≥ XΛ

is semiregular.
Thus, XeL is the direct sum of semiregular coherent configurations. Since

each of them is schurian and separable (Exercise 2.7.35), so is the coherent
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configuration XeL (Corollaries 3.2.6 and 3.2.8). Now the required statement
follows from Theorem 3.1.29. □

The following special result generalizes Example 3.4.19 and will be used
in Section 4.4. It gives a characterization of generalized wreath products in
the class of cyclotomic schemes over a cyclic p-group.

Proposition 3.4.24. Let G = Cn, where n = pk with prime p and k ≥ 1,
and let M ≤ Aut(G). Then the cyclotomic scheme Cyc(M,G) is a proper
generalized wreath product if and only if one of the following statements
holds:

(1) p is odd and divides |M |;
(2) p = 2, and |M | ≥ 4 or M = {1, σ1+n/2} and k ≥ 2, see (1.4.10).

Proof. Using the one-to-one correspondence (1.4.8) and Exercise 1.4.16,
the fact that Cyc(M,G) is the U/L-wreath product can be rewritten as
follows:

(3.4.27) L ≤ rad(X) for all X ∈ Orb(M,G \ U).

Furthermore, any subgroup of G is characteristic and hence an X -group
(Exercise 2.7.41). Therefore, under condition (3.4.27), the scheme Cyc(M,G)
is the U ′/L′-wreath product for any groups L′ ≤ L and U ′ ≥ U (state-
ment (2) of Exercise 3.7.38). Thus without loss of generality, we may assume
that

|L| = p and |U | = pk−1.

In the rest of the proof, X denotes the orbit of M that contains a gen-
erator g of G; in particular,

X ⊆ G \ U and |X| = |gM | = |M |.

To prove the necessity, we assume that Cyc(M,G) is a proper generalized
wreath product. Then L ≤ rad(X). It follows that X is the union of some
cosets of L. In particular,

p = |L| divides |X| = |M |.

This leaves us with the case p = 2 and |M | < 4. But then M ≤ Aut(G)
must be one of the following groups:

(3.4.28) {σ1}, {σ1, σ−1}, {σ1, σ−1+n/2}, {σ1, σ1+n/2}.

A straightforward computation shows that if n > 4 and M is one of the
first three groups, then X is not the union of some L-cosets of G. Thus,
M = {σ1, σ1+n/2} as required.

Let us prove the necessity. We have

Orb(M,G \ U) = {Xσm : GCD(m,n) = 1}.
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Since the group rad(Xσm) does not depend on the automorphism σm, it
suffices to verify that

L ≤ rad(X).

Without loss of generality, we may assume that either condition (1) is
satisfied or p = 2 and |M | ≥ 4 (for otherwise, the required statement can be
checked directly). Then M contains a subgroup M0 ≤ Aut(G) of order p,

M0 = {σ1+mi : i = 0, . . . , p− 1},

where mi = ipk−1. Since g is a generator of G and g ∈ X, we have

gL = {g1+m0 , . . . , g1+mp−1} = gM0 ⊆ XM0 = X.

This implies that

X ⊆ XL = gML = (gL)M ⊆ XM = X,

whence X = XL = LX. Thus, L ≤ rad(X), and we are done. □

We complete the subsection by studying algebraic isomorphisms of gen-
eralized wreath products. Let X and X ′ be Cayley schemes over groups G
and G′, respectively, and φ ∈ Isoalg(X ,X ′).

For an X -group H denote by φ(H) the X ′-subgroup of G′ such that

φ(eH) = eφ(H).

Since H and H ′ = φ(H) are classes of the (indecomposable) parabolics eH
and eH′ , the algebraic isomorphism φ induces the algebraic isomorphism

φH ∈ Isoalg(XH ,X ′
H′),

which coincides with φH,H′ defined in Exercise 2.7.31.
If the subgroupsH andH ′ are normal, then XG/H and X ′

G′/H′ are Cayley

schemes; in this case the quotient algebraic isomorphism φG/eH is denoted
by φG/H ,

φG/H ∈ Isoalg(XG/H ,X
′
G′/H′).

Theorem 3.4.25. In the above notation, suppose that X and X ′ are the
U/L- and U ′/L′-wreath products, respectively. Then

(1) for any φ ∈ Isoalg(X ,X ′) such that L′ = φ(L) and U ′ = φ(U),

φU ∈ Isoalg(XU ,X ′
U ′) and φG/L ∈ Isoalg(XG/L ,X

′
G′/L′);

(2) for any φ1 ∈ Isoalg(XU ,X ′
U ′), φ2 ∈ Isoalg(XG/L ,X

′
G′/L′) such that

(3.4.29) (φ1)U/L = (φ2)U/L,

there exists a unique φ ∈ Isoalg(X ,X ′) for which

L′ = φ(L), U ′ = φ(U) and φ1 = φU , φ2 = φG/L.
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Proof. Statement (1) immediately follows from the definitions of the
algebraic isomorphisms φU and φG/L. In order to prove statement (2), we
make use of formula (3.4.21) to define a bijection

φ : S → S′, s 7→ s′ =

{
πU ′(φ1(π

−1
U (s))), if s ⊆ eU ,

π−1
L′ (φ2(πL(s))), if s ̸⊆ eU ,

where S = S(X ), S′ = S(X ′), and the mappings πU , πL and πU ′ , πL′ are
defined as in formula (3.4.22). By condition (3.4.29), we have φ1 = φU and
φ2 = φG/L. To prove that φ is an algebraic isomorphism, let r, s, t ∈ S.

Let r, s ⊆ eU . Then the πU -preimages of r and s are equal to rU and sU ,
respectively. Therefore, r′, s′ ⊆ eU ′ and the π′U ′-preimages of r′ and s′ are
equal to r′U ′ and s′U ′ , respectively. If, in addition, t ̸⊆ eU , then t

′ ̸⊆ eU ′ and

ctrs = 0 = ct
′
r′s′ ,

whereas if t ⊆ eU , then t
′ ⊆ eU ′ , and

ctrs = c
tU
rU sU

= c
t′
U′
r′
U′s

′
U′

= ct
′
r′s′ .

Let r ⊆ eU and s ̸⊆ eU ; the case r ̸⊆ eU and s ⊆ eU is considered
similarly. Then s = seL and a straightforward check shows that

(3.4.30) ctrs =

{
mrc

t
r s, if t ̸⊆ eU ,

0, if t ⊆ eU ,

where mr is the number defined in statement (1) of Exercise 2.7.11 for s = r
and e = eL, and r = rG/L, s = sG/L, and t = tG/L. Thus assuming t ̸⊆ eU ,
we obtain

ctrs = mrc
t
r s = mr′c

t
′

r′ s′ = ct
′
r′s′ ,

where r′ = r′G′/L′ , s′ = s′G′/L′ , and t
′
= t′G′/L′ .

Now let r ̸⊆ eU and s ̸⊆ eU . Then for any t ∈ S,

(3.4.31) ctrs = |L|ctr s.

Thus,

ctrs = |L|ctr s = |L′|ct
′

r′ s′ = ct
′
r′s′ ,

and we are done. □
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3.5 Multidimensional extensions

The method of invariant relations was mentioned by H. Wielandt in [127]
among the three major tools for studying the actions of a group on a set.
An illustration of this method is given in Corollary 2.2.24, where the group
K ≤ Sym(Ω) is naturally approximated by a series of permutation groups
induced by the action of K on the Cartesian power Ωm, m ≥ 1.

The aim of this section is to define a similar series for an arbitrary
coherent configuration. To this end a combinatorial analog of the group

K̂(m) ≤ Sym(Ωm)

induced by the action of K on Ωm is introduced. The key point here is

that K̂(m) coincides with the setwise stabilizer of the diagonal of Ωm in the
direct product Km ≤ Sym(Ωm),

K̂(m) = (Km){Diag(Ωm)}.

In the case of coherent configurations, the Galois correspondence sug-
gests to replace the direct product and setwise stabilizer in the above formula
by the tensor product and coherent closure. In this way, we arrive at the
concept of the m-dimensional extension of a coherent configuration. This
leads naturally to the m-dimensional intersection numbers and algebraic
isomorphisms.

As in the case of permutation groups, such an approach allows to de-
fine the operator of the m-dimensional closure and the concept of m-closed
coherent configuration. Any coherent configuration is 1-closed; some group-
like properties of the 2-closed coherent configurations are studied at the end
of the section. The most part of this theory was developed by S. Evdokimov
and I. Ponomarenko in the early 2000s, see [44] and references therein.

3.5.1 The m-dimensional extension

Let X be a coherent configuration on Ω and m a positive integer.

Definition 3.5.1. The m-dimensional extension of X is defined to be
the coherent closure

(3.5.1) X̂ (m) = WL(Xm, 1Diag(Ωm)),

i.e., the smallest fission of Xm containing Diag(Ωm) as a homogeneity set.

The intersection numbers of this coherent configuration are called the
m-dimensional intersection numbers of X . Obviously, the 1-dimensional
extension of X coincides with X , and 1-dimensional intersection numbers
are usual intersection numbers of X .

From Theorem 2.6.4, it follows that any isomorphism from X to another
coherent configuration induces an isomorphism between theirm-dimensional
extensions. In this sense, the m-extension and the m-dimensional intersec-
tion numbers can be treated as m-dimensional invariants of X .
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Example 3.5.2. Let X = T3. Then the scheme X 2 = X ⊗ X is of de-
gree 9 and rank 4. The action of Aut(X ) = Sym(3) on Ω2 induces an auto-
morphism group of the coherent closure (3.5.1) (Theorem 2.6.4). Therefore,

(3.5.2) X̂ (2) ≤ Inv(Sym(3),Ω2).

The coherent configuration on the right-hand side has two homogeneous com-
ponents: trivial scheme on Diag(Ω2) and a regular scheme associated with
Sym(3). A straightforward computation shows that in this case, inclusion
(3.5.2) is an equality.

The following statement shows that in the framework of the Galois cor-
respondence between the coherent configurations and permutation groups,
the m-dimensional extension can be considered as a combinatorial analog of
the permutation group induced by the action of a group on the m-tuples.

Theorem 3.5.3. For any positive integer m,

(3.5.3) ̂Inv(K)(m) ≤ Inv(K̂ (m))

for all groups K ≤ Sym(Ω), and

(3.5.4) Aut(X̂ (m)) = Âut(X )(m)

for all coherent configurations X on Ω.

Proof. Inclusion (3.5.3) follows from formula (3.2.17) and statement (1)
of Exercise 3.7.12:

̂Inv(K)(m) = WL(Inv(K)m, 1∆m)

= WL(Inv(Km), 1∆m)

≤ Inv(Km
{∆m})

= Inv(K̂ (m)),

where ∆m = Diag(Ωm). Similarly, equality (3.5.4) can be verified with the
help of formula (3.2.18) and statement (2) of Exercise 3.7.12. □

The equality in (3.5.3) holds if the groupK is semiregular or a symmetric
group (Exercises 3.7.41 and 3.7.42). In general, the equality is not necessarily
attained. The smallest known example of this phenomenon is given below.

Example 3.5.4. In [45], the 2-dimensional extension of the scheme X
of a projective plane P of order q was explicitly calculated (Exercise 2.7.43).
In turns out that if q ≥ 3, then its rank does not depend on q and equals 208.
Let q = 5 and K = Aut(X ) (in fact, P is a Galois plane and K = Aut(P),
see Theorem 2.5.3). A computer computation shows that

rk(Inv(K̂ (2))) = 224 > 208 = rk( ̂Inv(K)(2)).
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Along with the m-dimensional extension of a coherent configuration,
one can define the m-dimensional extension of an algebraic isomorphisms
between two coherent configurations X on Ω and Y on ∆. Namely, let
φ ∈ Isoalg(X ,Y).

Definition 3.5.5. An algebraic isomorphism ψ ∈ Isoalg(X̂ (m), Ŷ (m)) is
called the m-dimensional extension of φ if the following two conditions are
satisfied:

(1) Diag(Ωm)ψ = Diag(∆m);
(2) ψ(s) = φm(s) for all s ∈ S(Xm),

where φm ∈ Isoalg(Xm,Ym) is the algebraic isomorphism induced by φ (see
statement (1) of Exercise 3.7.33).

Clearly, the m-dimensional extension of φ is uniquely determined (if ex-

ists); it is denoted by φ̂(m). It is also clear that every algebraic isomorphism

has 1-dimensional extension and φ̂(1) = φ.
The m-dimensional extension does not necessarily exist for m ≥ 2. For

example, a direct computation shows that if X is a unique antisymmetric
coherent configuration of degree 15 and rank 3, then the algebraic automor-
phism φ of X induced by transposition has no 2-dimensional extension.

Example 3.5.6. It was proved in [45] that any algebraic isomorphism
between the schemes of projective planes has 2-dimensional extension.

The m-dimensional extensions of coherent configurations and algebraic
isomorphisms are usually difficult to find explicitly. However, some indirect
information can be obtained from an analysis of known relations of the m-
dimensional extension. Among them, there are relations of the form

(3.5.5) Cyls(i, j) = {(α, β) ∈ Ωm × Ωm : (αi, βj) ∈ s},

where s ⊆ Ω2 and i, j ∈ {1, . . . ,m}. The following theorem shows that they
are relations of the m-dimensional extension of each coherent configuration,
having s as a relation, and that they are respected by the m-dimensional
extension of any algebraic isomorphism.

Theorem 3.5.7. Let X = (Ω, S) be a coherent configuration and m ≥ 1
an integer. Then given a relation s ∈ S∪ and indices i, j ∈ {1, . . . ,m},

(1) Cyls(i, j) is a relation of X̂ = X̂ (m);

(2) if φ ∈ Isoalg(X ,Y) and φ̂ = φ̂(m), then φ̂(Cyls(i, j)) = Cylφ(s)(i, j).

Proof. For any k ∈ {1, . . . ,m}, set

ek = ek(Ω) = (Ω2 ⊗ · · · ⊗ Ω2 ⊗ 1Ω ⊗ Ω2 ⊗ · · · ⊗ Ω2) · 1Diag(Ωm),

where 1Ω is located at the kth place. Clearly,

(α, β) ∈ ek ⇔ β = (αk, . . . , αk).
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Therefore,
Cyls(i, j) = ei · sm · e∗j ,

where
sm = s⊗ · · · ⊗ s.

Since ei, s
m, and e∗j are relations of X̂ , statement (1) follows from Proposi-

tion 2.1.4.
Next let ∆ be the point set of the coherent configuration Y. Then by

the definition of the algebraic isomorphism φ̂, we have

φ̂(ek(Ω)) = ek(∆) and φ̂(sm) = φ(s)m.

Thus,

φ̂(Cyls(i, j)) = φ̂(ei(Ω) · sm · e∗j (Ω))
= ei(∆) · φ(s)m · e∗j (∆)

= Cylφ(s)(i, j),

which proves statement (2). □

Let g ∈ Sym(m). Denote by ĝ the permutation of Ωm defined by

(3.5.6) αĝ = (α1g , . . . , αmg), α ∈ Ωm.

It is easily seen that ĝ is an isomorphism of the coherent configuration Xm

and leaves the relation 1Diag(Ωm) fixed. By Theorem 2.6.4, this implies that ĝ
is an isomorphism of the m-dimensional extension of X . Moreover, since

{(α, αĝ) : α ∈ Ωm} =
m⋂
i=1

Cyl1Ω(i, i
g−1

),

the statement below follows from Theorem 3.5.7.

Corollary 3.5.8. The graph of any permutation ĝ, g ∈ Sym(m), is a
(thin) relation of the m-dimensional extension of any coherent configuration.

The m-dimensional extension X̂ = X̂ (m) controls all the (m − 1)-point
extensions of the coherent configuration X . To see this, denote by e the
equivalence relation defined by the equality of the first m − 1 coordinates,
i.e.,

(3.5.7) e = 1Ω ⊗ · · · ⊗ 1Ω︸ ︷︷ ︸
m−1

⊗Ω2.

Clearly, e is a parabolic of X̂ , and each class ∆ ∈ Ωm/e is uniquely
determined by a suitable (m− 1) tuple δ ∈ Ωm−1,

(3.5.8) ∆ = ∆δ = {α ∈ Ωm : α1 = δ1, . . . , αm−1 = δm−1}.
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The m-tuples belonging to ∆ are in one-to-one correspondence with the
points of X via the natural bijection

(3.5.9) ζ : Ω → ∆δ, α 7→ (δ1, . . . , δm−1, α).

Corollary 3.5.9. (Xδ1,...,δm−1)
ζ ≤ X̂∆δ

for any δ ∈ Ωm−1.

Proof. By statement (1) of Theorem 3.5.7, for each i ∈ {1, . . . ,m− 1}
the coherent configuration X̂ contains the reflexive relation

si = 1Ωm ∩ Cyl1Ω(i,m),

consisting of all pairs (α, α) such that αi = αm. On the other hand, it is
easily seen that

(si)∆ = (1δi)
ζ ,

where ∆ = ∆δ. Thus the coherent configuration X̂∆ contains the rela-
tion (1δi)

ζ for each i = 1, . . . ,m− 1. Furthermore for each s ∈ S(X ),

(1Ω ⊗ · · · ⊗ 1Ω ⊗ s)∆ = sζ

is also a relation of X̂∆. Thus,

(Xδ1,...,δm−1)
ζ = WL(X , 1δ1 , . . . , 1δm−1)

ζ = WL(Sζ , 1ζδ1 , . . . , 1
ζ
δm−1

) ≤ X̂∆,

as required. □

One of the most important facts in the theory of multidimensional ex-
tensions is that for any m greater than the degree of a coherent configura-
tion X , the m-dimensional extension of X is schurian and separable. This is
an immediate consequence of Theorem 3.3.19 and the following statement
establishing a sufficient condition for the m-dimensional extension of X to
be partly regular.

Theorem 3.5.10. Let X be a coherent configuration and m ≥ 1 an
integer. Suppose that the extension of X with respect to some m− 1 points

is partly regular. Then the coherent configuration X̂ (m) is also partly regular.

Proof. Let δ1, . . . , δm−1 be points with respect to which the extension

of X is partly regular. Let X̂ = X̂ (m), and let ∆ = ∆δ be the set defined

by formula (3.5.8). Then by Corollary 3.5.9, the coherent configuration X̂∆

has a partly regular fusion (Xδ1,...,δm−1)
ζ , and so is partly regular (Exer-

cise 3.7.28).
Let

α = (δ1, . . . , δm−1, αm)

be a regular point of X̂∆. For each i ∈ {1, . . . ,m}, set ei to be the equivalence
relation on Ωm defined by equality of the ith coordinates,

ei = Cyl1Ω(i, i).
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It is a parabolic of X̂ by statement (1) of Theorem 3.5.7.

Lemma 3.5.11. Each class of ei equals αs for a suitable relation s of X̂ .

Proof. Let Γ be a class of ei. First, we assume that i = m. Take a
point γ ∈ Ω such that

Γ = {β ∈ Ωm : βm = γ}.

Denote by r the basis relation r(α, γζ) of the coherent configuration X̂ ,
where the mapping ζ is as in (3.5.9). Since α and γζ lie in the class ∆,

and α is a regular point of the coherent configuration X̂∆, this implies that
αr = {γζ}. Therefore,

Γ = αs,

where s = r · em.
Now let i be arbitrary. Take any permutation g ∈ Sym(m) taking i

to m. Then the permutation ĝ defined by (3.5.6) is an isomorphism of the

coherent configuration X̂ . It follows that αĝ is a regular point of X̂∆ĝ ,

(ei)
ĝ = em,

and Γĝ is a class of em. The argument of the previous paragraph with α, ∆,
and Γ replaced respectively by αĝ, ∆ĝ, and Γĝ , shows that

Γĝ = αĝsĝ

for some relation s of the coherent configuration X̂ . Thus, Γ = αs, as
required. □

To complete the proof, let β ∈ Ωm. For each i = 1, . . . ,m, denote by ∆i

the class of ei containing β. Then

∆i = αsi

for a suitable relation si of the coherent configuration X̂ (Lemma 3.5.11).
It follows that

{β} = ∆1 ∩ . . . ∩∆m = αs1 ∩ . . . ∩ αsm = αs,

where s is the intersection of all the si. Since s is a relation of X̂ , it can
be replaced in the last formula by the basis relation r(α, β), which is of

valency 1. Since β is an arbitrary point of X̂ , this shows that α is a regular

point of X̂ . Thus this coherent configuration is partly regular. □

Corollary 3.5.12. Let X be a coherent configuration and m ≥ b(X )+1.
Then the m-dimensional extension of X is schurian and separable.
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3.5.2 The m-dimensional closure

The aim of this subsection is to introduce a combinatorial analog of the
series of approximations to a permutation group given in Corollary 2.2.24.
To this end, we have to define the m-dimensional closure of a coherent
configuration that plays the same role as the m-closure of a permutation
group.

Let X be a coherent configuration on Ω and m ≥ 1 an integer. The
diagonal Diag(Ωm) is a homogeneity set of the m-dimensional extension
of X , and also the image of the diagonal mapping

(3.5.10) ηm : Ω → Diag(Ωm), α 7→ (α, . . . , α).

It follows that the restriction of X̂ (m) to the diagonal Diag(Ωm) is equal to

the ηm-image of a certain coherent configuration X (m) on Ω, defined by the
formula

(3.5.11) X (m) = ((X̂ (m))Diag(Ωm))
η−1
m

Definition 3.5.13. The coherent configuration X (m) is called the m-
dimensional closure or, briefly, the m-closure of X .

Taking the m-closure defines a closure operator on the set of all coherent
configurations (Exercise 3.7.47). The following statement shows that the

coherent configuration X (m) gives a better approximation to Inv(Aut(X ))
than X .

Proposition 3.5.14. For any integer m ≥ 1,

(3.5.12) X ≤ X (m) ≤ Inv(Aut(X )).

In particular, X (m) = X whenever X is schurian.

Proof. Clearly, the restriction of the coherent configuration X̂ = X̂ (m)

to the diagonal ∆ = Diag(Ωm) is greater than or equal to the restriction
of the coherent configuration Xm to ∆. However, the latter is equal to X η

with η = ηm. Thus,

X η = (Xm)∆ ≤ X̂∆ = X η,

where X = X (m). This proves the first inclusion in (3.5.12).
To prove the second inclusion, we make use of formulas (3.1.9) and (3.5.4)

to get

Aut(X )η = Aut(X̂∆) ≥ Aut(X̂ )∆ = Aut(X )η.

This implies that Aut(X ) ≥ Aut(X ). Thus in view of the Galois correspon-
dence,

X ≤ Inv(Aut(X )) ≤ Inv(Aut(X )),

as required. □

Corollary 3.5.15. Aut(X (m)) = Aut(X ) for all m ≥ 1.
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The basis relations of the m-closure of a coherent configuration can ex-
plicitly be found from the fibers of its m-dimensional extension. Namely,
the following statement holds.

Theorem 3.5.16. Let X be a coherent configuration on Ω and m ≥ 1 an

integer. Then for any Λ ∈ F (X̂ (m)) and any i, j ∈ {1, . . . ,m}, the relation

pri,j(Λ) = {(αi, αj) ∈ Ω2 : α ∈ Λ}

belongs to S(X (m)).

Proof. By statement (1) of Theorem 3.5.7,

si = Cyl1Ω(i, i) and sj = Cyl1Ω(j, j)

are relations of the coherent configuration X̂ (m). A straightforward check
shows that

pri,j(Λ)
η = (si)∆,Λ · (sj)Λ,∆,

where η = ηm is the bijection (3.5.10) and ∆ = Diag(Ωm). Therefore,

pri,j(Λ) is a relation of X = X (m).
Assume on the contrary that pri,j(Λ) is not a basis relation. Then it

strictly contains some s ∈ S(X ). Therefore,(
(si)Λ,∆ · sη · (sj)∆,Λ

)
∩ 1Λ ̸= 1Λ.

Thus, Λ is not a fiber of X̂ (m), a contradiction. □

Definition 3.5.17. The coherent configuration X is said to be m-closed
if X = X (m).

Obviously, every coherent configuration is 1-closed. Every schurian co-
herent configuration is m-closed for all m (Proposition 3.5.14). However, for
each m there exist non-schurian coherent configurations which are m-closed;
the corresponding examples will be constructed later in Subsection 4.2.1.

Example 3.5.18. Let X by a unique antisymmetric scheme of degree 15
and rank 3. A straightforward computation shows that

X (2) = Inv(Aut(X ))

and this coherent configuration is not homogeneous. Thus, X is not 2-closed.

In a parallel way with the m-closure of a coherent configuration, one can
define the m-closure of an algebraic isomorphism but only if it has the m-
dimensional extension. Namely, let φ be an algebraic isomorphism from X
to a coherent configuration Y on a set ∆.

Definition 3.5.19. We say that φ is an algebraic m-dimensional iso-
morphism or briefly m-isomorphism if φ has the m-extension.
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The set of all m-isomorphisms from X to Y is denoted by Isom(X ,Y),
and by Isom(X ) if X = Y. Obviously, Iso1(X ,Y) = Isoalg(X ,Y), whereas
not every algebraic isomorphism is even a 2-isomorphism.

Example 3.5.20. Any isomorphism f ∈ Iso(X ,Y) induces an isomor-

phism f̂ (m) ∈ Iso(Xm,Ym) such that

Diag(Ωm)f̂
(m)

= Diag(∆m).

By Theorem 2.6.4, this implies that

f̂ (m) ∈ Iso(X̂ (m), Ŷ (m)).

Thus the induced algebraic isomorphism φf ∈ Isoalg(X ,Y) has the m-dimen-
sional extension and hence is an m-isomorphism.

Let φ ∈ Isom(X ,Y). The restriction of φ̂ = φ̂(m) to the homogeneity set
Diag(Ωm) induces an algebraic isomorphism

φ̂Diag(Ωm) ∈ Isoalg(X̂Diag(Ωm), ŶDiag(∆m)),

where X̂ and Ŷ are the m-dimensional extensions of the coherent configu-
rations X and Y, respectively.

Let η = ηm, and let
ϵ : ∆ → Diag(∆m)

be the bijection defined as ηm with Ω replaced by ∆. Then the composition
of algebraic isomorphisms

(3.5.13) φ(m) = φη ◦ φ̂Diag(Ωm) ◦ φϵ−1

is an algebraic isomorphism from X = X (m) to Y = Y (m), where

φη ∈ Isoalg(X , X̂Diag(Ωm)) and φϵ−1 ∈ Isoalg(ŶDiag(∆m),Y)

are the algebraic isomorphisms induced by the bijections η and ϵ−1, respec-
tively.

Definition 3.5.21. The algebraic isomorphism (3.5.13) is called the m-
dimensional closure or, briefly, the m-closure of φ.

Clearly, the 1-closure of any algebraic isomorphism φ equals φ. However,
the m-closure for m ≥ 2 is defined for m-isomorphisms only.

Theorem 3.5.22. For every coherent configurations X and Y,

(3.5.14) X = X (1) ≤ . . . ≤ X (m) = Inv(Aut(X )),

(3.5.15) Isoalg(X ,Y) = Iso1(X ,Y) ⊇ . . . ⊇ Isom(X ,Y) = Iso∞(X ,Y),

where m = b(X )+1 and Iso∞(X ,Y) is the set of all algebraic isomorphisms
from X to Y induced by (combinatorial) isomorphisms.
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Proof. Let m ≥ 2 be an integer. Denote by π the quotient map πe
defined by formula (1.1.4) for the equivalence relation e, which is equal to
the intersection of Cyl1Ω(i, i), i = 1, . . . ,m− 1. Then

(3.5.16) π(Diag(Ωm)) = Diag(Ωm−1) and π(Xm) = Xm−1,

where the first equality is obvious, whereas the second one follows from
statement (3) of Exercise 3.7.33 for Ω1 = Ωm−1 and Ω2 = Ω.

From formula (3.5.16), it follows that the quotient of X̂ (m) modulo the

parabolic e is a fission of the coherent configuration X̂ (m−1):

π(X̂ (m)) = π(WL(Xm, 1Diag(Ωm))

≥ WL(π(Xm), π(1Diag(Ωm)))(3.5.17)

= WL(Xm−1, 1Diag(Ωm−1))

= X̂ (m−1),

see Exercise 3.7.13. It follows that

(X (m−1))ηm−1 = (X̂ (m−1))Diag(Ωm−1)

≤ π(X̂ (m))π(Diag(Ωm))(3.5.18)

= π((X̂ (m))Diag(Ωm)),

where the last equality follows from statement (2) of Exercise 3.7.9.
The intersection of any class of e with Diag(Ωm) consists of at most

one point. Therefore, the restriction of π to Diag(Ωm) coincides with the
bijection

ξ : Diag(Ωm) → Diag(Ωm−1), α 7→ (α1, . . . , αm−1).

Taking into account that the mapping ηm equals the composition ηm−1◦ξ−1,
we can combine (3.5.17) and (3.5.18) to get

X (m−1) ≤ π(X̂Diag(Ωm))
η−1
m−1

= (X̂Diag(Ωm))
ξη−1

m−1

= (X̂Diag(Ωm))
η−1
m

= X (m),

where X̂ = X̂ (m). This proves the inclusions in formula (3.5.14).
Next, let φ ∈ Isom(X ,Y). From formulas (3.5.16), it follows that the

contraction of the induced algebraic isomorphism (φ̂(m))Ωm/e to the (m−1)-
dimensional extension of X is equal to the (m − 1)-dimensional extension
of φ. Therefore, φ ∈ Isom−1(X ,Y), which proves the inclusions in for-
mula (3.5.15).
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To prove the equalities in formulas (3.5.14) and (3.5.15), we note that by
the definition of the base number, the coherent configuration X has a partly
regular extension with respect to m − 1 points. By Theorem 3.5.10, this

implies that the coherent configuration X̂ (m) is partly regular, and hence is
schurian and separable (Theorem 3.3.19). It follows that them-closure X (m),

which isomorphic to the restriction of X̂ (m) to Diag(Ωm), is also schurian.
By Proposition 3.5.14, this implies that

X (m′) = X (m) = Inv(Aut(X ))

for all m′ ≥ m.
To complete the proof, let φ ∈ Isom′(X ,Y), where m′ ≥ m. By the

first part of the theorem, φ is an m-isomorphism and hence has the m-
dimensional extension φ̂(m). The separability of the coherent configura-

tion X̂ (m) (see above) implies that there exists an isomorphism

f̂ ∈ Iso(X̂ (m), Ŷ (m), φ̂(m)).

Now let f : Ω → ∆ be the composition η ◦ f̂Diag(Ωm) ◦ ϵ−1. Then by for-
mula (3.5.13),

f ∈ Iso(X (m),Y (m), φ(m)).

Since φ(m) extends φ, it follows that f induces φ. Thus, φ ∈ Iso∞(X ,Y).□

Corollary 3.5.23. For any l ≤ m,

(1) any m-closed coherent configuration is l-closed;
(2) any m-isomorphism of coherent configurations is an l-isomorphism.

In general, it is difficult to verify that a (non-schurian) coherent config-
uration is m-closed for a given integer m ≥ 2. A useful sufficient condition
is given in the following statement.

Theorem 3.5.24. Let X be an m-closed coherent configuration, m ≥ 1.
Then given a group Φ ≤ Isom(X ), the algebraic fusion XΦ is also m-closed.

Proof. Denote by Φ̂ the set of the m-dimensional extensions φ̂ of the
algebraic isomorphisms φ ∈ Φ. It is easily seen that

Φ̂ ≤ Autalg(X̂ ),

where X̂ is the m-dimensional extension of X . Furthermore,

(XΦ)m ≤ (Xm)Φ̂ and ∆Φ̂ = ∆,

where ∆ = Diag(Ωm). This implies that X̂Φ ≤ X̂ Φ̂ and hence

X̂Φ
∆ ≤ (X̂ Φ̂)∆ = (X̂∆)

Φ̂∆ .

Applying the inverse to the bijection ηm defined by formula (3.5.10) to
both sides and taking into account that the coherent configuration X is
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m-closed, we obtain

XΦ ≤ XΦ.

The reverse inclusion follows from Exercise 3.7.47. Thus the coherent con-
figuration XΦ = X Φ is m-closed. □
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3.5.3 2-closed coherent configurations

In this subsection, we show that the m-closedness condition for m ≥ 2
enables us to get combinatorial analogs of some theorems on permutation
groups that do not hold for general coherent configurations.

We begin with observation that for any K ≤ Sym(Ω), any α ∈ Ω, and
any β ∈ αK ,

F (Inv(Kα)) = Orb(Kα) and Inv(Kα) ∼= Inv(Kβ).

The following statement generalizes these relations to 2-closed coherent con-
figurations and gives a necessary condition for a coherent configuration to
be 2-closed. It is not clear whether this condition is also sufficient.

Lemma 3.5.25. Let X = (Ω, S) be a 2-closed coherent configuration
on Ω, α ∈ Ω, and β lies in the fiber containing α. Then

(1) F (Xα) = {αs : s ∈ S}♮;
(2) there is φ ∈ Isoalg(Xα,Xβ) such that φ(1α) = 1β and φ|S = id.

Proof. To prove statement (1), let α and s ∈ S be such that αs ̸= ∅.
From the 2-closedness of X and Theorem 3.5.16, it follows that s is a fiber

of X̂ = X̂ (2). Therefore if ∆ = ∆δ with δ = (α) is a class of the parabolic e

of X̂ defined by the equalities of the first coordinates (see formula (3.5.8)),
then

s ∩∆ ∈ F (X̂∆).

By Corollary 3.5.9, there exists a fiber Γ ∈ F (Xα) such that

Γζ ⊇ s ∩∆,

where ζ is the bijection defined in (3.5.9). Since (αs)ζ = s ∩∆, we have

Γ ⊇ (s ∩∆)ζ
−1

= αs.

However, αs is a homogeneity set of the coherent configuration Xα (state-
ment (1) of Lemma 3.3.5). Therefore, αs = Γ is a fiber of X .

To prove statement (2), let Γ = ∆δ with δ = (β) be the class of the
parabolic e. Then ∆ and Γ are classes of the same indecomposable compo-

nent of e: otherwise the pairs (α, α) and (β, β) lie in different fibers of X̂
(Lemma 2.1.21) and hence α and β lie in different fibers of X (2) = X , a
contradiction.

In accordance with Example 2.3.16, the mapping

φ̂ : X̂∆ → X̂Γ, s∆ 7→ sΓ

is an algebraic isomorphism. We have

(3.5.19) {1α}φ̂ = (∆ ∩ 1Ω)
φ̂ = Γ ∩ 1Ω = {1β}
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and

(3.5.20) φ̂((1Ω ⊗ s)∆) = (1Ω ⊗ s)Γ

for all s ∈ S.
Now we define an injection ξ : Ω → Γ in the same way as the map-

ping ζ (3.5.9) with ∆ replaced by Γ. Then

αζ = (α, α), sζ = (1Ω ⊗ s)∆ and βξ = (β, β), sξ = (1Ω ⊗ s)Γ.

Together with formulas (3.5.19) and (3.5.20), this shows that the algebraic
isomorphism

φ = φζ ◦ φ̂ ◦ φξ−1 ,

from Xα to Xβ takes 1α to 1β and leaves each s ∈ S fixed, where φζ and
φξ−1 are the algebraic isomorphisms induced by ζ and ξ−1, respectively. □

In what follows, we establish several results on 2-closed primitive schemes
that generalize the corresponding results on primitive permutation groups.
In each case a “permutation group theorem” can be deduced from the corre-
sponding “coherent configuration theorem” by using Proposition 3.1.4 and
the simplest properties of 2-equivalent permutation groups. We begin with
the following characterization of 2-closed primitive schemes, cf. [125, Theo-
rem 8.2].

Theorem 3.5.26. Let X be a 2-closed scheme on Ω. Then X is primitive
if and only if given a point α ∈ Ω, the α-extension Xα is a minimal proper
fission of X .

Proof. To prove the necessity, we assume that X is primitive and X ′ is
a coherent configuration on Ω such that

X ≤ X ′ < Xα.

Denote by ∆ the fiber of X ′ that contains α. Then ∆ ̸= {α}, for otherwise
X ′ ≥ Xα, a contradiction. Thus there exists s ∈ S(X )# such that

(3.5.21) αs ∩∆ ̸= ∅.

By the 2-closedness of the scheme X , statement (1) of Lemma 3.5.25
implies that αs ∈ F (Xα). It follows that αs is contained in some fiber of X ′.
In view of (3.5.21), this fiber coincides with ∆, i.e.,

αs ⊆ ∆.

Since s∆ is a relation of the scheme (X ′)∆, this implies that

βs ⊆ ∆ for all β ∈ ∆.

Consequently if β ∈ ∆ and β
s→ γ, then γ ∈ ∆. Since the relation s is

strongly connected (Theorem 3.1.5), it follows that ∆ = Ω, in particular,
the coherent configuration X ′ is homogeneous.
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It remains to verify that X ′ = X or equivalently, that each s′ ∈ S(X ′)
is a basis relation of X . To this end, we make use of the inclusion X ≤ X ′

and denote by s the basis relation of X such that

s′ ⊆ s.

Then αs′ ⊆ αs is a homogeneity set of (X ′)α ≤ Xα (statement (1) of
Lemma 3.3.5). Since αs is a fiber of Xα (statement (1) of Lemma 3.5.25),
this is possible only if

αs = αs′.

Therefore, ns = ns′ and hence |s| = |s′| by formula (2.1.11). Since s′ ⊆ s,
this shows that s′ = s, as required.

To prove the sufficiency, we assume that any one-point extension of X is
a minimal proper fission of X . We have to verify that any parabolic e ̸= Ω2

of X coincides with 1Ω.
Note that for each ∆ ∈ Ω/e and each α ∈ ∆,

X <WL(X , 1∆) = WL(X , 1αe) ≤ WL(X , 1α) = Xα.

The minimality of Xα implies that WL(X , 1∆) = Xα. It follows that for
each β ∈ ∆,

Xβ = WL(X , 1∆) = Xα,
i.e., {β} is a fiber of Xα. By statement (1) of Lemma 3.5.25, the rela-
tion r(α, β) is thin. Consequently, e ∈ S1(X )∪. In accordance with Exer-
cise 3.7.50, this shows that

∆ ∈ F (WL(X , 1∆)) = F (Xα),

which implies that |∆| = 1. Thus, e = 1Ω, as required. □

As an almost immediate consequence of Theorem 3.5.26, we are able
to generalize another well-known property of non-regular primitive groups,
namely, any such group is generated by two distinct point stabilizers [125,
Proposition 8.7].

Theorem 3.5.27. Let X be a 2-closed primitive scheme on Ω, α, β ∈ Ω,
and α ̸= β. Then X = Xα∩Xβ unless X is a regular scheme of prime degree.

Proof. Assume that X ̸= Xα ∩ Xβ. Then by Theorem 3.5.26,

Xα ∩ Xβ = Xα = Xβ.

Since the scheme X is 2-closed, statement (1) of Lemma 3.5.25 implies that

r(α, β) ∈ S1(X ),

which completes the proof by statement (1) of Theorem 3.1.6. □

In accordance with [125, Theorem 10.4], any 3/2-transitive group is
either primitive or a Frobenius group. Below we generalize this result



194 3. MACHINERY AND CONSTRUCTIONS

to equivalenced schemes, which are combinatorial analogs of 3/2-transitive
groups (statement (1) of Corollary 2.2.6).

Theorem 3.5.28. Let X be a 2-closed equivalenced scheme. Assume
that X is imprimitive. Then

(1) X = Inv(K), where K is either regular or a Frobenius group;
(2) b(X ) = b(K).

Proof. Let us verify that the group K = Aut(X ) is transitive. To
this end, we prove that any two points α and β of X lie in the same orbit
of Aut(X ).

Indeed, by statement (2) of Lemma 3.5.25, the 2-closedness of X implies
that the trivial algebraic automorphism of X is extended to an algebraic
isomorphism

φ ∈ Isoalg(Xα,Xβ)
such that φ(1α) = 1β. By Theorem 3.3.8, the coherent configurations Xα
and Xβ are partly regular and hence are separable (Theorem 3.3.19). Con-
sequently, φ is induced by an automorphism k ∈ K. Thus

1αk = (1α)
k = φ(1α) = 1β ,

whence αk = β, as required.
To prove that X = Inv(K), it suffices to verify that αs is an orbit of Kα

for any s ∈ S(X ) (the implication (3) ⇒ (1) of Theorem 2.2.10). However,
αs ∈ F (Xα) by statement (1) of Lemma 3.5.25. Furthermore in accordance
with the previous paragraph, the coherent configuration Xα is partly regular
and hence schurian (Theorem 3.3.19). It follows that

Xα = Inv(Aut(Xα)) = Inv(Aut(X )α) = Inv(Kα),

see statement (1) of Proposition 3.3.3. Thus, αs ∈ Orb(Kα) by statement (1)
of Proposition 2.2.5.

To complete the proof, let α and β be different points of X . Note that
the coherent configuration Xα is partly regular and its restriction to Ω\{α}
is half-homogeneous (see above). Consequently, each point other than α is
regular. It follows that the singleton {β} is a base of Xα.

By Exercise 3.7.27, this implies that {α, β} is a base of X ; in particular,
b(X ) ≤ 2. Thus,

Kα,β = Aut(X )α,β = Aut(Xα,β) = Aut(DΩ),

i.e., the point stabilizer Kα,β is trivial. Consequently, K is regular or a
Frobenius group. In the former case, b(K) = b(X ) = 1, whereas in the
latter one,

2 = b(K) ≤ b(Inv(K)) = b(X ) ≤ 2,

see formula (3.3.5). Thus, b(K) = b(X ). □
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In Theorems 3.5.26, 3.5.27, and 3.5.28 the hypothesis for a primitive
scheme to be 2-closed is essential: the corresponding examples are given by
the antisymmetric scheme of degree 15 and rank 3 in the first two cases,
and by the scheme of non-Desarguesian affine plane in the third one (The-
orem 2.5.7).
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3.6 Representation theory

The main focus of the representation theory of coherent configurations is
to study the standard representation of a coherent algebra on the underlying
linear space. Analysis of the basic invariants of this representation, like the
degrees and multiplicities of irreducible characters, allows us to obtain some
information not only on the intersection numbers but sometimes also on the
structure of the coherent configuration in question.

In this section, we restrict ourselves to the main issues including the
structure of standard representation of a general coherent configurations
and the orthogonality relations in the homogeneous case. As an application,
we prove an upper bound for the base number of a primitive scheme in
terms of the multiplicities and degrees [39]; one more application concerning
the Hanaki–Uno theorem on schemes of prime degree will be presented in
Section 4.5. Most of the material concerning basic representation theory
of general coherent configurations and schemes can be found in papers of
D. Higman [65, 66] and A. Hanaki [55].

3.6.1 Standard representation

Let X = (Ω, S) be a coherent configuration and A = Adj(X ) the adja-
cency algebra of X ; the linear space LΩ = CΩ spanned by Ω is considered
as a left MatΩ(C)-module and hence A-module with respect to natural mul-
tiplication of matrix by vector.

Definition 3.6.1. The module LΩ, the representation of A afforded by
it, and the character π of this representation are said to be standard.

Certainly,

(3.6.1) π(IΩ) = tr(IΩ) = |Ω|.

The set of all irreducible characters of the adjacency algebra A of the co-
herent configuration X is denoted by Irr(X ).

From the condition (A1) in Theorem 2.3.6, it follows that the algebra A
is closed under the Hermitian conjugation. Therefore, any right ideal of A
contains together with each matrix A a Hermitian matrix AA∗. If this ideal
is nonzero, then one of the matrices AA∗ is also nonzero (this follows from
statement (1) of Exercise 2.7.6). Therefore the ideal in question cannot be
nilpotent. This proves the following statement.

Proposition 3.6.2. The adjacency algebra of a coherent configuration
is semisimple.

By the Wedderburn theorem on simple unitary rings, Proposition 3.6.2
implies that the standard character of A can be decomposed into the linear
combination of irreducible characters,

(3.6.2) π =
∑

ξ∈Irr(X )

mξξ,
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where mξ is a nonnegative integer called the multiplicity of ξ.
In view of (3.6.1), taking the value of both sides of formula (3.6.2) at

the identity matrix IΩ, we get a useful relation

(3.6.3) |Ω| =
∑

ξ∈Irr(X )

mξnξ,

where nξ = ξ(IΩ) is the degree of any irreducible representation correspond-
ing to the character ξ.

In accordance with formula (3.6.2), there are the direct decompositions

(3.6.4) LΩ =
∑

ξ∈Irr(A)

Lξ and A =
∏

ξ∈Irr(A)

Aξ

where Lξ is the submodule of LΩ of dimension mξnξ that corresponds to the
irreducible character ξ, and Aξ is the image of the representation afforded
by Lξ.

The Wedderburn theorem guarantees that Aξ is isomorphic to the alge-
bra of all nξ × nξ matrices. Comparing the dimensions of the algebras in
the second equality of (3.6.4), we get

(3.6.5) |S| =
∑

ξ∈Irr(X )

n2ξ .

Let X be a regular scheme associated with regular representation of a
group G. Then A is isomorphic to the group algebra of G (Example 2.3.4).
Therefore, one can identify Irr(X ) and Irr(G). Since the multiplicity and
degree of any irreducible character of G are equal, we have mξ = nξ for all
ξ ∈ Irr(X ). For a general scheme X , a weaker statements holds.

Theorem 3.6.3. For any scheme X and any character ξ ∈ Irr(X ),

(3.6.6) nξ ≤ mξ.

The equality is simultaneously attained for all ξ if and only if X is regular.

Proof. For a point α ∈ Ω, denote by Lα the A-module spanned by the
vectors Asα = αs∗, s ∈ S. Then the mapping

A → Lα, As 7→ Asα

is an A-module isomorphism. Denote by Lα,ξ the image of the algebra
Aξ ⊆ A with respect to this isomorphism. Then

dim(Aξ) = dim(Lα,ξ).

Since Lα,ξ ⊆ Lξ, this implies that

n2ξ = dim(Aξ) = dim(Lα,ξ) ≤ dim(Lξ) = mξnξ.

This proves inequality (3.6.6).
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To complete the proof of the theorem, we assume that mξ = nξ for all
ξ ∈ Irr(X ). Then in view of formulas (3.6.5) and (3.6.3),

|S| =
∑

ξ∈Irr(X )

n2ξ =
∑

ξ∈Irr(X )

mξnξ = |Ω|.

Thus the scheme X is regular by Theorem 2.1.29. □

Let ∆ ⊆ Ω. The matrix J∆ belongs to the algebra A whenever ∆ is a
homogeneity set of X . It follows that A contains also the matrix

(3.6.7) P0 =
∑
∆∈F

1

|∆|
J∆,

where F = F (X ). Note that P 2
0 = P0, because (J∆)

2 = |∆| J∆.

Proposition 3.6.4. The matrix P0 is a central primitive idempotent of
the algebra A,

dim(P0L) = d and P0A ∼= Matd(C),

where d = |F |.

Proof. Let ∆,Γ ∈ F and s ∈ S∆,Γ. From formula (2.1.5), it follows that

ns |∆| = ns∗ |Γ|.

Furthermore for any Λ ∈ F , we have

(3.6.8) AsJΛ = nsδΛ,ΓJ∆,Γ and JΛAs = ns∗δΛ,∆J∆,Γ,

where δ(·, ·) is the Kronecker delta. Consequently,

P0As =
∑
∆∈F

1

|∆|
J∆As =

ns∗

|∆|
J∆,Γ =

ns
|Γ|
J∆,Γ =

∑
∆∈F

1

|∆|
AsJ∆ = AsP0.

This shows that P0 is a central idempotent of the algebra A.
Next, it is easily seen that given a point α, P0α = 1

|∆|∆, where ∆ is the

fiber of X that contains α. Therefore,

P0L = Span{∆ : ∆ ∈ F}.

Since the vectors ∆, ∆ ∈ F , form a linear independent subset of L, this
implies that dim(P0L) = d.

Let e be the parabolic of X such that Ω/e = F . Then in the notation
of Theorem 3.1.19, we have P0 = Pe and XΩ/e = Dd. By this theorem,

P0A ∼= Adj(XΩ/e) = Adj(Dd) = Matd(C).

In particular, the idempotent P0 is primitive. □

By Proposition 3.6.4, the linear space P0L is an |F |-dimensional irre-
ducible A-submodule of the standard module. Denote by ξ0 the irreducible
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character of X corresponding to this submodule. Then

(3.6.9) mξ0 = 1 and nξ0 = |F |.

Definition 3.6.5. The character ξ0, module Lξ0 = P0L, and the repre-
sentation afforded by ξ0 are said to be principal; the set of all non-principal
irreducible characters of X is denoted by Irr(X )#.

Example 3.6.6. Let X be a discrete coherent configuration. Then, ob-
viously, |F | = |Ω| and ξ0 = π. Thus, Irr(X ) = {ξ0}.

From formulas (3.6.7) and (3.6.8), one can easily find the values of the
principal character on the basis matrices of A.

Lemma 3.6.7. For any s ∈ S,

ξ0(As) =

{
ns, if Ω−(s) = Ω+(s),

0, otherwise.

In particular, if X is a scheme, then ξ0(s) = ns for all s ∈ S.

As in the case of groups, one can form the character table of the coher-
ent configuration X : the rows and columns are indexed by the elements of
the sets Irr(X ) and S, respectively, and the entry at row ξ and column s is
equal to ξ(As). In contrast to the case of groups, the table is not necessarily
a square one; in fact, the table is square if and only if X is commutative.
Lemma 3.6.7 determines the first row of the character table. In the homo-
geneous case, the first column is also clear:

1Ω ... s ...
ξ0 1 ... ns ...
... ... ... ... ...
ξ nξ ... ξ(s) ...
... ... ... ... ...

Example 3.6.8. Let X be a trivial scheme of degree n ≥ 2. Then |S| = 2
and equality (3.6.5) implies that

Irr(X ) = {ξ0, ξ},

where ξ is a one-dimensional character. In view of (3.6.3), we have

π = ξ0 + (n− 1)ξ.

Thus the character table of X is as follows:

1Ω Ω2 \ 1Ω
ξ0 1 n− 1
ξ 1 −1



200 3. MACHINERY AND CONSTRUCTIONS

Let ξ ∈ Irr(X ). The coefficients in the decomposition of a matrix A ∈ Aξ

into the linear combination of the basis matrices

(3.6.10) A =
∑
s∈S

asAs

can easily be calculated. Namely, the algebra Aξ being an ideal of A, con-
tains the matrix As∗A for all s. By formula (3.6.2), this implies that

π(As∗A) = mξ ξ(As∗A).

On the other hand, by (3.6.10), we have

π(As∗A) = tr(As∗A) = as |Γ| c1Γs∗s = as |Γ|ns∗ = as |s∗|,

where Γ = Ω−(s
∗) (statement (1) of Exercise 2.7.6). Thus,

as |s∗| = π(As∗A) = mξ ξ(As∗A),

which gives an explicit formula for as,

(3.6.11) as =
mξ ξ(As∗A)

|s∗|
.

Proposition 3.6.9. Let Pξ be the central primitive idempotent corre-
sponding to the character ξ ∈ Irr(X ). Then

(3.6.12) Pξ = mξ

∑
s∈S

ξ(As∗)

|s∗|
As.

If the coherent configuration X is homogeneous, then

(3.6.13) Pξ =
mξ

n

∑
s∈S

ξ(As∗)

ns∗
As.

Proof. In formula (3.6.10), take A = Pξ. Then the first statement
follows from (3.6.11) after taking into account that in this case,

ξ(As∗A) = ξ(As∗).

The second statement follows from the first one and formula (2.1.11). □

Corollary 3.6.10. Each central primitive idempotent of Adj(X ) is a
block diagonal matrix with blocks belonging to Mat∆,Γ, ∆,Γ ∈ F (X ).

We say that coherent configurations X and X ′ have the same character
table if there exist bijections S(X ) → S(X ′), s 7→ s′ and Irr(X ) → Irr(X ′),
ξ 7→ ξ′ such that for all s and ξ,

(3.6.14) ξ(As) = ξ′(As′).
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The following statement implies that in this sense the character table of a
commutative scheme determines this scheme uniquely up to algebraic iso-
morphisms.

Proposition 3.6.11. Any two algebraically isomorphic coherent config-
urations have the same character table. The reverse statement is also true
if the coherent configurations are commutative.

Proof. Every algebraic isomorphism φ : S → S, s 7→ s′, induces a
matrix algebra isomorphism

φ̃ : Adj(X ) → Adj(X ′), As 7→ As′ ,

see (2.3.14). This isomorphism induces a bijection between the central prim-
itive idempotents of the adjacency algebras and hence a bijection

Irr(X ) → Irr(X ′), ξ 7→ ξ′,

such that for all ξ ∈ Irr(X ),

(3.6.15) φ̃(Pξ) = Pξ′ .

The isomorphism φ̃ preserves the second decomposition in (3.6.4), and
hence nξ = nξ′ . It follows that

mξ = tr(Pξ )/nξ = tr(Pξ′)/nξ′ = mξ′ .

Thus in view of (3.6.12) and (3.6.15), we obtain

mξ′
∑
s′∈S′

ξ′(A(s′)∗)

|(s′)∗|
As′ = Pξ′ = φ̃(Pξ)

= mξ

∑
s∈S

ξ(As∗)

|s∗|
φ̃(As)

= mξ′
∑
s′∈S′

ξ(As∗)

|(s′)∗|
As′ .

Comparing the coefficients at As′ , we come to equality (3.6.14) showing that
the coherent configurations X and X ′ have the same character table.

Let X and X ′ be commutative schemes. Since the central primitive
idempotents of a commutative algebra form a linear basis of this algebra,

As =
∑

ξ∈Irr(X )

aξ,sPξ and As′ =
∑

ξ′∈Irr(X ′)

aξ′,s′Pξ′

for all s ∈ S, s′ ∈ S′, and some complex numbers aξ,s and a′ξ′,s′ .

Now assume that X and X ′ have the same character table, i.e., relation
(3.6.14) holds for some bijections φ : s 7→ s′ and ψ : ξ 7→ ξ′. Note that φ
induces a linear isomorphism (2.3.14) preserving the Hadamard multipli-
cation, and also φ(Pξ ) = Pξ′ for all ξ (this follows from formula (3.6.13)
with taking into account formula (3.6.26) proved later). Furthermore, the
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orthogonality of central primitive idempotents implies that for any r, s ∈ S,

φ(ArAs) = φ
( ∑
ξ∈Irr(X )

aξ,rPξ
∑

η∈Irr(X )

aη,sPη
)

= φ
( ∑
ξ∈Irr(X )

aξ,raξ,sPξ
)

=
∑

ξ′∈Irr(X ′)

aξ,raξ,sPξ′

=
∑

ξ′∈Irr(X ′)

aξ,rPξ′
∑

η′∈Irr(X ′)

aη,sPη′

= φ(Ar)φ(As).

Thus, φ is an algebraic isomorphism by Proposition 2.3.17. □

Two noncommutative coherent configurations having the same charac-
ter table are not necessarily algebraically isomorphic. For example, the
schemes corresponding of regular groups isomorphic to D8 and Q8 are not
algebraically isomorphic by Corollary 2.3.34. However, these schemes have
the same character table, because this is true for the groups D8 and Q8.

The fact that the structure constants ctrs of the algebra A are integral,
implies that ξ(As) is an algebraic integer for all ξ ∈ Irr(X ) and s ∈ S. We
make use of this observation in the proof of the following statement obtained
by D. Higman in [65] (see also [123, p. 68]).

Theorem 3.6.12. Every scheme of rank at most 5 is commutative.

Proof. Let X = (Ω, S) be a noncommutative scheme of rank at most 5.
By formulas (3.6.5) and (3.6.9), we may assume that

|S| = 5 and Irr(X ) = {ξ0, ξ},

where nξ = 2. In view of (3.6.2), this implies that π = ξ0 +mξξ. Therefore,
by Lemma 3.6.7 and formula (2.1.13),

mξξ(J) = π(J)− ξ0(J)

= |Ω| −
∑
s∈S

ξ0(As)(3.6.16)

= |Ω| −
∑
s∈S

ns = 0,

where J = JΩ. On the other hand, if s ̸= 1Ω, then by the same lemma we
have

0 = π(As) = ξ0(As) +mξ ξ(As) = ns +mξ ξ(As).
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This implies that the algebraic integer ξ(As) = −ns/mξ is less than or
equal to −1. Thus by formula (3.6.16),

0 = ξ(J) = ξ(
∑
s∈S

As)

= ξ(IΩ) +
∑
s ̸=1Ω

ξ(As)

≤ nξ − (|S| − 1) = −2,

a contradiction. □

The smallest noncommutative scheme of rank 6 is the scheme of a regular
group isomorphic to Sym(3). More interesting examples are given in Exer-
cise 2.7.43. The non-commutative schemes of rank 6 are intensively studied
by many researchers; we refer the reader to paper [59] and references therein.

The following result is well known in the commutative case and was
proved in general case in [102]. It gives a combinatorial definition of pseu-
docyclic schemes to be studied in Subsection 4.3.4.

Theorem 3.6.13. For any scheme X and an integer k ≥ 1, the following
two statements are equivalent:

(1) k =
mξ

nξ
for all ξ ∈ Irr(X )#;

(2) k = ns = c(s) + 1 for all s ∈ S(X )#,

where c(s) is the indistinguishing number of s, see (2.1.15).

Proof. Let ρ and π be the regular and standard characters of the adja-
cency algebra of the scheme X . For any s in S = S(X ), we have

(3.6.17) ρ(As) =
∑
t∈S

ctts = ns +
∑

ξ∈Irr(X )#

nξξ(As),

(3.6.18) π(As) = δs,1Ωn = ns +
∑

ξ∈Irr(X )#

mξ ξ(As).

Assume that
mξ

nξ
= k for all ξ ∈ Irr(X )#. Then for each s ∈ S# formu-

las (3.6.17) and (3.6.18) yield

−ns =
∑

ξ∈Irr(X )#

mξ ξ(As)

=
∑

ξ∈Irr(X )#

mξ

nξ
nξ ξ(As)

= k
∑

ξ∈Irr(X )#

nξ ξ(As)

= −k(ns − ρ(As)),
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or equivalently,

(3.6.19) ns − ρ(As) =
ns
k
.

Since ns > 0, this together with equality (3.6.17) implies that ns−ρ(As)
is greater than or equal to 1 and hence ns ≥ k. Using formulas (3.6.3)
and (3.6.5), we obtain

n− 1 =
∑
s∈S#

ns ≥ |S#| k

=
∑

ξ∈Irr(X )#

n2ξ k

=
∑

ξ∈Irr(X )#

n2ξ
mξ

nξ

=
∑

ξ∈Irr(X )#

mξnξ = n− 1.

Thus, ns = k for all s ∈ S#, and X is an equivalenced scheme of
valency k. After replacing ns with k in formula (3.6.19), we conclude that
ρ(As) = k − 1. Finally using formula (2.1.14), we have

ρ(As) =
∑
t∈S

ctts =
∑
t∈S

ns
nt∗

cs
∗
t∗t =

∑
t∈S

cstt∗ = c(s).

It follows that c(s) = k − 1 for all s ∈ S#. This completes the proof of the
implication (1) ⇒ (2).

Now assume that ns = k and c(s) = k−1 for all s ∈ S#. Then ctts = cs
∗
t∗t,

see formula (2.1.14). Therefore,

ρ(As) = c(s) = k − 1.

According to Exercise 3.7.59, this implies that

n
∑

ξ∈Irr(X )

nξ
mξ

Pξ =
∑
s∈S

ρ(As)

ns
As

= |S|I + k − 1

k

∑
s∈S#

As

= (|S| − k − 1

k
)I +

k − 1

k
J,

where I = IΩ and J = JΩ. Now, let ξ ∈ Irr(X )#. After multiplying each
side of the above equality by Pξ with taking into account that PξPη = δξ,ηPξ
for all η ∈ Irr(X ), we obtain

n
nξ
mξ

Pξ = (|S| − k − 1

k
)Pξ.
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It follows that

nξ
mξ

=
(|S| − 1)k + 1

kn
=

(n− 1) + 1

kn
=

1

k
.

Thus,
mξ

nξ
= k, as required. □
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3.6.2 Irreducible characters of a homogeneous component

In this subsection, we are interested in the relationship between the
irreducible characters of a coherent configuration X = (Ω, S) and those of a
homogeneous component of it. In what follows A = Adj(X ).

For any character ξ ∈ Irr(X ) and any fiber ∆ ∈ F (X ), denote by ξ∆ the
restriction of ξ to the algebra A∆ = Adj(X∆): more precisely, for s ∈ S(X∆),
we set

ξ∆(As) = ξ(As′),

where s′ is the same relation as s but considered as a relation on Ω. Since
ξ(IΩ) ̸= 0 and IΩ is the sum of the matrices I∆, ∆ ∈ F (X ), the sets

(3.6.20) SuppX (ξ) = {∆ ∈ F (X ) : ξ∆ ̸= 0}

and

(3.6.21) Irr∆(X ) = {ξ ∈ Irr(X ) : ξ∆ ̸= 0}

are not empty. If X is a scheme, then obviously SuppX (ξ) = {Ω} and
IrrΩ(X ) = Irr(X ).

Example 3.6.14. Let X be a semiregular coherent configuration. For
any fibers ∆,Γ of X and relations s ∈ S∆ and t ∈ S∆,Γ,

r = t∗ · s · t ∈ SΓ.

It follows that the matrices As and Ar are conjugate via the adjacency matrix
of the relation t ∪ t∗ ∪ 1Ω\(∆∪Γ). This implies that

ξ(Ar) = ξ(As), ξ ∈ Irr(X ).

Since the fibers ∆ and Γ were arbitrary, we have

SuppX (ξ) = F (X ) and Irr∆(X ) = Irr(X )

for all ξ and ∆.

Example 3.6.15. Let X be the direct sum of schemes. Then ∆×Γ ∈ S
for any distinct fibers ∆,Γ of X . Furthermore,

P0A∆×Γ = P0A∆×ΓP0 = A∆×Γ.

Therefore for any character ξ ∈ Irr(X )# and any ∆ ∈ SuppX (ξ), the set
I∆AξI∆ is a nonzero ideal of the algebra Aξ. Since this algebra is simple,
this implies that

|SuppX (ξ)| = 1 and | Irr∆(X )| = | Irr(X∆)|

for all ξ and ∆.

Let ξ ∈ Irr(X ) and Mξ an irreducible submodule of the module Lξ.
Then for any nonzero v ∈ Mξ,

Mξ = Av.
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Now if ∆ ∈ SuppX (ξ), then I∆v = v, because I∆ is the unit of the alge-
bra A∆. It follows that

I∆Mξ = I∆Av = I∆AI∆v = A∆v.

Consequently, I∆Mξ is an irreducible A∆-module. This shows that

ξ∆ ∈ Irr(X∆).

The decomposition of the identity matrix IΩ into the sum of central
primitive idempotents of A gives the corresponding decomposition of I∆ in
the algebra A∆,

I∆ = IΩI∆ =
( ∑
ξ∈Irr(X )

Pξ
)
I∆ =

∑
ξ∈Irr(X∆)

PξI∆ =
∑

ξ∈Irr(X∆)

Pξ∆ .

Summarizing the above, we arrive at the following statement.

Theorem 3.6.16. For any coherent configuration X and any fiber ∆
of X ,

(1) ξ∆ ∈ Irr(X∆) for all ξ ∈ Irr(X ) such that ∆ ∈ SuppX (ξ);
(2) the mapping Irr∆(X ) → Irr(X∆), ξ 7→ ξ∆ is a bijection.

The degrees and multiplicities of irreducible representations of a coherent
configuration can be expressed via those of its homogeneous components as
follows.

Corollary 3.6.17. For any ξ ∈ Irr(X ),

(3.6.22) nξ =
∑

∆∈SuppX (ξ)

nξ∆

and given ∆ ∈ SuppX (ξ),

(3.6.23) mξ = mξ∆ .

Proof. Since ξ(I∆) = ξ∆(I∆) for all ∆ ∈ SuppX (ξ), we have

nξ = ξ(IΩ) = ξ
(∑
∆∈F

I∆
)

=
∑
∆∈F

ξ(I∆)

=
∑

∆∈SuppX (ξ)

ξ∆(I∆)

=
∑

∆∈SuppX (ξ)

nξ∆ ,
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where F = F (X ). This proves equality (3.6.22). Now let us consider a
decomposition of Lξ into the direct sum of irreducible A-submodules,

Lξ =
mξ∑
i=1

Mi.

Then for any ∆ ∈ F ,

Pξ∆L∆ = PξI∆Lξ = I∆PξLξ =
mξ∑
i=1

I∆Mi.

If ∆ ∈ SuppX (ξ), then, as we saw before, I∆Mi is an irreducibleA∆-module.
This proves equality (3.6.23). □

We complete the subsection by a useful application of the representation
theory technique that was proved in [123, p. 86].

Corollary 3.6.18. Let X be a coherent configuration, S = S(X ), and
∆ and Γ are fibers of X . Then

|S∆,Γ| ≤
|S∆|+ |SΓ|

2
.

In particular, if X∆ and XΓ are trivial, then |S∆,Γ| ≤ 2.

Proof. Without loss of generality, we may assume that ∆ and Γ are the
only fibers of X . Denote by A∆,Γ and AΓ,∆ the linear spaces I∆AIΓ and
IΓAI∆, respectively, where A = Adj(X ). Then

(3.6.24) |S∆,Γ| = dim(A∆,Γ) and |SΓ,∆| = dim(AΓ,∆).

As a linear space the algebra A is the direct sum of the spaces A∆, AΓ,
A∆,Γ, and AΓ,∆. Therefore for any character ξ ∈ Irr(X ), the sum

(3.6.25) Aξ = PξA∆ + PξAΓ + PξA′

is also direct, where
A′ = A∆,Γ +AΓ,∆.

It is easily seen that PξA′ = 0 unless both ∆ and Γ belong to SuppX (ξ).
In the latter case, equality (3.6.22) implies that

dim(Aξ) = n2ξ = (nξ∆ + nξΓ)
2.

On the other hand, taking the dimensions of the summands on the right-
hand side of decomposition (3.6.25), we obtain

dim(Aξ) = n2ξ∆ + n2ξΓ + dim(PξA′).

Thus,
dim(PξA′) = 2nξ∆nξΓ ≤ n2ξ∆ + n2ξΓ ,



3. MACHINERY AND CONSTRUCTIONS 209

where we set nξ∆ (respectively, nξΓ) to be zero if ∆ ̸∈ SuppX (ξ) (respec-
tively, Γ ̸∈ SuppX (ξ)). Taking into account that |S∆,Γ| = |SΓ,∆| and using
formulas (3.6.5) and (3.6.24), we have

2|S∆,Γ| = |S∆,Γ|+ |SΓ,∆|
= dim(A∆,Γ) + dim(AΓ,∆)

=
∑

ξ∈Irr(X )

dim(PξA′)

≤
∑

ξ∈Irr(X )

(n2ξ∆ + n2ξΓ)

≤
∑

ξ′∈Irr(X∆)

n2ξ′ +
∑

ξ′∈Irr(XΓ)

n2ξ′

= |S∆|+ |SΓ|,

which completes the proof. □
One can prove that the arithmetic mean in Corollary 3.6.18 can be re-

placed by the geometric mean, see [100].
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3.6.3 The orthogonality relations and the Frame number

One of the basic statements in the representation theory of coherent
configurations is given by the following theorem which is an analog of the
orthogonality relations for the irreducible characters of groups. In view
of the results of the previous subsection and to simplify the formulas, we
restrict ourselves to the homogeneous case only.

Theorem 3.6.19. For any scheme X of degree n,

∑
r,s∈S

csr∗t
nr∗

η(Ar∗)ξ(As∗) = δη,ξ
n η(At∗)

mξ
, t ∈ S(X ), η, ξ ∈ Irr(X ).

In particular,

(3.6.26)
∑
s∈S

1

ns
η(As)ξ(As∗) = δη,ξ

nnξ
mξ

.

Proof. The second statement follows from the first one for t = 1Ω.
To prove the first one, let Pη and Pξ be the central primitive idempotents
corresponding to the irreducible characters η and ξ, respectively. Using
formula (3.6.13), we obtain

n2Pη Pξ =

(∑
r∈S

mη η(Ar∗)

nr∗
Ar

) (∑
s∈S

mξ ξ(As∗)

ns∗
As

)

=
∑
r,s∈S

mηmξ η(Ar∗) ξ(As∗)

nr∗ ns∗
Ar As

=
∑
r,s∈S

mηmξ η(Ar∗) ξ(As∗)

nr∗ ns∗

(∑
t∈S

ctrsAt

)

=
∑
t∈S

∑
r,s∈S

mηmξ η(Ar∗) ξ(As∗)

nr∗ ns∗
ctrs

At.

On the other hand, by the orthogonality of Pη and Pξ we have

PηPξ = δη,ξPη = δη,ξ
mη

n

∑
t∈S

η(At∗)

nt∗
At.

Thus equating the coefficients at At in the two above expressions and
taking into account that ctrs = ns∗

nt
cs

∗
t∗r = ns∗

nt
csr∗t (see formulas (3.6.13)

and (2.1.3)), we have

n2δη,ξ
mη

n

η(At∗)

nt∗
=
∑
r,s∈S

mηmξ η(Ar∗) ξ(As∗)

nr∗ ns∗

ns∗

nt
csr∗t
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which proves the required equality. □

An analog of formula (3.6.26) for the non-homogeneous case was proved
in [66, p. 220]. Namely, let X be an arbitrary coherent configuration. For
each character ξ ∈ Irr(X ), fix an irreducible representation ρξ of the algebra
A = Adj(X ) corresponding to ξ.

Given a triple λ = (ξ, i, j) with 1 ≤ i, j ≤ nξ, we define a linear functional

(3.6.27) ρλ : A → C, A 7→ ρξ(A)ij ,

and set λ′ = (ξ, j, i). The basis of the underlying linear space LΩ can be
chosen so that for any two triples λ and µ,

(3.6.28)
∑
s∈S

1

ns
ρλ(As∗)ρµ(As) =

n

mξ
δλ,µ′ .

An important property of a scheme X that connects, on the one hand,
the valencies of its basis relations, and, on the other hand, the degree and
multiplicity of its irreducible characters, can be expressed via the Frame
number of X defined as follows:

Fr(X ) = n|S(X )|

∏
s∈S(X )

ns

∏
ξ∈Irr(X )

m
n2
ξ

ξ

.

The proof of the theorem below is taken from [2], where the corresponding
statement was proved under a weaker assumption.

Theorem 3.6.20. The Frame number of a scheme is a rational integer.

Proof. Let X be a scheme and S = S(X ). Denote by Λ the set of all
triples

λ = (ξ, i, j), ξ ∈ Irr(X ), 1 ≤ i, j ≤ nξ.

This set is closed under the transposition λ 7→ λ′, where λ′ is as above.
Denote by B and CΛ the Λ× S- and Λ× Λ-matrices defined by

Bλ,s = ρλ(As) and (CΛ)λ,µ = δλ,µ′ ,

where ρλ is the linear functional (3.6.27).
A straightforward computation shows that for all r, s ∈ S,

(BT CΛB)r,s =
∑
λ∈Λ

ρλ(Ar)ρλ′(As) =
∑

ξ∈Irr(X )

ξ(ArAs).

The number on the right-hand side of this equality is an algebraic integer,
because so are the values of an irreducible character and the intersection
numbers. It follows that the entries of the matrix BT CΛB are algebraic
integers. This immediately implies that

det(B)2 = ±det(BT CΛB)
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is an algebraic integer; here, we use the fact that CΛ is a permutation matrix.
Denote by CS , DΛ, and DS , respectively, the S×S-, Λ×Λ-, and S×S-

matrices defined by

(CS)r,s = δr,s∗ , (DΛ)λ,µ = δλ,µ
mξ

n
, (DS)r,s = δr,snr.

In this notation, formula (3.6.28) exactly means that

BCS (DS)
−1BT = (DΛ)

−1CΛ.

Passing to the determinants on the right- and left-hand sides, we obtain

det(B)2 det(CS)

(∏
s∈S

ns

)−1

= det(CΛ)
∏

ξ∈Irr(X )

(
n

mξ

)n2
ξ

.

Note that CΛ is a permutation matrix and hence det(CΛ) = ±1. Thus
using formula (3.6.5), we conclude that

Fr(X ) = ±det(B)2.

By the first part of the proof, this implies that the rational number Fr(X )
is an algebraic integer. Thus it is a rational integer, as required. □

It is worth mentioning a result in [54] showing that if one defines the
algebra Adj(A) of a scheme X over a field of positive characteristic p rather
than over C, then A is semisimple if and only if p does not divide the Frame
number of X .

One more application of the Frame number found in [102] gives the
following sufficient condition for the commutativity of the schemes from
Theorem 3.6.13.

Theorem 3.6.21. Let X be an scheme. Suppose that the numbers

k =
mξ

nξ
and a = nξ

do not depend on the choice of the character ξ ∈ Irr(X )#. Then a = 1,
i.e., X is commutative.

Proof. By Theorem 3.6.13, the assumption implies that X is an equiva-
lenced scheme of valency k. In accordance with formulas (3.6.3) and (3.6.9),
we have

n− 1 =
∑

ξ∈Irr(X )#

mξnξ =
∑

ξ∈Irr(X )#

mξ

nξ
n2ξ = | Irr(X )#| k a2.

It follows that a is coprime to n and

| Irr(X )#| a2 = n− 1

k
= d− 1,

where d = |S(X )|.
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On the other hand, since (mξ)
n2
ξ = (ka)a

2
for all ξ ∈ Irr(X )#, the Frame

number of the scheme X is equal to

Fr(X ) =
nd kd−1

(k a)| Irr(X )#| a2 =
nd kd−1

kd−1ad−1
=

nd

ad−1
.

By Theorem 3.6.20, this number is an integer. Taking into account that a
is coprime to n, we conclude that a = 1, as required. □
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3.6.4 The base number of a primitive scheme

In this subsection we establish an upper bound for the base number of
a primitive scheme in terms of the multiplicities and degrees of irreducible
characters; for permutation groups a similar bound was found in [112].

The theorem below was proved in [39] and can be considered as a far-
reaching generalization of the trivial observation that the base number of a
regular scheme X is equal to 1 =

mξ

nξ
, where ξ ∈ Irr(X ) (Theorem 3.6.3).

Theorem 3.6.22. Let X be a primitive scheme. Then

b(X ) ≤ min
ξ∈Irr(X )#

mξ

nξ
.

Moreover, the same upper bound holds for the size of each irredundant base
of X .

The estimate in Theorem 3.6.22 is sharp: the equality is attained if, for
example, X is a trivial scheme of degree at least 2. Indeed, in this case

mξ

nξ
= n− 1 = b(X ),

where n is the degree of X and ξ is the unique nonprincipal irreducible
character of X , see Example 3.6.8.

The primitivity assumption in Theorem 3.6.22 is essential. Indeed, let X
be the imprimitive scheme of rank 6 from Exercise 2.7.43 for q = 2. One
can verify that X has an irredundant base of size 4, whereas

mξ

nξ
= 3 for its

irreducible character ξ of degree 2 and multiplicity 6.

Proof of Theorem 3.6.22. We need the following lemma.

Lemma 3.6.23. Let X be a coherent configuration on Ω, A = Adj(X ),
and A ∈ A. Suppose that the nonzero columns of the matrix A are pairwise
distinct. Then given m ≥ 1 and α, α1, . . . , αm ∈ Ω,

Aα ∈
m∑
i=1

Aαi ⇒ {α} ∈ F (Xα1,...,αm).

Proof. Denote by B the matrix in MatΩ with the βth column, β ∈ Ω,
defined by

Bβ =

{
Aα, if β ∈ {α1, . . . , αm},
Aβ, otherwise.

Claim 1. B belongs to the algebra A′ = Adj(X ′) with X ′ = Xα1,...,αm.

Proof. By the assumption there exist matrices A1, . . . , Am belonging to
A ⊂ A′ and such that

(3.6.29) Aα = A1α1 + · · ·+Amαm.
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Since A′ also contains the matrix of any permutation of Ω leaving every
point of the set Ω′ = Ω \ {α1, . . . , αm} fixed, the matrices

Bi =
m∑
j=1

P−1
ij AjI{αj}Pij , i = 1, . . . ,m,

belong to A′, where Pij is the matrix of the transposition (αi, αj). Note
that in view of (3.6.29), the αjth column of Bi is equal to Aα if i = j, and 0
otherwise. Consequently,

B = B1 + · · ·+Bm +AIΩ′ ,

which proves the Claim 1. □
Denote by e = e(B) the partial equivalence relation defined by for-

mula (2.7.1). Then e ∈ E(X ′) by Claim 1 and Exercise 2.7.24. Since the
nonzero columns of the matrix A are pairwise distinct,

∆ := {α1, . . . , αm, α} ∈ Ω/e.

However, {αi} is a fiber of X ′ for all i. Thus, ∆ = αie is a homogeneity set
of X ′. Consequently,

{α} = ∆ \ {α1, . . . , αm}
is a fiber of X ′. This completes the proof of Lemma 3.6.23. □

Let {α1, . . . , αb} be an irredundant base of X and ξ ∈ Irr(X )#.

Lemma 3.6.24. For m = 1, . . . , b, the sum

(3.6.30) Lm =

m∑
i=1

Aξαi

is direct.
Proof. It suffices to verify that Aξαm∩Lm−1 = {0} for each m. Assume

on the contrary that there exists a nonzero matrix A ∈ Aξ such that

Aαm ∈ Lm−1.

The singleton {αm} is not a fiber of the coherent configuration Xα1,...,αm−1 :
this is true for m = 1, because X is a primitive scheme of degree at least 2,
and also for m > 1, because the base {α1, . . . , αb} is irredundant.

By Lemma 3.6.23, this implies that the nonzero columns of the matrix A
are not pairwise distinct. It follows that

e(A) ̸= 1Ω,

where e(A) is the partial equivalence relation defined by formula (2.7.1). On
the other hand, e(A) ∈ E(X ) by Exercise 2.7.24. Thus,

e(A) = Ω2
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by the primitivity of X . This shows that the matrix A is a multiple of JΩ.
Consequently, A belongs the intersection Aξ ∩ Aξ0 = 0, a contradiction. □

To complete the proof, we note that the mapping A → Aαi, A 7→ Aαi
is an A-module isomorphism, i = 1, . . . , b. Therefore,

dim(Aξαi) = dim(Aξ) = n2ξ .

On the other hand, Lb ⊆ Lξ and dim(Lξ) = mξnξ. Thus the direct
decomposition (3.6.30) from Lemma 3.6.24 with m = b yields the inequality

bn2ξ =
b∑
i=1

dim(Aξαi) = dim(Lb) ≤ dim(Lξ) = mξnξ,

i.e., b ≤ mξ

nξ
as required. □

Let X be a primitive scheme of rank d and base number b. From for-
mulas (3.6.5) and (3.6.3), and Theorems 3.6.3 and 3.6.22, it immediately
follows that

b (d− 1) =
∑

ξ∈Irr(X )#

b n2ξ

≤
∑

ξ∈Irr(X )#

mξ

nξ
n2ξ

=
∑

ξ∈Irr(X )#

mξ nξ

= n− 1.

The number n−1
d−1 equals the average valency of the scheme X . Thus we

arrive at the following consequence of Theorem 3.6.22.

Corollary 3.6.25. The base number of a primitive coherent configura-
tion is less than or equal to its average valency.

It should be noted that if the Babai conjecture 3.1.7 was true, then
the base number of a primitive scheme would be bounded from above by a
function on nmin. At present such a result is known in few cases, e.g., the
base number of a schurian primitive antisymmetric scheme is at most 3 [109].
In the non-schurian case, no nontrivial upper bound is known.
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3.7 Exercises

In what follows, unless otherwise stated, X is a coherent configuration
on Ω and S = S(X ), F = F (X ), and E = E(X ). The notations X ′ and Ω′,
S′, F ′, and E′ have the same meaning. The number m denotes a positive

integer and X̂ = X̂ (m), X = X (m), etc.
3.7.1 Let X be a fusion of an affine scheme of degree q2. Then

(1) for each s ∈ S#, ns = as(q − 1) for some integer as ≥ 1;
(2) X is primitive if and only if as ≥ 2 for all s ∈ S#.

3.7.2 A coherent configuration of a disconnected graph is either non-
homogeneous or imprimitive.

3.7.3 Let X be a primitive nonregular scheme. Then given s ∈ S#,
there exists a positive integer m such that sm = S, where

sm = s s · · · s︸ ︷︷ ︸
m

(complex product).

3.7.4 Let X and X ′ be algebraically isomorphic coherent configurations.
Then X is primitive (respectively, imprimitive) if and only if X ′ is primitive
(respectively, imprimitive).

3.7.5 [17, Theorem 4.2.1] Let X be the scheme of a distance-regular
graph of diameter d and valency at least 3. Then X is imprimitive only if
s1 is a bipartite graph or sd is the disjoint union of cliques (here, s1 and sd
are defined by formula (2.6.6)).

3.7.6 Let e be a parabolic of X with indecomposable components ei,
i ∈ I, and πe the mapping (1.1.4). Then

F (XΩ/e) = {Ω(πe(ei)) : i ∈ I}.

In particular, XΩ/e is homogeneous if and only if e is indecomposable.
3.7.7 Let e ∈ E be such that Ω/e = F . Then XΩ/e = DF .
3.7.8 Let X ≤ X ′ and e ∈ E. Then XΩ/e ≤ X ′

Ω/e.

3.7.9 Let e0, e1 ∈ E be such that e0 ⊆ e1. Then

(1) the quotient of XΩ/e0 modulo πe0(e1) is canonically isomorphic to
the quotient XΩ/e1 ;

(2) for any ∆ ∈ Ω/e1, the quotient of X∆ modulo (e0)∆ is canonically
isomorphic to the restriction of XΩ/e0 to πe0(∆).

3.7.10 Let X be a semiregular coherent configuration, and let e be the
union of all relations in a system of distinct representative of {S∆,Γ}∆,Γ∈F
given in statement (3) of Exercise 2.7.13. Then

(1) e is an indecomposable parabolic of X ;
(2) given ∆ ∈ F and Γ ∈ Ω/e, we have ∆∩Γ = {α∆,Γ} for some α∆,Γ;
(3) for any ∆ ∈ F , the mapping f : Ω/e→ ∆, Γ 7→ α∆,Γ is a bijection;
(4) f ∈ Iso(XΩ/e,X∆).
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3.7.11 A scheme is schurian if and only if it is isomorphic to the quotient
of a regular scheme.

3.7.12 Let ∆ ⊆ Ω. Then

(1) WL(Inv(K), 1∆) ≤ Inv(K{∆}) for any K ≤ Sym(Ω);
(2) Aut(WL(X , 1∆)) = Aut(X ){∆}.

3.7.13 Let S be a set of relations on Ω, and let e be an equivalence
relation on Ω. Then WL(SΩ/e) ≤ WL(S)Ω/e.

3.7.14 Let e be a residually thin parabolic of X . Then

(1) s · s∗ ⊆ e for any s ∈ S;
(2) Xe = WL(X , 1∆) for any ∆ ∈ Ω/e.

3.7.15 Let e ∈ E and φ ∈ Isoalg(X ,X ′). Then e is residually thin if
and only if e′ = φ(e) is residually thin.

3.7.16 The thin residue parabolic of a scheme X is equal to the minimal
parabolic of X containing s · s∗ for any s ∈ S.

3.7.17 [110] Let p be a prime. A scheme X is called a p-scheme if |s|
is a p-power for each s ∈ S. For such a scheme,

(1) |Ω| is a p-power;
(2) the thin radical parabolic of X is not equal to 1Ω unless |Ω| = 1;
(3) if |Ω| = p, then X is regular;
(4) any quotient of X is a p-scheme;
(5) the thin residue parabolic of X is not equal to Ω2 unless |Ω| = 1.

3.7.18 [72] Any quasiregular coherent configuration X with all non-
singleton fibers of the same prime cardinality is the direct sum of semiregular
coherent configurations. In particular, X is schurian and separable.

3.7.19 [105] A coherent configuration X is said to be quasitrivial if

Aut(X )∆ = Sym(∆) for all ∆ ∈ F,

and semitrivial if, in addition, the group Aut(X )∆∪Γ is isomorphic to both
Sym(∆) and Sym(Γ) for all ∆,Γ ∈ F . Prove that every quasitrivial coherent
configuration is the direct sum of semitrivial coherent configurations.

3.7.20 A coherent configuration with all fibers of cardinality at most 3
is the direct sum of the coherent configurations isomorphic to Y ⊗ DmY ,
where Y is a scheme of degree at most 3 and mY ≥ 1. In particular, X is
schurian and separable.

3.7.21 [43, Theorem 2.2] Let X be a commutative subtensor product
on Ω = Ω1 × Ω2, and let e1 and e2 be the parabolics of X defined by
formula (3.2.5). Then

(1) for each ∆ ∈ Ω/e1, the mapping τ∆ : ∆ → Ω/e2, α 7→ αe2 is a
bijection;

(2) τ∆ ∈ Iso(X∆,XΩ/e2) and also (s∆)
τ∆ = sΩ/e2 for all s ∈ S;

(3) if Γ ∈ Ω/e1, then τ∆τ
−1
Γ ∈ Iso(X∆,XΓ, φ∆,Γ) (for φ∆,Γ, see Exam-

ple 2.3.16).
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3.7.22 Let X be a Cayley scheme over a group G. Then the following
two statements are equivalent:

(1) X = X1 ⊗ · · · ⊗ Xk for some k ≥ 1;
(2) G = G1 × · · · × Gk, where Gi is an X -group such that XGi = Xi,

and rk(X ) = rk(X1) · · · rk(Xk).

Moreover, if one of these statements holds, then X is normal if and only
if Xi is a normal Cayley scheme over Gi for all i.

3.7.23 The extension of trivial coherent configuration TΩ with respect
to the points of a set ∆ ⊆ Ω, is equal to D∆ ⊞ TΩ\∆.

3.7.24 Let X be a scheme such that the coherent configuration Xα is
schurian and separable for some α ∈ Ω. Assume that for every α′ ∈ Ω′ and
φ ∈ Isoalg(X ,X ′), there exists algebraic isomorphism

φα,α′ ∈ Isoalg(Xα ,X ′
α′)

extending φ. Then X is separable, and schurian if F (Xα) = {αs : s ∈ S}.
3.7.25 Let α ∈ Ω and

Tα = {ru,v : r ∈ S, u, v ∈ S \ S1}♮,

where ru,v = r ∩ (αu× αv). Then the pair

X⊥
α = (αS1′ , Tα)

with S1′ = {s ∈ S : ns > 1}, is a rainbow and

Xα = DαS1 ⊞WL(X⊥
α ).

3.7.26 [71, Theorem 3.1] Any primitive scheme admitting a one-point
extension with exactly one non-singleton fiber, is trivial.

3.7.27 Let α ∈ Ω and ∆ a base of Xα. Then {α} ∪∆ is a base of X .
In particular,

b(X ) ≤ 1 + b(Xα)
with equality if α belongs to a base of cardinality b(X ).

3.7.28 The class of all partly regular coherent configurations is closed
under taking fissions and tensor products.

3.7.29 Let Ω1 and Ω2 be sets. Then the only proper fusion of the
wreath product TΩ1 ≀ TΩ2 is the trivial scheme TΩ1×Ω2 .

3.7.30 Let X be a scheme and Y = Inv(K,∆), where ∆ is a set and
K ≤ Sym(∆) is a transitive group. Then K acts as a group of isomorphisms
of the direct sum X ′ of |∆| copies of X , and X ≀ Y ∼= (X ′)K .

3.7.31 Let X1 = (Ω1, S1) and X2 = (Ω2, S2) be schemes and Φ a family
of the algebraic isomorphisms

φα ∈ Isoalg(X1,X1α), α ∈ Ω2,
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where X1α is a scheme on the set Ωα = Ω1 × {α}. Define a rainbow X on

the set Ω = Ω1 × Ω2 with S(X ) = S(1) ∪ S(2), where

S(1) = {
⋃
α∈Ω2

φα(s1) : s1 ∈ S1} and S(2) = {
⋃

(α,β)∈s2

Ωα ×Ωβ : s2 ∈ S#
2 }.

Then X is a scheme, called the wreath product of X1 by X2 with respect to
the family Φ; it is denoted by X1 ≀Φ X2. Moreover,

(1) the equivalence relation e with classes Ωα, α ∈ Ω2, is an indecom-
posable parabolic of X ;

(2) if for each α, the algebraic isomorphism φα is induced by the bi-
jection β 7→ (β, α), β ∈ Ω1, then X = X1 ≀ X2;

(3) Autalg(X ) is isomorphic to Autalg(X1)×Autalg(X2).

3.7.32 Let X be a scheme on Ω1 × Ω2, and let e be the equivalence
relation with classes Ωα = Ω1 ×{α}, α ∈ Ω2. Assume that e is an indecom-
posable parabolic of X . Take an arbitrary α ∈ Ω2 and set

Φ = {φΩα,Ωβ
: β ∈ Ω2},

where φΩα,Ωβ
is the algebraic isomorphism defined in Example 2.3.16. Then X

is a fission of the scheme X1 ≀Φ X2, where X1 = XΩα and X2 = XΩ/e.
3.7.33 Let X1 and X2 be coherent configurations on Ω1 and Ω2, re-

spectively, and let 2 denote ⊞ or ⊗ or ≀; in the latter case, X1 and X2 are
schemes. Then

(1) for any φ1 ∈ Isoalg(X1,X ′
1) and φ2 ∈ Isoalg(X2,X ′

2), there exists a
unique

φ ∈ Isoalg(X12X2,X ′
12X ′

2)

such that φΩ1 = φ1 and φΩ2 = φ2;
(2) the inclusion

Autalg(X12X2) ≥ Autalg(X1)×Autalg(X2)

holds with equality if X1 and X2 are not algebraically isomorphic;5

(3) for any e1 ∈ E(X1),

(X12X2)Ω/e = (X1)Ω1/e1 2X2,

where e = e1 if 2 = ⊞, and e = e1 ⊗ 1Ω2 otherwise.

3.7.34 Let X1 and X2 be coherent configurations. Then

(1) b(X1 ⊞ X2) = b(X1) + b(X2);
(2) b(X1 ⊗ X2) = b(X1) + b(X2) − 1 unless min{b(X1), b(X2)} = 0; in

the latter case, b(X1 ⊗X2) = b(X1) + b(X2);
(3) if X1 and X2 are schemes, then b(X1 ≀ X2) = |Ω2| b(X1).

3.7.35 [48, Corollary 5.2] Let X be a graph with connected compo-
nents Xij , where i = 1, . . . , a and j = 1, . . . , ai for each i. Assume that the

5For 2 = ≀, this condition is superfluous.
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indices are chosen so that the graphs Xij and Xi′j′ are isomorphic if and
only if i = i′. Then

WL(X) ∼=
a
⊞
i=1

WL(Xi1) ≀ Tai .

3.7.36 The exponentiation respects the partial orders of coherent con-
figurations and permutation groups:

(1) if Y ≤ X , then Y ↑ K ≤ X ↑ K for any K;
(2) if L ≤ K, then X ↑ L ≥ X ↑ K for any X .

3.7.37 Let X be the scheme of the Hamming graph H(d, q), where
d ≥ 1 and q ≥ 2. Then

X = Tq ↑ Sym(d) and Aut(X ) = Sym(q) ↑ Sym(d).

3.7.38 Let X be a Cayley scheme over G. Assume that X is the
U/L-wreath product. Then

(1) if X ′ ≤ X , and L and U are X ′-groups, then X ′ is the U/L-wreath
product;

(2) if L′ ≤ L and U ′ ≥ U are X -subgroups and L′ ⊴ G, then X is the
U ′/L′-wreath product;

(3) if H ≥ L is a normal X -subgroup of G, then XG/H is the HU/HL-
wreath product.

3.7.39 Let X be a Cayley scheme over a group G = L×H × V , where
L, H, and V are X -groups. Assume that X is the U/L-wreath product,
where U = HL. Then

Aut(X ) = Aut(TL ≀ XG/L) ∩ Aut(XU ≀ TV ).

3.7.40 [42] Suppose that we are given

(1) primes p1, p2, p3, p4 such that {p1, p2} ∩ {p3, p4} = ∅;
(2) a positive integer d dividing GCD(p1 − 1, p2 − 1, p3 − 1, p4 − 1);
(3) an isomorphism fij ∈ Iso(Mi,Mj), (i, j) ∈ {(1, 3), (2, 3), (2, 4), (1, 4)},

where Mi is the subgroup of Aut(Cpi) of order d.
Denote by Xij the cyclotomic Cayley scheme Cyc(Mij , Cpipj ), where

Mij = {(x, y) ∈Mi ×Mj : fij(x) = y}.

Let us consider the generalized wreath product

X (d) = (X13 ≀p3 X23) ≀p1p2 (X14 ≀p4 X24),

where the subscript at the sign ≀ denotes the number |U/L| in the corre-
sponding U/L-wreath product: for example, X13 ≀p3 X23 is a Cayley scheme
over Cp1p2p3 that is the U/L-wreath product with |U | = p1p3 and |L| = p1.

Then

(1) if the automorphism f = f13 ◦ f−1
23 ◦ f24 ◦ f−1

14 of the group K1 is
not trivial, then the Cayley scheme X (d) is not schurian;



222 3. MACHINERY AND CONSTRUCTIONS

(2) if, in addition, for some d′ dividing d the automorphism f is iden-
tical on the subgroup of order d′ and the factorgroup modulo it,
then the scheme X (d′) is not separable.

3.7.41 Let X be semiregular and K = Aut(X ). Then

(3.7.1) X̂ = Inv(K,Ωm).

In particular, the m-dimensional extension of any semiregular coherent con-
figuration is also semiregular.

3.7.42 Let X = TΩ and K = Sym(Ω). Then

(1) S(X̂ ) = Orb(K,Ωm × Ωm); in particular, equality (3.7.1) holds;

(2) ∆i = {α ∈ Ωm : |{α1, . . . , αm}| = i} is a homogeneity set of X̂ for
all i = 1, . . . ,m;

(3) the equivalence relation ∼ on ∆m defined by

α ∼ β ⇔ {α1, . . . , αm} = {β1, . . . , βm}

is a partial parabolic of X̂ ;

(4) X̂Ωm/∼ is isomorphic to the scheme of the Johnson graph J(n,m).

3.7.43 Let X = X1 × · · · × Xk be the direct product of the graphs
X1, . . . ,Xk, i.e., the graph with vertex set

Ω(X) = Ω(X1)× · · · × Ω(Xk)

whose arcs are the pairs (α, β) for which there is an index i such that
(αi, βi) ∈ Di and αj = βj for all j ̸= i. Then D(X) = s1 ∪ · · · ∪ sk,
where

si =
k⋂
j=1

Cylti,j (j, j)

with ti,j = D(Xi) or 1Ω(Xi) depending on whether i = j or not.
3.7.44 Let X ′ ≥ X and Y ′ ≥ Y. Then

(1) X̂ ′ ≥ X̂ and Ŷ ′ ≥ Ŷ ;
(2) if ψ ∈ Isom(X ′,Y ′) extends φ ∈ Isoalg(X ,Y), then φ ∈ Isom(X ,Y)

and ψ̂ extends φ̂.

3.7.45 For any ∆ ∈ F∪, we have X̂∆ ≤ X̂∆m .

3.7.46 [40, Lemma 6.2] Let s ∈ Ŝ. Then for any indices i, j ∈ {1, . . . , 2m}
the following two statements hold:

(1) pri,j(s) = {((α · β)i, (α · β)j)) : (α, β) ∈ s} is a basis relation of X ;
(2) if φ is anm-isomorphism from X to another coherent configuration,

then
pri,j(φ̂(s)) = φ(pri,j(s)).

3.7.47 The mapping X 7→ X is a closure operator, i.e.,

(1) X ≤ X ;
(2) if X ≤ Y, then X ≤ Y;
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(3) X is m-closed.

3.7.48 For fixed sets Ω and Ω′, we define a partial order on the set of
all algebraic isomorphisms φ ∈ Isoalg(X ,X ′), where X and X ′ are coherent
configurations on Ω and Ω′, respectively. Namely, if ψ ∈ Isoalg(Y,Y ′), then

φ ≤ ψ ⇔ X ≤ Y, X ′ ≤ Y ′, and ψ extends φ.

Then the mapping taking an m-isomorphism φ to cl(φ) = φ, is a closure
operator on the m-isomorphisms, i.e.,

(1) φ ≤ cl(φ);
(2) if φ ≤ ψ, then cl(φ) ≤ cl(ψ);
(3) cl(cl(φ)) = cl(φ).

3.7.49 [38, Theorems 7.5 and 7.6] Let X = X1 ⊞ · · ·⊞Xk, k ≥ 1. Then

(1) X = X 1 ⊞ · · ·⊞ X k;
(2) X is m-closed if and only if so are X1, . . . ,Xk;
(3) if X ′ = X ′

1 ⊞ · · · ⊞ X ′
k and φ ∈ Isoalg(X ,X ′) is induced by certain

φi ∈ Isoalg(Xi,X ′
i ), i = 1, . . . , k, then φ ∈ Isom(X ,X ′) if and only

if φi ∈ Isom(Xi,X ′
i ) for all i.

3.7.50 [39, Corollary 5.4] Let X be a 2-closed scheme and e is a par-
abolic of X . Suppose that e ⊆ S1. Then each ∆ ∈ Ω/e is a fiber of the
coherent closure WL(X , 1∆).

3.7.51 [39, Theorem 5.9] Let X be a 2-closed primitive scheme. For
a fixed α ∈ Ω, denote by ∆ the set of all fibers Γ ∈ F (Xα) such that the
scheme (Xα)∆ is imprimitive. Then

(1) if ∆ ̸= ∅, then the union of all Γ ∈ ∆ is a base of X ;
(2) if ∆ = ∅, then any fiber of Xα other than {α} is a base of X .

3.7.52 [119] Let G be an abelian group and Ĝ the group of all irre-
ducible complex characters of G. For an S-ring A over G, define an equiva-

lence relation ∼ on Ĝ so that

ξ ∼ η ⇔ ξ(X) = η(X) for all X ∈ S(A).

Then the partition Ŝ of the group Ĝ into the classes of ∼ satisfies the
conditions (SR1), (SR2), and (SR3) at p. 69; in particular,

Â = Span Ŝ

is an S-ring over Ĝ. Moreover, rk(A) = rk(Â).
3.7.53 In the conditions and notation of Exercise 3.7.52, given a group

H ≤ G denote byH⊥ the group of all characters ξ ∈ Ĝ such that ker(ξ) ≥ H.
Then

(1) the mapping E(A) → E(Â), H 7→ H⊥ is a lattice antiisomorphism;

(2) ÂH = Â
Ĝ/H⊥ for each H ∈ E(A);

(3) ÂG/H = ÂH⊥ for each H ∈ E(A).
3.7.54 [47, Sec. 2.3] In the conditions and notation of Exercise 3.7.52,
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(1) A = Cyc(K,G) for K ≤ Aut(G) if and only if Â = Cyc(K, Ĝ);

(2) A = A1 ⊗ A2 if and only if Â = Â1 ⊗ Â2;

(3) A is the U/L-wreath product if and only if Â is the L⊥/U⊥-wreath
product.

3.7.55 Let ξ ∈ Irr(X ). Then

nξ ≤ |SuppX (ξ)|mξ,

and the equality is simultaneously attained for all irreducible characters ξ if
and only if X is quasiregular.

3.7.56 [37, Theorem 3] There exists a constant c > 0 such that given a
primitive scheme X ,

nmin ≤ 2cmmin ,

where nmin is the minimal valency of irreflexive basis relation of X andmmin

is the minimal multiplicity of nonprincipal irreducible character of X .
3.7.57 Let G = G1×G2×G3 be an abelian group, where |G1| = |G2| =

|G3|. Denote by K the permutation group induced by the action of G by
multiplications on the set

Ω = G/G1 ∪ G/G2 ∪ G/G3,

and set X = Inv(K,Ω). Then

(1) F (X ) = {G/G1, G/G2, G/G3};
(2) mξ = 1 and nξ = | SuppX (ξ)| for all ξ ∈ Irr(X );
(3) the mapping ξ 7→ SuppX (ξ) induces a surjection from Irr(X ) to the

nonempty homogeneity sets of X .

3.7.58 [10, Theorem 3.6(ii)] Let X be a commutative scheme of degree
n, and r, s, t ∈ S. Then

ctrs =
nrns
n

∑
ξ∈Irr(X )

1

m2
ξ

ξ(r)ξ(s)ξ(t).

3.7.59 [2, Proposition 3.4(i), Lemma 3.8(i)] Let X be a scheme and ρ
the regular character of X , see formula (3.6.17). Then

n
∑

ξ∈Irr(X )

nξ
mξ

Pξ =
∑
s∈S

ρ(As)

ns
As.



CHAPTER 4

Developments

The purpose of this chapter is to present several directions in the theory
of coherent configurations, which on the one hand are quite well studied,
and on the other hand, leave room for further research. The topics that
we have selected, range from very special to fairly general. For example,
the Hanaki–Uno theorem on schemes of prime degree is the main subject
of Section 4.5, whereas the schurity and separability numbers are defined in
Section 4.2 for arbitrary coherent configurations.

Three other classes, studied in Sections 4.1, 4.3, and 4.4 are quasiregular
coherent configurations, the schemes with at most two different valencies,
and cyclotomic schemes, respectively. In Section 4.6, we introduce the
Weisfeiler–Leman method which reveals a deep connection between some
natural combinatorial algorithms for testing isomorphism of graphs and so
called multidimensional extensions of coherent configurations and algebraic
isomorphisms.

4.1 Quasiregular coherent configurations

At first glance, it seems that quasiregular coherent configurations are
close to schurian, but this is not true at all. Even if the homogeneous
components of a quasiregular coherent configuration X are commutative, the
schurity of X is in a sense equivalent to the existence of a certain amalgam
of the groups corresponding to the homogeneous components of X [72].

Difficulties in identifying schurian quasiregular coherent configurations
arise already when X is a Klein configuration, i.e., one each homogeneous
component of which is a regular scheme of the Klein group. This situation
is studied in Subsections 4.1.2 and 4.1.3. In general case, we describe a
method that allows at least in principle to construct all quasiregular coherent
configurations with a given set of homogeneous components (Section 4.1.1).

4.1.1 Systems of linked quotients

The material of this subsection is taken from [72].
Let I be a set, and let G be a family of groups Gi with identity ei, i ∈ I.

It is assumed that each Gi acts regularly on Ωi := Gi. The permutations
of Gi are treated as thin relations on Ωi (the graphs of the corresponding
permutations). In particular, (Ωi, Gi) is a regular scheme isomorphic to
Inv(Gi,Ωi), see Theorem 2.2.11.

225
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Denote by Ω the disjoint union of the sets Ωi, i ∈ I. We are interested
in the class of all coherent configurations X on Ω such that

F (X ) = {Ωi}i∈I and X ≥ ⊞
i∈I

Inv(Gi,Ωi).

Any such X is said to be a G-configuration on Ω. By Theorem 2.2.11, a
coherent configuration is quasiregular if and only if it is isomorphic to a
G-configuration for a suitable family G.

Let X be a G-configuration and S = S(X ). For any indices i, j ∈ I, set

Sij = SΩi,Ωj .

In particular, Sii = Gi. Since all relations belonging to Gi ∪ Gj are thin,
Lemma 2.1.24 implies that

s∗Sij = Sij = Sijt, s ∈ Gi, t ∈ Gj .

Therefore the mappings

πij : Gi → Sym(Sij) and ρij : Gj → Sym(Sij)

defined by the formulas

xπij(s) = s∗ · x, x ∈ Sij , and xρij(t) = x · t, x ∈ Sij ,

respectively, are group homomorphisms.

Lemma 4.1.1. For all i, j ∈ I,

(1) Im(πij) and Im(ρij) are regular groups centralizing each other;
(2) ker(πij) = xx∗ for all x ∈ Sij, and ker(ρij) = x∗x for all x ∈ Sij.

Proof. Let x, y ∈ Sij . Then any basis relations s ∈ xy∗ and t ∈ x∗y
belong to Gi and Gj , respectively. Therefore they are thin and hence

s∗ · x = y = x · t.

This proves that the groups Im(πij) and Im(ρij) are transitive. Obviously
each of them centralizes the other.

Next assume that s∗ ·x = x for some s ∈ Gi and x ∈ Sij . Since the group
Im(ρj) is transitive, any y ∈ Sij is of the form x · t for a suitable t ∈ Gj .
Therefore,

s∗ · y = s∗ · x · t = x · t = y.

Thus the group Im(πij) is regular. Similarly, one can prove that the group
Im(ρij) is also regular. This completes the proof of statement (1).

By the regularity of Im(πij), we have s ∈ ker(πij) if and only if s∗ ·x = x
if and only if s ∈ xx∗ for some (and hence for all) x ∈ Sij . Similarly,
t ∈ ker(ρij) if and only if t ∈ x∗x for some (and hence for all) x ∈ Sij . □

An important role in the subsequent analysis is played by the family S
of the groups

(4.1.1) Gij = ker(πij) = ker(ρji), i, j ∈ I.
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Obviously,

(4.1.2) Gii = ei and Gij ⊴ Gi, i, j ∈ I.

By statement (1) of Lemma 4.1.1, the quotients Gi/Gij and Gj/Gji
treated as permutation groups on Sij are the left and right representations
of the same group. In particular, these groups are isomorphic. To write
an explicit isomorphism, denote by αi the point of Ωi corresponding to ei
(recall that Ωi = Gi and ei is the identity of Gi). Set

sij := r(αi, αj), i, j ∈ I.

Clearly, sii = 1Ωi and s
∗
ij = sji for all i and j.

Lemma 4.1.2. For all i, j ∈ I, the mapping

(4.1.3) fij : Gi/Gij → Gj/Gji, Gijs 7→ s∗ij(Gijs)sij

is a group isomorphism, and (fij)
−1 = fji.

Proof. Set x = sij . By statement (1) of Lemma 4.1.1 for any s ∈ Gi,
there exists t ∈ Gj such that sx = xt. Moreover, the element t depends on
the coset Gijs only. By statement (2) of Lemma 4.1.1 and Exercise 2.7.14,
we have

(4.1.4) x∗(Gijs)x = x∗(xx∗)sx = x∗sx = x∗xt = Gjit ∈ Gj/Gji.

Thus the mapping fij is well-defined. It is a homomorphism, because for
any s, s′ ∈ Gi,

fij(GijsGijs
′) = fij(Gijss

′)

= x∗(ss′)x

= (x∗sx)(x∗s′x)

= fij(Gijs)fij(Gijs
′).

Now assume that fij(Gijs) = Gji for some s ∈ Gi. Then the element
t ∈ Gj in formula (4.1.4) belongs to Gji. Therefore,

sx = xt ⊆ xx∗x = {x}.

It follows that s∗ ∈ Gij and hence s ∈ Gij . Thus the homomorphism fij is
a monomorphism.

By statement (1) of Lemma 4.1.1, for each t ∈ Gj there exists s ∈ Gi
such that sx = xt. Then formula (4.1.4) implies that fij(Gijs) = Gjit.
Thus, fij is an epimorphism and hence an isomorphism.

To complete the proof, it suffices to see that

fijfji(Gjit) = fij(xtx
∗) = x∗xtx∗x = Gjit.

Thus the mapping fijfji is identical. □
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An important relation between the isomorphisms fij and the groups Gij
is established in the lemma below.

Lemma 4.1.3. For any i, j, k ∈ I,

(4.1.5) fik(GijGik/Gik) = GkjGki/Gki.

Proof. From the definition of sij , it follows that sab ∈ sacscb for all
a, b, c ∈ I. Using statement (2) of Lemma 4.1.1 we obtain

Gkj = skjs
∗
kj

⊆ (skisij)(skisij)
∗

= skisij s
∗
ijs

∗
ki

= s∗iksijs
∗
ijsik

= s∗ikGijsik.

Since Gki = s∗ikGiksik, this implies that

(4.1.6) s∗ikGijGiksik = s∗ikGijsik s
∗
ikGiksik ⊇ GkjGki.

Using this inclusion and the inclusion with i and k interchanged, we
obtain

GijGik = (siks
∗
ik)GijGik(siks

∗
ik)

= sik(s
∗
ikGijGiksik)s

∗
ik

⊇ s∗kiGkjGkiski
⊇ GijGik.

This shows that inclusion (4.1.6) is, in fact, an equality. Since it is equivalent
to equality (4.1.5), we are done. □

From Lemma 4.1.3, it follows that for all i, j, k ∈ I, the isomorphism fik
induces an isomorphism

(4.1.7) fijk : Gi/GijGik → Gk/GkiGkj .

Lemma 4.1.4. For any i, j, k ∈ I,

(4.1.8) fjkifkijfijk = id .

Proof. For any s ∈ Gi, we have

fjkifkijfijk(GijGiks) = fjkifkij(GkiGkjs
∗
iks sik)

= fjki(GjiGjks
∗
kjs

∗
iks sikskj)

= GijGiks
∗
jis

∗
kjs

∗
iks sikskjsji.

By the definition of the relations sij , both sets s∗jis
∗
kjs

∗
ik and sikskjsji contains

the diagonal 1Ωi . Therefore the right-hand side of the above equality equals
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the coset of GijGiks. Thus the composition on the left-hand side of (4.1.8)
is the identity map, as required. □

To summarize all the above, let us introduce a concept of system of
linked quotients. Namely, suppose we are given

(F1) a family G of groups Gi, i ∈ I;
(F2) a family S is subgroups Gij ⊴ Gi with Gii = ei, i, j ∈ I;
(F3) a family F of group isomorphisms fij : Gi/Gij → Gj/Gji with

fii = fijfji = id, i, j ∈ I.

The triple (G,S,F) is called a system of linked quotients based on G if for
all i, j, k ∈ I, relations (4.1.5) and (4.1.8) hold. By Lemmas 4.1.2, 4.1.3,
and 4.1.4, we have the following statement.

Theorem 4.1.5. Let G = {Gi}i∈I be a family of groups and X a G-
configuration. Denote by S and F the families of the groups Gij and iso-
morphisms fij defined by formulas (4.1.1) and (4.1.3), respectively. Then

T (X ) := (G,S,F)

is a system of linked quotients.
Let us give two examples of G-configurations X , where the families S

and F have especially simple forms.

Example 4.1.6. Let X be a direct sum of schemes. Then for all i, j ∈ I,
the group Gij equals Gi and the isomorphism fij is trivial.

Example 4.1.7. Let X be semiregular. Then the groups Gi are pairwise
isomorphic, the groups Gij are the identity ones, and the isomorphisms fij
are of the form fs, where s runs over a system of distinct representatives
defined in statement (3) Exercise 2.7.13.

Let T be a system of linked quotients defined by the conditions (F1),
(F2), and (F3). In what follows, we find a G-configuration X such that

T = T (X ).

Recall that Ω is the disjoint union of Ωi = Gi and αi is a point of Ωi
corresponding to the identity ei of Gi, i ∈ I. Set

(4.1.9) sij =
⋃
s∈Gi

αis × αjfij(Gijs), i, j ∈ I.

Clearly, sij ⊆ Ωi × Ωj and sii = 1Ωi . Moreover, given x ∈ Gi,

(4.1.10) x · sij =
⋃
s∈Gi

αi(xs) × αjfij(Gijxs).

Lemma 4.1.8. For any i, j ∈ I, the relations r · sij, r ∈ Gi, form a
partition of Ωi × Ωj.

Proof. We have to verify that if x, y ∈ Gi, then the relations x · sij and
y · sij are disjoint or coincide. To this end, we assume that x · sij and y · sij
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have a common pair (α, β). Then formula (4.1.10) implies that there exists
s ∈ Gi such that

{α} = αis and β ∈ βjfij(Gijxs) ∩ βjfij(Gijys).

It follows that the two right cosets fij(Gijxs) and fij(Gijys) of the
same group Gji ≤ Gj are intersected. However, this is possible only if
Gijx = Gijy. But then x = y · z for some z ∈ Gij . Taking into account that
z · sij = sij , we obtain

x · sij = (y · z) · sij = y · (z · sij) = y · sij
as required. □

Denote by S the union of the sets

Sij = {x · sij | x ∈ Gi}, i, j ∈ I.

From Lemma 4.1.8, it follows that S forms a partition of Ω2. In fact, the
pair X = (Ω, S) is a rainbow. Indeed, the condition (CC1) is satisfied,
because 1Ω is the disjoint union of ei, i ∈ I.

To verify the condition (CC2), it suffices to verify that s∗ij = sji for
all i, j ∈ I. However this is true, because if α ∈ Ωi and β ∈ Ωj , then

(α, β) ∈ sij ⇔ fij(Gijs) = Gjit and (β, α) ∈ sji ⇔ fji(Gjit) = Gijs

with s = r(αi, α) and t = r(αj , β), and the right-hand sides of the implica-
tions are equivalent by the condition (F3).

Lemma 4.1.9. The rainbow X is a quasiregular G-configuration such
that T (X ) = (G,S,F).

Proof. We need to verify the condition (CC3) only, or equivalently, that
given s = x · sij and r = y · sjk, the matrix AsAr is a linear combination of
the matrices At, t ∈ S. Take z ∈ Sk so that ysjk = sjkz. Then

AsAr = AxsijAsjkz = Ax(AsijAsjk)Az.

Since obviously AxAtAz = Ax·t·z for all t ∈ Sik, it suffices to prove that
AsijAsjk is a linear combination of the matrices At, t ∈ Sik.

Let t ∈ Sik. We have to verify that the number |αsij ∩ βskj | does not
depend on (α, β) ∈ t. By the definition of the relations sij and skj , we have

αsij = αjGjiu and βskj = αjGjkv,

where the relations u, v ∈ Gj are such that fij(Gijr(αi, α)) = Gjiu and
fjk(Gjkr(αk, β)) = Gjkv. Thus,

|αsij ∩ βskj | = |Gjiu ∩Gjkv|.

The number on the right-hand side is equal to |Gji∩Gjk| whenever αsij∩βskj
is not empty. Thus it remains to verify that the latter property does not
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depend on (α, β) ∈ t, or more generally, that

(4.1.11) sij · sjk =
⋃

x∈Gij

x · sik,

Using the fact that fjkfij and fik coincide on the cosets of GikGij in Gi
(see identity (4.1.8)), we have

α sijsjk = (αsij)sjk = (αjfij(Gijw))sjk

⊆ αkfjk(fij(Gijw)) = αkfik(Gijw)

= αkfik(GikGijw) = α
⋃

x∈Gij

x · sik,

where w = r(αi, α). Thus the left-hand side of formula (4.1.11) is contained
in the right-hand side. Conversely, if x ∈ Gij , then

x · sik ∈ sijsji sik ⊆ sij
⋃

y∈Gji

ysjk =
( ⋃
y∈Gji

sijy
)
sjk = sijsjk,

which completes the proof of the claim. □

Corollary 4.1.10. The mapping X 7→ T (X ) from the G-configurations
to the systems of linked quotients based on G is one-to-one.
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4.1.2 General Klein configurations

Let G be a Klein group (an elementary abelian group of order 4). A
G-configuration X is said to be Klein if Gi = G for all i. It is convenient to
consider a semiregular action of G on Ω such that

Orb(G,Ω) = F (X ) = {Ωi : i ∈ I},

where the Ωi are as in Subsection 4.1.1. Thus, X is a quasiregular coher-
ent configuration and the homogeneous component XΩi is a regular scheme
associated with the group GΩi , i ∈ I.

Example 4.1.11. Up to isomorphism, there are exactly three distinct
Klein configurations of degree 8: semiregular of rank 16, the direct sum of
rank 10, and the coherent configuration of rank 12.

Let us analyze the system T (X ) of linked quotients that is defined by
the Klein configuration X . The first three statements of the lemma below
are immediate consequences of the fact that |G| = 4 and the condition (F2);
the fourth one immediately follows from Exercise 4.7.3.

Lemma 4.1.12. Given i, j ∈ I, we have

(1) |Gij | = 2 or Gij ∈ {ei, G};
(2) |Gij | = |Gji|;
(3) fij is uniquely determined unless Gij = ei;
(4) |Sij | = [G : Gij ] and ns = |Gij | for s ∈ Sij.

For each i, j ∈ I, the explicit form of a relation belonging to the set Sij is
given in Lemma 4.1.8 in terms of the relation sij defined by formula (4.1.9).
The graph of sij has one of the forms depicted in Fig. 4.1.
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Figure 4.1 The relations sij for |Sij | = 1, 2, and 4, respectively.

Example 4.1.13. Let |Sij | = 2. Then

Gij = {ei, s} and Gji = {ej , t}

for some irreflexive relations s ∈ Gi and t ∈ Gj. Moreover, ei ∪ s and ej ∪ t
are parabolics of the schemes XΩi and XΩj , respectively; denote the classes
of these two parabolics by ∆1,∆2 and Γ1,Γ2. Then

Sij = {∆1 × Γ1 ∪ ∆2 × Γ2, ∆1 × Γ2 ∪ ∆2 × Γ1}.
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Let us define a relation ∼ on the set I so that

(4.1.12) i ∼ j ⇔ Gij = ei (⇔ |Sij | = 4).

This relation is obviously reflexive and symmetric. If i ∼ j and j ∼ k,
then Sij and Sjk consist of thin relations (statement (4) of Lemma 4.1.12).
Therefore the set Sij · Sjk consists of thin relations (Lemma 2.1.24). Thus,
i ∼ k again by statement (4) of Lemma 4.1.12. Consequently, the relation ∼
is transitive and hence is an equivalence relation.

Let J ⊂ I be a system of distinct representatives of the classes of the
equivalence relation ∼. Then the union

(4.1.13) ΩJ =
⋃
i∈J

Ωi

is a homogeneity set of X . In accordance with Exercise 4.7.5, the Klein
configuration XΩJ

does not depend (up to isomorphism) on the choice of J .
In what follows, XΩJ

is called a reduction of X .

Lemma 4.1.14. Every Klein configuration X is schurian (respectively,
separable) if so is a reduction of X .

Proof. Let J be as above. Then for any i ∈ I \J , there exists j ∈ J such
that i ∼ j and hence Sij consists of thin relations. It follows that X satisfies
condition (3.3.14) for ∆ = ΩJ . Thus the required statement immediately
follows from statement (2) of Lemma 3.3.20. □

Lemma 4.1.14 shows that if we are interested in the schurity or separa-
bility problems for the Klein configurations, then without loss of generality
we can restrict ourselves to reduced configurations defined as follows.

Definition 4.1.15. A Klein configuration is said to be reduced if it
coincides with any of its reductions.

Certainly, X is reduced if and only if the equivalence relation ∼ is trivial,
or equivalently, |Sij | ≤ 2 for all distinct i, j ∈ I. Note that the class of
reduced Klein configurations is closed under algebraic isomorphisms and
taking restrictions and direct sums.

Proposition 4.1.16. Every reduced Klein configuration is uniquely
determined by the family of the associated groups Gij ≤ G, i, j ∈ I. These
groups satisfy the relations

(4.1.14) Gij = Gik, |Gij | = 2, j ̸= k ⇒ Gji = Gjk

for all i, j, k ∈ I.
Proof. Let X and X ′ be reduced Klein configurations. Assume that

Gij = G′
ij for all i, j ∈ I. Then by statements (1) and (4) of Lemma 4.1.12,

|Sij | = |S′
ij | ∈ {1, 2, 4}, i, j ∈ I.
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Now if |Sij | = 4, then i = j (because X is reduced) and hence Sij = Gi = S′
ij .

Furthermore, if |Sij | = 1, then Sij = {Ωi × Ωj} = S′
ij . Finally, if |Sij | = 2,

then the required statement follows from Example 4.1.13.
To prove relation (4.1.14), we assume that Gij = Gik, |Gik| = 2, and

j ̸= k. In view of condition (4.1.5),

[Gi : GijGik] = [Gj : GjiGjk].

Since |Gi| = 4 = |Gj |, it follows that

2 = |Gij | = |GijGik| = |GjiGjk|.

Taking into account that |Gji| = |Gij |, we conclude that Gjk ≤ Gji which
completes the proof unless Gjk = ej . In the latter case, the fact that the
Klein configuration in question is a reduced one implies j = k, in contrary
to the assumption. □

With any reduced Klein configuration, one can associate a graph X with
vertex set I and arc set

D = {(i, j) ∈ I × I : |Sij | = 2}.

Since |Sij | = |Sji|, this graph can be considered as an undirected one. Each
algebraic isomorphism between two reduced Klein configuration induces an
isomorphism of the corresponding graphs. As the following example shows,
the converse is not true.

Example 4.1.17. Let I = {1, 2, 3, 4}, and let X be a Klein configuration
of degree 16 represented by a family S = {Gij} defined by

S =


1 A A B
A 1 A C
A A 1 G
B C G 1

 ,

where A, B, and C are the proper non-identity subgroups of G. The graph X
associated with X is depicted below and has an automorphism interchanging
vertices 3 and 4.

The scheme XΩ3 has a unique parabolic with two classes of the form ss∗

for some s ∈ S(X ), namely A. However, the scheme XΩ4 has two such
parabolics, namely B and C. Thus no algebraic automorphism of X inter-
changes the fibers Ω3 and Ω4.

1 2

3 4
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The structure of the graph X imposes some restrictions to the Klein
configuration X . For example, the latter is the direct sum of the Klein
configurations corresponding to the connected components of X. More in-
formation about X can be obtained from the cliques of X. Let us discuss
this in detail.

Let J ⊆ I be a clique of X, or equivalently, |Sij | = 2 for all distinct
i, j ∈ J . The clique J is said to be regular if for all i ∈ J ,

(4.1.15) Gij = Gik for all j, k ∈ J \ {i}.

Clearly, any edge of X forms a regular clique. In Example 4.1.17, the set
{1, 2, 3} is a regular clique, whereas {1, 2, 4} is not.

Some properties of regular cliques are given in the following statement,
where L = L(X ) denotes the set of all maximal regular cliques of the graph X
associated with a reduced Klein configuration X .

Lemma 4.1.18. Suppose that the graph X has no isolated vertices. Then

(1) |J | ≥ 2 for all J ∈ L;
(2) |J ∩ J ′| ≤ 1 for all distinct J, J ′ ∈ L;
(3) any vertex of X belongs to at most three cliques from L.

Proof. Statement (1) is obvious. To prove statement (2), we assume
that cliques J, J ′ ∈ L have at least two distinct common vertices, say a
and b. We have to check that J = J ′, or equivalently, that given i ∈ J \ J ′

and i′ ∈ J ′ \ J , we have

Gix = Gii′ and Gi′i = Gi′x

for each x ∈ {a, b}.
By formula (4.1.14), it suffices to verify the first equality. Without loss

of generality, we may assume that x = a. Then by that formula,

Gia = Gib ⇒ Gai = Gab and Gi′a = Gi′b ⇒ Gai′ = Gab.

It follows thatGai = Gai′ . By formula (4.1.14) again, Gia = Gii′ , as required.
To prove statement (3), let i ∈ I. Given a clique J ∈ L containing i, the

group G(J) = Gij does not depend on j ∈ J \ {i}. By formula (4.1.14), the
mapping J 7→ G(J) is injective. Since the image of this mapping consists
of proper subgroups of the Klein group G, the vertex i belongs to at most
three cliques from L. □

Let X be a reduced Klein configuration. In the notation and assumption
of Lemma 4.1.18, denote by G = G(X ) an incidence structure with point
set I, line set L, and incidence relation containing all pairs i ∈ I and J ∈ L
such that i ∈ J . By statements (1) and (2) of that lemma, any line contains
at least two points, and two distinct points belong to at most one common
line. Thus, G is a partial linear space in the sense of [117]. The following
statement is an immediate corollary of statement (3) of Lemma 4.1.18.
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Figure 4.2 Exceptional partial linear spaces; all 2-point lines are
excluded.

Corollary 4.1.19. Let X be a reduced Klein configuration. Assume that
the associated graph has no isolated vertices. Then, G(X ) is a partial linear
space in which any point belongs to at most three lines.

Especially simple situation arises when the graph associated with a re-
duced Klein configuration X is complete; in this case the Klein configu-
ration X is said to be geometric. The name is justified by the following
statement.

Theorem 4.1.20. Let X be a geometric Klein configuration. Then the
partial linear space G(X ) is a projective or affine plane of order 2, or one of
the four linear spaces in Fig. 4.2, or has exactly one line.

Proof. By the hypothesis, for any two distinct points of G(X ) there is
a unique line containing both of them. Without loss of generality we may
assume that G(X ) has at least two lines. Then it is a linear space in the sense
of monograph [11]. We claim that this linear space satisfies the following
conditions:

(LS1) the number of points is at most 7;
(LS2) each point belongs to at most 3 lines;
(LS3) each line contains at most 3 points.

Indeed, (LS2) follows from Corollary 4.1.19, and (LS1) is a consequence
of (LS2) and (LS3). To prove (LS3), we assume the contrary. Then any
point not in a line containing at least 4 points belongs to at least 4 lines.
However, this is impossible by (LS2).

Checking the list of all small linear spaces given in [11, p. 190–191], one
can find those satisfying the conditions (LS1)–(LS3). Among them, there are
an affine plane of order 2 and the Fano plane; the other four are presented
in Fig. 4.2. □
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4.1.3 Klein configurations from cubic graphs

A reduced Klein configuration X is said to be cubic if the following
condition is satisfied for all i, j, k ∈ I:

(4.1.16) |Gij | = 2 and Gij = Gik ⇒ j = k.

In other words, for a fixed i ∈ I all the groups Gij of order 2 must be
different. In particular, the Klein configuration from Example 4.1.17 is not
cubic. The following lemma shows how to construct all cubic configurations.

Lemma 4.1.21. An undirected graph X is the graph associated with a
cubic configuration if and only if the valency of any vertex of X is at most 3.

Proof. The necessity immediately follows from condition (4.1.16) and
the fact that the Klein group G has exactly three subgroups of order 2.
Conversely, let X be an undirected graph in which the valency of each vertex
is at most 3. For each i ∈ I,

• set Gi = G and Gii = ei;
• for any neighbor j of i in X, choose a proper non-identity subgroup
Gij ≤ G so that Gij ̸= Gik for j ̸= k;

• put Gij = G for all j other than i and not adjacent with i.

The obtained families G = {Gi} and S = {Gij} obviously satisfy the
conditions (F1) and (F2), and the relation (4.1.14) holds trivially. Hence
by Exercise 4.7.7, there exists a reduced Klein configuration X such that
T (X ) = (G,S,F) for a certain family F. By the construction, this configu-
ration is cubic and X is the graph associated with X . □

Let us study the isomorphisms of a cubic configuration X that leave each
fiber fixed. For an arc (i, j) of the associated graph X, let eij ∈ Sym(Ωi) be
a unique involution of the group Gij . Then

(4.1.17) g(i,j) =
∏
k∈I

hk, where hk =


eij , if k = i,

eji, if k = j,

ek, otherwise,

is a permutation of the set Ω.

Lemma 4.1.22. Given i, j, a, b ∈ I, the permutation g(i,j) leaves each
relation in Sab fixed unless

(4.1.18) (a, b) ∈ D and |{a, b} ∩ {i, j}| = 1.

In the latter case, g(i,j) interchanges the two relations in Sab. In particular,

g(i,j) ∈ Iso(X ).

Proof. Given s ∈ Sab, the definition of g(i,j) implies that

(a, b) ̸∈ D or {a, b} ∩ {i, j} = ∅ ⇒ sg(i,j) = s,

where D = D(X).
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Let (a, b) ∈ D. Then the set Sab contains exactly two relations, say sab
and tab, see Example 4.1.13. If {i, j} = {a, b}, then obviously,

(sab)
g(i,j) = sab and (tab)

g(i,j) = tab.

Let {a, b} ∩ {i, j} be a singleton, say a = i and b ̸= j. Then in the
notation of Example 4.1.13, the permutation g(i,j) interchanges the sets ∆1

and ∆2, and leaves the sets Γ1 and Γ2 fixed (as sets). Thus,

(sab)
g(i,j) = tab and (tab)

g(i,j) = sab,

as required. □

Let P = (i0, . . . , id) be a path of length d connecting the vertices i0
and id in the graph X. Then by Lemma 4.1.22, the permutation

(4.1.19) gP =
d∏

k=1

g(ik−1,ik)

is an isomorphism of the Klein configuration X . It is easily seen that

(4.1.20) gP−1 = (gP )
−1 and gP ·Q = gP gQ,

where P−1 = (id, . . . , i0) and P ·Q is the path obtained by the composition
of P and Q (providing that the last vertex of P coincides with the first
vertex of Q).

Denote by φP the algebraic automorphism of X induced by gP ,

(4.1.21) φP = φgP .

Obviously, φP ∈ Sym(S) is the identity or an involution identical on each
homogeneous component of X .

Lemma 4.1.23. Let X be a cubic Klein configuration, X the associated
graph, and P a path of X. Then

(1) if P = (i, j), then φP |Sab
̸= id if and only if relation (4.1.18) holds;

(2) if P is a closed path, then gP ∈ Aut(X ).

Proof. Statement (1) follows from Lemma 4.1.22. If the path P is
closed, then by statement (1) and the second formula in (4.1.20) the algebraic
automorphism φP acts trivially on S. This means that gP ∈ Aut(X ). □

By statement (2) of Lemma 4.1.23, the automorphism group of a cubic
configuration X contains a subgroup generated by the permutations gP ,
where P is a closed path of the graph X associated with X . However, this
group is trivial if the graph contains no cycles. At the same time, the group
Aut(X ) can be as large as possible, for example, if X is the empty graph.

There are many non-schurian and non-separable cubic Klein configura-
tions. Any of them has at least four fibers (Exercise 2.7.34). The smallest
example of a non-schurian Klein configuration is given below; concerning
non-separable examples, see Lemma 4.2.6.



4. DEVELOPMENTS 239

Example 4.1.24. Let I = {1, 2, 3, 4}, and let X be a cubic Klein con-
figuration of degree 16 represented by the family S = {Gij} defined by

S =


1 C A B
C 1 B A
A B 1 G
B A G 1

 ,

where A, B, and C are the proper subgroups of G. The graph X associated
with X is the same as in Example 4.1.17.

A straightforward check shows that any pair (α, β) ∈ Ω1 × Ω2 forms a
base of the coherent configuration X . This implies that

Aut(X )α,β = Aut(Xα,β) = 1.

Therefore,
|Aut(X )| ≤ |Ω1|ns = 8 < 16 = |Ω3 × Ω4|,

where s = r(α, β). Consequently, the basis relation Ω3 × Ω4 of X cannot
be a 2-orbit of the group Aut(X ). Thus the Klein configuration X is not
schurian.

We complete the subsection by establishing a sufficient condition for a
cubic Klein configuration to be schurian; one more condition is given in
Exercise 4.7.10).

Theorem 4.1.25. A cubic Klein configuration is schurian whenever the
associated graph is 3-connected.

Proof. We make use of the following property of a 3-connected graph:
any its edge {i, j} lies in a cycle not containing a given vertex other than i
and j. This is true, because the subgraph obtained from the graph in ques-
tion by removing the vertex is 2-connected and so has a cycle containing the
edge {i, j}.

Let X be a cubic Klein configuration and X = (I,D) the associated
graph. Assume that X is 3-connected. Given distinct vertices i, j ∈ I, we
choose a set Ci,j of cycles of X as follows:

• if {i, j} is an edge of X, then Ci,j consists of a cycle passing through i
but not through j, a cycle passing through j but not through i, and a cycle
passing through the edge {i, j};

• if {i, j} is not an edge of X, then Ci,j consists of four distinct cycles, each
of which contains an edge {x, y} with x ∈ {i, j} and y ̸∈ {i, j}, and does not
contain the vertex in {i, j} other than x.

Since the graph X is cubic, we may assume that the cycles in Ci,j are
chosen so that each of them contains an edge not belonging to the other
cycles.
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Denote by K the group generated by the permutations gP with P ∈ Ci,j
and i ̸= j. Then K ≤ Aut(X ) by statement (2) of Lemma 4.1.23. Therefore,

(4.1.22) Kij ≤ Aut(Xij),

where Kij = KΩij and Xij = XΩij with Ωij = Ωi ∪ Ωj .
By the choice of the sets Ci,j and formulas (4.1.17) and (4.1.19), we have

(4.1.23) |Kij | ≥ 2|Ci,j | =

{
8, if (i, j) ∈ D,

16, otherwise.

On the other hand, the homogeneous components of Xij are regular. There-
fore any points α ∈ Ωi and β ∈ Ωj form a base of the group Aut(Xij).
Consequently if s = r(α, β), then

|Aut(Xij)| ≤ |Ωi|ns = |s| =

{
8, if (i, j) ∈ D,

16, otherwise.

In view of formulas (4.1.23) and (4.1.22), this implies that

Aut(Xij) = Kij .

Since the coherent configuration Xij is schurian (Exercise 2.7.34), this shows
that

Sij = Orb(Aut(Xij),Ωij) = Orb(Kij ,Ωij) = Orb(K,Ωij),

for all i, j ∈ I. Taking into account that K ≤ Aut(X ), we conclude that the
coherent configuration X is schurian. □
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4.2 Highly closed coherent configurations

Theory of multidimensional extensions developed in Section 3.5 leaves
a question: to what extent a non-schurian coherent configuration or an
algebraic isomorphism not induced by a combinatorial one, can be closed?
The answer we obtain in this section is that there exists a constant ε > 0 such
that for a sufficiently large n, there is a non-schurian ⌊cn⌋-closed coherent
configuration of degree n and an ⌊cn⌋-automorphism of it that is not induced
by a combinatorial one. In the proof of this result we follow [38].

In fact, the constant c is less than 1/3 [40]. This inequality is proved
with the help of a useful technique generalizing the concept of the t-condition
for colored graphs. In the last part of this section, this technique is used
to show that the classical schemes of distance-regular graphs are “almost”
schurian and separable.

4.2.1 High non-schurity and non-separability

Let us introduce a terminology which is convenient to formulate results
in the theory of multidimensional extensions. To this end, let m ≥ 1 be an
integer, X a coherent configuration, and φ an algebraic isomorphism from X
to another coherent configuration. Theorem 3.5.22 says that the greater m
is, the more X (m) and φ(m) look like a schurian coherent configuration and
an algebraic isomorphism induced by isomorphism, respectively.

Definition 4.2.1. A coherent configuration X is said to be

(1) m-schurian if X (m) = Inv(Aut(X ));
(2) m-separable if Isom(X ,X ′) = Iso∞(X ,X ′) for all X ′.

From Theorem 3.5.22, it follows that an m-schurian (respectively, m-
separable) coherent configuration is m′-schurian (respectively, m′-separable)
for all m′ ≥ m. In particular, any schurian coherent configuration is m-
schurian for all m, and any separable coherent configuration is m-separable
for all m. Furthermore by the same theorem, any coherent configuration of
degree n is m-schurian and m-separable for all m ≥ n.

Definition 4.2.2. The minimal number m for which X is m-schurian
(respectively, m-separable) is called the schurity number (respectively, the
separability number) and denoted by t(X ) (respectively, s(X )).

By Theorem 3.5.22,

(4.2.1) 1 ≤ t(X ) ≤ b(X ) + 1 and 1 ≤ s(X ) ≤ b(X ) + 1.

Obviously, t(X ) = 1 (respectively, s(X ) = 1) if and only if the coherent
configuration X is schurian (respectively, separable).

The example of a trivial scheme shows that s(X ) and t(X ) can be rather
far from b(X ). On the other hand, there are nontrivial examples for which
the equalities are attained. Indeed, let X be the scheme of a strongly regular
graph X on 26 points of valency 10 marked as #4 in [123, p.176]. Then a
straightforward check shows that b(X ) = 1. Since the group Aut(X ) is not
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transitive, the scheme X is not schurian and hence t(X ) ≥ 2. In addition,
s(X ) ≥ 2, because there exist several strongly regular graphs with the same
parameters as X.

In some cases, the upper bounds for t(X ) and s(X ) can be reduced
by one. This is an almost immediate consequence of Theorems 3.5.10
and 3.3.19.

Theorem 4.2.3. Let X be a coherent configuration admitting a partly
regular extension with respect to m− 1 points (m ≥ 1). Then t(X ) ≤ m and
s(X ) ≤ m.

Proof. Let X̂ = X̂ (m) and X = X (m). By Theorem 3.5.10, the coherent

configuration X̂ is partly regular. This implies that X̂ is schurian and sep-

arable (Theorem 3.3.19). Since X is isomorphic to the restriction of X̂ to a

homogeneity set ∆ = Diag(Ωm), the schurity of X̂ implies the schurity of X
(statement (3) of Exercise 2.7.21). Thus, X is m-schurian and t(X ) ≤ m.

Let φ ∈ Isom(X ,X ′) for some X ′. Then φ is induced by the algebraic
isomorphism

φ̃ = φη φ̂∆ φ
−1
η′

from X to X ′
, where η and η′ are the injections defined by formula (3.5.10)

for Ω and Ω′, and φ̂ is the m-dimensional extension of φ. Thus, it suffices
to verify that φ̃ is induced by an isomorphism. However, this follows from

the separability of X̂ . Thus,

φ ∈ Iso∞(X ,X ′).

Consequently, X is m-separable and s(X ) ≤ m. □

In the rest of the subsection, we prove Theorem 4.2.4 below, showing that
the inequalities in Theorem 4.2.3 are asymptotically optimal in the sense
that the schurity and separability numbers of a coherent configuration X
can be close to its degree up to a linear factor.

Theorem 4.2.4. There exist a positive real c < 1, an infinite sequence of
integers n ≥ 1, and coherent configurations Xn and Yn of degrees n and 2n,
respectively, such that

(4.2.2) s(Xn) ≥ ⌊cn⌋ and t(Yn) ≥ ⌊cn⌋.

More careful analysis shows that the coherent configurations satisfying
these inequalities, exist for all sufficiently large n [38] and can be chosen
homogeneous (Exercise 4.7.15). The proof of Theorem 4.2.4 is given in the
end of the subsection.

First, we establish a sufficient condition for an algebraic isomorphism to
be an m-isomorphism. To this end, denote by Fk(X ) the set of all unions of
at most k fibers of the coherent configuration X .

Lemma 4.2.5. Let φ ∈ Isoalg(X ,X ′) and k a positive integer. Suppose
that
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(i) for any ∆ ∈ Fk(X ), there exists h(∆) ∈ Iso(X ,X ′) such that

(φh(∆))∆ = φ∆,

where φh(∆) is the algebraic isomorphism induced by h(∆);
(ii) for any ∆,Γ ∈ Fk(X ), there exists h(∆,Γ) ∈ Aut(X ) such that

h(∆)∆∩Γ = h(∆,Γ)∆∩Γ h(Γ)∆∩Γ.

Then for any positive integer m such that 3m ≤ k, we have φ ∈ Isom(X ,X ′).

Proof. Let s be a basis relation of the coherent configuration X̂ = X̂ (m).
Then there exist s1, . . . , sm ∈ S such that s ⊆ s1 ⊗ · · · ⊗ sm. It follows that

s ∈ S(X̂ )∆m , where ∆ = Ω(s1) ∪ · · ·Ω(sm). In particular,

∆ ∈ F2m(X ) ⊆ Fk(X ).

Now if Ω(s) ⊆ Γm for some Γ ∈ Fk(X ), then the condition (ii) implies
that

sh(∆) = sh(∆,Γ)h(Γ) = sh(Γ).

Thus the basis relation s′ = sh(∆) of the coherent configuration X̂ ′ = X̂ ′ (m)

does not depend on ∆ ∈ Fk(X ). This enables us to define a mapping

ψ : S(X̂ ) → S(X̂ ′), s 7→ s′.

Obviously, ψ is a bijection.

Now let r, s ∈ S(X̂ ). Assuming r · s ̸= ∅, one can find a homogeneity

set ∆ ∈ F3m(X ) such that r, s ∈ S(X̂ )∆m . Since 3m ≤ k, the condition (i)
yields

ψ′(Ar As) = (Ar As)
h(∆) = (Ar)

h(∆) (As)
h(∆) = ψ′(Ar)ψ

′(As),

where ψ′ : Adj(X̂ ) → Adj(X̂ ′) is a linear isomorphism induced by ψ as
in (2.3.14). By Proposition 2.3.17, this implies that

ψ ∈ Isoalg(X̂ , X̂ ′).

In view of the condition (i), the restriction of the algebraic isomor-
phism ψ to ∆m extends the m-extension of the algebraic isomorphism φ∆

for all ∆ ∈ Fk(X ). Therefore, ψ is the m-extension of φ. □
We are going to apply Lemma 4.2.5 to a cubic Klein configuration X with

fibers Ωa, a ∈ I, and an algebraic automorphism of X defined as follows.
Denote by X the graph associated with X , see p. 234. For each arc (a, b)

of this graph, the set
Sab = S(X )Ωa,Ωb
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consists of exactly two relations; if s is one of them, then the other is denoted
by s′. It is easily seen that the mapping ψa,b : S(X ) → S(X ) such that

ψa,b(s) =

{
s′, if s ∈ Sij and {i, j} = {a, b},
s, otherwise

is an algebraic automorphism of the coherent configuration X . It follows
that so is the mapping

(4.2.3) ψa =
∏

b∈X(a)

ψa,b,

where X(a) is the neighborhood of a in X. Clearly, this algebraic isomor-
phism is an involution (which is the product of at most three transpositions).

In the following lemma presenting important properties of ψa, under a
separator of the graph X, we mean a set J of its vertices such that each
connected component of the graph X− J (obtained from X by removing all
the vertices of J) contains at most half vertices of X.

Lemma 4.2.6. In the above notation, suppose that the graph X is cubic.
Then for any vertex a of this graph,

(1) the algebraic isomorphism ψa is not induced by a permutation;
(2) ψa ∈ Isom(X ) if X is connected and has no separators of cardinality

less than or equal to 3m.

Proof. Denote by Φ the set of algebraic automorphisms of X leaving
each fiber of X fixed. For any φ ∈ Φ, set t(φ) to be the cardinality of the
set

T (φ) = {{i, j} ⊂ I : φSij∪Sji ̸= id}.
One can easily see that

t(ψa) = 3.

Therefore to prove statement (1), it suffices to verify that for any permuta-
tion g ∈ Sym(GI) (recall that G is the Klein group associated with X ) such
that φg ∈ Φ, we have

(4.2.4) t(φg) = 0 (mod 2).

However, if g, h ∈ Sym(GI) are such that φg, φh ∈ Φ, then

t(φgh) = t(φg) + t(φh)− 2|T (φg) ∩ T (φh)|,

which implies that

t(φgh) = t(φg) + t(φh) (mod 2).

On the other hand, since X is a cubic graph, the definition of cubic Klein
configuration implies that t(φg) = 2 for each involution g ∈ GI such that
gi ̸= id for exactly one i ∈ I. Thus formula (4.2.4) holds for every φg ∈ Φ.
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To prove statement (2), it suffices to verify that the conditions (i) and (ii)
of Lemma 4.2.5 are satisfied for φ = ψa and k = 3m. Let ∆ ∈ Fk(X ). Denote
by C∆ the vertex set of a largest connected component of the graph X−J∆,
where

J∆ = {i ∈ I : Ωi ⊂ ∆}.
Choose arbitrarily a vertex b∆ ∈ C∆ and a path P = P∆ connecting

a and b in the graph X. Then obviously, Ωb ̸⊂ ∆. So by statement (1) of
Lemma 4.1.23,

φP = ψaψb,

where φP is the algebraic isomorphism defined by formula (4.1.21). There-
fore,

(φP )∆ = (ψa)∆.

Thus the condition (i) is satisfied for the isomorphisms h(∆) := gP .
Let ∆,Γ ∈ Fk(X ). By the hypothesis of statement (2), the sets J∆

and JΓ are not separators of the graph X. Therefore, both C∆ and CΓ

contain more than half vertices of X. Consequently,

C∆ ∩ CΓ ̸= ∅.

It follows that there exists a path P ′ connecting the vertices b∆ and bΓ
in the subgraph of X induced by the set C∆ ∪ CΓ. In particular, no vertex
of P ′ belongs to J∆ ∩ JΓ and hence

(gP ′)∆∩Γ = id .

Now if P = P∆ · P ′ · P−1
Γ , then in view of (4.1.20), we have

(gP )
∆∩Γ = (gP∆

gP ′g−1
Γ )∆∩Γ = h(∆)∆∩Γ (h(Γ)−1)∆∩Γ,

Thus the condition (ii) is satisfied for h(∆,Γ) := gP , because P is a closed
path and hence gP ∈ Aut(X ) (statement (2) of Lemma 4.1.23). □

To apply Lemma 4.2.6, we need to find cubic graphs without small sep-
arators. To this end, let X be an undirected graph with vertex set Ω, and
let ε > 0 be a real number.

We say that X is an ε-expander if

(4.2.5) |∂Γ| ≥ ε|Γ|

for every set Γ ⊂ Ω containing at most half of the vertices of X, where ∂Γ
is the set of all vertices outside Γ and adjacent to at least one vertex of Γ.
Some explicit constructions of infinite families of ε-expanders for a fixed ε
can be found in [29].

Lemma 4.2.7. Let X be a ε-expander with n vertices. Then X has no
separator of cardinality less than ⌊cεn⌋, where cε = ε

4+ε .

Proof. Let ∆ be a separator of X. Denote by k the minimal number
of classes in the partition Ω \∆ into the sets Γ1, . . . ,Γk such that for each
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index i = 1, . . . , k,

(4.2.6) ∂Γi ⊆ ∆ and |Γi| ≤ n/2.

Note that k is less than or equal to the number of connected components
of the graph X −∆. Furthermore among the Γi, there are no two distinct
sets each of cardinality less than n/4, for otherwise one can replace them by
their union. Consequently, k ≤ 4.

On the other hand, conditions (4.2.6) imply that

|∆| ≥ |∂Γi| ≥ ε|Γi|

for all i = 1, . . . , k. Thus,

4 |∆| ≥
k∑
i=1

|∆| ≥ ε
k∑
i=1

|Γi| = ε(n− |∆|).

It follows that (4 + ε) |∆| ≥ εn, as required. □

Proof of Theorem 4.2.4. In accordance with [97, Theorem 5.13],
for every integer d ≥ 1 there exists a cubic vertex-transitive graph Xd with
n(d) = 23d − 2d vertices that is an ε-expander for a positive real constant
ε < 1.1 Our goal is to verify that inequalities (4.2.2) hold for the constant

c = cε/12 and n = 4n(d),

the cubic coherent configuration X := Xn associated with the graph X = Xd,
and the coherent configuration Y := Yn, which will be defined later.

Denote by φ the algebraic isomorphism ψa given by formula (4.2.3),
where a is a vertex of X. By Lemma 4.2.7, this graph has no separators of
size less than or equal to k = ⌊cε n/4⌋ − 1. Therefore by Lemma 4.2.6,

(4.2.7) φ ∈ Isom(X ) \ Iso∞(X ),

where m = ⌊k/3⌋ = ⌊cn⌋, that proves the first inequality in (4.2.2).
The graph X being cubic and vertex-transitive, must be 3-connected

[122, Lemma 4.1]. By Theorem 4.1.25, this implies that the coherent con-
figuration X is schurian. Set

Y = (X1 ⊞ X2)
⟨ψ⟩,

where the coherent configurations X1 = (Ω1, S1) and X2 = (Ω2, S2) are
disjoint copies of X and the algebraic automorphism ψ of the direct sum is
induced by the algebraic isomorphisms

ψ1 ∈ Isoalg(X1,X2) and ψ2 ∈ Isoalg(X2,X1)

1In fact, these graphs are cubic Ramanujan graphs and, in particular, are ε-expanders for
ε ≥ (3− 2

√
2)/2, see, e.g., [98, Sec. 4].
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that coincide with φ. Note that the coherent configuration X1 ⊞ X2 is
schurian by Corollary 3.2.6, and

ψ ∈ Isom(X1 ⊞ X2)

by statement (3) of Exercise 3.7.49. Thus the coherent configuration Y is
m-closed by Theorem 3.5.24.

It remains to verify that Y is not schurian. To this end, denote by e
the equivalence relation with classes Ω1 and Ω2. It is easily seen that e is a
parabolic of Y. Assume on the contrary that the coherent configuration Y
is schurian. Then

Ωf1 = Ω2 for some f ∈ Aut(Y),

because Aut(Y) acts transitively on each fiber of Y and such a fiber intersects
both Ω1 and Ω2.

To get a contradiction, let s ∈ S(X1) ⊆ S(X ). Then

s⟨ψ⟩ = s ∪ ψ(s).

is a basis relation of Y. The automorphism f preserves s⟨ψ⟩. It follows that

sf ⊆ (s ∪ ψ(s)) ∩ Ω2
2 = ψ(s).

Since |sf | = |s| = |ψ(s)|, this implies that sf = ψ(s) = φ(s). This implies
that f induces φ contrary to (4.2.7). □
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4.2.2 Highly regular graphs and the t-condition

The aim of this subsection is twofold. First, we show that the basis
relations of the multidimensional extension of a coherent configuration are
highly regular in a combinatorial sense, which is close to the concept of the
t-condition. Using the developed technique, we can improve a little bit the
trivial upper bounds (4.2.1) for the schurity and separability numbers of a
coherent configuration. More precisely, the following statement is true.

Theorem 4.2.8. For any coherent configuration X of degree n,

t(X ) ≤ ⌈n/3⌉ and s(X ) ≤ ⌈n/3⌉.

Theorem 4.2.8 will be proved in end of the subsection and the proof is
based on the following concept generalizing the concept of the t-condition,
see p. 99. Let X and Y be colored graphs.

Definition 4.2.9. An injective mapping h : Ω(Y) → Ω(X) is called an
embedding of Y into X if

D(Y)h ⊆ D(X) and cX(α
h, βh) = cY(α, β) for all (α, β) ∈ D(Y),

where cX and cY are the coloring of X and Y, respectively. The set of all

embeddings of Y into X is denoted by Emb(Y,X).

Given a mapping g from a subset of Ω(Y) to Ω(X), we define a number

(4.2.8) qX(Y, g) = |{h ∈ Emb(Y,X) : h|Dom(g) = g}|,

where Dom(g) is the domain of g. Thus the number qX(Y, g) is equal to the
number of ways to extend g to an embedding of Y to X.

Let X be a colored graph on Ω and m a positive integer. Given a colored
graph Y, its subgraph Z with

(4.2.9) Ω(Y) ⊆ {1, . . . , 3m} and Ω(Z) ⊆ {1, . . . , 2m},

and an integer d ≥ 0, denote by sX(Y,Z, d) a relation consisting of all pairs
(α, β) ∈ Ωm × Ωm such that there exists g ∈ Emb(Z,X) for which

(4.2.10) qX(Y, g) = d and (α · β)i = ig for all i ∈ Ω(Z).

Definitely, the relation sX(Y,Z, d) is empty if |Ω| less than |Ω(Y)|.
If m = 1, X = X(X ) is a colored graph of a coherent configuration X ,

and the graphs Z and Y have two and three vertices, respectively, then
sX(Y,Z, d) is the union (possibly empty) of color classes of X: indeed, the
numbers qX(·, ·) are equal to sums of the intersection numbers of X . The
following statement generalizes this observation to an arbitrary m, and gives
one more way to construct relations of the m-dimensional extension.

Lemma 4.2.10.

(1) sX(Y,Z, d) is a relation of the coherent configuration X̂ = X̂ (m);
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(2) if φ is anm-isomorphism from X to another coherent configuration,
then

sX(Y,Z, d)
φ̂ = sXφ(Y,Z, d)

where φ̂ = φ̂(m) and Xφ is as in Exercise 2.7.52.

Proof. First, we assume that Y = Z and d = 1. Then sX(Y,Z, d) is
equal to the intersection of the relations

ŝij = {(α, β) ∈ Ωm × Ωm : ((α · β)i, (α · β)j) ∈ sij}

with (i, j) ∈ D(Y), where sij = c−1
X (cY(i, j)). Thus the required state-

ments are immediate consequences of the corresponding statements of Ex-
ercise 3.7.46.

Now let the graphs Y, Z, and integer d be arbitrary. Denote by Q the
set of all triples (α, β, γ) ∈ Ωm × Ωm × Ωm such that

cX((α · β · γ)i, (α · β · γ)j) = cY(i, j)

for all i, j ∈ Ω(Y), and by pra,b(Q) ⊆ Ωm × Ωm the projection of Q to the
coordinates a and b, where a, b ∈ {1, 2, 3}. Thus,

u := pr1,2(Q), v := pr2,3(Q), w := pr1,3(Q)

are relations on Ωm. Each of them is of the form sX(Y
′,Y′, 1), where Y′ is

a colored graph on {1, . . . , 2m}. Therefore, both statements of the lemma
hold true for u, v, and w due to the first part of the proof.

Next, denote by u′ and v′ the intersection of the relations Cyl1Ω(i, i) for
all i ∈ Ω(Z) and for all i with i+m ∈ Ω(Z), respectively. Then the relation
sX(Y,Z, d) consists of exactly those pairs (µ, ν) ∈ Ωm × Ωm for which the
number of triples (α, β, γ) ∈ Ωm × Ωm × Ωm such that

(µ, α) ∈ u′, (α, β) ∈ u, (β, γ) ∈ v, (γ, ν) ∈ v′, (α, γ) ∈ w

is equal to the number k = dn3m−nY , where nY = |Ω(Y)|: indeed each
embedding h ∈ Emb(Y,X) corresponds to exactly n3m−nY triples such that

ih = (α · β · γ)i, i ∈ Ω(Y).

On the other hand, it is easily seen that

k = ((Au′AuAvAv′) ◦Aw)µ,ν .

Note that the adjacency matrices Au, Av, Aw and Au′ , Av′ belong to the

algebra Adj(X̂ ): the first three by the above paragraph, and the second
two by statement (1) of Theorem 3.5.7. This proves statement (1) by the
Wielandt principle (Proposition 2.3.10), and also statement (2) again by the
first part of the proof and statement (2) of Theorem 3.5.7. □

Let us introduce a terminology convenient to deal with relations from
Lemma 4.2.10. Suppose that inclusions (4.2.9) hold for a colored graph Y
and its subgraph Z.
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Denote by sX(Y,Z) the union of all relations sX(Y,Z, d), where d runs
over nonnegative integers. The (colored) graph X on Ω is said to be (Y,Z)-
regular of degree d ≥ 0 with respect to a relation r on Ωm if

r ∩ sX(Y,Z) ⊆ sX(Y,Z, d).

Note that if the left-hand side is nonempty, then the number d is uniquely
determined by the graphs Y and Z, and the relation r; if the left-hand side
is empty, then any nonnegative integer can be taken as d. This enables us
to omit mentioning the degree, and say briefly that X is (Y,Z)-regular with
respect to r. In these terms Lemma 4.2.10 can be formulated as follows.

Corollary 4.2.11. Given r ∈ S(X̂ ) and for all admissible graphs Y,Z,

(1) the graph X is (Y,Z)-regular with respect to r;
(2) if X is (Y,Z)-regular with respect to r, then Xφ is (Y,Z)-regular of

the same degree with respect to φ̂(r).

Let X be an (Y,Z)-regular colored graph of degree d with respect to the
relation r = Ωm × Ωm. Then obviously,

qX(Y, g) = d for all g ∈ Emb(Z,X).

Any colored graph X satisfying this condition for a colored graph Y, its
subgraph Z,2 and a nonnegative integer d, is said to be (Y,Z)-regular of
degree d.

Example 4.2.12. Let X be an undirected graph, and let cX be a coloring
of X such that cX(α, β) = 1 or 2 depending on whether or not (α, β) is an
arc of X or not. Then X is d-regular if and only if the corresponding colored
graph is (Y,Z)-regular of degree d, where

Ω(Z) = {1}, D(Z) = ∅, Ω(Y) = {1, 2}, D(Y) = {(1, 2)}, cY(1, 2) = 1.

The concept of (Y,Z)-regularity enables us to give an equivalent defi-
nition for the t-condition introduced at p. 100 for colored graphs. Namely,
the following statement is straightforward.

Lemma 4.2.13. Let t ≥ 2 be an integer and X a complete colored graph.
Then X satisfies the t-condition if and only if it is (Y,Z)-regular for any
colored graph Y with vertex set {1, . . . , t} and any of its subgraphs Z of the
form

(4.2.11) Ω(Z) = {i, j} and D(Z) = {(i, j)},

where 1 ≤ i, j ≤ t.
We arrive at the main result of this section establishing a relationship

between the m-closed coherent configurations and coherent configurations
whose colored graphs satisfy the m-condition.

2We do not assume here that conditions (4.2.9) are satisfied.
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Theorem 4.2.14. A colored graph of an m-closed coherent configuration
satisfies the 3m-condition.

Proof. Let X be an m-closed coherent configuration. By Lemma 4.2.13,
it suffices to verify that the complete colored graph X = X(X ) is (Y,Z)-
regular for any colored graph Y with

Ω(Y) = {1, . . . , 3m}

and any of its subgraphs Z having the form (4.2.11). By statement (1) of
Corollary 4.2.11, the graph X is (Y,Z)-regular of a certain degree d(r) with

respect to any r ∈ Ŝ, where Ŝ is the set of basis relations of the m-extension
of X .

Let g ∈ Emb(Z,X). In the notation of Exercise 3.7.46, set

Rg = {r ∈ Ŝ : (ig, jg) ∈ pri,j(r)},

recall that i and j are the vertices of Z. Since the coherent configuration X
is m-closed, statement (1) of that exercise implies that Rg does not depend
on g. It follows that the number

qX(Y, g) =
∑
r∈Rg

d(r) =: d

also does not depend on g. Thus the graph X is (Y,Z)-regular of degree d,
as required. □

Proof of Theorem 4.2.8. Let X be a colored graph of a coherent
configuration X of degree n. Denote by Y a colored graph on {1, . . . , n}
isomorphic to X, and by Z the empty subgraph of X with exactly one vertex.
By statement (1) of Corollary 4.2.11, the graph X is (Y,Z)-regular of positive
degree with respect to a basis relation r of the m-extension of X , where

m = ⌈n/3⌉.

By Theorem 4.2.14 the colored graph of the m-closure X of X satisfies
the 3m-condition and hence the n-condition. Consequently, the coherent
configuration X is schurian (Exercise 2.7.62). Thus,

t(X ) ≤ m = ⌈n/3⌉.

Now let φ be an algebraic isomorphism from X to another coherent
configuration. Then by statement (2) of Corollary 4.2.11, the graph Xφ is
(Y,Z)-regular of the same positive degree as X with respect to φ(r). The
definition of the (Y,Z)-regularity implies that that Xφ is isomorphic to Y.
It follows that the composition isomorphism from X to Xφ via Y belongs to
the set Iso(X ,Xφ, φ) (Exercise 2.7.52). Thus,

s(X ) ≤ m = ⌈n/3⌉,

and we are done. □
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4.2.3 Schurity and separability numbers of classical schemes

In this subsection, we calculate the schurity and separability numbers
for several classes of coherent configurations. Some of the results here are
not so deep: they are just interpretations of what is known on the objects
in question (projective planes and distance-regular graphs). However, we
decide to include this material to show how the theory of multidimensional
coherent configurations can be used to establish the results of such a kind
in a uniform way. The theorems below are taken from [45, 40].

Theorem 4.2.15. Let X be the coherent configuration associated with
a projective plane P of order q. Then

(1) t(X ) ≤ O(log log q) and s(X ) ≤ O(log log q);
(2) t(X ) = 1 if and only if P is a Galois plane;
(3) s(X ) ≤ 3 whenever P is a Galois plane.

Proof. Let P and L be the sets of points and lines of P, respectively. A
subset of Ω := P ∪L is said to be closed if it contains each line (respectively,
each point) incident to two different points (respectively, two different lines)
belonging to the subset. The following statement is straightforward.

Lemma 4.2.16. Any closed subset of P that contains a quadrangle forms
a subplane of P.

If a minimal closed set containing ∆ ⊆ Ω coincides with Ω, then ∆
is called a generating set of P. In accordance with Exercise 4.7.19, any
generating set of P is a base of the coherent configuration X .

From [31, Theorem 3.2.17], it follows that a Galois plane is generated
by a quadrangle and a suitable point on one of its sides. So if P is a Galois
plane, then

b(X ) ≤ 5.

Let P be a projective plane and Ω′ the minimal closed subset containing
a quadrangle Q. If Ω′ = Ω, then Q is a generating set of P and hence
b(X ) ≤ 4. Otherwise P contains a proper subplane P ′ (Lemma 4.2.16).

Without loss of generality we may assume that P ′ is a maximal proper
subplane of P. Then any generating set of P ′ together with any element in
Ω \ Ω′ form a generating set of P. This implies that

(4.2.12) b(X ) ≤ 1 + b(X ′),

where X ′ is the coherent configuration associated with P ′.
On the other hand, from [31, Theorem 3.2.18], it follows that given

a projective plane P of order q, any proper closed set of P containing a
quadrangle is a subplane P ′ of P of order at most

√
q. By induction this

fact and inequality (4.2.12) imply that

b(X ) ≤ O(log log q)

and statement (1) follows from inequalities (4.2.1).
Statement (2) follows from Theorem 2.5.3.
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To prove statement (3), we find certain relations of the 3-dimensional

extension X̂ of the coherent configuration X . All of them are obtained from
the basis relations (2.5.1) and (2.5.2) of X with the help of statement (1) of
Theorem 3.5.7. In what follows, Q ∈ {P,L}.

First, we denote by ∆Q the set of all triangles formed by triples of non-
collinear elements of Q,

∆Q = {α ∈ Q3| for no β ∈ Q′ : (αi, β) ∈ sQ, 1 ≤ i ≤ 3},

where Q′ = L or P and sQ = s5 or s6 depending on whether Q = P or L.
Then

∆P ,∆L ∈ F (X̂ )∪,

because ∆Q is equal to the complement of Ω−(tQ) in Q
3, where

tQ = (Q3 ×Diag(Ω3)) ∩ CylsQ(1, 1) ∩ CylsQ(2, 1) ∩ CylsQ(3, 1).

Denote by rQ a relation on Ω3 consisting of all (α, β) ∈ ∆Q ×∆Q such
that there exists γ ∈ Q for which

γ ∈ αiβi, i = 1, 2, 3,

where αiβi is the element of Ω incident to both αi and βi. Thus any pair
belonging to rP (respectively, rL) consists of two triangles formed by three
non-collinear points (respectively, three lines without common point) that
are in perspective from some point (respectively, line), see Fig. 2.4.

One can see that rQ is a relation of X̂ , because

(4.2.13) rQ = xQ ∩ yQ,

where

xQ = ∆Q × Ω−(tQ′) and yQ = CylsQ(1, 1) ∩ CylsQ(2, 2) ∩ CylsQ(3, 3).

Finally, let u be the graph of the natural bijection ∆P → ∆L taking a
triple of points to the triple of lines through any two of these points,

u = {(α, β) ∈ ∆P ×∆L : β1 = α2α3, β2 = α3α1, β3 = α1α2}.

Then u is a relation of X̂ , because

(4.2.14) u =
( ⋂
1≤i ̸=j≤3

Cyls5(i, j)
)
∆P ,∆L

.

Lemma 4.2.17. P is a Galois plane if and only if rP = u · rL · u∗.

Proof. In the above notation, the Desargues theorem for the projective
plane P can be reformulated as follows: α ∈ ∆P if and only if αf ∈ ∆Q,
where f is the bijection defining the relation u. Since this is true if and only
if rP = u · rL · u∗, we are done. □
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Now let P be a Galois plane, X ′ a coherent configuration, and

φ ∈ Iso3(X ,X ′).

Without loss of generality, we assume that X ′ is the coherent configuration
of a projective plane P ′ (Exercise 2.7.44). Since Autalg(X ) is a group of
order 2 and the nontrivial algebraic automorphism of X is induced by the
isomorphism from P to its dual plane, we may also assume that

Pφ = P ′ and Lφ = L′,

where P ′ and L′ are the point and line sets of P ′, respectively (recall that
P,L are the fibers of X , and P ′, L′ are the fibers of X ′).

Comparing the valencies of basis relations, one can easily see that

(4.2.15) φ(si) = s′i, i = 1, . . . , 8,

where the s′i are the basis relations of X ′ defined by (2.5.1) and (2.5.2).
Denote by φ̂ the 3-dimensional extension of φ. Then using statement (2)

of Theorem 3.5.7, formula (4.2.15), and statement (2) of Theorem 2.1.4, we
obtain

φ̂(rP ) = r′P , φ̂(rL) = r′L, φ̂(u) = u′,

where r′P , r
′
L, and u

′ are the relations of the 3-dimensional extension of X ′

defined by formulas (4.2.13) and (4.2.14). Thus, P ′ is a Galois plane by
Lemma 4.2.17 for P = P ′.

Now, P and P ′ are Galois planes of the same order. Consequently, they
are isomorphic. The corresponding isomorphism induces an isomorphism
f ∈ Iso(X ,X ′) that takes P to P ′. Therefore,

(si)
f = s′i = φ(si), i = 1, . . . , 8,

see (4.2.15). This means that f induces φ. Thus,

Iso3(X ,X ′) = Iso∞(X ,X ′)

and then s(X ) ≤ 3. □
It should be noted that in accordance with Examples 3.5.4 and 3.5.6,

the separability number of the coherent configuration X associated with a
projective plane P cannot equal 2. By statement (3) of Theorem 4.2.15,
this implies that if P is a Galois plane, then s(X ) = 1 or 3. Of course, the
former case occurs if and only if the Galois plane is a unique plane having
the same order as P.

Let X be the scheme of the Johnson graph X = J(n, k). It is schurian
and hence t(X ) = 1. Moreover, in accordance with [17, Section 9.1.B] the
graph X is uniquely determined by parameters unless

(4.2.16) (n, k) = (8, 2).
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In the last case, any distance-regular graph with parameters of J(n, k) is
isomorphic either to X or to one of the three Chang graphs which are not
distance-transitive [17, p.105].

Theorem 4.2.18. Let X be the scheme of a distance-regular graph X
with parameters of some Johnson graph. Then t(X ) ≤ 2 and s(X ) ≤ 2.
More exactly,

(1) if X = J(n, k), then t(X ) = 1 for all n, k, and s(X ) = 1 unless
condition (4.2.16) is satisfied;

(2) if X is a Chang graph, then t(X ) = s(X ) = 2.

Proof. Without loss of generality, we may assume that X is a Chang
graph, see Exercise 4.7.12. In this case, a computer computation shows
that the 2-closure of X is a schurian coherent configuration of rank 11, 12,
or 14. It follows that t(X ) = 2 and the scheme of a Chang graph is not
2-isomorphic to the scheme of another Chang graph or the graph J(8, 2).
Thus, s(X ) = 2. □

Let X be the scheme of the Hamming graph X = H(d, q). It is schurian
and hence t(X ) = 1. Moreover, in accordance with [17, Section 9.2.B] the
graph X is uniquely determined by parameters unless

(4.2.17) q = 4 and d ≥ 2.

Let q = 4. Then any distance-regular graph with the same parameters
as H(d, q) is isomorphic to the Doob graph

Da,b = S× · · · ×S︸ ︷︷ ︸
a

×T× · · · × T︸ ︷︷ ︸
b

,

where S is the Shrikhande graph from Example 3.4.15, T is a complete
graph on 4 vertices (for the direct product of graphs, see Example 3.7.43),
and a, b are nonnegative integers. In particular,

2a+ b = d, D(1, 0) = S, D(0, 1) = T.

Obviously, X = D0,d. If a ≥ 1, then the Doob graph Da,b is not distance-
transitive.

Theorem 4.2.19. Let X be the scheme of a distance-regular graph X
with parameters of some Hamming graph. Then t(X ) ≤ 2 and s(X ) ≤ 2.
More exactly,

(1) if X = H(d, q), then t(X ) = 1 for all d, q, and s(X ) = 1 unless
condition (4.2.17) is satisfied;

(2) if X = D(a, b), then t(X ) = 2 unless a = 0, and s(X ) = 2 for
all a, b.

Proof. Without loss of generality, we may assume that X = D(a, b) for
some nonnegative integers a and b, see Exercise 4.7.12. Set

ra,b = D(X) and 1a,b = 1Ω(X).
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Again without loss of generality, we may assume that the graph X is colored.
Denote by Y the complete colored graph on {1, . . . , 4} such that

cY(i, j) = cX(ra,b)

for all 1 ≤ i ̸= j ≤ 4, where cX(ra,b) is the color of any pair belonging to ra,b.
It is easily seen that given g ∈ Emb(Y,X), the vertices in Dom(g) differ

in exactly one fixed coordinate. Therefore,

qX(Y, g) =

{
qX(X1,0, g), if (1g, 2g) ∈ ra,0 ⊗ 10,b,

qX(X0,1, g), if (1g, 2g) ∈ 1a,0 ⊗ r0,b,

see (4.2.8), where X1,0 = D(1, 0) and X0,1 = D(0, 1). A straightforward
check shows that

qX(X1,0, g) = 0 and qX(X0,1, g) = 2.

Consequently if Z is the subgraph of Y induced by the set {1, 2} and

s0 = s(Y,Z, 0) and s2 = s(Y,Z, 2)

are the relations defined by formula (4.2.10), then

(4.2.18) ra,0 ⊗ 10,b = pr1,2(s0) ∩ ra,b, 1a,0 ⊗ r0,b = pr1,2(s2) ∩ ra,b,

where pri,j(r) is the relation defined as in statement (1) of Exercise 3.7.46.
Thus the lemma below follows from the first statements of Theorem 4.2.10
and Exercise 3.7.46.

Lemma 4.2.20. ra,0 ⊗ 10,b and 1a,0 ⊗ r0,b are relations of X = X (2).

The Shrikhande graph D1,0 is edge-transitive and the edge set of its
complement graph splits into the two 2-orbits of the group Aut(X1,0): s1,0
of valency 6, and t1,0 of valency 3. Let sa,0 (respectively, ta,0) be the edge
set of the direct product of a copies of the graph with the edge set s1,0
(respectively, t1,0).

Lemma 4.2.21. sa,b = sa,0⊗10,b and ta,b = ta,0⊗10,b are relations of X .

Proof. Denote by Y′ the graph obtained from Y by recoloring the
pairs (1, 2) and (2, 1) in the color of the relation r′a,b “to be at distance 2 in

the graph Da,b”. As above, one can see that given g ∈ Emb(Y′,X),

qX(Y
′, g) =

{
2, if (1g, 2g) ∈ sa,b,

0, if (1g, 2g) ∈ r′a,b \ sa,b.

Let Z′ be the induced subgraph of Y′ with vertices 1 and 2, and let
s′2 = s(Y′,Z′, 2). Then

sa,b = pr1,2(s
′
2) ∩ r′a,b.



4. DEVELOPMENTS 257

Thus, sa,b is a relation of X . A straightforward computation shows that

Ar′a,b ◦ (Ara,0⊗10,b ·Asa,b) = 2aAsa,b + 4aAta,b +At′

where t′ = r′a,b\(sa,b∪ta,b). The left-hand side belongs to the algebra Adj(X )
by Lemma 4.2.20. Therefore, the matrix Ata,b also belongs to it and hence

ta,b is a relation of X . □

Denote by Xa,b the scheme of the graph Da,b and set Ka,b = Aut(Xa,b).
In the following lemma, we show that the 2-closure of this scheme for b = 0
is schurian and coincides with the coherent closure of the set

U = {ra,0, sa,0, ta,0}.

Lemma 4.2.22. X a,0 = WL(U) = Inv(Ka,0).

Proof. It is easily seen that u = uSym(a) for each u ∈ U . It follows that

X 1,0 ↑ Sym(a) ≥ WL(U).

On the other hand,

WL(U) ≥ WL(ra,0) = X1,0 ↑ Sym(a).

Thus taking into account that no scheme lies strictly between X 1,0 and X1,0

and the fact that WL(U)Sym(a) = WL(U), we conclude that

WL(U) = X 1,0 ↑ Sym(a).

In particular, WL(U) is a schurian scheme (Theorem 3.4.14). However by
Lemmas 4.2.20 and 4.2.21,

X a,0 ≥ WL(U) ≥ Xa,0.

After taking the 2-closure of each coherent configuration in this formula, we
obtain X a,0 = WL(U) (statement (3) of Exercise 3.7.47), which implies the
required statement. □

By Lemmas 4.2.20, 4.2.21, and 4.2.22, the scheme X contains the product
s⊗ 10,b, where s is a basis relation of Inv(Ka,0). On the other hand, by the
second of the equalities (4.2.18) and the distance-transitivity of D0,b, it also
contains the products 1a,0⊗s, where s is a basis relation of Inv(K0,b). Thus,

X ≥ Inv(Ka,0)⊗ Inv(K0,b).

Since the reverse inclusion is obvious, the scheme X is schurian. It follows
that t(X ) = 2 for a > 0.

To prove that s(X ) = 2, let φ be a 2-isomorphism from X to another
coherent configuration X ′. Then by statement (2) of Exercise 2.7.55, X ′ is
a scheme of a distance-regular graph X′ and also IA(X) = IA(X′). It follows
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that X′ = Da′,b′ for some nonnegative integers a′ and b′, and

φ(ra,b) = ra′,b′ .

In view of equalities (4.2.18), the second statements of Theorem 4.2.10
and Exercise 3.7.46 imply that

φ(ra,0 ⊗ 10,b) = ra′,0 ⊗ 10,b′ , φ(1a,0 ⊗ r0,b) = 1a′,0 ⊗ r0,b′ ,

where φ = φ(2). Taking into account that the valencies of the relations
ra,0 ⊗ 10,b and 1a,0 ⊗ r0,b are equal to 6a and 3b, respectively, we conclude
that

(a, b) = (a′, b′),

see Corollary 2.3.20. Therefore, X = X ′ and φ is induced by the identity
isomorphism. □

We complete the subsection by making some remarks on the scheme X
of the Grassmann graph Jq(n, k). A characterization of this graph by local
structure, given in [17, Section 9.3], can easily be translated in the language
of (Y,Z)-regular graphs.

Using a technique similar to that in the proof of Theorem 4.2.19, one
can verify that s(X ) ≤ 2 for all q, n, k, see [40, Theorem 7.7]. Moreover, for
k > 2 the graph Jq(n, k) is uniquely determined by parameters unless

n ∈ {2k + 1, 2k + 2} or (n, q) ∈ {(2k + 2, 2), (2k + 2, 3), (2k + 3, 2)},

see [96]. Thus except for these cases, s(X ) = 1 for all q, n and k > 2.
On the other hand, there is a number of non-Grassmann distance-regular

graphs with parameters of a Grassmann graph. For example, given a finite
group K there exists a strongly regular graph with the same parameters as
J2(n, 2) for some n and the automorphism group isomorphic to K [95]. In
all these cases, s(X ) = 2.
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4.3 Two-valenced schemes

Every scheme, in which the valency of a basis relation takes exactly one
value, is regular and so is schurian and separable. However, this is not true
if the scheme is two-valenced, i.e., if the valency of a basis relation takes
exactly two values; when they are 1 and k, the term {1, k}-valenced scheme
is also used.

In this section, a sufficient condition for a two-valenced scheme to be
schurian and separable is established. This condition consists of two parts.
They are introduced and studied in Subsections 4.3.1 and 4.3.2, respectively.
The first part says that the scheme in question has sufficiently many inter-
section numbers equal to 1, whereas the second one ensures that the basis
relations form a good geometric structure.

In the last two subsections, it is proved that the condition is satisfied for
all {1, 2}-valenced schemes, and asymptotically for all equivalenced schemes.
The most part of material is taken from [102, 103, 27, 73].

4.3.1 Saturation condition

Throughout this subsection, k > 1 is an integer and X = (Ω, S) is a
scheme. By technical reasons, the basis relations of X are mainly denoted
below by x, y, z rather than r, s, t.

Our primary goal is to define a graph with vertex set

Sk = {x ∈ S : nx = k}

that accumulates information about intersection numbers equal to 1. The
following simple lemma indicates a way how we do this.

Lemma 4.3.1. Given x, y ∈ Sk,

(4.3.1) |x∗y| = nx = ny ⇔ cyxs = 1 for all s ∈ x∗y.

Proof. We have nx = nx∗ = ny = ny∗ = k. By formulas (2.1.8),
(2.1.14), and (2.1.3), this implies that

k2 = nx∗ny =
∑
s∈x∗y

nsc
s
x∗y =

∑
s∈x∗y

ny∗c
y∗

s∗x∗ = k
∑
s∈x∗y

cyxs.

Since cyxs ≥ 1 for all s ∈ x∗y, we are done. □

Let us define a relation ∼ on Sk by setting x ∼ y if the right-hand or
left-hand side in formula (4.3.1) holds. This relation is symmetric, because

cyxs =
nx∗

ny
cx

∗
sy∗ = cxys∗

for all x, y ∈ Sk. The undirected graph with vertex set Sk and adjacency
relation ∼ is denoted by X = Xk. Note that this graph can have loops.

Definition 4.3.2. The scheme X is said to be k-saturated if for any set
T ⊆ S with at most four elements, the set
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(4.3.2) N(T ) = {y ∈ Sk : y ∼ x for all x ∈ T}

is not empty.
Under the saturation condition, any two vertices of the graph X are

connected by a path of length at most two. A k-saturated two-valenced
scheme is said to be saturated and the mention of k is omitted. In what
follows, we also write N(x, y, . . .) instead of N({x, y, . . .}).

Example 4.3.3. Let A be a finite affine space with point set Ω and
line set L, see [19]. Denote by P the set of parallel classes of lines. The
lines belonging to a class P ∈ P form a partition of Ω; the corresponding
equivalence relation with removed diagonal is denoted by eP .

Using the axioms of affine space, one can verify that the set S = SA of
all the eP together with 1Ω form a commutative scheme such that

(4.3.3) cseP eP =


q − 1, if s = 1,

q − 2, if s = eP ,

0, otherwise,

where q is the cardinality of a line of A, and if P ̸= Q, then

(4.3.4) cseP eQ =

{
1, if s ∈ eP eQ \ {eP , eQ},
0, otherwise.

We say that X = (Ω, S) is the scheme associated with the affine space A.
Formula (4.3.3) implies that X is a {1, q − 1}-valenced scheme and the
graph X is complete and loopless. In particular, the scheme X is (q − 1)-
saturated whenever the rank of X is at least 6.

The following statement provides a sufficient condition for a scheme X
to be k-saturated in terms of its indistinguishing number c which is defined
as the maximum of the indistinguishing numbers c(s), s ∈ S# (see (2.1.15)).

Theorem 4.3.4. A scheme X with indistinguishing number c is k-
saturated whenever

|Sk| > 4c(k − 1).

Theorem 4.3.4 is an immediate consequence of Lemma 4.3.5 below, that
establishes a lower bound for the number of common neighbors of a subset
of vertices of the graph X.

Lemma 4.3.5. For each T ⊆ Sk,

|N(T )| ≥ |Sk| − c(k − 1)|T |.

Proof. It suffices to verify that for any x ∈ Sk,

(4.3.5) |Cx| ≤ c(k − 1),
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where Cx the complement of N(x) in Sk. Indeed, from the above inequality,
it follows that

|N(T )| ≥ |Sk \
⋃
x∈T

Cx| ≥ |Sk| − |T | max
x∈T

|Cx| ≥ |Sk| − c(k − 1)|T |.

To verify (4.3.5), fix α ∈ Ω. By the definition of the relation ∼, an
element y belongs to Cx only if cyxs > 1 for some s ∈ x∗y. In this case, for
each β ∈ αy, there exists two distinct elements γ, δ ∈ αx such that

(4.3.6) r(γ, β) = s = r(δ, β).

It follows that the set Tx,y of all triples (β, γ, δ) satisfying this condition,
contains at least |αy| = ny = k elements. Therefore, the union of all Tx,y
with y ∈ Cx contains at least k|Cx| triples.

On the other hand, if sx is the set of all pairs of distinct points of αx,
then ⋃

y∈Cx

Tx,y =
⋃
e∈sx

Te,

where Te is the set of all (β, γ, δ) belonging to the union on the left-hand side
and such that (γ, δ) = e. Moreover, the number of nonempty summands on
the right-hand side is at most |sx| = k(k−1). Thus there exists a pair e ∈ sx
such that

|Te| ≥
1

k(k − 1)

∑
y∈Cx

|Tx,y| ≥
k|Cx|
k(k − 1)

.

In view of (4.3.6) given a pair e = (γ, δ) belonging to the relation sx,
the set of the first two positions of elements in Te is contained in the set

(4.3.7) Ωγ,δ = {α ∈ Ω : r(γ, α) = r(δ, α)}.

The number |Ωγ,δ| is equal to the indistinguishing number of the relation
r(γ, δ) and hence less than or equal to c. Thus,

c ≥ |Ωγ,δ| ≥ |Te| ≥
|Cx|
k − 1

,

which proves formula (4.3.5). □
The saturation condition enables us to get information on a one-point

extension of the scheme in question. More precisely, let α ∈ Ω and set

SαSk
= {sx,y : x, y ∈ Sk, s ∈ x∗y},

where sx,y = s ∩ (αx × αy). From statement (1) of Lemma 3.3.5 it follows
that αSk is a homogeneity set of the coherent configuration Xα, and the
restriction of it to this set is a fission of the rainbow

(4.3.8) XαSk
= (αSk, SαSk

).
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The fibers of this rainbow are exactly the sets αx, and the set SαSk
of

its basis relations is equal to the disjoint union of the sets

Sxy = {sx,y : s ∈ x∗y},

where x, y ∈ Sk. When x ∼ y, the set Sxy consists of k disjoint matchings.
The union of all such Sxy is denoted by MαSk

,

(4.3.9) MαSk
=

⋃
x,y∈Sk,
x∼y

Sxy.

If the scheme X is k-saturated, thenMαSk
is enough large, and under an

additional condition the coherent closure of the rainbow XαSk
can explicitly

be found.

Theorem 4.3.6. Let X be a k-saturated scheme, α ∈ Ω, and Y =
WL(XαSk

). Assume that for all x, y, z ∈ Sk,

(4.3.10) x ∼ y ∼ z ∼ x ⇒ Sxy = Sxz · Szy.

Then

(1) S(Y) = (M ·M)♮, where M =MαSk
;

(2) F (Y) = {αx : x ∈ Sk};
(3) Y is semiregular.

Proof. Recall that two vertices x and y of the graph X = Xk are adjacent
if and only if the set Sxy consists of k matchings. Since the composition of
two matchings s and t with Ω+(s) = Ω−(t) is also matching, for any path
P = (x1, . . . , xd+1) of this graph, the set

SP = Sx1x2 · · · · · Sxdxd+1

consists of matchings contained in αx1 × αxd+1.

Lemma 4.3.7. The set SP is a partition of αx1 × αxd+1 into k classes.
Moreover, this partition does not depend on the choice of the path connecting
x1 and xd+1 in X.

Proof. To prove the first statement, it suffices to verify that if d = 2,
then

(4.3.11) a · Sx2x3 = Sx1x2 · Sx2x3 = Sx1x2 · b

for any a ∈ Sx1x2 and b ∈ Sx2x3 . Note that if the first equality is true
for all paths P of length 2 and elements a, then it is true for the path
P ∗ = (x3, x2, x1) and hence

Sx1x2 · b = (b∗ · Sx2x1)∗ = (Sx3x2 · Sx2x1)∗ = Sx1x2 · Sx2x3 .

Thus it suffices to verify the first equality in (4.3.11), or equivalently,
that for every a′ ∈ Sx1x2 and b′ ∈ Sx2x3 there exists b ∈ Sx2x3 such that

(4.3.12) a · b = a′ · b′.
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Figure 4.3 Configuration in Lemma 4.3.7.

To prove this statement, we make use of the saturation property to find
a vertex y ∈ Sk adjacent to each of the vertices x1, x2, x3 in the graph X.
Then

x1 ∼ y ∼ x2 ∼ x1 and x2 ∼ y ∼ x3 ∼ x2.

By condition (4.3.10), this implies that

(4.3.13) Sx1y · Syx2 = Sx1x2 , Sx2y · Syx3 = Sx2x3 .

Using these equalities, we successively find u ∈ Sx1y and t ∈ Sx2y such
that a′ · t = u, and then v ∈ Syx3 such that t · v = b′. Then

(4.3.14) a′ · b′ = (u · t∗) · (t · v) = u · v.

Using equalities (4.3.13) again, we first find s ∈ Sx2y such that a ·s = u, and
then b ∈ Sx2x3 such that s∗ · b = v (the obtained configuration is depicted
at Fig. 4.3). Thus from (4.3.14), it follows that

a′ · b′ = u · v = (a · s) · (s∗ · b) = a · b,

which proves (4.3.12). This completes the proof of (4.3.11) and hence, the
first statement.

To prove the second statement of Lemma 4.3.7, let P and P ′ be paths
of length d and d′ that connect the vertices

u = x1 = x′1 and v = xd+1 = x′d′+1.

Without loss of generality, we may assume that d+d′ ≥ 3. By formula (4.3.10),
the required statement holds for d+ d′ = 3. Suppose that

d+ d′ ≥ 4.

Now by the saturation property, there exists a vertex w ∈ Sk adjacent
to each of the vertices {u, x2, x3, x′2} in the graph X. By formula (4.3.11)
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applied for (u,w, x2) and (x2, w, x3), we have

SP =Sux2 · Sx2x3 · SQ1

=(Suw · a) · (a∗ · Swx3) · SQ1

=Suw · Swx3 · SQ1

=Suw · SQ,

where Q1 = (x3, . . . , v), Q = (w, x3, . . . , v), and a ∈ Swx2 . Similarly, one
can prove that

SP ′ = Suw · SQ′ ,

where Q′ = (w, x′2, . . . , v). Note that the path Q is of length d − 1, the
path Q′ is of length d′, and both paths connect w and v. By the induction
hypothesis, this implies that SQ = SQ′ and hence

SP = Suw · SQ = Suw · SQ′ = SP ′

as required. □
At this point, we need one more auxiliary lemma. Namely, let us write

the set T = (M ·M)♮ as the union of the sets

T (x, y) =
⋃

z∈N(x,y)

Sxz · Szy, x, y ∈ Sk.

Note that by the saturation property, T (x, y) is not empty for all x and y.
Moreover, if z ∈ N(x, y) and P = (x, z, y), then Sxz · Szy = SP . By
Lemma 4.3.7, this implies that T (x, y) is the partition of αx × αy into
matchings. In particular for u ∈ Sxz,

(4.3.15) 1αx = u · u∗ ∈ Sxz · Szx = T (x, x).

Thus, T is a partition of (αSk)× (αSk) into matchings and 1αSk
∈ T∪.

Since also T ∗ = T , the pair

Y ′ = (αSk, T )

is a rainbow.
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Lemma 4.3.8. The rainbow Y ′ is a coherent configuration.

Proof. It suffices to verify that if u, v ∈ T and u · v ̸= ∅, then u · v ∈ T .
To this end, let u ∈ SP and v ∈ SQ, where P and Q are paths of length 2
in the graph X. Since u · v ̸= ∅, the last vertex of P coincides with the first
vertex of Q. By Lemma 4.3.7, this implies that

SP · SQ = SP ·Q,

where P · Q is the path of length 4 in X consisting of the vertices of P
followed by the vertices of Q (the last vertex of P is identified with the first
vertex of Q). Thus, u · v belongs to SP ·Q and hence to T , as required. □

The coherent configuration Y ′ defined in Lemma 4.3.8 is obviously a
fission of the coherent closure Y. Indeed, let x ∼ y. Then

Sxy = 1αx · Sxy ⊆ T.

This implies that M ⊆ T ⊆ T∪. Thus the claim follows, because Y is the
smallest coherent configuration for which every relation of SαSk

is the union
of basis relations.

Conversely, every relation in the set SαSk
· SαSk

is contained in S(Y)∪.
By the definition of T , this implies that

T ⊆ S(Y)∪,

i.e., Y ′ ≤ Y. Thus, Y ′ = Y. This proves statement (1), and in view
of (4.3.15) also statement (2). By statement (1), the set S(Y) consists of
matchings. This proves statement (3). □

Statement (3) of Theorem 4.3.6 remains true even one removes condi-
tion (4.3.10) (see Exercise 4.7.23). However, statements (1) and (2) cease to
be fair, for example, if the affine space in Example 4.3.3 is non-Desarguesian.

Corollary 4.3.9. Under the conditions of Theorem 4.3.6, suppose that X
is a two-valenced scheme. Then

Xα = DαS1 ⊞ Y and F (Xα) = {αs : s ∈ S}.

Moreover, the coherent configuration Xα is schurian and separable.
Proof. The first equality is a consequence of Exercise 3.7.25, whereas

the second one follows from statement (2) of Theorem 4.3.6. Next, by state-
ment (3) of this theorem, the coherent configuration Xα is partly regular.
This completes the proof by Theorem 3.3.19. □
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4.3.2 Desarguesian two-valenced schemes

In this subsection, we introduce the property of a two-valenced scheme to
be Desarguesian and prove that any two-valenced saturated scheme having
this property is schurian and separable. Throughout this subsection, k > 1
is an integer and X = (Ω, S) is a {1, k}-scheme. We also keep notation of
Subsection 4.3.1.

Let us define a noncommutative geometry associated with the scheme X
as follows: the points are elements of S, the lines are the sets x∗y, x, y ∈ S,
and the incidence relation is given by inclusion. Thus the point z ∈ S
belongs to the line x∗y if and only if z ∈ x∗y. The geometry is extremely
unusual: the line x∗y does not necessarily contain the points x, y, and can
be different from y∗x. However, in terms of this geometry, one can define
Desarguesian configurations, see below.

Assume that we are given two “triangles” with vertices x, y, z ∈ S and
u, v, w ∈ S, respectively, that are perspective with respect to a point q, i.e.,

(4.3.16) u ∈ x∗q, v ∈ y∗q, w ∈ z∗q,

see the configuration depicted in Fig. 4.4; note that the intersections of
lines is not necessarily consists of a unique point, and even may be empty.
However, if

(4.3.17) x∗z ∩ uw∗ = {r}, z∗y ∩ wv∗ = {s}, x∗y ∩ uv∗ = {t}

for some r, s, t ∈ S, then, as in the case of Desargues’ theorem, we would
like that the point t would lie on the line rs. When this is true, the obtained
10-element configuration is said to be Desarguesian. In what follows we are
going to study {1, k}-schemes with enough many Desarguesian configura-
tions. The exact definition is as follows.

Definition 4.3.10. The ten relations in Fig. 4.4 forms a Desarguesian
configuration if conditions (4.3.16) and (4.3.17) are satisfied and t ∈ rs.

Let x, y, z ∈ Sk and r, s ∈ S be basis relations of the scheme X . We say
that they form an initial configuration if

(4.3.18) x ∼ z ∼ y and r ∈ x∗z, s ∈ z∗y.

In geometric language, this means that the points r and s belong to the
lines x∗z and z∗y, respectively, and each of these lines consists of exactly k
points.

Definition 4.3.11. The relations r and s are said to be linked with
respect to (x, y, z) if the initial configuration lies in a Desarguesian configu-
ration, namely, there exist

q ∈ N(x, y, z), u, v, w ∈ S, t ∈ rs,
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Figure 4.5 The relations r and s are linked with respect to
(x, y, z).

for which conditions (4.3.16) and (4.3.17) are satisfied (a more compact
picture of the linked relations is given in Fig.4.5).

Assume that the relations r and s are linked with respect to (x, y, z).
Then the relation t is uniquely determined by the third of equalities (4.3.17).
The following statement shows that in this case, t does not depend on the
choice of q and u, v, w.

Lemma 4.3.12. Assume that r and s are linked with respect to (x, y, z).
Then

(4.3.19) rx,z · sz,y ⊆ tx,y,

with equality if x ∼ y.
Proof. By formulas (4.3.17), we have

(4.3.20) ux,q · w∗
q,z ⊆ rx,z, wz,q · v∗q,y ⊆ sz,y, ux,q · v∗q,y ⊆ tx,y.

The relations ux,q ·w∗
q,z and rx,z are matchings, because x ∼ q ∼ z, and x ∼ z.

By the first inclusion in (4.3.20), this implies the first of the following two
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Figure 4.6 The triangle (α, β, γ) corresponding the triple
(x, y, z).

equalities, and the second one is proved similarly:

ux,q · w∗
q,z = rx,z and wz,q · v∗q,y = sz,y.

Now the third inclusion in (4.3.20) yields

rx,z · sz,y = (ux,q · w∗
q,z) · (wz,q · v∗q,y) = ux,q · v∗q,y ⊆ tx,y,

which proves (4.3.19). If x ∼ y, then the relation tx,y is a matching and we
are done by the above argument. □

We need an auxiliary statement proved in [102, Theorem 5.1]. In the
geometric language, the conclusion of this statement means that the lines
rs and x∗y have a unique common point.

Lemma 4.3.13. Let x, y, z ∈ Sk be such that

(4.3.21) (xx∗ yy∗) ∩ zz∗ = {1}.

Then |rs ∩ x∗y| = 1 for all r ∈ x∗z and s ∈ z∗y.
Proof. Let r ∈ x∗z and s ∈ z∗y. Then obviously, z ∈ xr ∩ ys∗. This

implies that |rs ∩ x∗y| ≥ 1. It suffices to verify that |rs ∩ x∗y| ≤ 1.

Claim. In the above notation, given t ∈ rs ∩ x∗y and α, β, γ ∈ Ω such
that

r(α, β) = t, r(α, γ) = r, r(γ, β) = s,

there exists a unique δ ∈ Ω for which

r(δ, α) = x, r(δ, β) = y, r(δ, γ) = z,

see Fig. 4.6.

Proof. Since r ∈ x∗z, s ∈ z∗y, and t ∈ x∗y, there exist λ, µ, ν ∈ Ω such
that

r(λ, α) = x, r(λ, γ) = z, r(µ, β) = y, r(µ, γ) = z, r(ν, α) = x, r(ν, β) = y

(see Fig. 4.7). By the lemma hypothesis, this implies that

r(λ, µ) ∈ (xx∗ yy∗) ∩ zz∗ = {1}.
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Figure 4.8 The point configuration for Lemma 4.3.13.

Thus, λ = µ. Denote this point by δ. Then for δ the statement of the claim
holds.

To prove the uniqueness, we assume that there are two configurations in
Fig. 4.6 with δ = δ1 and δ = δ2. Then the relation r(δ1, δ2) belongs to the
set

zz∗ ∩ xx∗ ∩ yy∗ = {1}.
It follows that δ1 = δ2, as required. □

To complete the proof of Lemma 4.3.13, we assume that rs∩x∗y contains
two distinct elements t1 and t2. Then there exist (α, γ) ∈ r and distinct
β1, β2 ∈ Ω such that

r(γ, βi) = s and r(α, βi) = ti, i = 1, 2.

By the claim for t = ti, there exists δi ∈ Ω such that

r(δi, α) = x, r(δi, βi) = y, r(δi, γ) = z

(see Fig. 4.8). Now the relation r(δ1, δ2) belongs to zz∗ ∩ xx∗ = {1}
(see (4.3.21)). Therefore, δ1 = δ2. Denote this point by δ. Then

β1, β2 ∈ δy ∩ γs.

Since β1 ̸= β2 and r(δ, γ) = z, this implies that czys∗ ≥ 2, contrary to the
lemma hypothesis implying y ∼ z. □



270 4. DEVELOPMENTS

The statement below establishes two sufficient conditions for relations r
and s to be linked with respect to (x, y, z).

Corollary 4.3.14. Let x, y, z ∈ Sk and r, s ∈ S form an initial configu-
ration. Assume that at least one of the following conditions is satisfied:

(L1) z is a loop of the graph X and equality (4.3.21) holds;
(L2) there exists q ∈ Sk such that

(4.3.22) qq∗ ∩ (xx∗yy∗ ∪ xx∗zz∗ ∪ zz∗yy∗) = {1}.

Then r and s are linked with respect to (x, y, z).
Proof. Under the condition (L1), Lemma 4.3.13 implies that there exists

t ∈ S such that rs∩x∗y = {t}. Then condition (4.3.17) is obviously satisfied
for q = z and u = r, v = s∗, w = 1.

Now assume that the condition (L2) is satisfied. We claim that there
exist t ∈ x∗q, u ∈ q∗z, and v ∈ q∗y such that

(4.3.23) r ∈ tu ∩ x∗z, s ∈ u∗v ∩ z∗y, rs ∩ tv ∩ x∗y ̸= ∅.

Indeed, fix a point α. Since r ∈ x∗z and s ∈ z∗y, one can find points
β ∈ αx, γ ∈ αz, and δ ∈ αy such that

(β, γ) ∈ r and (γ, δ) ∈ s.

Now take ϵ ∈ αq and set

t := r(β, ϵ), u := r(ϵ, γ), v := r(ϵ, δ).

Then formula (4.3.23) holds, because r(β, δ) ∈ (tv ∩ rs ∩ x∗y).
To complete the proof, we note that by Lemma 4.3.13, each of the sets

tu ∩ x∗z, u∗v ∩ z∗y, tv ∩ x∗y

has at most one element. Therefore the first and the second sets are single-
tons {r} and {s}, and also the third one is a singleton since rs∩tv∩x∗y ̸= ∅.
Thus r and s are linked with respect to (x, y, z). □

Now we arrive at the main definition in this subsection.

Definition 4.3.15. The scheme X is said to be Desarguesian if for all
x, y, z ∈ Sk and all r, s ∈ S satisfying (4.3.18), the elements r and s are
linked with respect to (x, y, z).

Example 4.3.16. Let X be the scheme on the affine space A of order q
and dimension at least 3. Then from formulas (4.3.3) and (4.3.4) it follows
that for any three parallel classes P , Q, and R there exists a parallel class T
such that

eT ̸∈ (eP eQ ∪ eP eR ∪ eReQ).

Consequently, the statement (L2) of Corollary 4.3.14 holds for q = eT ,
x = eP , y = eQ, and z = eR. Therefore any relations r ∈ eP eR and s ∈ eReQ
are linked with respect to (eP , eQ, eR).
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Thus, the scheme X is Desarguesian. If the space A is an affine plane,
i.e., affine space of dimension 2, then from [102, Theorem 4.1], it follows
that X is Desarguesian if and only if A is Desarguesian (Exercise 4.7.26).

We arrive to the main result of this subsection.

Theorem 4.3.17. Let X be a two-valenced scheme. Suppose that X is
saturated and Desarguesian. Then X is schurian and separable.

Proof. A key point in the proof is to extend an algebraic isomorphism
between any two schemes satisfying the hypothesis of the theorem, to an
algebraic isomorphism between their one-point extensions. In the sequel,
we assume that X is a saturated and Desarguesian {1, k}-valenced scheme,
X ′ an arbitrary scheme on Ω′, and

φ : S(X ) → S(X ′), s 7→ s′

an algebraic isomorphism. The lemma below immediately follows from
Corollary 2.3.20 and Exercises 4.7.21 and 4.7.24.

Lemma 4.3.18. X ′ is {1, k}-valenced, saturated, and Desarguesian.

Let us fix points α ∈ Ω and α′ ∈ Ω′. The algebraic isomorphism φ
induces a bijection from Sk onto S′

k, where S
′ = S(X ′). This bijection is

obviously extended to the bijection

(4.3.24) SαSk
→ S′

α′S′
k
, rx,y 7→ r′x′,y′ ,

denoted also by φ. One can easily see that it takes Sxy to S′
x′y′ for all

x, y ∈ Sk. Moreover, since x ∼ y if and only if x′ ∼ y′,

φ(MαSk
) =Mα′S′

k
,

where the sets M =MαSk
and M ′ =Mα′S′

k
are defined by formula (4.3.9).

Finally, since the schemes X and X ′ are Desarguesian, Lemma 4.3.12
implies that

(4.3.25) Sxy = Sxz · Szy and S′
x′y′ = S′

x′z′ · S′
z′y′

for all x, y, z ∈ Sk such that x ∼ y ∼ z ∼ x. In particular, these schemes
satisfy the conditions of Theorem 4.3.6. In what follows, this theorem and
Corollary 4.3.9 are used with no further explanations.

Lemma 4.3.19. The mapping

(4.3.26) ψ :M ·M →M ′ ·M ′, b · c 7→ b′ · c′

is a well-defined bijection.
Proof. Assume that b1 · c1 = b2 · c2 for some b1, c1, b2, c2 ∈M . Then

bi ∈ Sxzi and ci ∈ Sziy, i = 1, 2,

for some x, y, z1, z2 ∈ Sk such that

x ∼ z1 ∼ y and x ∼ z2 ∼ y.
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Figure 4.9 The configuration for Lemma 4.3.19.

By the saturation property, there exists a vertex z of the graph Xk that
is adjacent to each of the vertices x, z1, z2, y. The first equality in (4.3.25)
implies that

Sxzi = Sxz · Szzi and Szy = Szzi · Sziy
for each i. Take any a1 ∈ Sxz. Then the above equalities show respectively
that

(4.3.27) d1 := a∗1 · b1 ∈ Szz1 and d2 := a∗1 · b2 ∈ Szz2 ,

and

(4.3.28) a2 := d1 · c1 ∈ Szy.

Thus,

(4.3.29) a1 · a2 = (a1 · d1) · (d∗1 · a2) = b1 · c1 = b2 · c2 = a1 · d2 · c2,

whence c2 = d∗2 · a2 (see Fig. 4.9).

Now since x ∼ y ∼ z ∼ x, the first equality in (4.3.25) implies that
Sxz = Sxy · Syz. Taking into account that a ∈ Sxy and b ∈ Syz, we conclude
that (a · b)′ = a′ · b′. By formulas (4.3.27), (4.3.28) and (4.3.29), this yields

b′1 · c′1 = (a1 · d1)′ · (d∗1 · a2)′

= a′1 · (d′1 · (d′1)∗) · a′2
= a′1 · a′2
= (b2 · d∗2)′ · (d2 · c2)′

= b′2 · (d′2 · (d∗2)′) · c′2
= b′2 · c′2,

which proves that ψ is a well-defined bijection. □

Set
Y = WL(XαSk

) and Y ′ = WL(X ′
α′S′

k
).
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Then by statement (1) of Theorem 4.3.6,

(4.3.30) S(Y) = (M ·M)♮ and S(Y ′) = (M ′ ·M ′)♮.

By Lemma 4.3.19, the mapping ψ induces a bijection from S(Y) onto S(Y ′).

Lemma 4.3.20. ψ ∈ Isoalg(Y,Y ′).

Proof. Note that given a, b ∈ S(Y), either a · b ∈ S(Y) or a · b = ∅.
Thus it suffices to verify that if a · b ̸= ∅, then

(4.3.31) (a · b)ψ = aψ · bψ.

Take such a and b. In view of (4.3.30), there exist x, z1, z
′, z2, y ∈ Sk for

which
a ∈ Sxz1 · Sz1z′ and b ∈ Sz′z2 · Sz2y.

By the saturation property, there exists z′′ ∈ N(x, z′, y). Since a ∈ x∗z′ and
b ∈ (z′)∗y, we may assume that z1 = z2 = z′′; denote this element by z.

In view of formula (4.3.11), one can find c1 ∈ Sxz, c2 ∈ Szz′ , and c3 ∈ Szy
such that

c1 · c2 = a and c2 · b = c3,

see Fig. 4.10. Furthermore by the definition of ψ, we have (c1 ·c3)ψ = cφ1 ·c
φ
3 .

z
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CC
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// y

Figure 4.10 The configuration for Lemma 4.3.20.

It follows that

(a · b)ψ = (c1 · c2 · c∗2 · c3)ψ

= (c1 · c3)ψ

= cφ1 · cφ3
= cφ1 · cφ2 · (c∗2)φ · cφ3
= (c1 · c2)ψ · (c∗2 · c3)ψ

= aψ · bψ,

which completes the proof of (4.3.31). □

To continue, we make use of Corollary 4.3.9 to see that

(4.3.32) Xα = DαS1
⊞ Y and X ′

α′ = Dα′S′
1
⊞ Y ′.
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It follows that

(Xα)αS1 = DαS1
and (X ′

α′)α′S′
1
= Dα′S′

1
.

Therefore there is a unique algebraic isomorphism

ψ1 ∈ Isoalg((Xα)αS1 , (X ′
α′)α′S′

1
)

extending φ. Now by statement (1) of Exercise 3.7.33 for 2 = ⊞, φ1 = ψ1

and φ2 = ψ, there exists a unique algebraic isomorphism

φα,α′ ∈ Isoalg(Xα ,X ′
α′)

such that
(φα,α′)αS1 = ψ1 and (φα,α′)αSk

= ψ.

Lemma 4.3.21. The algebraic isomorphism φα,α′ extends φ.

Proof. Let c ∈ S(Xα). Denote by t the basis relation of X that con-
tains c. In view of (4.3.32), we have

S(Xα) = S(XαS1)⊞ S(Y),

see (3.2.1). It follows that if c ̸∈ (M ·M)♮, then c = tx,y for some x, y ∈ S.
By the definition of φα,α′ , this implies that

φα,α′(c) = t′x′,y′ ,

as required.
Thus we may assume that c = rx,z · sz,y for some x, y, z ∈ Sk that make

up, together with r and s, an initial configuration. Since X is Desarguesian,
this implies that the relations r and s are linked with respect to (x, y, z),
i.e., there exist relations q, u, v, and w for which conditions (4.3.16) and
(4.3.17) are satisfied. Therefore,

(x′)∗z′ ∩ u′(w′)∗ = {r′}, (z′)∗y′ ∩ w′(v′)∗ = {s′}, (x′)∗y′ ∩ u′(v′)∗ = {t′}

for suitable relations u′ ∈ (x′)∗q′, v′ ∈ (y′)∗q′, and w′ ∈ (z′)∗q′. Thus, r′

and s′ are linked with respect to (x′, y′, z′). Now by Lemma 4.3.12,

ψ(c) = ψ(rx,z · sz,y ) = r′x′,z′ · s′z′,y′ ⊆ t′x′,y′ ,

as required. □

To complete the proof, we make use of Corollary 4.3.9 to conclude
that the coherent configuration Xα is schurian and separable, and more-
over F (Xα) = {αs : s ∈ S}. By Lemma 4.3.21, this implies that the
scheme X satisfies all the conditions of Exercise 3.7.24. Thus, X is schurian
and separable. □

A careful analysis of the proof of Theorem 4.3.17 shows that the con-
clusion remains valid if the property of the coherent configuration X “to be
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Desarguesian” is replaced by a weaker condition, in which not each initial
configuration lies in a Desarguesian configuration.

Definition 4.3.22. A {1, k}-valenced scheme X is said to be weakly
Desarguesian if
(*) for any x, y, z ∈ Sk with x ∼ z ∼ y, there exist a ∈ x∗z and b ∈ z∗y such
that any r ∈ x∗z \ {a} and s ∈ z∗y \ {b} are linked with respect to (x, y, z).

Clearly, any Desarguesian scheme is weakly Desarguesian and the latter
property is preserved with respect to algebraic isomorphisms. The proof of
the theorem below repeats literally the proof of Theorem 4.3.17 except for
two places indicated in the next paragraph.

The first one concerns formula (4.3.25), which is proved in this case with
the help of Exercise 4.7.22. The second one is the proof of Lemma 4.3.21:
it goes smoothly if, in the notation of this lemma,

rx,z ̸= a and sz,y ̸= b,

where a and b are as in (*), and the proof of the remaining cases is obtained
with the help of Exercise 4.7.25.

Theorem 4.3.23. The conclusion of Theorem 4.3.17 remains true if the
scheme X is saturated and weakly Desarguesian.
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4.3.3 Quasi-thin schemes

In this subsection, we study the schurity and separability problems for
{1, 2}-schemes also called quasi-thin.3 Many (but not all) schemes of this
type are of the form Inv(K), where K is a transitive permutation group of
even order with pointwise stabilizer of order 2 (see statement (4) of Theo-
rem 2.2.7).

Let X = (Ω, S) be a quasi-thin scheme. From formula (2.1.6), it imme-
diately follows that

|Ω| = |S1|+ 2 |S2|.
In particular, the numbers of thin and non-thin basis relations are uniquely
determined by the degree and an index of X , which is defined to be the
ratio |Ω|/|S1|. The smallest examples of non-schurian quasi-thin schemes
are of index 4 and 7, see below.

Example 4.3.24. Let X16 and X ′
16 (respectively, X28 and X ′

28) be the
schemes #173 and #172 (respectively, #176 and #175) from the Hanaki–
Miyamoto list [56] of association schemes of degree 16 (respectively, of de-
gree 28). A straightforward computation with GAP shows that

• each of the schemes X16, X ′
16, X28, and X ′

28 is quasi-thin with thin
radical isomorphic to the Klein group;

• the schemes X ′
16 and X ′

28 are schurian, whereas the schemes X16

and X28 are non-schurian;
• the schemes X16 and X28 are algebraically isomorphic to the schemes
X ′
16 and X ′

28, respectively;
• the index of X16 (respectively, X28) is equal to 4 (respectively, 7).

The schurity problem for quasi-thin schemes was studied in a series of
papers [70, 75, 74, 104], and then (together with the separability problem)
was completely solved in [103]; as it turned out essentially all non-schurian
and all non-separable quasi-thin schemes are closely related with the above
examples.

To come to the general statement, we introduce and study a class of
Kleinian schemes; they are associated with Klein coherent configurations
considered in Subsection 4.1.2 and include the schemes from Example 4.3.24.
Then we prove that all non-Kleinian quasi-thin schemes are schurian and
separable.

3In [103], the class of quasi-thin schemes includes regular schemes.
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Kleinian schemes

A quasi-thin scheme is said to be Kleinian if its thin residue consists
of four thin basis relations that form the Klein group with respect to the
composition. In particular, all the schemes in Example 4.3.24 are Kleinian.
For each Kleinian scheme X , infinitely many Kleinian schemes can be con-
structed as the tensor product X ⊗ Y, where Y is a regular scheme.

Example 4.3.25. Let K be a permutation group of degree 12 induced
by the action of C2 × Alt(4) on the right cosets of a subgroup generated by
the product of two involutions, one in C2 and another one in Alt(4). Then
Inv(K) is a quasi-thin scheme (#49 from the Hanaki–Miyamoto list [56])
of index 3, in which the thin radical equals the thin residue, and is the Klein
group. Thus, Inv(K) is a Kleinian scheme.

The following statement reveals a geometry underlying a Kleinian scheme.
This geometry coincides with the partial linear space of a geometric Klein
configuration (Theorem 4.1.20). In what follows, the number of points of a
partial linear space is called an order, and the first partial linear space in
Fig. 4.2 is called a near-pencil.

Proposition 4.3.26. The residually thin extension of a Kleinian scheme X
is a Klein configuration. Moreover, if Y is a reduction of this configuration,
then

(1) Y is a geometric Klein configuration;
(2) the index of X equals the order of the partial linear space G := G(Y);
(3) G is a near-pencil of order 3, or a projective or affine plane of

order 2.

Proof. Denote by e the thin residue parabolic of X and consider the
extension Xe of X with respect to e (see Subsection 3.1.3). Then Xe is a
Klein configuration by statement (1) of Theorem 3.1.26. It immediately
follows that the coherent configuration Y being the restriction of Xe is also
a Klein configuration.

Assume on the contrary that Y is not geometric. Then there exist fibers
∆,Γ ∈ F (Y) such that

s = ∆× Γ

is a basis relation of Y. However, then the basis relation of the scheme X
that contains s has valency ≥ 4, which is impossible in a quasi-thin scheme.
This proves statement (1).

Let e1 be the thin radical parabolic of X . Then given i, j ∈ I,

i ∼ j ⇔ ∃∆ ∈ Ω/e1 : Ωi ∪ Ωj ⊆ ∆,

where the equivalence relation ∼ is defined by formula (4.1.12); at this point
we make use of the notation from Subsection 4.1.2 for the coherent configu-
ration Xe. It follows that the classes of e1 are in a one-to-one correspondence
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with the classes of ∼. Consequently, the number |Ω/ ∼ | is equal to the in-
dex of X . Since this number equals by definition the order of the partial
linear space G, statement (2) follows.

Let us prove statement (3). By statement (3) of Theorem 3.1.26, the
group Autalg(Xe) acts transitively on F (Xe) and preserves the relation ∼.
Therefore, the group Autalg(Y) acts transitively on the classes of ∼ and
hence on F (Y). It follows that the partial linear space G admits a point-
transitive automorphism group. Since the last three spaces in Fig. 4.2 are
not point-transitive, the required statement follows from Theorem 4.1.20
unless G has exactly one line. Let us verify that the latter is impossible.

By statement (1) of Exercise 3.7.14, the parabolic e contains s ·s∗ for all
s ∈ S. Since the scheme X is Kleinian, there exist distinct irreflexive basis
relations s, t ⊆ e such that

s ∈ xx∗ and t ∈ yy∗

for some x, y ∈ S. By statement (1) of Theorem 3.1.26, there are i, j, k ∈ I
such that the relations xij = xΩi,Ωj and yik = yΩi,Ωk

are nonempty. Then

Gij = xijx
∗
ij = {ei, si} and Gik = yiky

∗
ik = {ei, ti},

where si = sΩi and ti = tΩi . It follows that Gij ̸= Gik. By the definition
of Y, this implies that in the graph associated with Y, the vertex i lies in at
least two regular cliques (corresponding to Gij and Gik). But this exactly
means that the point i of G, lies in two distinct lines, a contradiction. □

Depending on the isomorphism type of the partial linear space G from
Proposition 4.3.26, we say that X is a scheme over a near-pencil, an affine
plane, or a projective plane. One can check that the schemes X16, X ′

16 and
X28, X ′

28 from Example 4.3.24 are schemes over an affine plane and over a
projective plane, respectively.

Theorem 4.3.27. Any Kleinian scheme X has index 3, 4, or 7. In these
cases, X is a scheme over a near-pencil, an affine plane, or a projective
plane, respectively. Moreover, in the first case, X is schurian and separable.

Proof. All the statements except for the last one easily follow from
Proposition 4.3.26. Let X be a scheme over a near-pencil and e the thin
residue parabolic of X . Then this scheme is schurian and separable if and
only if so is Xe (Theorem 3.1.29) which is true if the reduction Y of Xe
is schurian and separable (Lemma 4.1.14). However, in our case the index
of X is equal to 3. Thus, Y has exactly three fibers. By Exercise 2.7.34, this
implies that Y is schurian and separable, and we are done. □

Orthogonals

Let X be a quasi-thin scheme. By Exercise 4.7.28, given s ∈ S2, there
exists a uniquely determined relation s⊥ ∈ S# such that

ss∗ = {1, s⊥}.
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This relation is called the orthogonal of s. Note that any orthogonal is an
irreflexive symmetric relation. For any T ⊆ S2, we set

T⊥ = {s⊥ : s ∈ T}.

Any element of the set S⊥ is called the orthogonal of X . Obviously, any
quasi-thin scheme has at least one orthogonal.

Theorem 4.3.28. Any quasi-thin scheme with exactly one orthogonal
is schurian and separable.

Proof. Let X be a quasi-thin scheme. Assume that S⊥ = {s} for some
s ∈ S#. Then, s = s∗ and the parabolic

e = s∗ · s = ⟨s⟩

coincides with the thin residue parabolic of X (Exercise 3.7.16). It follows
that each fiber of the extension Xe of X with respect to e has cardinality

ns + 1 =

{
2, if s ∈ S1,

3, if s ∈ S2.

By Exercise 3.7.20, this implies that Xe is schurian and separable. Conse-
quently, X is schurian and separable by Theorem 3.1.29. □

A Kleinian scheme contains at most 3 orthogonals, and cannot have
exactly one orthogonal (Exercise 3.7.16). On the other hand, we assume
that a quasi-thin scheme X has exactly two thin orthogonals, say u and v.
Then for any s ∈ S such that s⊥ = u,

{1, u, v} ⊇ (vs)(vs)∗ = v(ss∗)v = v{1, u}v = {1, v · u · v}.

Therefore, v · u · v = u, i.e., u · v = v · u. Furthermore, u · u = v · v = 1,
because u and v are thin symmetric relations. Thus the thin residue of X
consists of 1Ω, u, v, and u · v. This gives the following characterization of
the Kleinian schemes in terms of the orthogonals.

Lemma 4.3.29. A quasi-thin scheme X is Kleinian if and only if S⊥

consists of two or three thin orthogonals, and in the latter case they generate
a Klein group.

Saturation

Lemma 4.3.30. Any non-Kleinian quasi-thin scheme of degree at least 9
and with at least two orthogonals, is saturated.

Proof. Let X be a scheme satisfying the lemma hypothesis. To prove
the saturation condition let a set T ⊆ S2 contain at most 4 elements.

Claim 1. The set N(T ) is nonempty unless the following statements
hold:

(1) T⊥ = S⊥;
(2) |T ∩ Sx| = 2 for each x ∈ S⊥, where Sx = {s ∈ S2 : s

⊥ = x};
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(3) |S⊥| = 2.

Proof. By the definition of N(T ) (formula (4.3.2) for k = 2) and Exer-
cise 2.7.27, a relation a ∈ S2 lies in N(T ) whenever

aa∗ ∩ tt∗ = {1} for all t ∈ T,

or equivalently a⊥ ̸∈ T⊥. Thus without loss of generality, we may assume
that statement (1) holds. In particular,

|S⊥| = |T⊥| ≤ |T | ≤ 4.

Assume that |T ∩Sx| ≤ 1 for some x ∈ S2. Then any element a ∈ Sx lies
in the set N(T ′), where T ′ contains all the elements of T , except at most
one. Taking into account that a ∼ a (as k = 2), we may assume that

|T ∩ Sx| ≥ 2 for each x ∈ S⊥.

Since S⊥ has at least two elements, say x⊥ and y⊥, this implies that T
contains at least two elements of Sx and Sy. In view of the above inequality,
this proves statements (2) and (3). □

To complete the proof of Lemma 4.3.30, it suffices to verify that state-
ments (1), (2), and (3) of Claim 1 lead to a contradiction with the lemma
hypothesis. Assume on the contrary that they hold true.

Claim 2. S⊥ = {u, v}, where u ∈ S2 is such that Su ⊆ T , and v ∈ S1.

Proof. By statement (3) of Claim 1,

S⊥ = {u, v}

for distinct relations u, v ∈ S. If they are thin, then X is a Kleinian scheme
with two thin orthogonals (Lemma 4.3.29), a contradiction.

Now let u, v ∈ S2. Then from statements (2) and (3) of Exercise 4.7.29,
it follows that given x, y ∈ S2,

cyxs = 1 for all s ∈ x∗y.

This means that any two vertices of the graph X2 associated with the
scheme X (see Subsection 4.3.1) are adjacent. However, no two distinct
vertices of Su as well of Sv are adjacent. So, |Su| = |Sv| = 1, contrary to
statement (2) of Claim 1.

Thus we may assume that

u ∈ S2 and v ∈ S1.

Then Su ⊆ T , because by statements (2) and (3) of Exercise 4.7.29, any
vertex of Su \ T is adjacent in X2 to each vertex of S2. □

Claim 3. S1 = {1, v} and Su = {t, v · t} for some t ∈ T .
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Proof. From statement (2) of Claim 1 and Claim 2, it follows that
|Su| = 2. Take any t ∈ Su. Then given r, s ∈ S1,

rt = st ⇔ r = s.

Indeed, the “if” part is obvious. Conversely, we assume that rt = st. Then

s∗r ⊆ tt∗ = {1, u}.

Since also nu = 2, this implies that s∗ · r = 1.
Next, it is easily seen that S1Su = Su. Since |Su| = 2,

|S1| = |S1t| ≤ |S1Su| = |Su| = 2,

which proves the claim. □

Claim 4. The set R := S1 ∪ Sv is closed.

Proof. Given r ∈ Sv, we have r⊥ = (r∗)⊥, for otherwise rr∗ ⊆ S2
by statement (3) of Exercise 4.7.29. It follows that (Sv)

∗ = Sv and hence
R∗ = R. It is also easily seen that

S1Sv = SvS1 = Sv,

It remains to prove that SvSv ⊆ R. Let r, s ∈ Sv. Since r∗ ∈ Sv and
v ∈ S1, we have

v · r∗ = (r∗)⊥ · r∗ = r∗.

This implies that

rs (rs)∗ = r(ss∗)r∗ = r{1, v}r∗ = rr∗ = {1Ω, v}.

Thus, rs ⊆ Sv. □

To get a final contradiction, set

Q =

{
S1 ∪ Su, if u⊥ = u,

S1 ∪ Su ∪ {u}, if u⊥ = v.

Since S = R∪Q, Claim 4 implies that Q = Q∗. Using Claim 3 and the fact
that Qv = Q, one can easily verify that Q is closed. Thus, S is the union of
two closed subsets Q and R. Consequently, one of them coincides with S.
This leads to a contradiction if u⊥ = u. In the remaining case, S = Su and
hence

|Ω| = nS = nQ = 8,

contrary to the lemma hypothesis. □

The Desargus condition

Lemma 4.3.31. Any non-Kleinian quasi-thin scheme is weakly Desar-
guesian.
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Figure 4.11 A six points configuration for the claim.

Proof. Let X be a non-Kleinian quasi-thin scheme, and let x, y, z ∈ S2
be such that x ∼ z ∼ y. Then by Exercise 2.7.27,

x⊥ ̸= z⊥ and z⊥ ̸= y⊥.

Assume on the contrary that X is not weakly Desarguesian. Then the
intersection rs ∩ x∗y is not a singleton. Indeed, otherwise any r ∈ x∗z is
linked with any s ∈ z∗y with respect to (x, y, z), because formulas (4.3.16)
and (4.3.17) are trivially satisfied for q = z, u = r, v = s∗, and w = 1.

On the other hand, the number |rs ∩ x∗y| is at most |x∗y| ≤ 2. Thus,

(4.3.33) |rs ∩ x∗y| = 2 and rs = x∗y, r ∈ x∗z, s ∈ z∗y.

It follows that x ∼ y and hence x⊥ ̸= y⊥. Thus,

(4.3.34) x⊥ ̸= z⊥ ̸= y⊥ ̸= x⊥.

Claim. x⊥ · y⊥ · z⊥ = 1.

Proof. In view of relations (4.3.33), statement (3) of Exercise 4.7.29
implies that x∗y ⊂ S2 and Ars = Ax∗y for all r ∈ x∗z and s ∈ z∗y. It follows
that

2Ax∗Ay +
2

nz⊥
Ax∗Az⊥Ay = Ax∗(2IΩ +

2

nz⊥
Az⊥)Ay

= Ax∗(AzAz∗)Ay

= (Ax∗Az )(Az∗Ay )

=
∑
r∈x∗z
s∈z∗y

ArAs = 4Ax∗Ay ,

implying

(4.3.35) Ax∗Az⊥Ay = nz⊥Ax∗Ay .

First, we assume that nz⊥ = 2. Then there exist six points that form a
configuration depicted in Fig.4.11, in which the points β1 and β2 are distinct.
Since nx∗ = 2, it follows that either α1 = β1 or α1 = β2. In both cases,
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z⊥ ∈ yy∗ = {1, y⊥},

contrary to (4.3.34).
Thus, nz⊥ = 1, i.e., z⊥ ∈ S1. Then (4.3.35) yields

Ax∗Az⊥Ay = Ax∗Ay .

It follows that

⟨Ax∗Az⊥Ay , Ax∗Ay ⟩ = ⟨Ax∗Ay , Ax∗Ay ⟩ = 4,

where the scalar product ⟨·, ·⟩ is as in Exercise 2.7.26. By the associativity
of this scalar product and formula (4.3.34),

4 = ⟨AxAx∗Az⊥ , AyAy∗⟩

= ⟨2Az⊥ +
nx
nx⊥

Ax⊥Az⊥ , 2I +
ny
ny⊥

Ay⊥⟩

=
nxny
nx⊥ny⊥

⟨Ax⊥Az⊥ , Ay⊥⟩.

In particular, the right-hand side of this equality is nonzero. With taking
into account that z⊥ ∈ S1 and nx = ny = 2, this is possible only if

x⊥ · z⊥ = y⊥ and nx⊥ = nz⊥ = 1.

But then x⊥ · y⊥ · z⊥ = 1. □

From the Claim, it follows that x⊥, y⊥, and z⊥ are pairwise distinct thin
relations and the product of any two of them is equal to the third. Together
with 1 they form a Klein group contained in the thin residue of X . Since
the scheme X is not Kleinian, there exists an element q ∈ S such that q⊥ is
different from x⊥, y⊥, and z⊥. It follows that

(4.3.36) (xx∗ yy∗)∩qq∗ = {1}, (xx∗ zz∗)∩qq∗ = {1}, (yy∗ zz∗)∩qq∗ = {1}.

By the condition (L2) of Corollary 4.3.14, this implies that r and s are
linked with respect to (x, y, z), a contradiction. □

Schurity and separability

We arrive at the main result of this subsection that is [103, Theo-
rem 1.1.]; it should be noted that the proof in [103] is direct in the sense
that it uses neither saturation nor Desargues condition.

Theorem 4.3.32. Any non-schurian or non-separable quasi-thin scheme
is a Kleinian scheme of index 4 or 7. Moreover, there exist infinitely many
Kleinian schemes of index 4 and of index 7 that are both non-schurian and
non-separable.

Proof. Let X be a quasi-thin scheme. Assume that X is non-schurian
or non-separable. Then

• the degree of X is at least 9 (a straightforward check);
• |S⊥| ≥ 2 (Theorem 4.3.28).
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It follows that X is Kleinian. Indeed, otherwise it is saturated (Lemma 4.3.30)
and weakly Desarguesian (Lemma 4.3.31), and thus schurian and separable
(Theorem 4.3.17), a contradiction. Now the index of X is equal to 4 or 7 by
Theorem 4.3.27.

To prove the second part, we note that the schemes X16 and X28 from
Example 4.3.24 are non-schurian and non-separable Kleinian schemes of in-
dices 4 and 7, respectively. Let X be one of these schemes, and let Y be an
arbitrary regular scheme. Then X ⊗Y is obviously a Kleinian scheme of the
same index as X (see statement (3) of Exercise 4.7.27). Since this scheme
is non-schurian (Corollary 3.2.22) and non-separable (Corollary 3.2.24), we
are done. □

Corollary 4.3.33. Any non-Kleinian quasi-thin scheme is schurian and
separable.

It would be interesting to extend the results of this subsection in two
directions. First, in a natural way one can define quasi-thin coherent config-
urations and look for generalization of Theorem 4.3.32 to the class of all of
them. Second, the characterization of Kleinian schemes in Theorem 4.3.27
is in a sense implicit. The question is how to characterize them up to iso-
morphism.
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4.3.4 Pseudocyclic schemes

A wide subclass of two-valenced schemes is formed by nonregular equiva-
lenced schemes. The schurian equivalenced schemes come from 3/2-transitive
groups which are completely classified in [92]. Many of these schemes are
Frobenius and this is always true in the imprimitive case (Corollary 3.3.9).
One of the goals of this subsection is to show that, at least “asymptoti-
cally”, the imprimitivity condition here is superfluous. The most part of the
material is taken from [102].

A scheme X is said to be pseudocyclic if the ratio mξ/nξ does not de-

pend on the choice of the irreducible character ξ ∈ Irr(X )#. The following
combinatorial characterization of pseudocyclic schemes immediately follows
from Theorem 3.6.13.

Proposition 4.3.34. A scheme X is pseudocyclic if and only if X is an
equivalenced scheme of valency k ≥ 1 and c(s) = k − 1 for all s ∈ S(X )#.

Not every equivalenced scheme is pseudocyclic but only a few such ex-
amples are known. One of them is given below.

Example 4.3.35. [17, p.48] The scheme X of the Johnson graph J(7, 2)
has degree 21, rank 3, and is an equivalenced scheme of valency 10. On the
other hand, one can find that c(s) = 11 or 7 for an irreflexive basis relation s,
i.e., the scheme X is not pseudocyclic.

Any regular scheme (not necessarily commutative) is pseudocyclic be-
cause in this case mξ = nξ for all irreducible characters ξ. A less trivial
example below comes from a Frobenius group with non-abelian kernel.

Example 4.3.36. [107, p.187-189] Let q be a prime power and n > 1
an odd integer. Denote by H a subgroup of GL(3, qn) that consists of all
matrices

A(a, b) =

1 a b
0 1 aq

0 0 1

 a, b ∈ Fqn .

Take c ∈ Fqn such that the multiplicative order of c equals (qn − 1)/(q − 1).
Then the mapping

σ : A(a, b) 7→ A(ca, c1+qb)

is a fixed point free automorphism of H. It follows that K = ⟨H,σ⟩ is
a Frobenius group with non-abelian kernel H and complement ⟨σ⟩. The
scheme

X = Inv(K,H)

is of degree |H| = q2n and rank qn+1 − qn + q. This scheme is equivalenced

of valency qn−1
q−1 .

A straightforward calculation for (q, n) = (2, 3) shows that Irr(X ) con-
sists of four characters, the multiplicities and degrees of which are as follows:

(m0, n0) = (1, 1), (m1, n1) = (7, 1), (m2, n2) = (m3, n3) = (14, 2).
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In particular, X is a noncommutative pseudocyclic scheme: mξ/nξ = 7 for

all characters ξ ∈ Irr(X )#.

Theorem 4.3.37. Any Frobenius scheme is pseudocyclic. Moreover, it
is commutative if the corresponding Frobenius group has abelian kernel.

Proof. Let X be a Frobenius scheme on Ω, K ≤ Sym(Ω) the corre-
sponding Frobenius group, and

π : CK → MatΩ(C), k 7→ Pk

is the permutation representation of K. By Proposition 2.3.5, each of the
algebras A = Adj(X ) and π(CK) is equal to the centralizer of the other
algebra in MatΩ(C) (see also [28, p.178]). Therefore these two algebras
have the same center,

Z(A) = Z(π(CK)) = A ∩ π(CK).

Denote by Irr(K) the set of irreducible characters of K entering to the
permutation representation. The above equality implies that there is a bi-
jection Irr(X ) → Irr(K), ξ 7→ ζ such that

nξ = mζ and mξ = ζ(1), ξ ∈ Irr(X ).

Thus the first part of the theorem is a consequence of the following statement
proved in [102, Theorem 2.4]: if K is a nonregular transitive permutation
group with point stabilizer L, and

π =
∑

ζ∈Irr(K)

mζζ

is the decomposition of the permutation character π of K into irreducibles,
then K is a Frobenius group if and only if

ζ(1)

mζ
= |L| for each ζ ∈ Irr(K)#.

The second part of the theorem follows from Proposition 2.4.5 and the
fact that any Frobenius scheme is a Cayley scheme over the kernel of the
corresponding Frobenius group. □

Remark 4.3.38. In fact, the commutativity of a Frobenius scheme im-
plies that the corresponding Frobenius group has abelian kernel, see [102,
Theorem 3.1].

There are a lot of equivalenced schemes for which the group of algebraic
isomorphisms acts transitively on irreflexive basis relations. These schemes
were studied in [77] and include the cyclotomic schemes over finite fields
and the affine schemes. The following statement shows that all of them are
pseudocyclic.

Corollary 4.3.39. Let X be an equivalenced scheme. Suppose that the
group Isoalg(X ) acts transitively on S#. Then X is a pseudocyclic scheme.
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Proof. By the hypothesis, the number c(s) does not depend on s ∈ S#,
and by Lemma 2.1.14, this number is one less that the valency of X . Thus
the scheme X is pseudocyclic by Proposition 4.3.34. □

Not every pseudocyclic scheme is Frobenius. Indeed, any scheme from
Example 2.6.15 is pseudocyclic (Corollary 4.3.39). On the other hand, many
of these schemes are non-schurian and hence non-Frobenius. A schurian
example of a pseudocyclic scheme, which is not Frobenius, is given below.

Example 4.3.40. [17, p. 390] Let q > 4 be a 2-power. Denote by Ω the
set of cyclic subgroups of order q+1 in the group PSL(2, q). This group acts
transitively on Ω by conjugation and the scheme of the induced permutation
group is of degree

|Ω| = q2 − q

2
.

This scheme is symmetric and pseudocyclic of valency q + 1. Some of its
algebraic fusions are also pseudocyclic and were studied in [76].

In all the examples we have seen so far, the degree of a non-schurian
pseudocyclic scheme is bounded from above by a quadratic function on the
valency, e.g., the scheme of a (non-Desarguesian) affine plane of order q is of
degree q2 and valency q−1. The same is true for non-separable pseudocyclic
schemes. The following theorem shows that, in a sense, this reflects a general
situation.

Theorem 4.3.41. There exists a function f such that any pseudocyclic
scheme of valency k > 1 and degree at least f(k) is schurian and separable.

Proof. Set f(x) = 3x6+1. By Theorem 4.3.17, it suffices to verify that
for any pseudocyclic scheme X of degree n and valency k the lemma below
holds.

Lemma 4.3.42. If n > 3k6, then the scheme X is saturated and Desar-
guesian.

Proof. By Proposition 4.3.34, ns = k and c(s) = k − 1 for any s ∈ S#.
It follows that for k ≥ 2,

|Sk| =
n− 1

k
>

3k6 − 1

k
> 4k(k − 1) = 4ck.

Thus, X is saturated by Corollary 4.3.4.
To prove that X is Desarguesian, let x, y, z ∈ Sk (here Sk = S# and we

do not assume that x ∼ z ∼ y). By the condition (L2) of Corollary 4.3.14,
it suffices to find q ∈ Sk such that

qq∗ ∩ (xx∗ yy∗ ∪ yy∗ zz∗ ∪ zz∗ xx∗)︸ ︷︷ ︸
T

= {1}.

Assume on the contrary that no q ∈ Sk satisfies this condition. Then for a
fixed α ∈ Ω and each q ∈ Sk, there exists βq ∈ αT other than α and such
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that r(α, βq) belongs to qq
∗, or equivalently,

(4.3.37) Ωα,βq ∩ αq ̸= ∅,

where the set Ωα,βq is as in (4.3.7). Since

|αT | ≤ n2xn
2
y + n2yn

2
z + n2zn

2
x = 3k4 and |Sk| =

n− 1

k
≥ 3k6

k
= 3k5,

there exists a point β ̸= α such that β = βq for at least k relations q ∈ Sk.
In view of (4.3.37), this implies that for s = r(α, β) we have

k − 1 = c(s) ≥ |Ωα,β| ≥ k,

a contradiction. □

The example of affine scheme and the proof of Theorem 4.3.41 show that
the function f from this theorem satisfies the inequalities

(k + 1)2 < f(k) ≤ 3k6 + 1.

A more subtle argument shows that f(k) ≤ 1 + 6k(k − 1)2, see [27]. It
seems that this upper bound could be improved to a quadratic function. An
indirect confirmation of this statement is the following theorem showing to-
gether with Theorem 4.3.41 that, at least “asymptotically”, all pseudocyclic
schemes are Frobenius.

Theorem 4.3.43. Let X be a schurian pseudocyclic scheme of valency
k > 1 and degree greater than (k−1)(2k−1). Then X is a Frobenius scheme
and Aut(X ) is a Frobenius group.

Proof. Let g be an automorphism of X , and let fix(g) be the set of its
fixed points. Then obviously,

r(α, β) = r(αg, β) for all α ∈ Ω, β ∈ fix(g).

By the assumption on X and Proposition 4.3.34, this implies that

|fix(g)| ≤ |{β ∈ Ω : r(α, β) = r(αg, β)}| = c(s) = k − 1,

where s = r(α, αg). Thus if the permutation g is non-identity, then

(4.3.38) |fix(g)| ∈ {0, . . . , k − 1}.

At this point, we make use of a result from [24, Proposition 1] stating
that if for all non-identity elements g of a permutation group the number
| fix(g)| belongs to a fixed set X of nonnegative integers, then this group has
at most 2max(X)− 1 nonregular orbits.

In view of (4.3.38), this result, applied for a point stabilizer of the group
K = Aut(X ) and X = {0, . . . , k − 1}, implies that

|{∆ ∈ Orb(Kα) : ∆ is nonregular}| ≤ 2(k − 1)

for all points α.
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On the other hand, since X is equivalenced of valency k, we have

|Orb(Kα)| = |S(X )| = n− 1

k
+ 1 >

(k − 1)(2k − 1)

k
+ 1 ≥ 2k − 1,

where n is the degree of X . Thus at least one orbit and hence all orbits of
the group Kα are regular, i.e., Aut(X ) = K is a Frobenius group. □
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4.4 Cyclotomic and circulant schemes

In this section we study cyclotomic schemes over a finite field. They
are, of course, schurian. Moreover, being pseudocyclic, they are also asymp-
totically (in the sense of Theorem 4.3.41) separable. But what happens if
such a scheme has small rank, e.g., is the scheme of the Paley graph or
tournament? This question was answered in [41], where it was proved that
every cyclotomic scheme over a finite field is 3-separable or equivalently, is
determined up to isomorphism by the 3-dimensional intersection numbers.
Below we prove this result; in the presentation of the material we follow [41].

The key idea of the proof is to show that a one-point extension of a
cyclotomic scheme X is schurian and hence inequality (3.3.5) becomes an
equality forK = Aut(X ). Then the upper bound for the separability number
of X follows from Theorem 4.2.3.

In the process of the proof it turns out that the one-point extension of
a cyclotomic scheme over a field F is closely related with a Cayley scheme
over the group F×. This group is cyclic which makes it possible to study
this scheme with the help of the Leung–Man theory on S-rings over cyclic
group [89, 90].

4.4.1 Reduction of cyclotomic schemes to circulant schemes

In what follows, a Cayley scheme over a cyclic group is said to be circu-
lant. Let X be a circulant scheme, and let G be the underlying cyclic group.
By the Schur theorem on multipliers (Theorem 2.4.10),

Isocay(X ) = Aut(G).

The group Aut(G) acts transitively on the generators of G and hence on
the relations s = r(α, β), where α and β are the identity and a generator
of G, respectively. Therefore, the parabolic

e = rad(s)

does not depend on the choice of the generator β.
The subgroup of G associated with the parabolic e, i.e., one defined by

formula (2.4.6), is called the radical of X and denoted by rad(X ). Some
properties of this group can be found in Exercise 4.7.35.

The following important result on circulant schemes is known as the
Leung–Man theorem. It was proved in [89, 90] (see also [41]) in terms of
S-rings over a cyclic group. Using the one-to-one correspondence between
Cayley schemes and S-rings established in Theorems 2.4.16 and 2.4.17, one
can reformulate the Leung–Man theorem as follows.
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Theorem 4.4.1. Let X be a circulant scheme. Then

(1) rad(X ) ̸= 1 if and only if X is a proper generalized wreath product;
(2) rad(X ) = 1 if and only if X is Cayley isomorphic to the tensor

product of a cyclotomic circulant scheme with trivial radical and
trivial schemes.

Theorem 4.4.1 shows that any circulant scheme can be constructed from
trivial and cyclotomic circulant schemes with the help of tensor and gener-
alized wreath products. Another consequence of the Leung–Man theorem is
that it strongly limits the structure of the automorphism group of a circulant
scheme with trivial radical.

Corollary 4.4.2. Let X be a circulant scheme with trivial radical. Then
the degree of X admits a decomposition into the product of pairwise coprime
factors n0, n1, . . . , nk such that

(4.4.1) X = X0 ⊗ Tn1 ⊗ · · · ⊗ Tnk
,

where X0 is a cyclotomic scheme over Cn0 with trivial radical. In particular,

(4.4.2) Aut(X ) = Aut(X0)× Sym(n1)× · · · × Sym(nk).

Proof. See statement (2) of Theorem 4.4.1 and formula (3.2.18). □

Below, we are interested in normal circulant schemes with trivial radical.
In principle, Theorem 4.4.1 enables us to characterize them explicitly up to
Cayley isomorphism, see Exercise 4.7.37. However for our purposes, the
following statement is sufficient.

Corollary 4.4.3. Every normal circulant scheme with trivial radical is
cyclotomic.

Proof. Let X be a circulant scheme with trivial radical. Then the group
Aut(X ) is of the form (4.4.2). If X is normal, then Aut(X ) is also isomorphic
to a subgroup of the holomorph of the underlying group. However, the
holomorph of a cyclic group Cm, m ≥ 4, has no subgroups isomorphic
to Sym(m). By formula (4.4.1) this implies that X is the tensor product of
circulant cyclotomic schemes. Thus, X is cyclotomic. □

Another surprising corollary of the Leung–Man theorem is that any non-
regular circulant scheme has nontrivial automorphisms.

Corollary 4.4.4. Let X be a Cayley scheme over a cyclic group G. Then

Aut(X ) = Gright ⇔ X = Inv(Gright).

Proof. The sufficiency follows from Theorem 2.2.11. Conversely, assume
that

Aut(X ) = Gright.

Then X is a normal circulant scheme. By Corollary 3.4.22, X cannot be a
proper generalized wreath product. Consequently, it is a normal circulant



292 4. DEVELOPMENTS

scheme with trivial radical (Theorem 4.4.1). Thus,

X = Cyc(M,Cn)

for some M ≤ Aut(G) (Corollary 4.4.3). In view of the assumption, M = 1
and we are done. □

Now let X be a cyclotomic scheme over a finite field F. In what follows,
the zero element of F is denoted by α. Consider the restriction of the α-
extension of X to the set F× = F \ {α},

(4.4.3) X ′ = (Xα)F× .

The group G induced by the multiplicative group of F that acts on F by right
(or left) multiplications, becomes a subgroup of Iso(X ) (Exercise 2.7.16).
This subgroup leaves the point α fixed and hence can be identified with a
subgroup of the group Iso(X ′) (Theorem 2.6.4).

Thus the algebraic fusion

(4.4.4) X ∗ = (X ′)G

is a Cayley scheme over the group G. This group is cyclic and hence the
scheme X ∗ is circulant.

Lemma 4.4.5. In the above notation,

(1) Aut(X ∗) ≤ GAut(F) whenever the scheme X is nontrivial;
(2) X ∗ is schurian if and only if so is Xα.

Proof. First, the hypothesis of Lemma 3.3.20 is obviously satisfied for
the coherent configuration Xα and ∆ = F×. Therefore by this lemma

Aut(X ′) = Aut((Xα)F×) = Aut(Xα)F
×

and the coherent configurations Xα and X ′ are schurian or not simultane-
ously.

From statement (1) of Proposition 3.3.3 and Theorem 2.2.4, it follows
that

Aut(Xα)F
×
= (Aut(X )α)

F× ≤ G⋊Aut(F).
Thus,

Aut(X ′) ≤ G⋊Aut(F)
and to prove statements (1) and (2) it suffices to verify that the hypothesis
of Theorem 3.1.30 is satisfied for the coherent configuration X ′ and the
group G.

Denote by M the subgroup of the multiplicative group of the field F
such that

X = Cyc(M,F).
By the definition of cyclotomic scheme,

αs ∈ Orb(M,F), s ∈ S(X ).
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By statement (1) of Theorem 3.3.7, this implies that F (Xα) = Orb(M,F).
Thus,

F (X ′) = Orb(M,F×).
Clearly, the group G regularly acts on the fibers of X ′ and the ker-

nel of this action coincides with M ≤ Aut(X ′). Thus the hypothesis of
Lemma 3.1.30 is satisfied and we are done. □

One can see that the scheme X ∗ is trivial if and only if so is X . The
following statement together with Corollary 4.4.3 show that in the nontrivial
case, X ∗ is also schurian.

Lemma 4.4.6. Assume that the scheme X is not trivial. Then X ∗ is a
normal circulant scheme with trivial radical.

Proof. Clearly, Aut(F) ≤ Aut(G). Therefore, the scheme X ∗ is nor-
mal by Theorem 2.4.12 and statement (1) of Lemma 4.4.5. Assume on the
contrary that

rad(X ∗) ̸= 1.

By statement (1) of Theorem 4.4.1, this implies that X ∗ is a proper gen-
eralized wreath product, say the U/L-wreath product, where L and U are
proper subgroups of G such that L ≤ U .

Let Λ ∈ (G/U)# and g ∈ L#. Then by Corollary 3.4.21 for X = X ∗,
there exists an automorphism k ∈ Aut(X ∗) such that

λk =

{
λg, if λ ∈ Λ,

λ, if λ ∈ G \ Λ.

In particular, k leaves each element of F that is not in Λ fixed. Taking into
account that

|Λ| = |U | ≤ q − 1

2
,

where q = |F|, we obtain

| fix(k)| = 1 + |F× \ Λ| ≥ 1 +
q − 1

2
,

where fix(k) is the set of all fixed points of the permutation k ∈ Sym(F).
On the other hand, this set contains the identity of G. By statement (1)

of Lemma 4.4.5, this implies that k ∈ Aut(F). It follows that the elements
of fix(k) form a proper subfield of F, say F0. Thus,

q = |F| ≥ |F0|2 = | fix(k)|2 ≥
(q − 1

2
+ 1
)2

=
(q − 1)2

4
+ q,

a contradiction. □
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4.4.2 A point extension of a normal circulant scheme

Lemmas 4.4.5 and 4.4.6 reduce the study of the one-point extension of a
cyclotomic scheme to that of a normal circulant scheme with trivial radical.
The aim of this subsection is to prove that every point extension of such a
scheme is schurian and separable. More precisely, the following statement
holds.

Theorem 4.4.7. Any m-point extension of a normal circulant scheme
with trivial radical is partly regular, m ≥ 1.

The arguments to prove Theorem 4.4.7 are based on two statements
(Theorems 4.4.9 and 4.4.10). The first of them shows that the result is true
in the prime power case, whereas the second one provides a reduction of the
general case. In what follows,

(4.4.5) X = Cyc(M,G),

where G is a cyclic group and M ≤ Aut(G). We start with an auxiliary
statement giving a necessary and sufficient condition for a point extension
of X to be partly regular. In what follows, α denotes the identity of G.

Lemma 4.4.8. Xα is partly regular if and only if Xα = Inv(M,G).

Proof. Each generator of G forms a base of the group M ≤ Sym(G).
Therefore,

b(M) ≤ 1.

Thus the sufficiency follows from Theorem 3.3.18.
Conversely, we assume that the coherent configuration Xα is partly

regular. Then it is schurian by Theorem 3.3.19. By formula (3.3.4), this
implies that

(4.4.6) Xα = Inv(K,G)α ≤ Inv(Kα, G),

where K = Aut(X ). In particular, the coherent configuration Inv(Kα, G) is
partly regular (Exercise 3.7.28).

By Theorem 3.3.18, this implies that b(Kα) ≤ 1, i.e., there exists β ∈ G
such that the group Kα,β is trivial. Therefore,

|Kα| = |βKα |.

On the other hand, in view of (4.4.5), the groups M and Kα have the
same orbits on G. Consequently, βKα ∈ Orb(M,G). It follows that

|M | ≥ |βKα | = |Kα|.

Since M ≤ Kα, this implies that M = Kα and we are done by (4.4.6). □

Throughout the rest of the subsection, p is a prime divisor of |G|, and
Gp and Gp′ are the Sylow p-subgroup and the complement of Gp in G,
respectively. Thus,

G = Gp ×Gp′ .
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The fact that the scheme X is cyclotomic, implies that the equivalence
relations

(4.4.7) ep = (Gp)
ρ and ep′ = (Gp′)

ρ

are parabolics of X , where the mapping ρ is defined by formula (2.4.10) (see
statement (6) of Exercise 1.4.16).

Theorem 4.4.9. Assume that the scheme X is nontrivial, rad(X ) is
trivial, and G is a p-group. Then

Xα = Inv(M,G).

Proof. By the theorem hypothesis and Theorem 4.4.1, the scheme X is
not a proper generalized wreath product. So by Proposition 3.4.24,

(4.4.8) p ̸= 2, m | p− 1 or p = 2, m ≤ 2, M ̸= {1, σ1+n/2},

where m = |M | and n = |G|. Thus by Lemma 4.4.8, it suffices to verify that
in each of these two cases, the coherent configuration Xα is partly regular.

Let p > 2 and n ̸= p. Then m | p− 1 and hence the group

M = (GM)α

acts half transitively on G#. It follows that the group GM is 3/2-transitive.
By Corollary 2.2.6, this shows that the scheme X is equivalenced. It is also
imprimitive, because X has a parabolic with classes of cardinality p, and this
parabolic is nontrivial (since n ̸= p). Thus the coherent configuration Xα is
partly regular by Theorem 3.3.8.

Let p > 2 and |n| = p. In this case, we may identify X with a nontrivial
cyclotomic scheme over a field F of order p. Then by Lemma 4.4.6, the
scheme X ∗ defined in (4.4.4) is a normal Cayley scheme over the cyclic
group F×.

Moreover, since the group Aut(F) is trivial, from statement (1) of Lem-
ma 4.4.5, it follows that

Aut(X ∗) ≤ F×Aut(F) = F×.

By Theorem 4.4.4, this shows that the scheme X ∗ is regular. Consequently,
the coherent configuration

(Xα)F× ≥ X ∗

is semiregular (statement (2) of Exercise 2.7.12). It follows that Xα is partly
regular, as required.

Let p = 2. Then in accordance with (4.4.8), we have

(4.4.9) M = 1G or M = {σ1, σ−1} or M = {σ1, σ−1+n/2}.

It suffices to verify that any generator β of the group G is a regular point
of the coherent configuration Xα.
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By the definition of a cyclotomic scheme, the basis relations of X are of
the form

sc = {(βa, βb) : b− a = µc (mod n), µ ∈M, a, b ∈ Z}

for some c ∈ Z; by statement (1) of Theorem 2.2.5, the fibers of Xα are of
the form

∆c = {βa : a = µc (mod n), µ ∈Mc}.
Now a straightforward computation shows that

|βsc ∩∆d| ≤ 1

for each group M in (4.4.9) and all the pairs (sc,∆d), d ∈ Z. On the other
hand, by Lemma 3.3.5 we have

sc ∩ (∆1 ×∆d) ∈ S(Xα)∪.

Thus, β is a regular point of Xα. □

Given a prime p dividing |G| and a relation s ⊆ G×G, set

(4.4.10) prp(s) = {(βp, γp) : (β, γ) ∈ s}

where βp and γp are the p-components of the elements β and γ of the
group G. Since ep′ is a parabolic of X , one can consider the quotient scheme

prp(X ) := XG/ep′ .

The parabolics ep and ep′ are obviously orthogonal. Therefore under
the natural identification of Gp and G/ep′ , we may assume that prp(X )
is a Cayley scheme over Gp, the basis relations of which are defined by
formula (4.4.10) with s ∈ S(X ).

Finally, set

Mp =M ∩Aut(Gp) and Xp = Inv(Kp, Gp),

where Aut(Gp) is treated as a subgroup of Aut(G) = Aut(Gp)× Aut(Gp′),
and Kp = GpMp.

Theorem 4.4.10. Under the above assumptions and notation suppose,
in addition, that X is normal, rad(X ) is trivial, and (Xp)αp = Inv(Mp, Gp).
Then

prp(Xα) = Inv(πp(M), Gp),

where πp : Aut(G) → Aut(Gp) is the projection epimorphism.
Proof. In what follows, set S = S(X ) and denote by β a generator

of Gp′ . First, we prove several auxiliary statements.

Lemma 4.4.11.

Orb(Kp, Gp ×Gpβ) = {sGp,Gpβ : s ∈ S}♮.
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Proof. It suffices to check that any nonempty relation sGp,Gpβ is an
orbit of the group Kp acting on Gp × Gpβ. To this end, fix an element
(γ, δβ) of this set. Since s is a 2-orbit of the group K = GM , we have

s = {(γσ, δσβσ) : σ ∈ K}.

Let us write σ ∈ GAut(G) as the product of σp ∈ GpAut(Gp) and
σp′ ∈ Gp′ Aut(Gp′). Note that

(γσ, δσβσ) ∈ sGp,Gpβ ⇔ (Gp)
σ = Gp and (Gpβ)

σ = Gpβ.

The latter two equalities hold true if and only if σp′ leaves the identity of Gp′
and the element βp′ fixed. But this means that σp′ is identity, or in other
words, σ ∈ Kp (see the definition of the group Mp). Thus,

sGp,Gpβ = (γ, δβ)Kp ,

as required. □

Lemma 4.4.12.

Inv(Kp, Gpβ) ≤ (Xα)Gpβ.

Proof. Let r be a basis relation of the scheme Inv(Kp, Gpβ), i.e., a
2-orbit of the group Kp acting on Gpβ. Then the set

t = {(γp, γ′) : (γ, γ′) ∈ r}

is an orbit of Kp acting on Gp ×Gpβ.
By Lemma 4.4.11, this implies that t = sGp,Gpβ

for some s ∈ S. It

follows that
r = (ep′ · 1Gp · s)Gpβ,

where ep′ is as in formula (4.4.7). Since, ep′ and 1Gp are relations of Xα, we
conclude that so is the composition ep′ · 1Gp · s. Thus, r is a relation of the
coherent configuration (Xα)Gpβ. □

Lemma 4.4.13.

(Xα)Gpβ = Inv(Mp, Gpβ).

Proof. The parabolic ep of the scheme X isMp-invariant. Furthermore,

Gpβ = Gpβp′ = βp′ep,

is a class of ep, containing the point βp′ fixed by Mp. Therefore, the set Gpβ
is invariant with respect to the group Mp ≤ Aut(Xα). Thus,

(4.4.11) (Xα)Gpβ ≤ Inv(Mp, Gpβ).

Conversely, the intersection of Gpβ and the class of ep′ containing α is
equal to the singleton {βp′}. Since Gpβp′ = Gpβp, this singleton is the fiber
of the coherent configuration (Xα)Gpβ.
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By Lemma 4.4.12, this implies that

(4.4.12) Inv(Kp, Gpβ)βp′ ≤ (Xα)Gpβ.

On the other hand, multiplication by βp′ induces a bijection f : Gp → Gpβ.
Obviously,

(αp)
f = βp′ and Inv(GMp, Gp)

f = Inv(GMp, Gpβ).

Thus after applying f to the equality (Xp)αp = Inv(Mp, Gp) given by
the hypothesis of the theorem, we get

Inv(Kp, Gpβ)βp′ = Inv(Mp, Gpβ).

Together with (4.4.12), this proves the inclusion reversed to (4.4.11). □

To complete the proof of Theorem 4.4.10, set

X ′ = (Xα)πp(M).

Then from Lemma 4.4.13 and the obvious inclusion Mp ≤ πp(M), it follows
that

X ′
Gpβ = ((Xα)πp(M))Gpβ

= ((Xα)Gpβ)
πp(M)

= Inv(Mp, Gpβ)
πp(M)(4.4.13)

= Inv(πp(M), Gpβ).

Furthermore, let ∆ ∈ Orb(πp′(M), Gp′), where πp′ = πGp′ . Then the set

Gp∆ ⊆ G is the neighborhood of the point α in the relation

t = {(a, b) ∈ G2 : a−1b ∈ Gp∆}.

However, t ∈ S∪. Therefore, Gp∆ is a homogeneity set of Xα (Lemma 3.3.5),

and hence of X ′, because (Gp∆)πp(M) = Gp∆. So by the definition of the
coherent configuration prp(X ′), we have

(4.4.14) prp(X ′) = prp(X ′
Gp∆).

On the other hand, Aut(X ′) obviously contains M and πp(M), and
hence πp′(M). It follows that the set prp(X ′

Gpδ
) does not depend on the

choice of δ ∈ ∆. Thus formula (4.4.14) implies that

prp(X ′) = prp(X ′
Gpδ), δ ∈ Gp′ .

Since the actions ofM and πp(M) on Gp coincide, this equation together
with equation (4.4.13) show that

prp(Xα) = (Xα)Gp = X ′
Gp

= prp(X ′) = prp(X ′
Gpg)

= prp(Inv(πp(M), Gpβ)) = Inv(πp(M), Gp),
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which completes the proof of the theorem. □

Proof of Theorem 4.4.7 Since a fission of partly regular scheme is
partly regular, it suffices to prove Theorem 4.4.7 for m = 1 only. Let X be
a normal circulant scheme with trivial radical. By Corollary 4.4.3, we may
assume that X = Cyc(M,G) for some M ≤ Aut(G).

Let us prove that the coherent configuration Xα is partly regular; then
by the transitivity of Aut(X ), this is true for any one-point extension.

Claim. Let p be a prime divisor of the order of G. Then the radical
of Xp is trivial and Xp is a nontrivial scheme unless |Gp| ≤ 3.

Proof. Since Mp ≤M , we have

Cyc(Mp, G) ≥ Cyc(M,G) = X .

By statement (2) of Exercise 4.7.35, this implies that the radical of the
scheme Cyc(Mp, G) is trivial. Since Mp = πp(M)× 1Gp′ , it follows that

(4.4.15) Cyc(Mp, G) = Cyc(πp(M), Gp)⊗ Cyc(1Gp′ , Gp′).

Consequently, the radical of the scheme Xp = Cyc(πp(M), Gp) is also
trivial. Finally, if |Gp| > 3, then this scheme cannot be trivial, for otherwise
formula (4.4.15) implies that

Aut(X ) ≥ Aut(Cyc(Mp, G)) ≥ Sym(Gp)×Gp′ ,

which is impossible by the normality of X . This proves the claim. □

Now if |Gp| > 3, then the scheme Xp satisfies the hypothesis of Theo-
rem 4.4.9 and hence

(Xp)α = Inv(πp(M), Gp) = Inv(Mp, Gp).

Consequently by Theorem 4.4.10,

prp(Xα) = Inv(πp(M), Gp).

Note that this equality obviously holds if |Gp| = 2 or 3. Thus,

(4.4.16) Xα ≥
⊗
p∈P

prp(Xα) =
⊗
p∈P

Inv(πp(M), Gp),

where P is the set of prime divisors of the order of G.
Each factor on the right-hand side of (4.4.16) is a partly regular coherent

configuration. Therefore, the entire tensor product and hence the coherent
configuration Xα is also partly regular (Exercise 3.7.28). □



300 4. DEVELOPMENTS

4.4.3 Separability and base numbers of a cyclotomic scheme

The following theorem represents the main result of this section. In
particular, it gives an almost complete solution to the separability problem
for cyclotomic schemes over a finite field. The proof is based on the results
obtained in Subsections 4.4.1 and 4.4.2.

Theorem 4.4.14. Let X be a cyclotomic scheme over a finite field.
Then

(1) any m-point extension of X is schurian, m ≥ 1;
(2) b(X ) = b(K), where K = Aut(X );
(3) s(X ) ≤ b(K); in particular, s(X ) ≤ 3.

Proof. It suffices to verify statement (1). Indeed, we assume that it
is true. Then in view of formula (3.3.4), for any points α, β, . . . of the
scheme X , we have

Xα,β,... = Inv(Aut(Xα,β,...)) = Inv(Kα,β,...).

Therefore, the coherent configuration Xα,β,... is discrete if and only if the
group Kα,β,... is trivial. This proves statement (2). Next, from statement (1)
and Theorem 3.3.18, it follows that X admits a partly regular extension with
respect to b(K)− 1 points. Thus statement (3) follows from Theorem 4.2.3.

To prove statement (1), we may assume that X is not trivial. Then the
scheme X ∗ defined by formula (4.4.4) is a normal circulant scheme with triv-
ial radical (Lemma 4.4.6). Consequently, it is cyclotomic (Corollary 4.4.3)
and hence schurian. By statement (2) of Lemma 4.4.5, this implies that
the coherent configuration Xα is also schurian. By the transitivity of the
group K this proves the required statement for m = 1.

Let m ≥ 2. Since X ∗ is a normal circulant scheme with trivial radical,
the extension of it with respect to any m−1 points β, γ, . . . is partly regular
(Theorem 4.4.7). By Exercise 3.7.28, any fission of this extension is also
partly regular. Therefore the coherent configuration

(Xα,β,γ,...)F× ≥ (X ∗)β,γ,...

is partly regular.
By Theorem 3.3.19, the above inclusion shows that the coherent configu-

ration on the left-hand side of the above inclusion is schurian. Consequently,
so is the coherent configuration Xα,β,γ,.... In view of the transitivity of the
group K, the point α can be replaced for any other point of X . Thus, any
point extension of X is schurian. □

We complete the subsection by making some comments on the state-
ments of the theorem. In what follows, F is the field associated with the
scheme X and A ≤ Sym(F) is the additive group of F. Then one of the
following cases occurs:

• X is regular, i.e., K = A: b(X ) = s(X ) = 1;
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• X is trivial, i.e., K = Sym(F): b(X ) = q − 1 and s(X ) = 1;
• X is proper and one of the two following statements holds:

(a) b(X ) = 2 and s(X ) = 1 or 2; both cases are possible;
(b) b(X ) = 3 and s(X ) ≤ 3; no example for s(X ) = 3 is known.

One can also prove that the m-dimensional extension of the scheme X
is schurian for all m ≥ 1. However, the proof of this statement is beyond
the scope of this text; the interested reader is referred to [41].
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4.5 Schemes of prime degree

Let X be a scheme of prime degree p. From Corollary 2.1.23, it immedi-
ately follows that any parabolic of X is of valency 1 or p. Therefore, X must
be primitive. In the schurian case, this is enough to classify such schemes
completely.

Theorem 4.5.1. Any scheme of prime degree p and transitive automor-
phism group is isomorphic to a cyclotomic scheme over a field of order p.

Proof. Let X be a scheme of prime degree p and the group K = Aut(X )
is transitive. The primality of p implies that any Sylow p-subgroup G of K
is a (cyclic) group of order p. It follows that this group is regular. There-
fore, X is isomorphic to a Cayley scheme over G. Being primitive, this
scheme cannot be a nontrivial tensor or generalized wreath product. Thus
the required statement follows from Theorem 4.4.1. □

Corollary 4.5.2. Any schurian scheme of prime degree is isomorphic
to a cyclotomic scheme over a prime field.

By inspection of the Hanaki–Miyamoto list of association schemes [56],
one can find that all schemes of prime degree p are schurian if p ≤ 13 and
there are non-schurian schemes for p = 17, 19, 23, and 29, and each of them is
of rank 3. At present, the only known general construction of a non-schurian
scheme of prime degree was suggested by D. Pasechnik in [49, p.75], and we
describe it below.

Let X be an antisymmetric scheme of rank 3 on a set Ω. In the notation
of Exercise 2.7.57, set Ai = Asi , i = 0, 1, 2, and define two {0, 1}-matrices
of size (2n+ 1)× (2n+ 1):

(4.5.1) A′
1 =

 0 1n 0n
0′n A1 A2 + In
1′n A2 A2

 and A′
2 =

 0 0n 1n
1′n A2 A1

0′n A1 + In A1

 ,

where 0n and 1n (respectively, 0′n and 1′n) are 1 × n (respectively, n × 1)
matrices consisting of zeros and ones, respectively. Set Ω′ to be the disjoint
union of two copies of Ω and a singleton (corresponding to the first rows of
the matrices A′

1 and A′
2), and

S′ = {s′0, s′1, s′2},

where s′0 = 1Ω′ and s′i is the relation on Ω′ such that As′i = A′
i, i = 1, 2.

Theorem 4.5.3. Given an antisymmetric scheme X of degree n and
rank 3, the pair X ′ = (Ω′, S′) is an antisymmetric scheme of degree 2n + 1
and rank 3. Moreover, X ′ is not schurian if the group Aut(X ) is intransitive.



4. DEVELOPMENTS 303

Proof. To prove the first statement, we make use of formulas (2.7.2) to
obtain

A′
1A

′
1 =

 0 m 1n m′1n
m′ 1′n A2

1 +A2
2 +A2 A1A2 +A1 +A2

2 +A2

m 1′n Jn +A2A1 +A2
2 2A2

2 +A2


=

 0 m 1n m′1n
m′ 1′n mA1 +m′A2 mIn +m′A1 +mA2

m 1′n m′In +m′A1 +mA2 m′A1 +mA2


= mA′

1 +m′A′
2,

where m = (n− 1)/2 and m′ = m+ 1. It easily follows that the matrices

A′
0 = I2n+1, A′

1, A′
2

form the standard basis of a coherent algebra on Ω′. By Theorem 2.3.7, we
conclude that X ′ is a coherent configuration.

To prove statement (2), denote by α′ the index of the first row of the
matrix A′

1 and identify the indices of the next n rows with the set Ω. Then

(4.5.2) Ω = α′s′1.

By statements (1) and (2) of Lemma 3.3.5, this implies that Ω is a homo-
geneity set of Y ′ = X ′

α′ and s1 = s′1 ∩ (Ω× Ω) is a relation of Y ′. It follows
that (Y ′)Ω is a fission of WL(s1) = X . Therefore,

Aut(Y ′)Ω ≤ Aut((Y ′)Ω) ≤ Aut(X ).

Now assuming that the group Aut(X ) has an orbit ∆ ⊊ Ω, we conclude
that Aut(Y ′) has an orbit strictly contained in ∆ and hence in Ω. By (4.5.2),
this implies that α′s′1 is not an orbit of the group

Aut(Y ′) = Aut(X ′
α′) = Aut(X ′)α′ .

Thus the scheme X ′ is not schurian by statement (3) of Proposition 2.2.5.□

Remark 4.5.4. If the group Aut(X ) is transitive, then the scheme X ′

in Theorem 4.5.3 can be schurian (e.g., if X is a regular scheme of degree 3)
or not (e.g., if X is the Paley scheme of degree 7).

Let X be a non-schurian antisymmetric scheme of degree n ≤ 23 and
rank 3: there is one such scheme for n = 15, and 18 pairwise non-isomorphic
schemes for n = 23. Then the group Aut(X ) is intransitive: in the former
case one can check this on computer, whereas in the latter case this follows
from Theorem 4.5.1. By Theorem 4.5.3, this implies that the scheme X ′ of
degree 2n+ 1 ∈ {31, 47} is not schurian.

One more general construction of antisymmetric schemes of prime degree
and rank 3 comes from skew Hadamard matrices; a {−1,+1}-matrix H of
order n is said to be skew Hadamard if

HHT = HTH = nIn and (H − In)
T = In −H.
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One can see that in this case, n = 1, 2 or a multiple of 4. Two such
matrices are said to be equivalent if one can be transformed into the other by
a series of row or column permutations and negations. Any skew Hadamard
matrix of order n is always equivalent to the matrix

(4.5.3) H =

(
1 1n−1

−1′n−1 C + In−1

)
,

where C is a skew-symmetric {0,−1, 1}-matrix. It can be represented in the
form

C = A−AT ,

where the matrices In−1, A, and A
T form the standard basis of a coherent

algebra, which is the adjacency algebra of an antisymmetric scheme of rank 3
if n ≥ 4 (Exercise 4.7.39).

Conversely, any such scheme defines a skew Hadamard matrix of the
form (4.5.3). Moreover, two such schemes are isomorphic if and only if the
corresponding matrices are equivalent. By Corollary 4.5.2, this proves the
following statement.

Theorem 4.5.5. Given a prime p, a non-schurian (respectively, non-
separable) antisymmetric scheme of degree p and rank 3 exists if and only if
there are at least two nonequivalent skew Hadamard matrices of order p+1.

In accordance with the list of known orders of skew Hadamard matri-
ces [87], among the suitable primes p between 23 and 100, the only case
where the existence of non-schurian antisymmetric scheme of degree p and
rank 3 is not known, is p = 79. A long-standing conjecture [121] states that
skew-Hadamard matrices exist for all dimensions divisible by 4.

It is interesting to find an infinite family of non-schurian schemes of
prime degree: although there are many infinite sequences of naturals n for
which there exist skew Hadamard matrices of order n, for none of them is
known whether it contains an infinite subsequence for which n− 1 is prime.

One more question here is to find a construction of non-schurian sym-
metric schemes of prime degree and rank 3 (such schemes are known for
p = 29). Finally, we do not know any non-schurian scheme of prime degree
and rank more than 3.

From Theorem 4.5.1, it follows that any schurian scheme of prime de-
gree is Frobenius and hence pseudocyclic (Theorem 4.3.37). The following
remarkable theorem proved by A. Hanaki and K. Uno in [57] generalizes
this fact to all schemes of prime degree. To make the proof self-contained,
we make use of Lemma 4.5.7 suggested and proved by A. Hanaki.

Theorem 4.5.6. Every scheme of prime degree is commutative and
pseudocyclic.

Proof. Let X be a scheme of prime degree p. By Exercise 4.7.31, it
suffices to verify that all non-principal irreducible characters of X are alge-
braically conjugate (then their multiplicities are constant).
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Let ξ ∈ Irr(X )#. Note that the algebraic conjugate of an irreducible
character is again an irreducible character. Denote by Θ the sum of all
algebraic conjugates of ξ, and by Θ′ the sum of all nonprincipal irreducible
characters which are not algebraically conjugate to ξ. Then the values of Θ
and Θ′ are algebraic integers and hence rational integers. If Θ′ equals zero,
then the assertion holds, so we assume that Θ′ ̸= 0.

Lemma 4.5.7. For any s ∈ S, the characteristic polynomial of the
matrix As treated as a matrix with entries from F = Fp, is equal to (x−ns)p.

Proof. Let f(x) be the characteristic polynomial of As ∈ Mat(F). Then
there exist an integer m ≥ 1 and distinct elements a1, . . . , ak ∈ F such that

f(x) =

k∏
i=1

(x− ai)
mi .

The great common divisor of the polynomials

gi(x) =
f(x)

(x− ai)mi
, i = 1, . . . , k,

is equal to 1. Therefore, there are polynomials hi(x) ∈ F[x] such that

k∑
i=1

gi(x)hi(x) = 1.

This implies that
k∑
i=1

gi(As)hi(As) = I.

Since f(As) = 0, the matrices Ei = gi(As)hi(As) are pairwise orthogonal.
Thus the above decomposition implies that E2

i = Ei for all i. Note also that
Ei ̸= 0.

Assume on the contrary that k > 1. Then the trace of E1 is equal to the
rank of E1 and hence is nonzero in F. Choose an algebraic number field F′
and a prime ideal P of the ring of integers OF′ such that F ⊆ OF′/P . Let

g′1(x), h
′
1(x) ∈ OF′ [x]

be the lifts of g1(x), h1(x), respectively.
The traces of the matrices g′1(As) and h′1(As) lie in pOF′ , because the

diagonal entries of them are constant. It follows that the trace of E1 =
g1(As)h1(As) is equal to zero in F, a contradiction. Thus, k = 1. Since ns
is an eigenvalue of As, we have f(x) = (x− ns)

p, as required. □

Let s ∈ S. By Lemma 4.5.7, all eigenvalues of the matrix As are con-
gruent to ns modulo p. So there exist rational integers us and u

′
s such that

Θ(As) = Θ(I)ns − usp and Θ′(As) = Θ′(I)ns − u′sp,
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where I is the identity matrix. Now applying the orthogonality relation (3.6.26)
for η = ξ0, we get

0 =
∑
s∈S

1

ns
ξ0(As∗)Θ(As)

=
∑
s∈S

Θ(As)

=
∑
s∈S

(Θ(I)ns − usp)

= p
(
Θ(I)−

∑
s∈S

us
)
.

It follows that ∑
s∈S

us = Θ(I).

Similarly, one can check that ∑
s∈S

u′s = Θ′(I).

Using the orthogonality relation again, we obtain

0 =
∑
s∈S

1

ns
Θ(As∗)Θ

′(As) =
∑
s∈S

1

ns
(Θ(I)ns∗ − us∗p)(Θ

′(I)ns − u′sp)

=
∑
s∈S

Θ(I)Θ′(I)ns −
∑
s∈S

Θ(I)u′sp−
∑
s∈S

Θ′(I)us∗p+
∑
s∈S

1

ns
us∗u

′
sp

2

= pΘ(I)Θ′(I)− pΘ(I)Θ′(I)− pΘ(I)Θ′(I) +
∑
s∈S

1

ns
us∗u

′
sp

2

= −pΘ(I)Θ′(I) +
∑
s∈S

1

ns
us∗u

′
sp

2.

This implies that

Θ(1)Θ′(1) =
∑
s∈S

1

ns
us∗u

′
sp.

But Θ(1)Θ′(1) is relatively prime to p, contrary to the fact that each sum-
mand in the above sum and hence the entire sum is a p-integer, because p
and ns are relatively prime for all s. □

Remark 4.5.8. As shown in [57, Theorem 5.3], every scheme X of
prime degree p is algebraically isomorphic to a cyclotomic scheme over the
field Fp whenever the minimal splitting field of Adj(X ) is an abelian exten-
sion of Q.
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By Theorem 4.5.6, any scheme of prime degree is pseudocyclic. By
Theorem 4.3.41, this implies that at least asymptotically such a scheme is
schurian and separable. More precisely, the following statement holds.

Theorem 4.5.9. There exists a nonconstant function f such that for
any prime p each scheme of degree p and valency less that f(p) is schurian
and separable.

In accordance with [27], the function f in Theorem 4.5.9 can be taken

to be of order O(p1/3). It seems that this estimate is far from being tight.



308 4. DEVELOPMENTS

4.6 The Weisfeiler–Leman method

In this section, we present the Weisfeiler–Leman method for testing iso-
morphism of graphs. The classical version of this method [124] (see Sub-
section 2.6.1) deals with binary relations.

A generalization to the m-ary relations with m ≥ 3 was implicitly de-
scribed in [123]. The modern version of the underlying algorithm known
under the name the m-dimensional WL refinement (or the m-dim WL) was
introduced by L. Babai in the end of 1970s; for detailed history we refer
to [21].

In the first two subsections, we discuss connections between the Graph
Isomorphism Problem and the theory of multidimensional extensions of co-
herent configurations, and present the algorithm m-dim WL.

The results of the last three subsections show that the output of the
algorithm m-dim WL is very close to the multidimensional extension of a
coherent configuration. More precisely, the information on symmetries of
a coherent configuration X that is obtained by using the m-dim WL can
also be taken from the m-dimensional extension of X , and, conversely, the
structure of the latter is completely determined from the output of the 3m-
dim WL applied to the colored graph of X .

4.6.1 Graph isomorphism problem

The Graph Isomorphism Problem consists in finding a most efficient al-
gorithm which given two graphs determines whether they are isomorphic or
not. Informally, the term “most efficient” means that the maximal num-
ber f(n) of elementary steps performed by the algorithm in processing of
any two graphs with n vertices is as small as possible. The main question
is whether there exists a polynomial-time algorithm for testing graph iso-
morphism, i.e., the algorithm for which the function f(n) is a polynomial
in n. At present, the best upper bound for the function f(n) is quasipoly-

nomial [6], i.e., of the form n(logn)
c
for a constant c > 0.

In 1968, B. Weisfeiler and A. Leman suggested a new approach to the
Graph Isomorphism Problem that was based on the concept of coherent
configuration [124]. The key point of this approach was a polynomial-time
algorithm, the Weisfeiler–Leman algorithm, for constructing the coherent
closure of the arc set of a graph, see Subsection 2.6.1. In view of the fol-
lowing statement (Exercise 2.7.54), this algorithm enables us to test isomor-
phism efficiently whenever the coherent configurations of the input graphs
are schurian.

Proposition 4.6.1. Let X and X′ be connected vertex-disjoint graphs.
Assume that the coherent configuration WL(X ∪ X′) is schurian. Then X
and X′ are isomorphic if and only if

(4.6.1) ∆ ∩ Ω(X) ̸= ∅ and ∆ ∩ Ω(X′) ̸= ∅

for some (and hence for all) fibers ∆ of WL(X ∪ X′).
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Proof. The graphs X and X′ being connected, are isomorphic if and
only if there exists f ∈ Aut(X ∪ X′) such that

(4.6.2) Ω(X)f = Ω(X′).

On the other hand, by Corollary 2.6.6 we have

Aut(X ∪ X′) = Aut(WL(X ∪ X′)).

If the coherent configuration WL(X∪X′) is schurian, then its fibers are the
orbits of the group Aut(WL(X ∪ X′)) (statement (1) of Proposition 2.2.5).
Therefore conditions (4.6.2) and (4.6.1) are equivalent, and we are done. □

The Weisfeiler–Leman algorithm can also be used to test graph iso-
morphism when the coherent configuration of one of the input graphs is
separable. Indeed, let

Y = WL(X ) and Y ′ = WL(X ′),

where X and X ′ be the colored rainbows of the graphs X and X′. Then in
accordance with Exercise 2.7.52, these graphs are isomorphic if and only if
the following conditions are satisfied:

(SC1) |cY | = |cY ′ |;
(SC2) ψ ∈ Isoalg(Y,Y ′);
(SC3) Iso(Y,Y ′, ψ) ̸= ∅,

where ψ : S(Y) → S(Y ′) is the color preserving bijection. (Of course, if Y
is separable, then (SC3) follows from (SC2).) This immediately implies the
following analog of Proposition 4.6.1.

Proposition 4.6.2. Let X and X′ be graphs. Assume that the coherent
configuration WL(X) is separable. Then X and X′ are isomorphic if and
only if the conditions (SC1) and (SC2) are satisfied.

In general, Propositions 4.6.1 and 4.6.2 are difficult to use in testing
isomorphism of arbitrary graphs, because it is not clear how to verify the
schurity or separability condition efficiently. However, these propositions are
useful to solve the Graph Isomorphism Problem for every class of graphs the
coherent configurations of which are known to be schurian or separable.

This idea was used in [48] to prove that the Weisfeiler–Leman algo-
rithm solves the Graph Isomorphism Problem for several classes of graphs
including, e.g., the class of forests, i.e., undirected graphs without cycles.

It may happen that, although the input graphs X and X′ do not satisfy
the conditions of Propositions 4.6.1 and 4.6.2, the schurity or separability
numbers of their coherent configurations are enough small, say less than a
certain integer m ≥ 1. In this case, one can still use the Weisfeiler–Leman
algorithm for testing graph isomorphism.

Proposition 4.6.3. The isomorphism of n-vertex graphs X and X′ can
be tested in time nO(m), where

m = t(WL(X ∪ X′)) or m = min{s(WL(X)), s(WL(X′))}.
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Proof. The algorithm in question starts with finding the m-closure of
the coherent configuration Y = WL(X ∪ X′) in the former case, and the
m-closures of the coherent configurations Y = WL(X) and Y ′ = WL(X′) in

the latter one. In each case, this can be done in time nO(m) with the help
of the Weisfeiler–Leman algorithm. At the second step, one should verify
condition (4.6.1) for ∆ ∈ F (Y), or the conditions (SC1) and (SC2). The
correctness of the algorithm follows from Exercise 4.7.40. □

We complete the subsection by remarking that in accordance with The-
orem 4.2.4, the algorithm given in Proposition 4.6.3 is polynomial-time only
if m is fixed.
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4.6.2 Color refinement procedure

Let Ω be a finite set and m ≥ 1 an integer. The key point of the m-dim
Weisfeiler–Leman method is a procedure refining a coloring of the set Ωm.
To describe the refinement procedure, some technical notation are needed.
For any point α ∈ Ω, any tuple τ ∈ Ωm, and an index i ∈ {1, . . . ,m}, we
define an m-tuple

(4.6.3) τi,α = (τ1, . . . , τi−1, α, τi+1, . . . , τm),

the m-tuple of m-tuples

τ/α = (τ1,α, . . . , τm,α),

and given a coloring c of Ωm, the m-tuple of colors

c(τ/α) = (c(τ1,α), . . . , c(τm,α)).

In this notation, the following algorithm consistently refines a coloring c0
of Ωm to obtain a new coloring, which is no longer refined.

The m-dim WL color refinement

Step 1 Set k = 0.

Step 2 For each τ ∈ Ωm, find a formal sum Sk(τ) =
∑
α∈Ω

ck(τ/α).

Step 3 Find a coloring ck+1 of Ωm such that

ck+1(τ) = ck+1(τ
′) ⇔ ck(τ) = ck(τ

′) and Sk(τ) = Sk(τ
′).

Step 4 If |ck| ≠ |ck+1|, then k := k+1 and go to Step 2, else output c = ck.

For brevity, we refer to the above procedure as the m-dim WL. It is
easily seen that it does nothing, i.e., c0 = c whenever m = 1, or the initial
coloring is trivial (|c0| = 1) or discrete (|c0| = nm).

In general, the number of iterations of the m-dim WL is less than or
equal to nm, just because at each step the number |ck| strictly increases.
At each iteration, the formal sum Sk(τ) at Step 2 can be constructed in
time O(nm) for each τ , and at Step 3, we have to sort nm such sums. Thus
Steps 2 and 3 can be implemented in time O(m2nm+1 log n) and the total
complexity (after at most nm iterations) is O(m2n2m+1 log n).

A more careful implementation of the m-dim WL described in [78] runs
in time O(m2nm+1 log n). Concerning practical implementation of this al-
gorithm, we refer to [8].

It should be noted that Step 3 can be implemented in different ways.
For example, one can define a linear ordering on the set

{Sk(τ) : τ ∈ Ωm},

say, lexicographically, and then take ck(τ) to be the position of Sk(τ) in this
ordering. In what follows, we fix exactly this way. Then the m-dim WL
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respects color preserving bijections from Ωm to another Cartesian m-power
(Exercise 4.7.41). Let us show how this property is used for testing graph
isomorphism.

Let X be a colored rainbow. For an integer m ≥ 2, we define a coloring
c0 = c0(X ) of the set Ωm as follows.4 Given a tuple τ ∈ Ωm, put

(4.6.4) Am(τ) =

 cX (τ1, τ1) · · · cX (τ1, τm)
. . . . . . . . .

cX (τm, τ1) · · · cX (τm, τm)

 ,

where cX is the standard coloring of X . Then the color c0(τ) is set to be the
position of the matrix Am(τ) in the lexicographical ordering of all m ×m
matrices with nonnegative entries less than or equal to nm = |Ωm|.

Example 4.6.4. Let X be a loopless graph and X the colored rainbow
of X (with standard coloring). Then the coloring c0(X) = c0(X ) defined by
condition (4.6.4) is such that two m-tuples τ and µ have the same color if
and only if

(4.6.5) (τi, τj) ∈ Dk ⇔ (µi, µj) ∈ Dk

for all i, j ∈ {1, . . . ,m} and k ∈ {0, 1, 2}, where D0 = 1Ω, D1 = D, and D2

is the complement of D0 ∪D1 to Ω2.
Let c = cm(X ) be the output coloring obtained from c0 by the m-

dim WL. The color preserving property of isomorphisms implies that two
rainbows X and X ′ on Ω are isomorphic only if for each color i,

(4.6.6) |c−1(i)| = |c′−1
(i)|,

where c′ = cm(X ′). This condition enables us to find an explicit isomorphism
between X and X ′ if they are isomorphic and all (nonempty) color classes
of c are singletons (Exercise 4.7.42).

Definition 4.6.5. We say that the m-dim WL does not distinguish the
rainbows X and X ′ if condition (4.6.6) is satisfied for all the colors i.

Certainly, the m-dim WL does not distinguish isomorphic colored rain-
bows, but this may happen also for some non-isomorphic rainbows. Using
the same terminology for graphs (considered as a special case of rainbows),
we have the statement below, which immediately follows from the definition
and the fact that m-dim WL runs in polynomial for a fixed m.

Proposition 4.6.6. Let K be a class of graphs. Assume that there exists
m ≥ 1 such that for any X,X′ ∈ K,

the m-dim WL does not distinguish X and X′ ⇒ X ∼= X′.

Then the m-dim WL tests isomorphism of graphs belonging to K in polyno-
mial time.

4We do not consider here the case m = 1, in which the m-dim WL is defined to be the
naive vertex classification (the color refinement algorithm in the sense of [108]).
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The hypothesis of Proposition 4.6.6 is satisfied for many known classes
of graphs, like trees (m = 1) or vertex-colored graphs with color class size
at most 3 (m = 3, see [78]). Moreover, as K one can take a class defined
in [7] and consisting of almost all graphs.5

For each m, there are non-isomorphic graphs X and X′ which are not
distinguished by the m-dim WL: the direct construction was found in [21],
but this result can also be obtained by combining Theorem 4.2.4 and The-
orem 4.6.23 to be proved later. The fact that the m-dim WL does not
distinguish some graphs has certain logical reasons. To see this, we recall
some relevant concepts from mathematical logic.

In accordance with [21], the first-order language of graph theory is built
up in the usual way from the variables x, y, . . ., the relation symbols D
and =, the logical connectives ∧, ∨, ¬, →, and the quantifiers ∀ and ∃.
The quantifiers range over the vertices of the graph in question. When a
formula φ of this language is true for a graph X, we write X |= φ.

Example 4.6.7. The following formula establishes the property of a
graph to be of diameter 2: ∀x ∀y ∃z [D(x, z) ∧D(z, y)].

The first-order language of vertex-colored graphs is obtained by adding
a countable set of unary relations {C1, C2, . . .} to the first-order language of
graphs. It is assumed that finitely many of these relations are true at each
vertex of a graph in question; they can be thought of as colorings of the
vertices.

The first-order language of graph theory is too week to count how many
vertices have the property expressed by a formula φ. In this sense, the
counting quantifiers ∃k with positive integer k, are useful: the term ∃kxφ(x)
is used in order to say that there are at least k vertices with property φ. The
first order logic of vertex-colored graphs extended by counting quantifiers is
called counting logic.

Example 4.6.8. In counting logic, one can define the property of a graph
to be 3-regular as follows: ∀x[∃3y D(x, y) ∧ ¬∃4y D(x, y)].

Denote by Cm the set of all formulas in counting logic that contain at
mostm variables; although a variable can be used in a formula several times,
it is counted only once (thus, the formula in Example 4.6.8 contains two
variables). The vertex-colored graphs X and X′ are said to be Cm-equivalent
if for all formulas φ ∈ Cm,

X |= φ ⇔ X′ |= φ.

The following theorem proved in [78] shows the relationship between the
m-dim WL and the notion of Cm-equivalence; the proof of this theorem is
out of scope of this text and we refer the reader to survey [108].

Theorem 4.6.9. Let m ≥ 2 be an integer. Then the m-dim WL does
not distinguish graphs X and X′ if and only if X and X′ are Cm+1-equivalent.

5For the classes K mentioned in the paragraph, Proposition 4.6.6 holds even if X′ ̸∈ K.
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We conclude the subsection by remarking that there are algorithms
which are equivalent to the m-dim WL for each m in the sense that they
distinguish the same graphs, e.g., the algorithm in [3] based on combinato-
rial optimization technique. More stronger algorithms distinguishing graphs
in the spirit of the m-dim WL can be found in [30, 32].
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4.6.3 WL-stable partitions

Throughout the subsection, we fix an integer m ≥ 1 and a colored rain-
bow X on Ω. In what follows, c0 = c0(X ) and c = cm(X ). Our goal is
to analyze the partition Pc of the Cartesian power Ωm that is constructed
by the m-dim WL color refinement procedure. In view of Exercise 4.7.41,
the partition Pc does not depend on the choice of colors of cX . Therefore it
seems more natural to deal with Pc rather than c itself.

We start with the study of certain rather general properties of parti-
tions P of the Cartesian product Ωm = ΩM , where M = {1, . . . ,m}. For
any L ⊆ M , the natural projection operator from ΩM to ΩL is denoted by
πL = πML , and we set

πL(P) = {πL(∆) : ∆ ∈ P}

and put πi = π{1,...,i} for i ∈M .

Definition 4.6.10. The partition P is said to be normal if

(4.6.7) π−1
L (Diag(ΩL)) ∈ P∪ for all L ⊆M.

Exercise 4.7.45 gives an equivalent definition of the normality. Using
this definition, one can easily check that the partition Pc0 is normal. For
m = 2, the normality implies the condition (CC1).

Given g ∈ Sym(M) and τ ∈ ΩM , we set τ g = (τ
1g−1 , . . . , τmg−1 ). The

induced action of the symmetric group Sym(M) permutes the partitions
of ΩM , namely, Pg = {∆g : ∆ ∈ P}.

Definition 4.6.11. The partition P is said to be invariant if

(4.6.8) Pg = P for all g ∈ Sym(M).

It is easily seen that the partition Pc0 is invariant. For m = 2, the
invariance condition coincides with the condition (CC2).

In general, given L ⊆ M , the projection πL(P) of the partition P is
not necessarily a partition. To control the projections, we introduce the
regularity condition.

Definition 4.6.12. The partition P is said to be regular if given ∆ ∈ P,
L ⊆M , and Γ ∈ πL(P), the number

(4.6.9) c∆L,Γ = |π−1
L (γ) ∩∆|

does not depend on γ ∈ Γ.
Note that the partition Pc0 is not necessarily regular. On the other hand,

any projection of a regular partition is a partition. As the following example
shows, the regularity condition is closely related with the condition (CC3).

Example 4.6.13. Let X be a coherent configuration on Ω. Denote by
P the partition of Ω3 into the classes

∆ = {α ∈ Ω3 : r(α1, α3) = r, r(α3, α2) = s, r(α1, α2) = t},
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where r, s, t run over basis relations of X . Then the condition (CC3) implies
that the partition P is regular and

ctrs = c∆L,Γ

with L = {1, 2} and Γ = t.
It seems that the most interesting partitions of ΩM should be normal,

invariant, and regular, see Example 4.7.46. This thesis is also justified by the
theorem below showing that any WL-stable partition, i.e., the partition Pc
with c as above, satisfies all these properties.

Theorem 4.6.14. In the above notation, the partition Pm(X ) := Pc is
normal, invariant, and regular.

Proof. In the process of refining the coloring c0, the m-dim WL sub-
sequently produces the colorings c1, . . . , ct = c, where t is the number of
iterations. It is easily seen that

(4.6.10) Pc0 ≤ Pc1 ≤ · · · ≤ Pct = Pc ,

i.e., for each i = 0, 1, . . . , t − 1 the partition Pci+1 is a refinement of the
partition of Pci ; in other words for each i,

Pci ⊆ (Pci+1)
∪.

As was mentioned, the partition Pc0 is normal and invariant. Using the
induction on i = 0, 1 . . ., one can easily check that the partition Pci+1 is
normal and invariant whenever so is Pci . This proves the normality and
invariance of Pc.

Let us prove that the partition P = Pc is regular. It suffices to verify
that for i = 1, . . . ,m− 1, Γ ∈ πi+1(P), and Λ ∈ πi(P), the number

(4.6.11) |(πi+1
i )−1(λ) ∩ Γ|

does not depend on λ ∈ Λ, where πi+1
i is the projection of Ωi+1 to the first i

coordinates. In checking this statement, we will use the mapping

fi : Ω
m → Ωm, (τ1, τ2, . . . , τm) 7→ (τ1, τ2, . . . , τi, τ1, . . . , τ1)

defined for i ∈M .

Lemma 4.6.15. ∆ ∈ P implies fi(∆) ∈ P for each i.

Proof. Using induction on i = m,m − 1, . . ., we may assume without
loss of generality that ∆ = fi+1(∆). Let τ ∈ ∆. Then by the normality
of P,

c(τi+1,τ1) ̸= c(τi+1,α) for all α ̸= τ1,

see (4.6.3). By the termination condition at Step 3 of the m-dim WL color
refinement algorithm, this implies that there exists a class ∆′ ∈ P such that

(4.6.12) fi(∆) ⊆ ∆′ ⊆ fi(Ω
m).
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On the other hand, given τ ′ ∈ ∆′ the number of all α ∈ Ω such that
τ ′i+1,α ∈ ∆ does not depend on τ ′, is positive since fi(∆) ̸= ∅. Thus,

∆′ ⊆ fi(∆).

In view of (4.6.12), this means that fi(∆) = ∆′ ∈ P. □

To verify that the number (4.6.11) does not depend on λ, let Γ and Λ
be the projections of the classes Γ′ ∈ P and Λ′ ∈ P to the first i + 1 and i
coordinates, respectively. By Lemma 4.6.15, we may assume that

Γ′ = fi+1(Γ
′) and Λ′ = fi(Λ

′).

Then given λ ∈ Ωi and τ ∈ fi(π
−1
i (λ)), we have

|(πi+1
i )−1(λ) ∩ Γ| = |{α ∈ Ω : τi+1,α ∈ Γ′}|.

Now if λ runs over Λ, then τ runs over Λ′. Since the right-hand side of the
last equality does not depend on τ ∈ Λ′, the left-hand side of it does not
depend on λ ∈ Λ. □

Not every normal, invariant, and regular partition of ΩM is WL-stable,
see Exercise 4.7.47.6 However, in fact, the only we need are the two following
statements, which are deduced from Theorem 4.6.14.

Lemma 4.6.16. Let X be a coherent configuration, m ≥ 1, and k ≤ m.
Then the set πk(Pm(X )) forms a normal and invariant partition of Ωk.

Proof. By Theorem 4.6.14, the partition P = Pm(X ) is normal, in-
variant, and regular. Let k ≤ m. The regularity implies that πk(P) is a
partition of Ωk.

Furthermore, if L ⊆ {1, . . . , k} =: K, then obviously,

(πKL )−1(Diag(ΩL)) = πK(π−1
L (Diag(ΩL)).

Consequently, the partition πk(P) is normal. It is also invariant, because

πk(∆)g = πk(∆
g′) for all g ∈ Sym(K),

where g′ is the image of g with respect to the natural injection of Sym(K)
into Sym(M). □

Under the conditions of Lemma 4.6.16, one can also prove that the par-
tition πk(Pm(X )) is regular, see Exercise 4.7.50. In what follows, the binary
relations on Ωm are identified with subsets of Ω2m via the bijection

(4.6.13) Ωm × Ωm → Ω2m, (τ, τ ′) 7→ (τ1, . . . , τm, τ
′
1, . . . , τ

′
m).

Lemma 4.6.17. Let X be a coherent configuration, m ≥ 1. Then the
partition of Ωm × Ωm = Ω2m induced by π2m(P3m(X )) forms a coherent
configuration on Ωm.

6A reason is that the regularity condition is not enough strong. A stronger condition is
used in the definition of k-ary coherent configuration, see [6, Definition 2.3.5].
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Proof. By Lemma 4.6.16, the partition S = π2m(P3m(X )) of Ω2m is
normal and invariant. The normality implies that the relation

1Ωm =
m⋂
i=1

(
π
{1,...,2m}
{i,i+m}

)−1
(1Ω)

belongs to S∪. This proves that the condition (CC1) is satisfied. The
invariance implies that given s ∈ S, the relation

s∗ = sg

belongs to S, where g is the permutation (1,m+1) · · · (m, 2m) ∈ Sym(2m).
This proves that the condition (CC2) is also satisfied.

To verify the condition (CC3), let r, s, t ∈ S, and α, β ∈ Ωm be such
that α · β = (α1, . . . , αm, β1, . . . , βm) belongs to t. Set

L = {1, . . . , 2m} and Γ = t.

Denote by ∆1, . . . ,∆a the classes of the partition P3m(X ) such that the
number

c∆i
L,Γ = |π−1

L (α · β) ∩∆i|
is positive, 1 ≤ i ≤ a. By the regularity of P3m(X ), the set of these classes
does not depend on α · β ∈ t (Theorem 4.6.14). It follows that the set I of
all i such that

π{1,...,m,2m+1,...,3m}(∆i) = r and π{m+1,...,2m,2m+1,...,3m}(∆i) = s

also does not depend on α · β ∈ t, and so is the number

|αr ∩ βs∗| = |{γ ∈ Ωm : α · γ ∈ r, γ · β ∈ s}| =
∑
i∈I

c∆i
L,Γ,

as required. □
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4.6.4 The WL-refinement of a coherent configuration

In this subsection, we establish a connection between them-dim WL and
the m-dimensional extensions and closures of coherent configurations. At
this point it should be mentioned that in view of identification (4.6.13), the
basis relations of the m-dimensional extension of a coherent configuration
on Ω form a partition of Ω2m.

Theorem 4.6.18. Let X be a coherent configuration. Then for every
m ≥ 1,

(4.6.14) Pm(X ) ≤ F (X̂ (m)) and S(X̂ (m)) ≤ π2m(P3m(X )).

Proof. To prove the left-hand side inclusion, denote by ck the coloring
of Ωm obtained on the kth iteration of m-dim WL applied to the initial
coloring c0 = c0(X ). We make use of the induction on k = 0, 1, . . . to show
that

(4.6.15) Γ ∈ Pck ⇒ Γ ∈ F (X̂ )∪,

where X̂ = X̂ (m).
Let k = 0. By the definition of the coloring c0, given i, j ∈ {1, . . . ,m}

the relation rij = r(τi, τj) does not depend on the choice of τ ∈ Γ. Therefore,
1Γ = 1Ωm ∩ s, where

s =

m⋂
i,j=1

Cylrij (i, j)

with Cylrij (i, j) defined by formula (3.5.5). By statement (1) of Theo-

rem 3.5.7, s is a relation of X̂ . Thus implication (4.6.15) is true for k = 0.
Assume that implication (4.6.15) is true for all indices less than k ≥ 1.

It suffices to verify that given a fiber ∆ of the coherent configuration X̂ , the
formal sum Sk−1(τ) defined at Step 2 of the m-dim WL, does not depend
on τ ∈ ∆. Note that this is true if given color classes Γ1, . . . ,Γm ∈ Pck−1

,
the number

aτ (Γ1, . . . ,Γm) = |{α ∈ Ω : τi,α ∈ Γi, i = 1, . . . ,m}|

does not depend on τ ∈ ∆.
However, it is straightforward to check that aτ (Γ1, . . . ,Γm) equals the

number pr(τ, τ ; ŝ0, . . . , ŝm) defined in Exercise 2.7.25, where r = 1Ωm and

ŝ0 = (Ωm × Γ1) ∩ Cyl1(2, 2) ∩ · · · ∩ Cyl1(m,m),

ŝi = (Γi × Γi+1) ∩ Cyl1(i, i+ 1) ∩
⋂

j ̸=i,i+1

Cyl1(j, j) (i = 1, . . . ,m− 1),

ŝm = (Γm × Ωm) ∩ Cyl1(1, 1) ∩ · · · ∩ Cyl1(m− 1,m− 1).

By the induction hypothesis, Γ1, . . . ,Γm are homogeneity sets of X̂ . By
statement (1) of Theorem 3.5.7, this implies that ŝ0, . . . , ŝm are relations
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of X̂ . Thus the number pr(τ, τ ; ŝ0, . . . , ŝm) and hence aτ (Γ1, . . . ,Γm) does
not depend on τ ∈ ∆, as required.

Let us prove the right-hand side inclusion in (4.6.14). Denote by Ŷ the
coherent configuration on Ωm defined in Lemma 4.6.17,

(4.6.16) S(Ŷ) = π2m(P3m(X )).

The normality of P3m(X ) implies that Diag(Ωm) is a homogeneity set

of Ŷ. Furthermore from the definition of the coloring c0(X ), it follows that

S(Xm) ≤ π2m(P0(X )).

So, Xm ≤ Ŷ. Thus by the definition of the m-dimensional extension, we
have

X̂ (m) ≤ Ŷ,
and the required statement follows from (4.6.16). □

Let X be a rainbow on Ω. Choosing an arbitrary coloring of Ω2 with
color classes belonging to S(X ), we turn X to a colored rainbow. For any
integer m ≥ 1, set

S(m) =

{
π2(Pm(X )), if m ≥ 2,

S(X ), if m = 1.

By Lemma 4.6.16, S(m) forms a normal and invariant partition of Ω2.
This implies that the pair

WLm(X ) = (Ω, S(m)),

is a rainbow, and even a coherent configuration if m ≥ 2 (Exercise 4.7.51).
It should be noted that the partition Pm(X ) does not depend on the colors
of initial coloring (Exercise 4.7.41). Thus WLm(X ) is determined by the
rainbow X only.

Theorem 4.6.19. Let X be a coherent configuration, m ≥ 1, and X (m)

the m-closure of X . Then

WLm(X ) ≤ X (m) ≤ WL3m(X ).

Proof. Let us prove the left-hand side inclusion. Without loss of general-
ity, we may assume that m ≥ 2. By the definition of S(m), for any basis rela-
tion s of the rainbowWLm(X ) there exist k ≥ 1 classes ∆1, . . . ,∆k ∈ Pm(X )
such that

s = π2(∆1) ∪ · · · ∪ π2(∆k).

By the left-hand side inclusion in (4.6.14), we may assume that each of

these classes is a a fiber of the coherent configuration X̂ (m). Thus, s is a
union of basis relations of X (m) by Theorem 3.5.16. This proves the required
inclusion.
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Let us prove the right-hand side inclusion. By the right-hand side inclu-
sion in (4.6.14) and statement (1) of Exercise 3.7.46, we have

S(WL3m(X )) = π2(P3m(X ))

= π2(π2m(P3m(X )))

≥ π2(S(X̂ (m)))

= S(X (m)),

as required. □
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4.6.5 The WL-refinement and algebraic isomorphisms

Let X and X ′ be colored rainbows on Ω and Ω′, respectively. Assume
that the m-dim WL does not distinguish X and X ′ for some m ≥ 1. Then
there exists a uniquely determined color preserving bijection

(4.6.17) ψ : Pm(X ) → Pm(X ′), ∆ 7→ ∆′,

where under the color of a class we mean the color of any m-tuple belonging
to it, such that for all ∆ ∈ Pm(X ),

(4.6.18) |ψ(∆)| = |∆|.

Now if

c0 = c0(X ), c1, . . . , ct = cm(X ) and c′0 = c0(X ′), c′1, . . . , c
′
t′ = cm(X ′)

are the colorings constructed by the m-dim WL, then using (4.6.18) and the
induction on k = t, . . . , 0, one can easily verify that t = t′ and

(4.6.19) ∆ ∈ Pct , Γ ∈ Pck , ∆ ⊆ Γ ⇒ ψ(∆) ⊆ ψ(Γ),

(here ψ(Γ) is defined to be the union of all ψ(Λ) with Λ ⊆ Γ). The proof of
the following statement is similar to that of Theorem 4.6.14.

Theorem 4.6.20. Let P = Pm(X ) and M = {1, . . . ,m}. Then

(1) ψ(π−1
L (Diag(ΩL))) = π−1

L (Diag(Ω′L)) for all L ⊆M ;
(2) ψ(∆g) = ψ(∆)g for all g ∈ Sym(M) and ∆ ∈ P;

(3) c∆L,πL(Γ) = c∆
′

L,πL(Γ′) for all Γ,∆ ∈ P and L ⊆M .

Let L = {1, . . . , l}, where l ≤ m. The normality of P = Pm(X ) implies

that Diag(Ω{l,...,m}) is the union of some classes of P. By the regularity
condition this implies that given ∆ ∈ πL(P), the set

Diag(Ω{l,...,m}) ∩ π−1
L (∆) = {(α1, . . . , αl, . . . , αl) : (α1, . . . , αl) ∈ ∆}

is a class of P. Denote it by ∆̂. Then the mapping

πL(P) → P, ∆ 7→ ∆̂

is an injection, and hence the mapping

(4.6.20) ψL : πL(P) → πL(P ′), ∆ 7→ πL(ψ(∆̂))

is a bijection, where P ′ = Pm(X ′). By statements (2) and (3) of Theo-
rem 4.6.20, we have the following corollary.

Corollary 4.6.21. Let L ⊆M . Then given ∆ ∈ πL(P) and Γ ∈ P,

cΓL,∆ = c
ψ(Γ)
L,ψL(∆).
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To state the main result of the subsection, let X = (Ω, S) be a rainbow.
A function cX : Ω2 → N is said to be a coloring of X if every nonempty
cX -preimage belongs to S.

Now assume that X ′ = (Ω′, S′) is a rainbow and

(4.6.21) φ : S → S′, s 7→ s′

is a bijection. Then for any coloring cX of X , there exists a uniquely deter-
mined coloring c′X of X ′ such that

(4.6.22) cX (s) = cX ′(s′) for all s ∈ S.

As was mentioned earlier the partitions Pm(X ) and Pm(X ′) defined by
the colored rainbows (X , cX ) and (X ′, cX ′), respectively, do not depend on
the choice of the colors of cX and cX ′ . This justifies the following definition.

Definition 4.6.22. The bijection (4.6.21) is said to be an m-dim WL
isomorphism from X to X ′ if the m-dim WL does not distinguish the colored
rainbows (X , cX ) and (X ′, cX ′) for some (and hence for all) coloring cX .

The set of all m-dim WL isomorphisms between the rainbows X and X ′

is denoted by IsoWL
m (X ,X ′). It is easily seen that if X and X ′ are coherent

configurations, then

Isoalg(X ,X ′) ⊆ IsoWL
2 (X ,X ′).

The reverse inclusion is not true (Exercise 4.7.53).

Theorem 4.6.23. For any coherent configurations X , X ′, and m ≥ 1,

(4.6.23) IsoWL
m (X ,X ′) ⊇ Isom(X ,X ′) ⊇ IsoWL

3m (X ,X ′).

Proof. Without loss of generality we may assume that X , and X ′ are
colored so that condition (4.6.22) is satisfied. To prove the left-hand side
inclusion, let

φ ∈ Isom(X ,X ′).

We have to check that the m-dim WL does not distinguish X and X ′,
or equivalently, that given ∆ ∈ Pm(X ) and ∆′ ∈ Pm(X ′),

c(∆) = c′(∆) ⇒ |∆| = |∆′|,

where c = cm(X ) and c′ = cm(X ′).
By Theorem 4.6.18, ∆ and ∆′ are homogeneity sets of them-dimensional

extensions of X and X ′, respectively. Thus by statement (2) of Proposi-
tion 2.3.22, it suffices to verify that

(4.6.24) c(∆) = c′(∆) ⇒ ∆φ̂ = ∆′,

where φ̂ the m-dimensional extension of φ. But this follows by induction
on the number of the iterations of the m-dim WL applied to c0(X ) (see the
proof of the first part of Theorem 4.6.18).
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To prove the right-hand side inclusion, let

(4.6.25) φ ∈ IsoWL
3m (X ,X ′)

and ψ a uniquely determined color preserving bijection from P = P3m(X )
onto P ′ = P3m(X ′) that satisfies condition (4.6.18) for all ∆ ∈ P.

We claim that φ ∈ Isoalg(X ,X ′). Indeed, the partitions P and P ′ are
normal, invariant, and regular (Theorem 4.6.14). Lemma 4.6.17 for m = 1
implies that

Y = π{1,2}(P) and Y ′ = π{1,2}(P ′)

are coherent configurations on Ω and Ω′, respectively. The formulas for their
intersection numbers obtained in the proof of Lemma 4.6.17 together with
Corollary 4.6.21 imply that

(4.6.26) ψ{1,2} ∈ Isoalg(Y,Y ′).

The definition of the colorings c0(X ) and c0(X ′), and formula (4.6.19) for
k = 0, show that ψ{1,2} extends φ, i.e.,

ψ{1,2}(s) = φ(s) for all s ∈ S(X ).

Together with (4.6.26), this proves the claim.
The formulas for the intersection numbers of the coherent configurations

π2m(P) and π2m(P ′), found in the proof of Lemma 4.6.17, together with
Corollary 4.6.21, show that

ψ2m ∈ Isoalg(π2m(P), π2m(P ′)),

where ψ2m = ψ{1,...,2m}. Moreover, from statement (1) of Theorem 4.6.20,
it follows that

Diag(Ωm)ψ2m = (π2m(Diag(Ω3m)))ψ2m = π2m(Diag(Ω′3m)) = Diag(Ω′m).

Furthermore, the definition of the initial colorings c0(X ) and c0(X ′)
implies that

φm(s) = ψ2m(s) for all s ∈ S(Xm).

Thus the algebraic isomorphism ψ2m induces the m-dimensional extension
of φ. It follows that φ ∈ Isom(X ,X ′), as required. □

Theorem 4.6.23 enables us to compare the powers of the m-dim WL and
m-dimensional extension to test graph isomorphism. Namely, the statement
below is an immediate consequence of the first inclusion in (4.6.23).

Corollary 4.6.24. Let X be a graph such that the coherent configuration
WL(X) is m-separable, m ≥ 1. Then the 3m-dim WL does not distinguish X
from a graph X′ only if X ∼= X′.

As was mentioned earlier, two vertex-colored graphs X and X′ with color
class size at most 3 are C3-equivalent if and only if they are isomorphic [78].
Now this result is a direct consequence of Theorem 4.6.9, Corollary 4.6.24,
and Exercise 3.7.20.
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4.7 Exercises

In what follows, X is a coherent configuration on Ω and S = S(X ),
F = F (X ), and E = E(X ).

4.7.1 [72] LetG be a family of finite simple groups. ThenG-configuration
is the direct sum of semiregular coherent configurations. In particular, any
quasiregular coherent configuration whose homogeneous components are the
schemes of simple groups is schurian and separable.

4.7.2 [72] Let G be a family of groups with distributive lattices of
normal subgroups. Then any G-configuration is schurian and separable.

4.7.3 Let X be a G-configuration. Then for any i, j ∈ I, any basis
relation r ∈ Sij , and any pair (α, β) ∈ r, there exists t ∈ Gi such that

r =
⋃
s∈Gi

αGijs × β fij(Gijts).

4.7.4 Let X be a non-semiregular Klein configuration andK ≤ Autalg(X ).
Suppose that K acts regularly on F . Then

(1) the thin residue of XK is of order 2 or a Klein group;
(2) if |F | is a 2-power and K is abelian, then Aut(XK) is a metabelian

2-group.

4.7.5 Let X be a Klein configuration and ∼ the equivalence relation
defined by (4.1.12). Then given systems J and J ′ of distinct representatives
for I/ ∼, we have:

(1) there is a unique bijection J → J ′, j 7→ j′, such that j ∼ j′;
(2) given j ∈ J , the set Sjj′ consists of thin relations; fix one of them,

say sj ;
(3) the mapping f : ΩJ → ΩJ ′ such that fΩj = fsj for all j ∈ J , is a

bijection;
(4) f ∈ Iso(XΩJ

,XΩJ′ ).

4.7.6 Let X be a Klein configuration and Y a reduction of X . Assume
that the group Autalg(X ) acts transitively on F (X ). Then the group Autalg(Y)
acts transitively on F (Y).

4.7.7 Let G = {Gi}i∈I and S = {Gij}i,j∈I be families as in the condi-
tions (F1) and (F2). Assume that for all i,

(1) Gi = G is a Klein group;
(2) |Gij | = |Gji| ≥ 2 for all j ̸= i;
(3) Gij satisfies condition (4.1.14) for all j.

Then there exists a (unique) Klein configuration X such that

T (X ) = (G,S,F)

for a certain family F.
4.7.8 Two cubic Klein configurations with isomorphic associated graphs

are algebraically isomorphic.
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4.7.9 A cubic Klein configuration is a nontrivial direct sum if and only
if the associated graph is disconnected.

4.7.10 Let X be a cubic Klein configuration. Assume that the graph
associated with X is acyclic. Then X is schurian.

4.7.11 Let X be a primitive scheme of degree n. Then

t(X ) < ⌈4
√
n log n⌉+ 1 and s(X ) < ⌈4

√
n log n⌉+ 1.

4.7.12 Let X be the scheme of a distance-regular graph X. Then

(1) X is distance-transitive if and only if t(X ) = 1;
(2) X is uniquely determined by parameters if and only if s(X ) = 1.

4.7.13 [40, Theorem 4.6] The following inequalities hold:

(1) s(X ) ≤ s(Xα) + 1 for all α ∈ Ω;
(2) t(X ) ≤ t(Xα) + 1 if Xα is t(Xα)-separable for some α ∈ Ω;

(3) s(X ) ≤ ms(X̂ (m)), t(X ) ≤ mt(X̂ (m)) for all m ≥ 1.

4.7.14 Let X be an imprimitive equivalenced scheme. Then

t(X ) ≤ 2 and s(X ) ≤ 2.

4.7.15 [35, Theorem 3.29] The coherent configurations in Theorem 4.2.4
can be chosen homogeneous, and for the first inequality in (4.2.2) even
schurian.

4.7.16 In the notation of Theorem 4.2.6, suppose that φ1 and φ2 are
algebraic automorphisms of X leaving each fiber of X fixed and such that

(φ1)Ωi = (φ2)Ωi for all i ∈ I.

Then the algebraic automorphism φ1φ
−1
2 is induced by an isomorphism if

and only if t(φ1) = t(φ2) (mod 2).
4.7.17 Any colored graph, which is (Y,Z)-regular of degree d with

respect to each of relations r1 and r2, is also (Y,Z)-regular of degree d with
respect to r1 ∪ r2.

4.7.18 Let X = X(X ) be a colored graph. Then given s ∈ S,

Cyls(i, j) = sX(Y,Z, d)

for suitable colored graphs Y, Z, and a positive integer d.
4.7.19 A generating set of a projective plane P is a base of the coherent

configuration associated with P.
4.7.20 The Doob graphs are pairwise nonisomorphic and can be dis-

tinguished each from other with the help of the 4-vertex condition.
4.7.21 Let X be a scheme and k ≥ 2 an integer. Then any algebraic

isomorphism φ ∈ Isoalg(X ,X ′) induces an isomorphism of the graphs Xk
and X′

k (see p. 259). In particular, X is k-saturated if and only if X ′ is
k-saturated.

4.7.22 Prove that statement (3) of Theorem 4.3.6 remains true if con-
dition (4.3.10) is replaced by a weaker one: for all x, y, z ∈ Sk such that
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x ∼ y ∼ z ∼ x, there exist a, b ∈ S for which

S′
xz · S′

zy ⊆ Sxy,

where S′
xz = Sxz \ {a} and S′

zy = Szy \ {b}.
4.7.23 Prove that statement (3) of Theorem 4.3.6 remains true without

condition (4.3.10) and with the saturation condition replaced by a weaker
one: the graph Xk is connected.

4.7.24 In the notation of Exercise 4.7.21, the elements r and s are
linked with respect to (x, y, z) if and only if the elements φ(r) and φ(s) are
linked with respect to (φ(x), φ(y), φ(z)). In particular, X is Desarguesian if
and only if so is X ′.

4.7.25 Let X be a two-valenced weakly Desarguesian scheme. Assume
that x, y, z and r, s are basis relations of X that form an initial configuration.
Then

|rs ∩ x∗y| = 1.

4.7.26 Let X be the scheme of an affine plane A. Then X is Desargue-
sian if and only if A is a Desarguesian plane.

4.7.27 Let X be a quasi-thin scheme. Then

(1) every symmetric basis relation of X is the disjoint union of undi-
rected cycles of the same length;

(2) every homogeneous fission of X is quasi-thin;
(3) X ⊗ Y is quasi-thin if and only if Y regular;
(4) if X is primitive, then X is schurian and separable.

4.7.28 [70, Lemma 4.1] Let X be a quasi-thin scheme. Then for any
s ∈ S, there exists t ∈ S# such that s s∗ = {1, t}.

4.7.29 [103, Lemma 5.1] Let u and v be are non-thin basis relations of
a quasi-thin scheme X . Then

(1) u⊥ = v⊥ and u⊥ ∈ S1 if and only if either Au∗Av = 2Aa+2Ab with
a, b ∈ S1, or Au∗Av = Aa with a ∈ S2;

(2) u⊥ = v⊥ and u⊥ ̸∈ S1 if and only if Au∗Av = 2Aa+Ab with a ∈ S1
and b ∈ S2;

(3) u⊥ ̸= v⊥ if and only if Au∗Av = Aa +Ab with a, b ∈ S2.

4.7.30 [103, Lemma 5.4] Assume that X is a commutative Kleinian
scheme. Then |S⊥| = 3.

4.7.31 Let X be a scheme such thatmξ does not depend on ξ ∈ Irr(X )#.
Then X is commutative and pseudocyclic.

4.7.32 Any cyclotomic scheme over a finite field is pseudocyclic.
4.7.33 [102, Theorem 4.3] Let q be the order of an affine plane. Then

given a divisor m of q + 1, there exists an amorphic pseudocyclic scheme of
degree q2, valency (q2 − 1)/m and rank m+ 1.
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4.7.34 [102, Theorem 3.4] Let X be a commutative pseudocyclic scheme
of valency k. Assume that a group G ≤ Autalg(X ) acts semiregularly on S#.

Then XG is a commutative pseudocyclic scheme of valency k|G|.
4.7.35 Let X be a Cayley scheme over a cyclic group G. Then

(1) if H ≤ rad(X ) and Hρ ∈ E, then rad(XG/H) = rad(X )/H;
(2) if Y ≤ X , E(Y) = E(X ), and rad(Y) = 1, then rad(X ) = 1.

4.7.36 Find an example of a Cayley scheme X over a cyclic group G and
a group H ≤ G such that rad(X ) = 1G, H

ρ ∈ E, and rad(XG/H) ̸= 1G/H .
4.7.37 [41, Theorem 6.1] Let X be a Cayley scheme over a cyclic

group G. Then X is normal if and only if the following conditions are
satisfied:

(1) X is cyclotomic over G;
(2) | rad(X )| ≤ 2;
(3) if Gp is a Sylow p-subgroup of G, |Gp| = p, and Aut(X )Gp contains

Aut(Gp), then p = 2 or 3.

4.7.38 [41, Theorem 6.6] The class of normal circulant schemes is sep-
arable with respect to the class of all circulant schemes.

4.7.39 Let H be a skew Hadamard matrix (4.5.3) of order n ≥ 4, A the
{0, 1}-matrix such that C = A− AT , and s the relation such that As = A.
Then {1, s, s∗} is the set of basis relations of an antisymmetric scheme of
rank 3.

4.7.40 Propositions 4.6.1 and 4.6.2 remain true if the graphs X and X′

are assumed to be colored.
4.7.41 Let c and c′ be the output colorings obtained by the m-dim

WL applied to the colorings c0 and c′0 of the sets Ωm and Ω′m, respectively.
Then for any bijection f : Ωm → Ω′m induced by a bijection from Ω to Ω′,

c0(τ) = c′0(τ
f ) for all τ ∈ Ωm ⇒ c(τ) = c′(τ f ) for all τ ∈ Ωm.

4.7.42 Let X and X ′ be two isomorphic colored rainbows on Ω and Ω′,
respectively. Assume that

|c−1(i)| = |c′−1
(i)| ≤ 1

for all colors i, where c0 = c0(X ), c′0 = c0(X ′), c = cm(X ), c′ = cm(X ′), and
m ≥ 2. Then the mapping

f : Ω → Ω′, α 7→ α′,

where α′ is the unique point of Ω′ for which c′(α′, . . . , α′) = c(α, . . . , α), is
a well-defined bijection. Moreover, f ∈ Iso(X ,X ′).

4.7.43 The property of an undirected graph to be strongly regular is
expressible in the counting logic language.

4.7.44 Any two strongly regular graphs with the same parameters are
C2-equivalent.
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4.7.45 A partition P of Ωm is normal if and only if for any ∆ ∈ P and
1 ≤ i, j ≤ m, we have

τ, τ ′ ∈ ∆ and τi = τj ⇒ τ ′i = τ ′j .

4.7.46 For any group K ≤ Sym(Ω), the partition Orb(K,Ωm) of the
set Ωm is normal, invariant, and regular.

4.7.47 The set of basis relations of a coherent configuration on Ω forms
a normal, invariant, and regular partition of Ω2. Find an example showing
that not every such partition forms a coherent configuration.

4.7.48 Let X and X ′ be rainbows, Y = WL(X ) and Y ′ = WL(X ′), and
let c and c′ be standard colorings of X and X ′, respectively. Then at least
one of the following statements holds:

(1) there is φ ∈ Isoalg(Y,Y ′) such that c(s) = c′(φ(s)) for all s ∈ S(Y);

(2) there is no f ∈ Iso(X ,X ′) such that c(s) = c′(sf ) for all s ∈ S(X ).

4.7.49 For any m ≥ 1, the mapping X 7→ WLm(X ) is a closure opera-
tor.

4.7.50 [38, Lemma 6.3] Let P be a normal, invariant, and regular par-
tition of Ωm, m ≥ 1. Then given k ≤ m, the partition πk(P) is also normal,
invariant, and regular.

4.7.51 Let m ≥ 2. Then the partition of Ω2 induced by π2(Pm(X ))
forms a coherent configuration on Ω.

4.7.52 Prove Theorem 4.6.20.
4.7.53 Find an example of 2-dim WL isomorphism between two coher-

ent configurations, which is not an algebraic isomorphism.
4.7.54 For every l ≤ m,

IsoWL
l (X ,X ′) ⊇ IsoWL

m (X ,X ′).
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I., Math. Z. 80 (1963), 328–354 (German).

[120] E.R. van Dam and M. Muzychuk, Some implications on amorphic association

schemes, J. Combin. Theory, Series A 117 (2010), no. 2, 111–127.

[121] J. Wallis, Some (1, −1) matrices, J. Combin. Theory Ser. B 10 (1971), 1–11.



BIBLIOGRAPHY 339

[122] M. E. Watkins, Connectivity of transitive graphs, J. Combin. Theory 8 (1970),

23–29.

[123] B. Weisfeiler (ed.), On construction and identification of graphs, Springer-Verlag,

Berlin-New York, 1976.

[124] B. Weisfeiler and A. Leman, Reduction of a graph to a canonical form and an

algebra which appears in the process, NTI, Ser.2 (1968), no. 9, 12–16 (Russian).

[125] H. Wielandt, Finite permutation groups, Academic Press, New York-London, 1964.

[126] H. Wielandt, Permutation groups through invariant relations and invariant func-

tions, The Ohio State University, 1969.

[127] H. Wielandt, Permutation representations, Ill. J. Math. 13 (1969), 91–94.

[128] P.-H. Zieschang, Theory of association schemes, Springer-Verlag, Berlin, 2005.





Index

2-orbit, 32
m-closure

of a group, 41
of algebraic isomorphism, 187
of coherent configuration, 185

m-dimensional extension
of algebraic isomorphism, 181
of coherent configuration, 179

m-orbit, 41
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adjacency algebra, 48
algebraic fusion, 60
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association scheme, 19
automorphism group, 30
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irredundant, 149
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Cayley representation, 66
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centralizer algebra, 48
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closed set, 24
coherent closure, 86
coherent configuration, 16
m-closed, 186
m-schurian, 241
m-separable, 241
commutative, 50

half-homogeneous, 34
homogeneous, 19
partly regular, 155
quasiregular, 102
quasitrivial, 218
schurian, 36
semiregular, 28
semitrivial, 218
separable, 61

color, 4
color class, 4
coloring, 4
standard, 15

complex product, 17
component, 4
composition, 2

degree of
irreducible character, 197
rainbow, 15

design, 81
coherent, 81
complementary, 84
quasisymmetric, 82
Steiner, 84
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(Y,Z)-regular, 250
Cayley, 64
colored, 4
complete, 4
connected, 4
cubic, 4
directed cycle, 4
distance-regular, 92
distance-transitive, 92
Doob, 255
empty, 4
Grassmann, 94
Hamming, 93
Johnson, 94
loopless, 4
of rank 3, 97
Paley, 33
regular, 4
Shikhande, 99
strongly connected, 4
strongly regular, 96
undirected, 4

group
1/2-transitive, 9
2-closed, 37
2-transitive, 9
3/2-transitive, 9
m-closed, 42
m-equivalent, 41
m-isolated, 43
imprimitive, 9
primitive, 9
quasiregular, 9
regular, 9
semiregular, 9
transitive, 9

Hadamard product, 6
homogeneity set, 18
homogeneous component, 19

indecomposable component, 25
indistinguishing number, 22, 260
intersection array, 92

intersection numbers, 20
isomorphism, 30
algebraic, 54
algebraic m-dimensional, 186
Cayley, 65
combinatorial, 30
permutation group, 10

Klein configuration, 232
cubic, 237
geometric, 236
reduced, 233
reduction, 233

Kronecker product, 6

linked relations, 266

matching, 3
matrix
adjacency, 6
skew Hadamard, 303

multiplicity, 197
multiplier, 67

near-pencil, 277
neighborhood, 2

orbital, 32
orthogonal, 279
equivalence relations, 138

Paley tournament, 33
parabolic, 23
partial, 23
residually thin, 122
thin, 28
trivial, 23

partial equivalence relation, 3
partial parabolic
decomposable, 25
indecomposable, 25
proper, 122

partition
invariant, 315
normal, 315
regular, 315
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path, 2
closed, 2
length of, 2

permutation matrix, 6
plane

affine, 77
affine Galois, 77
Fano, 72
Galois, 72
projective, 72

point extension, 144
principal

character, 199
module, 199
representation, 199

product
subtensor, 137
tensor, 137

quotient, 116

radical, 3, 290
rainbow, 15

antisymmetric, 16
discrete, 15
symmetric, 16
trivial, 15

rank, 15
regular point, 155
relation
K-invariant, 9
antisymmetric, 2
basis, 16
irreflexive, 2
of rainbow, 16
reflexive, 2
restriction of, 2
strongly connected, 2
support, 2
symmetric, 2
thin, 3
transitive, 3
transposed, 2

restriction
of algebraic isomorphism, 58

of coherent configuration, 16

scheme, 19
{1, k}-valenced, 259
p-scheme, 218
affine, 78
amorphic, 98
circulant, 290
cyclotomic, 32
Desarguesian, 270
equivalenced, 22
Frobenius, 148
Grassmann, 94
Hamming, 94
imprimitive, 109
index of, 276
Johnson, 94
Kleinian, 277
primitive, 109
pseudocyclic, 285
quasi-thin, 276
regular, 28
saturated, 259
two-valenced, 259
weakly Desarguesian, 275

schurity number, 241
separability number, 241
standard
basis, 47
character, 196
module, 196
representation, 196

system of linked quotients, 229

tensor product, 2
thin
radical, 28
radical parabolic, 28
residue, 123
residue parabolic, 123

tournament, 4
doubly regular, 4
Paley, 33

valency, 20
vertex, 4
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wreath product, 8
U/L, 172
canonical, 160
generalized, 172
nontrivial, 172

proper, 172

imprimitive, 10

nontrivial, 160

primitive, 10

with respect to family, 220
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Gright, 8
IΩ, 6
JΩ, 6
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K∆, 9
K(m), 41
K∆, 9
K{∆}, 9
S(X ), 16
S∗, 2
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MatΩ, 6
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