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Abstract. There exists a considerable debate in the literature about the applicabitistable
distributions as they appear in Lévy's central limit theorems. A serious drawback of Lévy’s approach
is that, in practice, one can never know whether the underlying distribution is heavy tailed, or just
has a long but truncated tail. Limit theorems for stable laws are not robust with respect to truncation
of the tail or with respect to any change from ‘light’ to ‘heavy’ tail, or conversely. In this talk we
provide a new ‘pre-limiting’ approach that helps overcome this drawback of Lévy-type central limit
theorems.
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1. Introduction and Statement of the Problem

Finitely many empirical observations can never justify any tail behavior, thus they
cannot justify the applicability of classical limit theorems in probability theory.
In this paper we attempt to show that instead of relying on limit theorems, one
may use the so-called pre-limit theorems explained later. The applicability of our
prelimit theorem relies not on the tail but on the ‘central section’ (‘body’) of the
distributions and as a result, instead of a limiting behavior (whetihhe number
of i.i.d. observations tends to infinity), the pre-limit theorem should provide an
approximation for distribution functions in casés ‘large’ but not too ‘large’.

Our pre-limiting approach seems to be more realistic for practical applications.
We shall start with two examples.

* The research was supported by the German—Russian Grant 98—-01-04070 and by 1999 Grant of
RTBR.
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160 L. B. KLEBANOV ET AL.

EXAMPLE 1. Pareto-stable lawsMore than a hundred years ago, Vilfredo Pa-
reto [19] observed that the number of people in the population whose income
exceeds a given leval can be satisfactorily approximated layx—* for someC

anda > 0. (See [1, 3, 12] for more details.) Later, Mandelbrot [14, 15] argued that
stable laws should provide the appropriate model for income distributions; after
some statistical studies on income data he made two claims:

() the distribution of the size of income for different (but sufficiently long) time
periods must be of the same type, in other words the distribution of the income
follows a stable law (Lévy's stable law, see [2]),

(i) the tails of the Gaussian law are too thin to describe the distribution of the
income in typical situations, see [16, 17].

It is known that the variance of any non-Gaussian stable law is infinite, thus an
essential condition for a non-Gaussian stable limit distribution for sums of random
incomes is that the summands have ‘heavy’ tails in the sense that the variance of
the summands must be infinite. On the other hand, it is obvious that the incomes are
always bounded random variables (in view of the finiteness of all available money
in the world, and the existence of a smallest monetary unit). Even if we assume
that the support of the income distribution is infinite, there exists a considerable
amount of empirical studies showing that the income distributions have Pareto tails
with index o between 3 and 4, so the variance is finite, see [4]. Thus, in practice
the underlying distributiomannotbe heavy tailedDoes this mean that we have to
reject the Pareto-stable model?

EXAMPLE 2. Exponential decayOne of the most popular examples for ex-
ponential distributions is the random time for radioactive decay. The exponential
distribution is in the domain of attraction of the Gaussian law. In quantum physics
it has been shown [8, 23, 20] that theoretically the radioactive decay is not exactly
exponentially distributed. Recently, a new experimental evidence supported that
conclusion (see [22]). But then one faces the following paradox.

To describe the model lgt(z) be the probability density that a physical system
is in the initial state at moment> 0. It is known (see, for example, [25, p. 42])
thatp(r) = | f(t)|?, where

f@) = /Ooa)(E) exp(iEt)dE,
0

andw(E) > 0 is the density of the energy of the disintegrating physical system.
For a broad class of physical systems

A
(E — Eg)?2+T?
(see [25] and the references therein), whéris a normalizing constant, ankl
andI'" are the mode and the measure of dissipation of the system energy (with
respect takg). For typical nonstable physical systems, the r&tid, is very small
(it is of order 10°1° or smaller). Therefore, we have that

w(E) = E>0
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differs by a very small value (of magnitude 18) from

) A 00 eiFty ) A
E E —tT
f1(t) =€ OIF[my2+1dy=nd O’Fe’ , t>0.
Thatis, p(1) = | f(1)|* is approximately equal t¢":2)%e~2T, which gives (as an
approximation) the classical exponential distribution model of decay. On the other
hand, it is equally easy to find the asymptotic representatiofi(of asr — oo.
Namely,

00 eil"ty /2
d — eil"ttanzdZ
2 + 1 Y
—Eo/T Y — arctar{Eg/T")

cog(arctan(Ey/ I")) oitEo
itT '
Therefore,
O~ i ast
Nl — o0,
E§+T?2t
where
1
A= f°° —@
0 (E—Eg)%4T2
or
2

(Eg + 1‘*2)2 12’
Therefore,p(t) belongs to the domain of attraction of a stable law with index
a = 1. Thus, ifT}, j > 1, arei.i.d. r.v.'s describing the times of decay of a physical
system, then the suqﬁ; > i—1(T; — ¢)) doesnot tend to a Gaussian distribution

for any centering constaat(as we could have expected under exponential decay),
but diverges to infinityDoes this mean that the exponential approximation cannot
be used anymore?

In the above examples we see that the problem of passing to limit distributions
is ‘ill-posed’ in the sense that a small perturbation of the tail of the underlying
distribution changes significantly the limit behavior of the normalized sum of r.v.'s.

We can see the same problem in a more general situation. Given i.i.dXr.v.'s
j = 1, the limiting behavior of the normalized partial susjs= n=%*(X1+-- - +
X,) depends on the tail behavior &f Both the proper normalization, **, in S,
and the corresponding limiting law are extremely sensitive to a tail truncation. We
claim that in this sense the problem of limiting distributions for sums of i.i.d. r.v.s
is ill-posed We shall propose a ‘well-posed’ version of the problem and provide a
solution in the form of gre-limit theorem
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162 L. B. KLEBANOV ET AL.

Let us fix two positive constants and y, and consider the following semi-
distance between the random variableandY:

doy (X, ¥) = sup XD = SO
lt1>e [t]Y

(Here and in what followsy (x) and fy(¢) stand for the cumulative distribution
function (c.d.f.) and the characteristic functionof respectively.)
Observe that in the case= 0, d., (X, Y) defines a well-known probability
distance in the space of all r.v.’s for whiah, (X, Y) is finite, see [21, 24].
Next recall thatt is a strictlya-stable r.v. if for every positive integar
d Yi+---4+Y,
Y]_ - Un = T,
where< stands for equality in distribution and;, j > 1, are i.i.d.Y; 4 Y, see
[13, 25].
Let X, X;, j > 1, be a sequence of i.i.d. r.v.s such tlagt, (X, ) is finite for
some strictly stable random varialife Suppose that, Y;, j > 1, are i.i.d. strictly
a-stable random variables, apd> «. Then

dO,y(Sna Y) - dO,y(Sna Un)
_ supl B — S /)
t |z}

1/ay 1/
< weuplfX @Y — fye/nt]
[ 1114 nv/e—1

dO,y(X’ Y)a

see [25]. From this we can see tlagt, (S,, Y) tends to zero as tends to infinity,

that is, we have convergence (g, ) of the normalized sums of ; to a strictlya-
stable random variablg provided thatdy , (X, Y) < co. However,anytruncation

of the tail of the distribution o leads tody, (X, Y) = oo. Our goal is to analyze

the closeness of the suff) to a strictly «-stable random variabl& without the
assumption on the finiteness &f,, (X, Y), restricting our assumptions to bounds
interms ofd. ,, (X, Y) with ¢ > 0. In this way we shall formulate a general type of
acentral pre-limit theorenwith no assumption on the tail behavior of the underly-
ing random variables. We shall illustrate our theorem by providing answers to the
problems addressed in Examples 1 and 2.

2. Main Result

In our Central Pre-Limit Theorem we shall analyze the closeness of theSsum
to a strictlya-stable r.v.Y in terms of the following Kolmogorov metric (see [11]
and [21]): for any c.d.f’§F andG,

kn(F, G) := SUP|F % h(x) — G % h(x)],
xeR
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PRE-LIMIT THEOREMS AND THEIR APPLICATIONS 163

where x stands for convolution, and the “smoothing(x) is a fixed cdf with
a bounded continuous density function, §ﬂp’(x)| < c¢(h) < oo. Metric k,
metrizes the weak convergence in the space of cdf’s [11].

THEOREM 2.1 (Central Pre-Limit Theorem)etX, X;, j > 1, bei.i.d. rvs and
Sy = n~H*3"_1 X;. Suppose that is a strictly «-stable r.v. Lety > « and
A > § be arbitrary given positive constants and iet< (A /8)* be an arbitrary
positive integer. Then

\/E dﬁ,y(x’ Y)(2a)” i ZC(h)

ny/e=1y a

kh(FSn’ Fy) < |ng( —|—2Aa)

Remark 2.1l1f A — 0 and, furthermoreA /§ — oo, thenn can be chosen
large enough so that the right-hand side of the above bound is sufficiently small,
that is, we obtain the classical limit theorem for weak convergence tostable
law. This result, of course, includes the central limit theorem for weak distance.

Proof of the Theorem 2.Eory > «a,

dc,y(Sna Y) - dc,y(Sn’ Un)

< n Sup|fx(f/”l/°‘) — fr(t/n**)] _
= lt1>c 1114 ny/e-1

dﬁ,y(x, Y).
For anyA > § and for alln < (A/8)%, we have then

1
dA,]/(Sn’ Y) < md&y(x’ Y)
The above relation can be rewritten in the form
1) — t 1
sup | f5, (1) — fr (D)l <

~
[t1=A z]Y nv/e-1

ds., (X, Y).

Denote byl (1) the indicator function of the intervil-A, A], then

1 r|r 1
ml(l — 1) fs, (1) = A= 1) fr®)] < Wdé,y(xs Y).
For anya > 0 define
1 for |t] < a,
~ T 1
Va(t) = \/; ~(2a —|t]) fora <|t| < 2a,
a
0 for |¢t| > 2a.

The function\7a (t) is now a Fourier transform of the Vallée—Poussin kernel

Vo) = Ecos(ax) —2COS(2ax).
a

X
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164 L. B. KLEBANOV ET AL.

We have

/ (- 1(y L8O =@ t_ IO 0T e
R
= ((Fs, % h(x) — Fs, % h % Up(x)) — (Fy % h(x) — Fy % h % Ua(x))) * Va(x),

whereh(z) is a ch.f. of the c.d.fz, and

Ur(x) = %sm(xAx).

(Note that the Fourier transform 6f, is the indicator functiori.) Now, we obtain

sup|((Fs, (x) — Fs, % Ua(x)) * h(x) — (Fy(x) — Fy * Ua(x)) % h % V,(x)|

dsy (X, Y) (2a)” N

<
na—1 Y

It is known (see, for example, [18]) that
|Fs, % h(x) — Fs, % h % V,(x)| < &py iy (@) < E(a),

where &r(a) is the order of the best approximation to the functiBrby entire
functions of finite exponential type not greater thamn our casek has a bounded
density function, s&,(a) < c(h)/a. Similarly, |Fy * h(x) — Fy x h x V,(x)| <
c(h)/a.

Let us recall a relation between norms of entire functions of finite exponential
type (see [18], p. 125).

Suppose that < p < p’ < oo, and letg € L,(RY) be an entire function of
exponential type. Then

1_1
”g”Lp/(Rl) S2v7 gl ®ry-
From this statement it follows that

Sup|(Fs, (x) — Fy(x)) * hx V, x Up(x)| < 2Aa.

Combining our estimates we have

. ds., (X, Y)(2a)Y h
kn(Fs,, Fy) < inf (\/27'[ s 7 )(2a) +26( ) +2Aa)
a>0 na_ly a
foralln < (A/8)”. O

Thus, the c.d.f. of the normalized sums of i.i.d. r.v.’s is close to the correspond-
ing «-stable distribution for ‘mid-size values’ af.
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PRE-LIMIT THEOREMS AND THEIR APPLICATIONS 165

Theorem 2.1 shows that for ‘mid-size values’ iotthe closeness of, to a
strictly a-stable r.v. depends on the ‘middle part’ (‘body’) of the distributiornXof
It gives (in some sense) a well-posed version of Central Limit Thorem.

Remark 2.2 Consider the example of radioactive decay and apply Theorem
2.1 to the centralized time moments (denote thenXby If Y is Gaussiany = 3,
a =2,A=10"19 5 = 10730 we have that forn < 10% the following inequality
holds:

: d X,Y)(2a)® h
kn(Fs,, Fy) < inf (\/271 109036 D@7 5" L 55 1(Tl°a).
a>0 3\/5 a

Here dygs03(X,Y) < 1 (in view of the fact| fx(r) — fr ()| ~ ﬁt, as
t — 0). So we have obtained a good normal approximatiorFégf;c) for ‘not
too large’ values ofi, namely, forn < 10%. (If ¢(h) < 1 andn is of order 16°
thenk;, (Fs,, Fy) is of order 10°).

Itis possible to obtain an analog of Central Pre-limit Theorem for Lévy distance

L(X,Y) = L(Fx, Fy) = infle: Fx(x) < Fy(x +¢) + ¢,
Fy(x) < Fx(x +¢) +&x e R}

instead of Kolmogorov metriky,.
THEOREM 2.2. In conditions of Theorer.1

V22 ds,(X,Y) 1

1/3
e e T A, (2.1)

L(Sy,Y) <

forall n < (A/8)“.
Proof. For any positive; we have

L(Sy, Y) < kn(S, Y) +E(m),

where&(n) = max{2n, 1 — h(n), h(—n)} (see [24], Lemma 1.5.2, p. 108; but we
use other notations). For

0, x < -,

1 «x x2

§+—+22, -n<x<0;
h(x) = hy(x) = T

}+£—x— O<x <y

2 }’] 2772’ \771

1, x>

we obtainé () = 25, and

V2r2¥ d 2
L(S,,Y) < —Ta? + — +2Aa + 2.
y nv/e na
Choosing here = A=%/3, = A3 we finish the proof. 0
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166 L. B. KLEBANOV ET AL.

Using the relations between uniform distance
p(X,Y) = sup|Fx(x) — Fy(x)|
xeR

and Lévy distancd. (see [24, p. 107]) we obtain under conditions of the Theo-
rem 2.1 that

V272 ds,(X,Y) 1 +6Al/3><

p(Sn, Y) < ( IR

1+ suppy<x>), (2.2)
xeR

for all n < (A/8)%, where py(x) is a density function ofr-stable random vari-
ableY.

3. Sums of a Random Number of Random Variables

Limit theorems for random sums of random variables have been studied by many
specialists in probability, queueing theory, survival analysis, finance, econometric
theory, etc.; we referto [4, 9, 10, 12, 16, 17] and references therein.

We briefly recall the standard model: suppaseX;, j > 1, are i.i.d. r.v.s and
let{v,, p € A C (0,1)} be a family of positive integer-valued random variables
independent of the sequence XB. Suppose thatv,} is such that there exists a
v-strictly stable r.v.Y, that is

Vp

y £ ple Yy,
j=1

whereY, Y;, j > 1, are i.i.d. r.v’s independent of,, andEv, = 1/p.

In Bunge [2], and Klebanov and Rachev [9] the authors independently obtained
general conditions guaranteeing the existence of analogues of strictly stable dis-
tributions for sums of a random number of i.i.d. r.v.’s. For this type of a random
summation model we can derive an analogue of Theorem 2.1.

THEOREM 3.1. Let X, X;, j > 1, be i.i.d. r.v.s. LetSp = pl/« ;”:l X ;. Sup-
pose thatY is a strictly v-stable r.v. Lety > «, and A > § be arbitrary given

positive constants, and let > (§/A)* be an arbitrary positive number frofd, 1).
Then the following inequality holds

: ds (X, Y)(2a)" h
k(Fs,, Fy) < Inf (p”""lx/zn sy DT )+2Aa).
4 a> Yy a
Proof. The proof is similar to that of Theorem 2.1. One only needs to use the
following inequality

. T pYer) — fr(pYen| P (v, = n)
dc’y(Sp’ Y) < SupZ]_lle 14 fy p | P

l]>c |£]Y
< sup | fx(pY*t) — fy(pY*D)|Ev,
~

l]>c 1114

= p?’/“*ldcpl/a,y(x, ?),
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PRE-LIMIT THEOREMS AND THEIR APPLICATIONS 167

at the beginning of the proof and then follow the arguments in the proof of Theo-
rem2.1. a

4. Local Pre-Limit Theorems and Their Applications to Finance

Now we formulate our ‘pre-limit’ analogue of the classical local limit theorem.

THEOREM 4.1 (Local Pre-Limit Theorem)Let X, X ;, j > 1, be i.i.d. r.v.s hav-
ing a bounded density function with respect to the Lebesgue measurs,, aad
n~He 3" ) X;. Suppose that is a strictly o-stable random variable. Let > «,

A > § > 0andn(A/8)* be a positive integer not greater thz{u%)“. Then

ds (X, Y)(2a)r !
kn(ps,, py) < im:)(«/Zn 5.0 (X, Y)(2a) +2c(:)

2c(h)Aa ),
nV/Otfl()/—l—l) + C( ) a)

wherepg, and py are the density functions ¢f, andY, respectively.

Thus the density function of the normalized sums of i.i.d. r.v’s is close in
smoothed Kolmogorov distance to the corresponding density of-stable dis-
tribution for ‘mid-size values’ ofi.

The corresponding local pre-limit result for the sums of random number of
random variables has the following form.

THEOREM 4.2 (Local Pre-Limit Theorem for Random Sumisgt X, X;, j > 1,

be i.i.d. r.vs having bounded density function with respect to the Lebesgue mea-
sure. LetS, = %/ Zj’zl X . Suppose tha is a strictly v-stable random variable.
Lety > o,andA > § > 0, andt € [(A/§)%, 1). Then the following inequality
holds:

. ds (X, Y)(2a)" h
kn(ps . py) < mg (Ty/a—l /o 5.9 ( )(2a) 4 26( ) +2Aa).
! a> y a

Remark 4.1.Consider now our first example concerning Pareto-stable laws.
Following the Mandelbrot [15] model for asset returns we view a daily asset re-
turn as a sum of a random number of tick-by-tick returns observed during the day.
Following [9, 16, 17] we can assume that the total number of tick-by-tick returns
during the day has a geometric distribution with a large expected value. In fact, the
limiting distribution for geometric sums of random variables (when the expected
value of the total number tends to infinity) is geo-stable [10]. Then, according to

* Note that in financial studies the fit of a theoretical distribution to the empirical one is often
done in terms of the densities, rather than in terms of the corresponding c.d.f.s. That is why, in our
view, the local prelimit and limit theorems are of greater importance in comparison to the classical
limit theorems when applied to financial studies.
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168 L. B. KLEBANOV ET AL.

our Theorem 4.2 the density function of daily returns is approximately geo-stable
(in fact, it is v-stable with a geometrically distributed.

5. Pre-Limit Theorem for Extremums

Let X4,...,X,,... be a sequence of nonnegative i.i.d. random variables having
the c.d.f.F(x).
Denote

Xl;n = min(Xl, LX),

It is well-known that if F (x) ~ ax® asx — 0 thenF, (x) (c.d.f. ofn¥/*X.,) tends
to the cdfG(x) of Weibull law, where

1—e* forx >O0;

Gx) = {O, for x < 0.

The situation here is almost the same as in limit theorem for sums of random
variables. It is obvious that the indexcannot be defined using empirical data on
c.d.f. F(x), and therefor¢he problem of finding the limit distributio& is ill-posed
Here we propose pre-limit version of corresponding limit theorem.

As an analogue ofl., we introduce another semi-distance between random
variablesX, Y:

Fx(x) — Fy(x
e Xy — supl ) — el
x>c xY

whereFy and Fy are cdf’s of nonnegative random variablésandY .

THEOREMS5.1. LetX;, j > 1, be nonnegative i.i.d. r.vs anff;., = min(Xy,
..., X,). Suppose that is a random variable having the Weibull distribution

1—e* forx >0

Gx) = {O, forx < 0.

Lety > o and A > § are arbitrary given positive constants, and< (A /§)* be
and arbitrary positive integer. Then
: —aA% —a A% AY
ngFn(x) - G| < inf (2e +2(1—e%) + i (F, G)).
A little ough estimator under the conditions of the theorem Ané 1 has the
form

1 1\"* «
sup|F, (x) — G(x)| < (2 + (Iog —) )s,, +2(1—e),
x>0 ay/oz En
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where

ks, (F, G).

1
&y = ——
" ny/a—1

To get this inequality it is sufficient to calculate instead the minimum the corre-
sponding value foA = (2 log = )1/"‘

Proof of Theorem 5.M/e have

|F"(x/n"*) = G"(x/n*/*)]

KA,V(Fna G) = KA,V(Fn’ G,) = sup

x>A XY
< ”ffle(X/nl/a);y G(x/n%)| _ ny/la_lKA/Wl’y(F, )
< o ———ks,y (F, G)
forn < (A/8)*. So that
kn,y(F,, G) < oy ——ks,y (F, G). (5.2)
The inequality (5.1) shows that
|Fi(x) = G)| < x" ——— K5, (F, G) (5.2)

ny/e—1

holds for allx > A. In particular
F,(A) < G(A) + AVe,.
SinceF, (x) < F,(A) for0 < x < A then
|F,(x) — G(0)| < 2G(A) + AVe, = 2(1 — ) + A¢,

forO< x < A.
For arbitraryA > A we have from (5.2)

F,(A) < G(A) + A”s,
(where we use the notatiafi(x) = 1 — F(x)) and therefore
|Fa(x) — G(x)| < 2G(A) + A’s,

forx > A.
But from (5.2) we have

sup |F,(x) — G(x)| < A”é,.

A<x<A
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170 L. B. KLEBANOV ET AL.

Combining the estimators for all values.ofve finally get
Sup|F,(x) = G)| < inf (2G(A) +2G(A) + Ae,)

x>0

which complete the proof. O

6. Relations with Robustness of Statistical Estimators

Let X, X4, ..., X,, be a random sample from a population having c.B(x, 0),

6 € O (which we shall call ‘the model’ here). For simplicity we shall further
assume thaf (x, 0) is c.d.f. of Gaussian law with mean and unit variance, so
that F(x, 0) = ®(x — 6) whered(x) is c.d.f. of standard normal law. Basing on
the observations we have to construct an estim@itoe= 6*(X4, ..., X,) of the
f-parameter.

The main point in the theory of robust estimation is that any proposed estimator
should be insensitive (or weakly sensitive) to slight changes of underlying model,
that is it should beobust[6].

For mathematical formalization of this we have to clarify two conceptions. The
first one is the idea of how to express the notation of ‘slight changes of underlying
model’ in quantitative form. And the second is the idea of the measurement of the
quality of an estimator.

The most popular definition of the changes of the model in the theory of robust
estimation is the following contamination scheme. Instead of the normal c.d.f.
®(x) is consideredG (x) = (1 — &)®(x) + ¢H(x), where H (x) is an arbitrary
symmetric c.d.f. Of course, for small valuessof 0 the familyG (x — 0) is close
to the family® (x — 9).

Sometimes the closeness of the families of c.d.f’s is considered in terms of
uniform distance between corresponding c.d.f.'s, or in terms of Lévy distance.

As to the measurement of the quality of an estimator then it is an asymptotic
variance of the estimator.

Well known fact is that the minimum variance estimator for the parandeier
‘pure’ modelx = 2 >~'_; x; is non-robust

From our point of view, it is mostly connectetbt with the presence of conta-
mination, but with the use of asymptotic variance as a loss function. Really, for not
too largen we can apply our Theorem 2.1. It is easy to see that

dey(®(x —0), G(x — 0)) < zciy.

Suppose thaty, ..., z, is a sample from the population with c.dd(x — 6), and
letu; = (z; —0), j =1,...,n. Denote

1 & .
S, = ﬁ;u, = J/n(z - 0).
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For anyh(x) with a continuous density function, gu[h’(x)| < 1 we have

. e (2a)Y 1
kh(FSn, CD) < 2a|r>'|g (VZﬂ(S—ym + ; + A -a>.

Herey > 2,n < ($)% andA > § > 0 are arbitrary. It is not easy to find the inf
over all positive values ai. Therefore we set = A~/2 to minimize the sum of
two latest terms. Also we propose to find= ¢ ands = & to haveAY?s = /7,
And, finally, we choose to maximize the degree Corresponding value is

)/ :2+\/2/3,

and therefore

V2r2r 1 NG ) (6.1)

_— V6
kh(FS,,s(b) <2( y nl/\/§+2812+ 3

for all

__6 _
n § e 12+7/6

Here
272
>~ 6.269467557
Y
1 > i =~ 0.08404082058> i.
11 12+ 6 12

From (6.1) we see, that (for very small the properties of as an estimator
of 6 do not depend on the tails of contaminating c.@ffor not too large values
of the sample size. Therefore the traditional estimator for the location parameter
of Gaussian law is robust for proper defined loss function. Let us note that the
estimator of ‘stability’ doesotdepend on whether is c.dH (x) symmetric or not,
though the assumption of symmetry is essential when the loss function coincides
with asymptotic variance.

Of course, we can obtain corresponding estimator for both Lévy and uniform
distances, but the order of ‘stability’ will be worse. For example, the Lévy distance
estimator has the form

I S _ V30 _
< _ 60+13/30
L(Fs,, ) \2< > nm—i-&e )

for all

_ 10
n < & 60+13/30
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where

V30

We shall not give here the estimator for uniform distance.

One of possible objections is that the order of ‘stability’ in (6.1) is highly bad.
But this circumstance is connected with ‘not proper’ choice of the distance between
the distributions under consideration. It would be better toddseas a measure of
closeness of corresponding model and real c.d.f.’s. Really, if

dey (P(x —60), G(x — 0)) <&,
andc(h) < 1then

—2{? + 81/4) (6.2)

kn(Fs,, ®) < 4(

forall n < I, which is better than (6.1).

7. Statistical Estimation for Nonsmooth Densities

Now we shall consider some relations between prelimit theorems for extremums
and statistical estimation for nonsmooth densities. A typical example here gives
a problem of estimation of the scale parameter for uniform distribution. Let us
describe it in more details.

Suppose thal/y, ..., U, are i.i.d. random variables uniformly distributed over
interval (0, 0). Basing on the data we have to estimate the parameterO. It is
known that the statistic

Un;n = maX{Ul’ cees Un}

is the best equivariant estimator fér Moreover, the distribution ot (6 — U,.,)
tends to exponential law astends to infinity. In other words, the speed of con-
vergence ot,., to the parametef is 1/n. But it is well-known that the speed of
convergence of statistical estimator to ‘true’ value of the parametef,j& In the

case of smooth density function of the observations. More detailed formulations
may be found in [7].

Our point here is that it is inpossible to verify basing on empirical observations
does a density function have a discontinuity point or not. On the other hand, any
c.d.f. having a density with point of discontinuity can be approximated (arbitrary
closely) by c.d.f. having continuous density. But the speed of convergence for
corresponding statistical estimators differs essentially: (for the case of jump,
and ¥./n in continuous case). It means that the problem of asymptotic estimation
isill-posed and we have the situation very similar to that of summation of random
variables.
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Let now X4, ..., X, be a sample from population with c.df.(x/6),6 > 0
(F(+0) = 0). ConsiderX,., as an estimator fa#, and introduce
0—X;
Zi=—21 j=1...,n
J 9 J n

It is obvious thatZ;.,, = (0 — X,.,)/6. Therefore we can apply pre-limit the-
orem for minimums (see Theorem 5.1) to study the closeness of distribution of
normalized estimator to the limit exponential distribution for pre-limit case. We
have

Po{Z; < x} =Po{X; > (1—x)0} =1— F(1—x),

and we see that the c.d.f. &f; does not depend of\. Let us denote by, the
c.d.f. of Z;. Denote byF, c.d.f. ofnZ,.,, and byG — c.d.f. of exponential law
G(x) = 1—exp{—x} for x > 0. From Theorem 5.1 in the casewf= 1 we obtain

AV
; —A —A
S)L:p!Fn(x) -G)| < Jng (Ze +2(1-e")+ FKS,V(FZ, G)) (7.1)
foralln < £.
Let us consider an examle, when c.d.f. of observations has the fgxn= x
for 0 < x < a, whereq is a fixed positive number, anfi(x) is arbitrary forx > a.
In this case it is easy to verify that

Ka,2 g%

Choosing in (7.1 = a, A = 7log ;/a, andA = log } we obtain that
Sup‘Fn(x) - G(x)| < \/Eloga;

foralln < %Iog(l/a)/ﬁ. In other words, the distribution of normalized estimator
remains close to the exponential distribution for not too large values of the sample
size, although¥ does not belong to the attraction domain of this distribution.
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