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IN THE 1980s the topology of low dimensional manifolds has experienced the most
remarkable intervention of ideas developed in rather distant areas of mathematics. In the 4-
dimensional topology this process was initiated by S. Donaldson. He applied the theory of the
Yang—Mills equation and instantons to study 4-manifolds. In dimension 3 a similar breakthrough
was made by V. Jones. He discovered his famous polynomial of links in 3-spheria an
astonishing use of von Neumann algebras. It has been soon understood that deep notions of
statistical mechanics and quantum field theory stay behind the Jones polynomial (see [8,16,18]).
The relevant basic algebraic structures turn out to be the Yang—Baxter equati®anthtrices,
and the quantum groups (see [5—7]). This viewpoint, in particular, enables one to generalize the
Jones polynomial to links in arbitrary compact oriented 3-manifolds (see [13]).

In this paper we present a new approach to constructing “quantum” invariants of 3-manifolds.
Our approach is intrinsic and purely combinatorial. The invariant of a manifold is defined as
a certain state sum computed on an arbitrary triangulation of the manifold. The state sum in
guestion is based on the so-called quantyrsgmbols associated with the quantized universal
enveloping algebr&, (s/>(C)) whereq is a complex root of 1 of a certain degree 2 (see [9]).

The state sum on a triangulatidh of a compact 3-manifold/ is defined, roughly speaking,
as follows. Assume for simplicity that/ is closed, i.ed M = @. We consider “colorings” o
which associate with edges &felements of the set of colof6, 1/2,1, ..., (r — 2)/2}. Having
a coloring ofX we associate with each 3-simplexXfthe¢-6;-symbol

ijk
/ eC
Il mn

where(i, 1), (j, m), (k,n) are the pairs of colors of opposite edges of this simplex. We multiply
these symbols over all 3-simplexesXfand sum up the resulting products (with certain weights)
over colorings ofX.

The main point of the construction outlined above is independence of the state sum
of the choice of triangulation. This is verified using a geometric technique developed by
M.H.A. Newman [12] and J.W. Alexander [1] in the late 1920s. Alexander proved that
some simple transformations of triangulations of polyhedra enable one to relate any two
combinatorially equivalent triangulations. These Alexander transformations are infinite in
number even in the case of 3-dimensional manifolds. However, in the case of triangulations of
manifolds one may pass to the dual cell subdivisions. This passage transforms the Alexander
moves into certain operations on cell complexes. These latter operations can be presented
as compositions of certain local moves, which are finite in number in each dimension. In
particular in dimension 3 there are three such moves. (Essentially these moves were considered
by S. Matveev [11] and R. Piergallini [21] in their study of special spines of 3-manifolds). Thus,
translating our state model into the “dual” language we have to check only 3 identities which
happen to follow directly from the basic properties;e6;-symbols.
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The ideas outlined above lead not only to numerical invariants of 3-manifolds but rather to a
3-dimensional non-oriented topological quantum field theory (corresponding to the root of unity
q; for a general discussion of topological quantum field theories see [2].) In particular, with each
closed surface” we associate a finite-dimensional vector spaag’) = Q,(F) overC. The
full modular groupgModF (the group of isotopy classes of degeet homeomorphisms — F)
canonically acts inQ(F). Note that to defing (F) we have to fix a triangulation of and to
show thata posteriori Q(F) does not depend on the choice of triangulation up to a canonical
isomorphism. In this respect our construction resembles very much the construction of simplicial
homology.

It would be most important to relate our invariants of 3-manifolds with Witten’s topological
guantum field theory based on a Feynmann integral with non-abelian Chern—Simons action [18]
and its mathematical counterpart introduced in [13]. In contrast to [18,13], our invariants are not
sensible to orientations of manifolds. Moreover they are defined for non-oriented (and even non-
orientable) manifolds. Note also that the actioMddF in Q(F) discussed above is an honest
linear action in contrast to the projective action in [18,13]. These obsevations suggest that for
orientable 3-manifolds our topological quantum field theory is relatel @ F whereF is the
theory constructed in [13] and overbar is the complex conjugation.

In a forthcoming paper of the first author our constructions will be used to produce invariants
of links in compact 3-manifolds which are computed from triangulations of link exteriors and
which generalize the Jones polynomial of links in the 3-sphere.

In the caser = 3, ¢ = exp(2n+/—1/3), our invariants may be computed from standard
cohomological invariants of manifolds. In particular, this computation shows non-triviality of
our invariants.

Actual computation of our invariants from their definition is algorithmical but rather work-
consuming. With this view we develop a dual approach to the invariants based on the theory of
simple 2-skeletons of 3-manifolds. This theory generalizes the theory of special spines (see [4,11,
21]). Namely, we show that the invariants may be computed via a state sum model on any simple
2-skeletons. Usually it is easier to deal with simple 2-skeletons than with triangulations. Here the
situation is similar to the one in homology theory where simplicial homology of polyhedra are
computed in terms of cell decompositions. The difference however is that cell decompositions
generalize triangulations whereas simple stratifications generalize the cell subdivisions of 3-
manifolds which are dual to triangulations.

In particular this dual approach enables one to calculate our invariants from Heegaard
diagrams.

Note thaty-6;-symbols were used in [17] in a different manner to produce isotopy invariants
of links in those 3-manifolds which are circle bundles over surfaces.

The paper consists of eight sections. In Section 1 we introduce our state sum models on
triangulations of 3-manifolds. Section 1 begins with an axiomatic description of algebraic objects
which are prerequisite for our approach to constructing invariants. We present the state sum
model for closed 3-manifolds (this case is conceptually simpler) and then proceed to 3-manifolds
with boundary.

In Section 2 we construct the relevant 3-dimensional topological quantum field theory and, in
particular, define the corresponding representations of the modular groups.

Sections 3, 4 and 5 are devoted to proof of independence of the state sum on the choice
of triangulation. In Section 3 we recall the Alexander theorem and translate it into the dual
language. In Section 4 we introduce simple 2-polyhedra and study a version of our model on
these polyhedra. In Section 5 we conclude the proof of the invariance of the state sum.
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In Section 6 we develop an approach to the same invariants based on the theory of simple
stratifications.

In Section 7 we show that the-6 j-symbols where is a root of unity fit in the framework of
our constructions.

In Section 8 we present calculation|af| for M = 5%, RP3, L(3, 1) andS* x §2.

Section 9 is concerned with the simplest case: wfés a cubic root of unity. In this case
we give an interpretation of our state sum invariants in terms of cohomology. In Appendix 1 we
prove a relative version of the Alexander theorem (used in Section 5).

In Appendix 2 we discuss simple spines of manifolds.

Topological part of this paper is written in PL-category. In particular, all manifolds as well as
maps of polyhedra are piecewise linear.

1. STATE SUM INVARIANTS OF TRIANGULATED 3-MANIFOLDS

1.1 Initial data. In this subsection we describe our initial, purely algebraic data which will
be used below to define an invariant of triangulated 3-manifolds.

Fix a commutative ringk with unity. Denote byK* the group of invertible elements &f.
Assume that we are given a finite skta functioni — w;: w;:I — K*, and an elemenb
of K*. Assume that we have distinguished a adin of unordered triples of elements &f
Here we put no condition on this set of triples; in particular, elements of a triple are permitted
to coincide with each other. The triples belonging to this distinguished set will be said to be
admissible

An ordered 6-tupléi, j, k,I,m,n) € I is said to be admissible, if the unordered triples

@i, j k), (k,I,m),(m,n,i),(jl,n)
are admissible. (A geometric motivation of this definition will be given in the next subsection.)

Assume that with each admissible 6-tuglej, k, 1, m,n) € I it is associated an element of
K. We will denote this element by

i jk
Il mn

and call it thesymbolof the 6-tuple. Assume finally the following symmetries of the symbol: for
any admissible 6-tuplg, j, k, 1, m, n)

ik

Il mn

Il mk
i jn

imn

1jk

l jn
imk|

:‘jik

mln

ik jl|_
Il nm

1)

Note that if the 6-tupl€i, j, k, [, m, n) is admissible then the 6-tuplég, i, k, m, [, n), (i,k, j, 1,
n,m), (i,m,n,l,j k), (I, mk,i,jn)and(, j, n,i,m, k) involvedin (1) are also admissible.
Now we introduce some conditions on initial data.
Let us say that the initial data described above satibky condition (x), if for any

J1, J2, Ja. ja, Js, je € I such that the triplesji, js, ja). (j2, ja. js), (j1. j3, je), and (ja2, js, je)
are admissible we have

2.2
Z W;w;,
J

J3 Jj1 Je
J2 Jjs J

J2 g1
J3 Js Ja

=46

JaJe*
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Heres is the Kronecker delta. It is understood that we sum up gva&uch that the symbols
involved in the sum are defined, i.e. the 6-tuples involved are admissible.
The initial data is said to satisthe condition(xx) if for any

a,b,c,e, f, j1, j2, ja, jaz€ I
such that thés-tuples

(jos, a, e, j1, f.b) and(js, jo, jos, b, f, c)

are admissible we hare
2
Z w;

j

Here, as above, we sum up over sycihat all the symbols involved are defined.

Conditions &) and ¢x*) axiomatize the orthogonality and the Biedenharn—Elliot identities for
q-6j-symbols.

The initial data is said to satisthe condition(xxx), if foranyj e I

2_ -2 2,2
we=w; E wpwy .

k,l: (j,k,l)eadm

j23ae
i fb

J3 Jj2 Jj23
a e j

JaJje

J3 J2 J23|
afec

b f ¢

J2aj
j]_Cb

The initial data is said to biereducible, if for any j, k € I there exists a sequenkels, ..., I,
with Iy = j, I, =k such that(;, [;11,l;12) € admforanyi =1,...,n — 2.

The following Lemma shows that in the case of irreducible initial data it suffices to verify the
equality of the conditiorgxxx) only for one value ofj.

1.1.ALeMMA. If the initial data is irreducible and satisfy the conditiqg), then w;z
>kt Gk eagmWiw; does not depend ope 1.

Proof. Irreducibility implies that it is sufficient to prove that
-2 2.2 -2 2.2
k,l:(j,k,l)eadm k,l: (r,k,l)eadm

for any j,r € I such that there exists € I with (i, j,») € adm Fix such (i, j,r). The
condition ¢) implies that ifk, [ € I are such that the triplgj, , /) is admissible then

-2 2|l im||rij
wit= Y w ) . 2)
/ e "lrkoj ‘ l km
m: (l,i,m)yeadm
(m,r,k)yeadm
Thus
~ A
w? Y wpi= Y wpepu|lim|]ri
k,l: (j.k,])eadm kd,m: (l,i,m)cadm rk J [k m
o UK " (m.r.kyeadm
(j.k,l)eadm
= we?( Y Wl imri g,
rk j||lkm

1:(1,i,m)eadm

m,k: (m,r,k)cadm
(j.k.))eadm

Formula (2) with interchanged indicésm and j, r permits to replace the expression in the
brackets byw2. This gives the desired resultm
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Fig. 1.

1.2 Colored tetrahedra. By a colored tetrahedron we will mean a 3-dimensional simplex
with an element of the sdtattached to each edge (see Fig. 1).

The element attached to an edgés called thecolor of E. A colored tetrahedron is said to be
admissibléf for any its 2-faceA the colors of the three edges4form an admissible triple. Now
we can explain geometrically the notion of admissible 6-tuple. A 6-tUplg k, 1, m,n) € I®is
admissible iff the colored tetrahedron presented in Fig. 1 is admissible.

Each admissible colored tetrahedrdngives rise to a set of admissible 6-tuples. Namely,
choose a 2-facd of T and write down the colors of the edgestdfollowed by the colors of the
opposite edges (f. This gives an admissible 6-tuple, which depends, of course, on the choice of
A and on the choice of order in the set of edged o€learly the resulting 24 admissible 6-tuples
may be obtained from each other by the obvious action of the symmetry gr@ymdfich is the
symmetric groupSs. Equalities (1) ensure that the symbols of these 6-tuples are equal to each
other. Denote the common value of these symbolsltjy Note that to defingT’ | € K we have
not used an orientation df.

1.3 State model for closed 3-manifoldd.et M be a closed triangulated 3-manifold. Let
be the number of vertices d#, let E4, ..., E, be the edges oM, and letTx,..., T, be the
3-simplexes ofM.

By a coloring of M we mean an arbitrary mapping

¢ {E1, Ez ..., Ep} —> I

A coloring is said to bedmissibldf for any 2-simplexA of M the colors of the three edges of
A form an admissible triple. Denote the set of admissible coloringg @fy adm(M).

Each admissible coloring of M induces an admissible coloring of each 3-simpiewf M.
Denote the resulting colored tetrahedronZy

Forg e adm M) put

b d
|M|¢=w_2“l_[w5(E,)l_[|T,‘o| ek. (3)
r=1 =1
Put
M= Y M, 4

peadmM)
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1.3.A THEOREM. Ifinitial data satisfy the condition6k), (xx) and (xxx), then|M| does not
depend on the choice of triangulation &f.

The proof of 1.3.A is given below in Section 5.
Theorem 1.3.A gives a scheme to define topological invariants of 3-manifolds. To realize it,
one needs concrete initial data. Some initial data are given below in Section 7.

1.4 Relative case.Let M be a compact triangulated 3-manifold. Lete the number of
vertices ofM. Suppose that of them lie on the boundaryM. Let E4, ..., E;, be the edges of
M, and letTy, ..., T, be the 3-simplexes ao¥f. Let exactly the firstf of the edges lie caM.

By a coloring and admissible coloring @f we shall mean just the same as in 1.3. By a
coloring ofo M we mean an arbitrary mapping

a{Ey, Ep ..., Ef}— I

A coloring of 9 M is said to beadmissibldf for any 2-simplexA of 9 M the colors of the three
edges ofd form an admissible triple. Denote the set of admissible coloringabby adm(d M).
For any admissible coloring: {E1, Eo, ..., E;} — I of M set

f b d
M1y =w 2 [Twy, [] wie, [T € k. (5)
r=1 s=f+1 =1

Fora € admaM) denote byadma, M) the set of all admissible colorings & which extend
. Put

Qu@= Y Ml
peadma, M)
If adma, M) = @, i.e,a has no extension tdf, thenQ2,,(«) = 0 (as the sum of the empty set
of summands).

1.4.A THEOREM. If the initial data satisfy the conditions), (x+) and (x*x), then for any
compact3-manifold M with triangulated boundary and any admissible coloringf dM all
extensions of the triangulation 6f/ to M yield the same,, («).

This Theorem generalizes Theorem 1.3.A and is proven below in Section 5.

2. FUNCTORIAL NATURE OF THE INVARIANTS

2.1 Operator version of the invariant.For each triangulated closed surfaEave define a
K-moduleC(F) to be the module freely generated overby admissible colorings of’. One
may equipC (F) with the scalar produdf (F) x C(F) — K which makes the set of admissible
colorings an orthonormal basis 6f(F).

If F=g,thenwe pulC(F)= K (in accordance with the generally accepted convention that
there exists exactly one map— 1I).

Let W = (M;i,,i_) be a cobordism between triangulated surfaEesand F_, i.e. M is a
compact 3-manifoldi, : F, — oM andi_: F_ — dM are embeddings witAM =i, (F.) U
i_(F_)andi,(F,)Ni_(F_)= . Define a homomorphism

Dy :C(Fy) — C(F-)
by the formula

Py@) = Y Qulir@Ui(B)HB
Beadm(F_)
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where @ is an admissible coloring of", andi,(«) Ui_(8) € admdM) is the coloring
determined by andg. In other words®y is the homomorphism which has, with respect to the
natural bases of the spac€sF, ), C(F_), the matrix with element®, (i, () Ui_(8)).

The operatoby, can be considered as a generalization of the preceding invariants. Indeed,
for a closedM, considered as a cobordism between empty surfazgsacts inK (= C(@)) as
multiplication by|M|. As for @ («), with « € admd M), they are the matrix elements fdry,
whereW = (M;id:dM — oM, o — IM).

2.1.A COROLLARY OF 1.4.A. For any cobordismW = (M;i,,i_) between triangulated
surfaces, the homomorphisdy : C(F,) — C(F_) does not depend on the extension of
triangulations ofF, and F_ to M involved in the definition oby, .

2.2 Multiplicativity of the invariants. It is well known that cobordisms can be considered
as morphisms of a category. Objects of this category are closed manifolds. Each cobordism
W =(M;i,,i_)between surfacel, andF_ is a morphism of this category fro, to F_. The
composition of cobordism®, = (My; i1: F1 — 0M,iz: Fo — M) and W, = (My; jo: Fo —
dM, j3: F3 — dM) is the cobordisnW, o Wy = (M1 U Mpo; i1, j3) obtained fromW, and W, by
gluing alongF.

The following theorem is a straightforward corollary of definitions.

2.2.A THEOREM. ®y,ow, = Pw, o Dy,

2.3 TopologicaB-dimensional quantum field theoryTheorem 2.2.A looks as the main con-
dition for the correspondender— C(F), W — &y to be a covariant functor from the category
of cobordisms of triangulated surfaces to the categork efodules. But it is not a functor
since the other condition is not satisfied: for the unit cobordism [whidalF¥is [0, 1]; F x O,

F x 1)] the induced homomorphism sometimes is not identity.

However Theorem 2.2.A allows to improve this construction producing a functor. To do that,
consider, for any triangulated closed surfacethe cobordismd g = (F x [0, 1]; io, i1) where
ii:F — 8(F x [0,1]) are defined by, (x) = (x, t). Define a moduleQ(F) = Coim(®jq,) =
C(F)/Kerdjq,. By 2.1.A it is well defined. Furthermore, any cobordi$h= (M; i, : F, —
OM,i_:F_ — 9dM) is homeomorphic to the compositidii o idr,. Thereforedy = dw o
Dig,., and Kerdy D Kercbid&. Consequentlydy : C(Fy) — C(F-) induces aK-linear
homomorphismQ (F,) — Q(F_). We will denote it byw.

The identity ®y,ow, = Pw, o Dy, implies thatWy,.w, = Yy, o Yy,. FurthermoreWy, =
idg(ry, sinceWiq, is monomorphism (by the definition @ (F)) andW¥ig, o W4, = Wiq,. Thus

F— Q(F), W Uy

is a functor from the category of cobordisms of triangulated surfaces to the categéry of
modules.

(Remark. This argument is fairly general. Let us call a mapping of a categaiya category
D asemifunctorif it satisfies the first condition of the definition of a functor: namely, it sends a
composition of morphismg to the composition of their images . Suppose thab is abelian.
Assign to each object gb the coimage of the identity morphism of the image of this object in
D. This operation is extended naturally to an honest functor fgotm D.)
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Although Q(F) is defined in terms of a triangulation df, it does not depend on the
triangulation in the following sense. For any two triangulationg'ahere exists a triangulation
of F x [0, 1] coinciding onF x 0 andF x 1 with these given triangulations. It determines an
isomorphism between th@ (F)’s which are defined via these triangulationsgofBy 2.2.A, this
isomorphism does not depend on the choice of the triangulatigh>of0, 1]. We will identify
the space®) (F) defined via different triangulations @ by these isomorphisms.

Thus we have, for any initial data, the functern— Q(F), W — Wy from the category of
cobordisms of (topological, i.e. non-triangulated) surfaces to categadtyrobdules. Following
to a modern terminology (see [2]), it can be calletbpological (2 + 1)-dimensional quantum
field theory Note however that originally this term is applied to a functor from the category of
orientedcobordisms (obrientedsurfaces).

2.4 Actions of modular groups.The functor of the preceding Subsection determines
naturally representations of modular groups happing class groups of closed surfaees
groups of isotopy classes of homeomorphisms of surfaces).

Let F be a closed surfacé,: F — F homeomorphism. Fix some triangulation Bf Define
a homomorphismy: C(F) — C(F) by

hi@) =Y Qpxonio(B) Uith(@))p
Beadm(F)

wherei,: F — d(F x [0, 1]) are defined by, (x) = (x,t) and« is an admissible coloring of
the triangulation ofF. In other wordshy is the homomorphisn® gxo.13:i.1,0n) iNduced by the
cobordism(F x [0, 1]; ig, i1 o h).

As follows from 2.2.A,(h o g)s = hg o gx.

By the same reason as f@ry above /4 induces a homomorphis@(F) — Q(F). We denote
this induced homomorphism . The identity(h o g)4 = hy o g» implies (h o g), = hy o g..
Furthermoreid, = Wjq, =id. Therefore(h™1), o h, = (h~ o h), =id, =id, and thush, is an
isomorphism for any homeomorphigm

If homeomorphismé andg are isotopic, thethy = g4 and thereforé,, = g... Indeed,

Qrxo,@o(B) Uirth(a)) = Qryxio,1@o(B) Uiig(a))

since using an isotopy betweérandg it is easy to define a self-homeomorphismfok [0, 1]
which is identity onF x 0 and map$:h(a) toiig(w).

Thus for any closed surfacé we have a representation of the mapping class group of
in Q(F).

Fig. 2.



STATE SUM INVARIANTS OF 3-MANIFOLDS 873

2.5 Arefinement of the theoryAssume that there exists a function/ — Z, such that for
any admissible tripléi, j, k)

(i) + c(j) + k) =0.

Then each coloring of a 3-manifolsf composed withc is a 1-cocycle ofM. For anyh €
HY(M; Z,) one can define a state sum invariani:a§umming up our state sum terms (5) over
all colorings which induce cocycles representing his refines the theory introduced above.

3. TRANSFORMATIONS OF A TRIANGULATION AND ITS DUAL

3.1 Alexander Theorem.To prove independence of the results of contructions of Sections 1
and 2 on triangulations (Theorems 1.3.A, 1.4.A and 2.1.A) we use the technique of Alexander [1]
relating different triangulations of a manifold.

Let X be a polyhedron with a triangulatidh, let £ be its (open) simplex andle E£. Remind
that the €losed star of a simplexE is the union of all closed simplexes containifyg it is
denoted byStr E. The transformation of” which replaces the staity E by the cone over the
boundary ofStr E centered inb is called astar subdivisiorof T along E. (Simplexes of the
initial triangulation which do not belong to the star Bfalso belong to the new triangulation of
X.) Star subdivisions were introduced by Alexander [1]. We will call ttieeAlexander moves
Figure 2 shows a star subdivision along an edge in the 2-dimensional situation.

J.W. Alexander [1] used previous results of M.H.A. Newman [12] to prove the following
theorem.

3.1.A THEOREM. For any polyhedronP, which is dimensionally homogeneofi®. is a
union of some collection of closed simplexes of the same diméresnyrtwo triangulations of
can be transformed one to another by a finite sequence of Alexander moves and transformations
inverse to Alexander moves.

3.2 Relative version. To prove 1.4.A we need the following relative version of the
Alexander theorem.

3.2.A THEOREM. Let P be a dimensionally homogeneous polyhedron ghids subpoly-
hedron. Any two triangulations aP coinciding onQ can be transformed one to another by
a sequence of Alexander moves and transformations inverse to Alexander moves, which do not
change the triangulation of).

The proof of 3.2.A is given in Appendix 1.

3.3 Dual picture of the Alexander moveThe local picture of the Alexander move along a
simplex E of a triangulated spacg is determined by the combinatorics of the starrbin P.
In particular, if P is a 3-manifold andlimE = 1 then this local picture is determined by the
position of E with respect to the boundarg: may be contained i P or not, and by the number
of 3-simplexes containing. Thus the number of the moves is actually infinite, which makes it
rather difficult to verify directly the invariance of our state sums under the Alexander moves.

In the frameworks of triangulations we can not factorize the Alexander moves into more
elementary ones, which would be finite in humber. (How to do this for a kind of singular
triangulations, is discussed in Appendix 2.)
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To circumphere this problem, we pass to the dual picture for the moves. Recall that each
combinatorial triangulation of a manifold/ induces a relative cell subdivision of the pair
(M,dM). This subdivision is said to be dual to the original triangulation. It is constructed
as follows. With each strictly increasing sequentgcC A; C --- C A, of simplexes ofM
one associates an-dimensional linear simplekdg, As, ..., A,,] in M whose vertices are the
barycenters ofAg, A1, ..., Ay. For a simplexd of M denote byA* the union of all simplexes
[Ao, A1, ..., Ay] With Ag = A. It is well known (and easy to visualize dfimM = 3) that A*
is a combinatorial cell of dimensiaimM — dimA. This cell is called théarycentric starof
A. ltintersectsA transversally in the barycenter df. The cells{A*}4, whereA runs over all
simplexes ofV, form a relative cell subdivision of the pai, d M).

A reader whose topological background does not contain these notions, can just look at
Fig. 3, where the pieces of barycentric stars contained in one tetrahedron are drawn boldface.
As the whole 3-manifold is a union of tetrahedra, its barycentric star subdivision is the union of
subdivisions of Fig. 3.

Now let us visualize the transformation of the barycentric star subdivision corresponding to
the Alexander move along an ed@enot contained in the boundary of the manifold. Consider,
first, a simpler 2-dimensional picture shown in Fig. 4. The barycentricitaf the edgeE is
replaced by a quadrangle. In the 3-dimensional case shown in Fig. 5.1 the barycenficstar
the edgeF is a plaque. In result of the Alexander move the halkgandE, of E come up. The
corresponding plaqueB; and E3 have the same number of sidesEsand are positioned on
both sides of it. Excepk; and E», the only new edges emerging under the Alexander move are
the edges connecting the new verfexN E, with the vertices of the link of.. Their barycentric
stars are quadrangles joining the corresponding sidés gind E3. Together withE; and E}
they constitute a prism. Thus the Alexander move replaces a platjbg a prism. This is the

AN
N

Ep

Fig. 4.
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Fig. 5.3.

As we mentioned above the Alexander moves in dimension 3 along edges form an infinite
series of moves. In our dual picture the members of this series differ from each other in the
number of sides oE™*.

In the case of 3-manifolds whef does not lie in the boundary aimE =2 ordimE =3
the dual pictures of the star subdivisions are shown in Figs 5.2 and 5.3.

3.4 Factorizing the Alexander movelet E be an edge of a triangulation of a 3-manifait
and letE do not lie ond M. Consider the dual picture of the Alexander move aléhdt is easy
to imagine a process which creates gradually from the old barycentric star subdivision the new
one. In Fig. 6.1 such a process is shown. It starts with creating a small bubble in the cefiter of
Then we puff up this bubble. In some moment it reaches the bounddty.ofhis happens in
an internal point of some side &*. Then the base circle of the bubble crosses vertices, one by
one. Stop when the bubble engulfs the whBle At this moment our prism is ready: it consists
of the old E*, the bubble surface and the parts of the old 2-strata adjacétit¢ontained inside
the bubble.

The similar processes corresponding to the cdga® = 2, dimE = 3 are shown in Figs 6.2
and 6.3.

Itis clear that the processes shown in Fig. 6 may be decomposed into sequences of elementary
(local) events shown in Figs 7, 8, and 9. However these local modifications do not proceed inside
the class of barycentric star subdivisions of triangulations. Thus to appeal to these processes we
have to enlarge the class of objects on which our state sums are defined. We shall do that in the
next Section.
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Fig. 8.

Fig. 9.

4. SIMPLE 2-POLYHEDRA AND A STATE SUM MODEL

4.1 Simple graphs and simple 2-polyhedr&y a simple graphve mean a finite graph<{
finite 1-dimensional” W-complex) such that each point of it has a neighborhood homeomorphic
either toR or to the union of 3 half-lines meeting in their common end point. Each simple
graph is naturally stratified with strata of dimension 1 being the connected components of the
set of points which have neighborhoods homeomorphiR.tdhe 0O-strata of a simple gragh
are the (3-valent) vertices d@f. The 1-strata homeomorphic B are callededgesand 1-strata
homeomorphicts® loopsof I'. (Thus some components of our simple graphs eventually contain
no vertex.)
A 2-dimensional polyhedro is calledsimple2-polyhedron(with boundary, if each point
of X has a neighborhood homeomorphic either to
(1) the planéR?, or
(2) the union of 3 halfplanes meeting each other in their common boundary line (see
Fig. 10), or
(3) the cone over the 1-skeleton of a tetrahedron (see Fig. 11), or
(4) the halfplanéR?, or
(5) the union of 3 copies of the quadrdiit, y) € R%: x > 0, y > 0} meeting each other in
the copies of the halfline = 0 (see Fig. 12).
The set of points of a simple polyhedranwhich have no neighborhoods of types (1), (2), (3) is
called theboundaryof X and denoted by X. It is a simple graph.
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Fig. 11.

=

Fig. 12.

Each simple 2-dimensional polyhedronis naturally stratified. In this stratification each stratum
of dimension 2 (a 2-face) is a connected component of the set of points having neighborhoods
homeomorphic tdR?. Strata of dimension 1 are of the following two types: internal 1-strata
which are connected components of the set of points without neighborhood homeomorphic to
IR?, but with neighborhoods as in Fig. 10, and 1-strata of the boundary. Strata of dimension 0 are
of two types also: internal O-strata which are the points without neighborhoods of the types (1),
(2), (4) and (5), but with neighborhoods as in Fig. 11, and the vertices of the boundary.

Simple 2-polyhedra appear naturally as 2-skeletons of those cell subdivisions of compact 3-
manifolds which are dual to triangulations.

Remark.Simple 2-polyhedra are also called fake surfaces. This class of 2-polyhedra is
interesting from many viewpoints. For example, they are generic in the following senses:

(1) They are obtained by gluing surfaces with boundary to other surfaces or simple 2-
polyhedra by generic mappings of boundary components.

(2) They make a dense subset in the space of all metric 2-polyhedra (with respect to the
Hausdorff metric).

(3) By local operations, preserving simple homotopy type, one can transform any compact
2-polyhedron into a simple one (which, in the metric case, can be made arbitrarily close
to the original 2-polyhedron).

4.2 State model for simple 2-polyhedrd.et X be a simple 2-dimensional polyhedron (may
be with non empty boundary). Let, ..., x; be the vertices ok — 9X, let Ey, ..., E; be the
edges ofd X and letl'y, ..., ', be the 2-strata oK. By a coloring ofX we mean an arbitrary

mapping
¢:{F1,F2,...,Fb}—>l.

The coloring is said to badmissibleif for any edgeE of X — X the colors of the three 2-strata
incident toE form an admissible triple. Denote the set of admissible coloringsloy adm (X).
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Fig. 13.

By a coloring of a simple graph we shall mean any mapping of the set of its 1-dimensional
strata to/. A coloring of a simple graph is said to lemissibleif for each vertex the colors of
the edges adjacent to it make an admissible triple. The set of admissible colorings of a simple
graphT" will be denoted byadm(I"). Any coloring of a simple 2-polyhedroX induces in a
natural way a coloring of its boundaéy : a 1-stratum ob X takes the color of the 2-stratum of
X in whose boundary this 1-stratum is contained. Evidently, if the coloring of admissible,
then the induced coloring d&fX is admissible too. The mapdm(X) — adm(3X) defined by
this construction will be denoted iy

With each vertexx of X — dX we associate a tetrahedr@h whose vertices and edges
correspond respectively to germs of 1-strata and 2-straf ioCident tox (see Fig. 13). The
1-skeleton ofT; is nothing but the polyhedral link of in X. Let 7, be the dual tetrahedron,
i.e. the tetrahedron whose vertices, edges and faces correspond respectively to faces, edges and
vertices ofT,. Thus edges and faces of, correspond to germs of 2-strata and 1-strat& of
incident tox. Each admissible coloring of X induces an admissible coloring @f: the color
of the edge off, corresponding to a 2-stratufh of X is defined to bey(I") € 1. Denote the
resulting admissibly colored tetrahedron$. For¢ € adm(X) put

) dp(Ey) €K (6)

b f d

—2x(X)+x(0X 2x('y) X (Es) 7

1X|, = w X (X)+x( )wa w |Tx<f
r=1 s=1 =1

wherey is the Euler characteristic, anefy,’, w)! ;) meanw,,) € K to degree 2(I',) and

Wae(E,) t0 degreey (E;) respectively. (Strata are thought to be open, sB,ifs homeomorphic
to R! theny (E,) = —1 and if E; is homeomorphic t&* theny (E,) = 0.) Put

X|= Y 1Xl,. (7
peadmX)
For any admissible coloring of 9 X put
Q)= Y X, (8)
@ 0(p)=a
If {¢: 3(¢p) =a} =2, thenQyx(a) =0.

4.2.A LEMMA. Let a simple2-polyhedronX be the union of simpl@-polyhedraY and

Z and let each component @f =Y N Z be a component of bothY and dZ. Then for any
admissible colorings of 0 X

Qx(B) = Z Qy(aU (B lynax)) Lz U (B |znax)) 9

acadm(T)
wherea U (8 |ynax) anda U (B |znax) are the colorings obY anddZ induced by, 8 (note
thatdY =T U (Y NaX) anddZ =T U (Z N 3X)).
Proof. Lemma 4.2.Ais a direct consequence of the equality
X1y =Y pi¥|Zlyz (10)

which holds for anyy € admX). Formula (10) follows straightforwardly from the definition
of |X|, and additivity of Euler characteristic. Indeed, a fatef X is the union of some faces
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ry,....r, of Y, some faces’,...,I'; of Z, and some 1-stratd;,, ..., E;, of T. Therefore
x (") is the sum of Euler characteristics of these pieces, and

2x (D) =2¢(Ty) + -+ 2 (T},) + x (Ei) + -+ x(Ei,) + 2¢ (T]) + - + 2x (T'))
+x(Eip) + -+ x(Ei,).

For similar reasons,
—2x(X)+ x(0X) = (=2x(¥) + x(@Y)) + (=2x(Z) + x (3 Z)). O

4.3 Local moves on simple 2-polyhedrdn the second half of eighties Matveev [10] and
Piergallini [21] introduced several transformations of simple 2-dimensional polyhedra. Each
of these transformations replaces a standard fragment of a simple polyhedron by some other
standard fragment. In Figs 8 and 9 above we show two Matveev—Piergallini transformations.
The transformation shown in Fig. 8 will be called thene moveand denoted byC. The
transformation shown in Fig. 9 will be calletie Matveev movand denoted byM. Note
that these transformations do not change homotopy (and even simple homotopy) type of 2-
polyhedron.

We also need the transformation shown in Fig. 7. This move adds two new disk 2-strata and
one circle 1-stratum and punctures one old 2-stratum. We shall call this nimizbée movend
denote it bys.

Note that the movea, £, B preserve the boundary.

4.4 Invariance of the state sum with respect to local moves

4.4.A LEMMA. Let X be a simple 2-polyhedron andbe an admissible coloring @fX. If
the initial data satisfies the conditidi) then|X| and Qx(«) are invariant under_.

Proof. Let X’ be a polyhedron obtained froii by £. ThenX =Y U Z andX' =Y ' U Z
whereY NZ =0Y =0Z, YYNZ =0Y' =0Z andY, Y’ are simple 2-polyhedra with boundary
shown in Fig. 14.

By Lemma 4.2.A it is sufficient to prove that

Qy(B) =Qy (B) (11)

foranyB e admdY) =admaY’).
LetI', ", T” be the faces o¥’ andE’, E” the edges oY’ pointed out in Fig. 14. Denote
by x and y the vertices ofY’ which appear in Fig. 14. Fix somg € admdY) and put

Jja=B(E), je=B(E").

N

: R.
R Rp——

Fig. 14.
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Consider the casg # js. Letp € adm(Y’) with d¢ = 8. Denote byji, j2, js, js theg-colors
of the faces off” which appear in Fig. 14. The elemét|, is the product of a certain factor
which does not depend on the choicepadind the factor

31 Js |
J2 js o)

J2 j1 o)
J3Jjs Ja

wl [T T = w

Summing up these expressions overad 9-1(8) we get zero because of conditios) Gnd
the assumptionis # js. Thus

Qrp)= ) IYl,=0.
@ 0(p)=p

On the other hand2y (8) = 0, sincejs # js implies that no coloring of inducess.
Assume now thaj, = js. In this case there is a unique coloritigof Y which inducess. See
Fig. 14. By the definition

Qr(B) = Y1y =w wjwj,w,w.
On the other hand,

Qpy= Y. IVl

@1 a(p)=p
—w w2 2 To| | Te
=w w]l wjzw]3 szwj4 Z ww(l") |Tx | |Ty |
@1 3(p)=pB
w4 ][4 4]

J

By the condition §) the sum in the latter expression equéjg, = 1. ThusQy (8) = Qy(8).
This finishes the proof. O

4.4.B LEMMA. Let X be a simple 2-polyhedron andbe an admissible coloring afX. If
the initial data satisfies the conditiga=) then|X | andQx («) are invariant under the mov1.

The proof of 4.4.B is quite similar to the proof of 4.4.A. Here five tetrahedra are involved
into play: two tetrahedra correspond to the two verticeX afnd three tetrahedra correspond to
the three vertices ok’. In Fig. 15 we present a convenient notation for colors of faces which
converts §x) into an equality similar to (11). O

4.4.C LEMMA. Let X be a simple 2-polyhedron andbe an admissible coloring afX. If
the initial data are irreducible and satisfies the condities) then|X| andQx («) are invariant
under the moveés.

[0 n
e f e ~ f
- ‘ c / ———x"7 )
13 b Is ' a Ja
J23 -7 J23 -7
I2 /2
Y Y

Fig. 15.
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Proof. Let X’ be a polyhedron obtained froii by the bubble more. Thek = YUZ and
X' =Y UZwhereYNZ=0Y=0Z, YYNZ=0Y' =0Z andY, Y’ are simple 2-polyhedra
with boundary shown in Fig. 16. By 4.2.A it is sufficient to prove tkat(8) = Qy (8) for any
B eadmaY)=admdY’). If the color of the boundary circleY with respectt@s is j, then

-2, 2 —4, 2 2
Qy(B) =w “w; andQy (B) = E wrwiwy .
k,I:(j,k,l)eadm

The result follows from the conditiogx*x*). O

4.5 Digression: a two-dimensional polyhedral quantum field theofycobordism between
simple graphg™ and A is a simple 2-polyhedro with embeddings:I" — 90X, j: A — 0X
suchi(T) U j(A) =0X,i(I") N j(A) =2, andi(T"), j(A) are unions of components 6fX.

It is easy to see that any two simple graphs are cobordant in this sense; so the corresponding
cobordism group is trivial.

There is an obvious composition operation for cobordisms of simple grapt¥s; if j) is a
cobordism betweeli andA and(Y, &, /) a cobordism betweef andX, then(X Uy;—1. ja)—k(a)

Y;i,l) is a cobordism betweell and . Simple graphs are objects and their cobordisms
(considered up to homeomorphisms identical on the boundary) are morphisms of a category
called thecategory of simpl@-polyhedraand denoted by.

For each simple graph we define theK-moduleC(I") to be the module freely generated
over K by the admissible colorings of. One may equipC(I") with the scalar product
C (") x C(I") — K which makes the set of admissible colorings an orthonormal basigIoy.

If ' =@, thenC(T) =K.

For any simple 2-polyhedroi the mappingx — Qx(a) uniquely extends to & -linear
homomorphisnC (9 X) — K, which will be denoted also b2 .

To each cobordismU = (X;i,j) between simple graph§ and A we associate a
homomorphismby : C(I") — C(A) defined on the generators by the formula

Py@)= Y Qui@UjpB)B. (12)
peadmA)

The identity morphisms in the catega$yof simple 2-polyhedra are trivial cobordisnts =
(T x [0, 1]; io, i1) wherei,:T" — I" x [0,1]: x — (x,t). As follows directly from definition,
dig,.—ig. This observation together with the following Theorem 4.5.A mean that we have a functor
'~ CT), U — &y from the category to the categoryk -Mod of K-modules. In analogy to
topological quantum field theories it can be calbkegholyhedral2-dimensional quantum field
theory.

4.5.A THEOREM. If U is a cobordism between simple graghsind A andV a cobordism
between simple graphs and X, then

Oy o Py =Py py:C(IN) = C(X)

whereV o U is the composition of cobordisnisand V.

Ay,

Fig. 16.
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Theorem 4.5.A follows straightforwardly from Lemma 4.2.A.

None of the moves\, £, B (see Section 4.3 above) changes the boundary of a simple 2-
polyhedron. Therefore application of these moves to a cobordism between two simple graphs
gives cobordisms between the same graphs. Denog2 the quotient category &f constructed
by identifying morphisms of which can be obtained one from another by some sequence of
movesL*!, M*!, and B*!. The objects ofQ are the objects of (simple graphs) though a
morphism ofQ is a class of cobordisms convertible to each other by mgw¥ésM*1, andB*.

From lemmas of the preceding Subsection it follows

4.5.B. The functorl" — C(I'), U — @y from the categons of simple 2-polyhedra to the
categoryK -Mod of K-modules induces a funct@ — K-Mod.

5. PROOF OF INVARIANCE THEOREMS

5.1 Dual colorings. Let M be a compact triangulated 3-manifold, be the union of the
(closed) barycentric stars of all edgesMf It is obvious thatX is a simple 2-polyhedron with
boundaryp X = X N aM. Each coloringy of M induces a dual coloring* of X by the formula

@*(E") = ¢(E)

where E is an edge ofM and E* is the dual 2-cell ofX. This establishes a bijective
correspondence between coloringsWfand those o .

It is straightforward to observe thatis admissible if and only i§* is admissible. Therefore,
the formulap — ¢* induces a bijectiomdm M) — adm(X).

5.1.A LEMMA. Foranyg € admM)
[Mlp = X1y

Proof. The Lemma follows directly from the definitions. One should take into account that
all 2-strata ofX are open 2-cells and all 1-strataXfare open edges (not loops). Thud) =1
for any 2-stratd” of X, andy (E) = —1 for any 1-strat& of X. Furthermore, itz (respectively,
e) is the number of vertices d#f (respectively, ob M) then

x(@X)=x(OM)—e
=2x(M) —e,
xX(X)=xM)+a—e.

Thus

x(3X)—2x(X)=—-2a+e. O

5.2 Proof of Theorems 1.3.A and 1.4.ANe have just to combine the results obtained above.
By the Alexander Theorem 3.1.A and its relative version 3.2.B, it is sufficient to prove that state
sums of 1.3.A and 1.4.A are not changed by the Alexander moves along simplexes not lying on
the boundary of the manifold. By 5.1.A these sums coincide with the ones defined in Section 4
for the 2-skeletons of the barycentric star subdivisions. By 3.4 it is sufficient to prove that these
sums are not changed by mov8sL and M applied to these 2-skeletons. And this has been
proved in 4.4.
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6. DUAL APPROACH TO THE INVARIANTS OF 3-MANIFOLDS

6.1 Spines and simple stratifications of 3-manifoldA. polyhedronX is called aspineof
a compact manifolds with non-empty boundary if there exists an embedding — M such
thatM collapses ta(X). "

In the case of closedf a polyhedronX is called a spine oM if it is a spine of M with an
open ball removed.

A spine of a compact 3-manifold which is a simple polyhedron with empty boundary is called
a simple spine of this 3-manifold.

A 2-dimensional polyhedron is said to bellular if each stratum of its natural stratification
is homeomorphic to Euclidean space of dimension 2, 1 or 0.

Remark.Casler [4] who first considered simple cellular 2-polyhedra called thmdard
polyhedra. Matveev [10,11] used the tesmecial polyhedronNote that his definition slightly
differs from that of Casler: he omitted the condition that the 1-strata are cells. However he meant
the same notion, as follows from the fact that the main theorem of [11] is not valid for the lens
spaceL (3, 1) if one admits simple spines with disk 2-strata and closed 1-strata.

6.1.A THEOREM (Casler [4]).Any compact 3-manifold has a simple cellular spine.

Note that a regular neighborhodtof any polyhedrorX embedded in a 3-manifoltd with
oM N X = & is homeomorphic to the cylinder of some mapalU — X. Itis easy to see that
in the case whelX is a simple polyhedron without boundary, the magan be taken to be a
(topologica) immersionin the sense that each point@&® has a neighborhood iU mapping
homeomorphically onto its image Xi. As a summary we formulate the following assertion.

6.1.B. Any compact 3-manifolds with non empty boundary is homeomorphic to the
cylinder of a topological immersion @fM onto an arbitrary simple spine d#f .

(Here the conditio® M N X = @ does not appear since any spine can be pushed off a collar
of aM.)

Note that 6.1.B gives a way of description of 3-manifolds, which is related to the simple spine
presentations. Itis outlined in Appendix 2.

A simple spine of a 3-manifold/ and a simple spine a¥ with several open balls removed
will be called asimple2-skeletorof M. For example, for any compact 3-manifaldl the union
of the barycentric stars of attsimplexes of — d M with r > 0 is a simple 2-skeleton d#f.

Another important special class of simple 2-skeletons is related with Heegaard diagrams.
Namely, for any Heegaard surfade in a closed 3-manifold and any complete systems
{ma,...,mg}, {mj, ..., m,} of meridian disks of the handlebodies boundedbiy M such that
the boundaries of these disks are transversal to each other (i.e. constitute a Heegaard diagram
of M), the union

FUmlu---UmgUm’lu---Um’g

is a simple 2-skeleton a¥f.

T Remind the notion of collapse of a polyhedron to a subpolyhedron. Sugpdse polyhedron and is a (closed)
simplex of K with facez. If 7 is the proper face of no simplex ki excepto (and in particulaw is a face of no simplex
in K anddimz = dimo — 1), then one says that there is an elementary collapse ¥am K — (Into U Int t) [where
Inta meansx — (faces ofy)]. If L is a subpolyhedron of a polyhedrahand there are polyhedi = Ko D K1 D --- D
K, = L such that there is an elementary collapse fi&m; to K;,i = 1,2, ..., n, then one says tha collapsedo L.
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6.2 Matveev-Piergallini theorem and its corollariesLocal movesM, L on simple 2-
polyhedra were introduced by Matveev and Piergallini with a view towards investigation of
simple cellular spines of 3-manifolds.

6.2.A. Any two simple 2-skeletons of a compact 3-manifold can be transformed one to
another by a sequence of the movels™, £+ and B*.

To prove 6.2.A we use the following theorem of Matveev [11] and Piergallini [21].

6.2.B THEOREM. Any two simple cellular spines of a 3-manifold can be transformed one to
another by a sequence of moves! and £*1.

Reduction of 6.2.A to 6.2.Blake any two simple 2-skeletons of a 3-manifold. By several
bubble moves make them to be spines of the same manifold (the initial manifold with some
collection of open balls removed). Furthermore make, if necessary, bubble moves to produce 1-
strata. Then applying several times, transform tregmplespines obtained intsimple cellular
spines. Now we are in the situation of 6.2.B.

6.3 Digression: gluing simple polyhedralet X be a simple polyhedron without boundary,
" be a simple graph. A topological immersipnI” — X is said to begenerig if the following
conditions are fulfilled:

(1) all vertices ofl” are mapped to 2-strata &f,

(2) no vertex ofX is contained inp(I"),

(3) the restrictions of to 1-strata ofi” are transversal to 1-strata &f i.e. the inverse image
of any 1-stratum ofX is finite and at each point of i goes from one germ of 2-stratum
of X to another,

(4) ¢ has no triple points,

(5) each double pointof ¢ is a transversal intersection of 1-stratd'cdind lies in a 2-stratum
of X.

All these conditions obviously are conditions of general position. In particular any map

' - X can be approximated by generic topological immersion.

6.3.A. Let X be a simple polyhedron without boundary, a simple polyhedronL a
component obK and¢:L — X a generic topological immersion. Then the space), K
is a simple polyhedron with the boundahx — L.

Itis clear that any simple polyhedron without boundary can be obtained from a closed surface
by successive gluing of surfaces with boundary along generic immersions of their boundary
curves.

* The bubble move applied to a simple cellular polyhedron gives a simple polyhedron, which is however not cellular.
That is why Matveev and Piergallini did not consider this move.
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6.4 Spines in relative situation.Let M be a compact 3-manifold with some simple graph
' embedded imM. A simple polyhedronX with boundary is called aimple spine of the
pair (M, T), if there exists an embedding X — M such thatM collapses toi(X) and
i(0X)=T=i(X)NoM. A simple spine of M, T") or (M — (several open balls);) is called a
simple2-skeleton of M, I).

6.4.A THEOREM. For any compact 3-manifold M and any simple grdpkr o M there exists
a simple spine ofM, I').

Proof. Let X be a simple spine aff. By 6.1.B there exists an immersiart 9M — X such
that M is homeomorphic to the cylinder af. As it follows from 6.3.A and the fact that is a
topological immersion, after some small isotopyloin 9 M, the spac& U, r:rx1x I' x [0, 1]
is a simple polyhedron. It is obviously a simple sping#f, I'). O

The simple spines constructed in the proof of 6.4.A have an additional property. If one
removes from a simple spine of this kind all the strata whose closure intersectg Mijtthen
the result will be a simple spine @f. Let us call a spine ofM, I'") of this type acollar spine of
(M, T'). For each such spine the union of strata whose closure intefgedtsa cylinder over".
It is clear that each collar spine can be obtained by the construction of the proof of 6.4.A. Collar
spines of(M, I") and (M — (several open balls});) are callectollar 2-skeletonsf (M, I').

6.4.B THEOREM. Any two collar spines of a paitM, T"), whereM is a compact 3-manifold
andI’ C 9M is a simple graph, can be transformed one to another by a sequence of mt¥es
and £*! with the intermediate results also being collar spines.

Proof. Let S; and S, be collar spines ofM, I'), and X;, X, be the corresponding simple
spines ofM. So

S1=x; Ug,rx1 " x [0, 1]

wherer; :0M — X; are the corresponding topological immersions (Wit x [0.1] U, X;
homeomorphic ta/). By 6.2.B there exists a sequence of moyed?!, £+ transformingX; to
X». This sequence can be easily realized ingiflén the following obvious sense: there exists
a family of spinesX, with ¢ € [1, 2] of M embedded innt M such that for all but finite set
t1,t,...,t, of values oft the polyhedronX, is simple, the familyX, with ¢ € (1, #;41) is an
isotopy and the passing bythrough each of; gives a Matveev—Piergallini move of, .
Topological immersions, 7> can be obviously included into a continuous family o M —
X, with 7 € [1, 2] of topological immersions such that for ang [1, 2] the space

OM x [0, 1] Uy, spmx1—x, Xi

is homeomorphic td/. By a small isotopy of” C M, which does not change the topological
types of spaces

Xi Ugirx1 I x [0, 1]
with i =1, 2, the family of 2-polyhedra
Sz = Xz Urmrxl I x [O’ 1]

can be made such that for all but finite sgt, . . ., ¢/ of values oft the polyhedrors, is simple,
the family S; with ¢ € (1;, t;,.1) is an isotopy and passing byhrough each of;, gives a Matveev—
Piergallini move ofS,. O
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6.4.C ROLLARY. Any two collar 2-skeletons of a paiM, I'), whereM is a compact 3-
manifold andI" C M is a simple graph, can be transformed one into another by a sequence
of movesM, £ and 5 (and their inverses), with the intermediate results also being collar 2-
skeletons.

6.5 Semifunctor “Skeleton”. A closed (topological) surface with an embedded simple graph
will be called amarked surfaceA marked surface is said to bmmpletely markedf each
component of the complement of the graph is homeomorphi?to

Define the categoriMC whose objects are completely marked surfaces and morphisms are
(compact 3-dimensional) cobordisms between the underlying (non-marked) surfaces. Denote by
C the category of nonmarked surfaces and cobordisms between them.

Assign to a marked surface its simple graph and to a cobordism between two marked surfaces
a collar simple 2-skeleton of this cobordism. It determines a semifuséiorMC — Q where
Q is the quotient category of the categdfyof cobordisms of simple graphs introduced in 4.5
above. Composition of this skeleton semifunctor with the fun@es K-Mod introducedin 4.5
can be factorized through the forgetful funckd€ — C. The semifuncto€ — K-Mod obtained
is a functor, which coincides with the functor (topological quantum field theory) defined in 2.3.

We obtain thus a new description of this functor: it assigns to a closed suFfageX -
moduleQ(F) which can be obtained as a quotient modul€¢f') wherer" is any simple graph
embedded intd” in such a way that each component of its complemerit is homeomorphic
to R?. The factorization should be done by the kernel of the homomorphism induced by the
trivial cobordism. To each cobordism it assigns the homomorphism induced by a collar simple 2-
skeleton of this cobordism. In particular, to any closed 3-manifélid assigns a homomorphism
K — K (sinceQ(2) = K) acting as multiplication by numbeZ| which can be calculated by
formulae (7), (6) applied to any simple skelet&rof M.

6.6 Non-functorial generalization. The condition that surfaces acempletelymarked has
appeared in the definition dMC to define dunctor. But in some situations noncomplete marking
naturally arise. For example, M is the complement of a regular neighborhood of a link. Then
with each framing of the link one associates a grEpin d M consisting of the longitudes of the
link components. Then the state sum invariant of a simple 2-skelet@ df') is an invariant of
the initial framed link.

7. QUANTUM 6j-SYMBOLS

The 6j-symbols play an important role in the representation theory of semi-simple Lie
algebras. Thej-analogs (org-deformations) of §-symbols for the Lie algebra/,(C) were
introduced in [3] and related to the representation theory of the aldéisd(C)) in [9]. Here
we present certain results of [9] specialized to the case whsma complex root of unity.

7.1 Introduction of the “initial data”. Fix an integerr > 3 and denote by the set of
integers and half-integef®, 1/2,1,3/2, ..., r — 3)/2, (r — 2)/2}. Fix a root of unityqg of
degree 2 such thay? = ¢ is a primitive root of unity of degree. For an integen > 1 set

=10 "90_cp.

qo— (g
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Set
[n]'=[n]ln —1]...[2][1].

In particular,[1]! = [1] = 1 € R. Put also[0]! = [0] = 1. Note that[r] = 0 and[n] # O for
n=01,...,r—1.
A triple (i, j, k) € I will be calledadmissibléf i + j + & is an integer and

i<j+k j<i+k k<i+j i+j+k<r—2

For an admissible tripl€, j, k) put

[i+j—k]![i+k—j]![j+k—i]!>l/2

A(i,j,k)=< [i+j+k+1]

Note that the expression in the round brackets presents a real number. By the squet@ ajot
a real numbex we will mean the positive root df| multiplied by /-1 if x < 0.

For any admissible 6-tuplé, j, k,l,m,n) € I® one definegq — 6;)-symbol and Rakah—
Wigner (¢ — 6;j)-symbol denoted respectively by

.. .. RW

ijk and 1% J k .

Il mn I mn
These symbols are related by the following formula

.. o RW
ijk :[2k+1]1/2[2n+1]1/2\/__12(1-&-m+2k—i—j) ijk '
Il mn Il mn

The Rakah—Wigner symbol is computed by the following formula

.. RW
{’ J "} =AG, j,kK)AG, m,n)AG, [, n)Ak, [, m)

Il mn
Y Dz Uflz—i—j—Kkl'lz—i—m—n]l[z—j—1—n]
x[zh—k—l—m]!
X[i+j+l+m—2i+k+l+n—20j+k+m+n—z1)".

Herez runs over non-negative integers such that all expressions in the square brackets are non-
negative i.e.

mini+j+Il+m,i+k+1l+n,j+k+m+n)>z,
zzmaxi+j+ki4+m+n,j+l+nk+1+m).

We define
mn

l]k :\/_—172(i+j+k+l+m+n) le RW. (15)
lmn l

The equalities (1) follow directly from definitions.
Fori e I putw; = (v/—1)%[2i + 1]¥/2. It is easy to show that

i jk =wkwi
Il mn "l

J "‘. (16)
mn

Our initial data consists of the sét the functioni — w;: I — C — 0, the admissible triples
and the symbol| described above, and equal to eithek/2r /|qo — g *| OF —/2r /g0 — g5 |-
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7.2 THEOREM. The initial data just described is irreducible and satisfy the conditi@)s
(%) and (x*x*) of Sectiorl.1.

Proof. It is easy to check that for any € {0,1/2,1,...,(r — 3)/2, (r — 2)/2} the triple
J.-1j — k|, k) is admissible. Therefore the initial data is irreducible. The substitution (16)
transforms the formulas 6.16 and 6.18 of [9] (formulated in terms ofghe 6;)-symbols{})
respectively into (*) and (**). Now let us check (***) witty = 0 i.e. prove that

w2 = wS Z wlfwlz‘ (17)
k,I: (0,k,l)eadm

Clearly,wo = 1. Further, by the definition acidmabove,
{(,D): 0.k, 1) eadm} = {(k,k): k=0,1/2,1,...,(r —2)/2}.

Thus we have to prove that

r—1
wi=} w1 (18)
=1
By the definition ofw, above,
—\2
(40— 490)
Wi-12= 12
0— 4o )

Sinceg? =1,

Therefore the right hand side of (18) equals
—2r/(q0—q61)2=w2. O

In certain special cases one may simplify the right hand side of (15). Consider for instance a
6-tuple(i, j, k,1,m,n) € I with n = 0. Such a 6-tuple is admissible if and onlyi &= m, j =1
and the triple(i, 1, k) is admissible. One easily computes
{ i jk }RW (DT

jio [2i + 1]72[2] + 1]%/2
and
—2(i+))
ijk|l_ VT (19)
ji 0] [2i +11Y2[2j 4+ 1¥2

Remark.The initial data introduced in 7.1 may be equipped with a functiolh — Z,
satisfying the condition of Section 2.5. Namelyi) = 2i(mod 2). Thus the corresponding
topological quantum field theory can be refined along the lines of Section 2.5.

8. CALCULATIONS FOR SIMPLEST CLOSED 3-MANIFOLDS

8.1 Summary of results.In this section we calculatg\/| for several closed manifold¥,
which allow simple skeleton without O-dimensional strata. Since the calculation in those cases
does not involve B-symbols, we are able to formulate results in terms@&ndw;, and, for the
initial data of Section 7, to fingh/| for all values ofgo.
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8.1.A. For any initial data

%] =w™* ) wi, (20)
iel
IRP¥ | =w ™2 w?, (21)
iel
LG DI=w? Y wf, (22)
(i.ifie)le:adm
ST x §?|=w? )Y NG)w?, (23)

iel:

whereN (i) is the number of € I such that(i, j, j) € I.

8.1.B. For the initial data of Section 7

|$° | =w?=—(q0—g5")"/2r, (24)
-1
|RP3| = (a0 1)(;10 1), if (—qo)" = -1, (25)
0, if (—go) =1
( [(r—2)/3]+1 _qo—[(r—Z)/3]—l)2
IL(3,1)| = — , (26)
r
|t x §?|=1. (27)

Theorem 8.1.B shows thgs®|, |R P3| and|L(3, 1)| considered as functions g§ on the set of
complex roots of unity are not continuous. Indeed for aryC with |¢| =1 andM = $% RP3
or L(3,1)limy_. M|, =0. Therefore these functions are not restrictions of rational functions.
Simple renormalization by constant can not improve the situation, as the c&sexdf? shows.

The rest of Section 8 is devoted to proof of 8.1.A and 8.1.B.

8.2 Sphere. One can take spher§? as a simple skeleton a$®. The colorings ofs?
correspond to colors € I: the only 2-stratum can be colored with any color. For coloking
corresponding té formula (6) gives $2|,, = w—*w?. That proves formula (20). Formulae (18)
and (20) imply (24).

8.3 Real projective space.A projective planeRP? can be taken as a simple skeleton of
RP3. The colorings ok P? correspond to colorse I: the only 2-stratum can be colored with
any color. For coloringy; corresponding td, formula (6) givesRP?|,, = w2w?. The only
difference with the case of 8.2 is thatR P?) = 1 while x (5%) = 2. That proves (21).

For the initial data of Section 7 from (21) it follows that

— (qo— g5 H% = ab—ag" qol
IRPY | =w™2) wf g0 = —Z( n
=1 qo—qo
qo_qali . i
> 2 (=0 = (—q0 ).

=1

An easy calculation shows that the last sum is equéd¢e— 1)((—qo)” — 1)1/(go + 1) that is
zero in the casé—qop)” = 1 and equals @ — go)/(1 + go) in the casg—qgo)" = —1. Plugging
these values proves (25).
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8.4 Lens spacé.(3,1). For L(3,1) there is an obvious simple skelet@ahhomeomorphic
to circle with disk adjoined by three-fold covering. The coloringsXofcorrespond to colors
i € I with (i, i, i) € adm the only 2-stratum can be colored with any color such that along the
1-stratum the admissibility condition is fulfilled. As in 8.3, for coloripg corresponding te,
formula (6) gives X|,, = w2w? and thus (22).

For the initial data of Section 7, from (22) it follows that

2 r=2)/3 ok4+1 q—Zk—l

]
|L(3,1)|=w_2 Z 2 (CIO_Zr ) Z 1) (il

(i ‘iie)éédm k=0 40~ 40
70 q—l (r-2)/3
__q90—4p 2k+1 —2%k—1
- _2 Z (‘10 — 4o )
k=0

Calculation of the sum gives (26).

8.5 S* x §2.  The manifoldS* x S? can be presented apasm manifoldi.e. K U, S* x D?
whereK is Klein bottle,S* x D? solid torus, andr : 3(S* x D?) — K double covering. Therefore
X = K U0 x D? is a simple skeleton of* x $2. The meridian Ox 3 D? of the solid torus is
projected byr to a simple closed curve aki with complemen& — (0 x 8 D?) homeomorphic
to cylinder’ x S'. ThereforeX has two 2-strata: this cylinder and the meridian disk. A coloring
of X is determined by the colors of the meridian disk and cylinder. Denote these colars by
and j respectively and the coloring lay ;. Formula (6) givegX|,, , = w™ 2w2. The right hand
side does not depend gn The number of colorings with a givenis equal toN (i), since the
condition(i, j, j) € I is admissibility conditions along the only 1-stratumXfIt proves (23).

A straightforward calculation shows that for the initial data of Section 7

o, iti ¢,
N@) = { —2i-1 ifieZ

It follows that

1)2 (r=2)/2 21+1 q72i—1
5t 57| = oo 2 (-2 D
0= 40
_1 (r— 2)/2

Z (r —2 — 1) 21+1 721'71).

Laborious, but straightforward evaluation shows that this expression equals 1 for all vajges of

9. THECASEr=3

In this section we explicitly describe the initial data introduced in Section 7 for thercas
and compute the corresponding invariants of simple polyhedra and 3-manifolds.

9.1 Theinitial data. The setl consists of two elements 0 and2l Up to permutations there
are only two admissible (unordered) tripl€8; 0, 0) and (0, 1/2, 1/2).

Letgo be aroot of 1 of degree 6 wifg # 1. Pute = go + qgl. It is easy to check that either
Rego>0andse =1o0rReqo < 0ande =—1.
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We have

wo = (vV—=1)°[1]¥? =1,
w12 = (V=D[21"2 = V=1(go + q5 HY? = V2V ~1,
w=+2.

It is easy to verify that each admissible 6-tuple may be transformed by the action of
the symmetric grougs; mentioned in Section 1.1 into one of the following three 6-tuples:
(0,0,0,0,0,0),(1/2,1/2,0,1/2,1/2,0) and(0,1/2,1/2,1/2, 0, 0). The formula (19) implies
that

1/2 1/2 0 ’

000|_4 1/2 20| _=1_ _
000 (2]

-1
0 1212 _~-1 _—v-1_ [_/=1 ife=1,
/2 0 0 [21v2 © g2 -1, if & =—1.

Thus we have 4 initial data depending on the choice-ef+1 andw = ++/2. In the case = +1
we have

~— |ooo 1/2 1/2 0
o= Wi ’ ‘o 0 o‘ ’ ‘ 1/2 1/2 o‘ ’

0 1/21/2|_
‘1/2 0 o‘_ VoL

and in the case = —1 we have

000 1/2 1/2 0
wo==5 W2 : ‘ooo‘ ’ ‘1/21/20‘ ’
0 121/2|_

12 0 0

9.2 Interpretation. The state sum invariants of simple 2-polyhedra corresponding to the
initial data described in Section 9.1 admit the following interpretation in a more traditional spirit.
Let X be a simple 2-polyhedron with boundary asadhn admissible coloring of X. Since
the only admissible triples (up to permutations) &e0, 0) and (0, 1/2, 1/2), the closures of
1-strata ofd X whosec«-color equals 12 form a closed 1-dimensional manifold lying &X.
Denote this 1-manifold b («). Note that closed 1-dimensional submanifold$ &f bijectively
corresponds to elements éf;(0X; Z,). Similarly, with each admissible coloring of X we
associate the surfacdy) formed by the closures of 2-strata ¥fwith ¢-color 1/2. It is obvious
that

3S(p) = S(99).

It is easy to see that the formufa— S(¢) establishes a bijective correspondence between the
admissible colorings ok extendinge € adm@ X) on the one hand and the surfaces imbedded
into X formed by (closures of) 2-strata and boundeddsw) on the other hand. The latter
surfaces correspond bijectively to elements H>(X, 9 X; Z,) with ds € H1(0X; Zp) being the
class ofS(«).
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9.2.A. Letyp € admX). If e = —1 then

1X], = wX @0 =2x(X)

if ¢ =1then

X, = (=L)X S@)yyx@X)=2x(X)

wherey (S) is the Euler characteristic of.

Proof. The vertices of{ with respect to the surface= S(¢) are of the following four types:

(1) the vertices not lying ol (the corresponding 6-tuple {®, 0, 0, O, O, 0));

(2) the vertices adjacent to four germs of the 2-strata containgd(the corresponding 6-
tupleis(1/2,1/2,0,1/2,1/2, 0));

(3) the vertices adjacent to three germs of the 2-strata containgdthe corresponding 6-
tupleis(0,1/2,1/2,1/2,0,0));

(4) the vertices lying irdS.

Let us denote the numbers of the vertices of these four types,lag, n3 andn, respectively.

Denote the number of the 1-strata ¥fhomeomorphic t&R? and contained ir§ by e. The

obvious relation

nag+3nz+4n, =2e

implies thatny + n3 is even.
Lete = —1. The formula (6) implies that

X, = wx(BX)72x(X)(_1)n3+n4 — X @X)=2x(X)
Lete =1.Then

1X], = wrOX0-2aX) g /gy

wherey is the Euler characteristic of the union of the 2-strata containddaimdu is the number
of 1-strata 0fd X contained im S. Obviouslyu = n4 and

X(S)=x—e+ny+ng=y —nz— 3n3— 3na.

Therefore
r—_12X—M+2ﬂZ(_ /__1)113 _ (_1))((5).
This implies our claiminthe case=1. O
9.2.B GOROLLARY. If ¢ =—1then
Q (o) = 20y BX)=2x(X)
whereb is the dimension of thé,-vector spaceéi,(X; Z,). If e = 1 then

QX (o) = wX(BX)*ZX(X) Z (_1))((5)

SeHy(X.0X:Zp),
AS)—[S()]

where[S(x)] is the class ofS(«) in H1(0X; Zy) and x(s) is the Euler characteristic of the
unique relative cycle realizing.
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9.3 The case of closed 3-manifoldgzor a spac& we denotadimH;(Y; Zy) by b;(Y).

9.3.A. Let M be a closed 3-manifold. f= —1 then

M| = 2b2(M)—=bo(M)

If e =1then

M| = 2—bo(M) Z (_1)(13+u;§z[M]) (28)
teHY(M;Z,)

wherew; € HY(M:; Z,) is the first Stiefel-Whitney class &f.

Proof. The first claim follows from Corollary 9.2.B applied to the 2-skeleton of the dual cell
subdivision of any triangulation o/ and Lemma 5.1.A.

The second claim is proven similarly using the fact that the Euler characteristic of an
embedded closed surfaceC M is congruent modulo 2 tdr® + w2z, [M]) wheret is the
cohomology class dual i8] € Ho(M; Zy). O

9.3.B Remark!f M is orientable and® = 0 for all r € H*(M; Z,) then the right hand side
of (20) obviously equalsZM)—M) "|f M is orientable and there existss H(M; Z,) with
13 £ 0 then the right hand side of (20) is equal to zero. This follows from the fact that for
orientableM the mapping

te> (63, [M1): HY(M; Zo) — Zs

is a linear homomorphism. Indeedift € H*(M; Z,) then
u’t + ut?> = Sql(ut) = wqut =0.

9.4 The case of3-manifold with boundary. Let M be a compact 3-manifold with
triangulated boundary ang an admissible coloring od M. Let S(«) be the 1-cycle in0M
formed by barycentric stars of the edge$ &1 with a-color 1/2.

9.4.A. Let e = —1. If the cycleS(«) presents a non-trivial element df,((M; Z,) then
Qu(a) = 0. If S(o) is null-homologous i then Q,,(«) does not depend on the choice of
a and equalgy =202 —bs(M) wherec is the number of vertices 6.

Proof. The proof is similar to that of 9.3.A. O

9.4.B. Let ¢ = 1. If the cycle S(w) presents a non-trivial element dff,(M; Z,) then
Qu(a) = 0. If M is orientable and there existss HX(M, dM; Z) with 13 # 0 thenQ, (o) =0
for anya. If M is orientable and® = Ofor all r e HX(M, dM; Z) and S(«) is null-homologous
in M then

Qua) = w¢ sz(M)fbo(M) (- 1))(

where y is the residue modul@ of the Euler characteristic of any compact surface embedded
in M and bounded by («). (Under our assumptiong does not depend on the choice of the
surface)
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Proof. The proof is similar to that of 9.3.A, cf. also Remark 9.3.B1

9.5 The topological quantum field theorylLet F be a closed surface. It is easy to compute
the vector spac@ (F) defined in Section 2.3. For any= +1 the spac& (F) is C[H1(F; Z;)]
(i.e. the linear space ové&rfreely generated by elementsBf (F; Z)). This follows from 9.2.A
and the fact that the Euler characteristic of an annulus equals zero. The morphisms induced by
cobordisms are easily computable via theorems of Section 9.4.

9.6 Remarks on possible generalization3he results of 9.2 suggest to consider state sums
for which colorings are 2-cycles of simple 2-polyhedra. It is not difficult to prove that the state
sums of Section 9.2 are the only (up to linear combinations) state sums based on initial data
with two colors such that the colorings of simple 2-polyhedra are 2-cyclesZvefor cycles
with Z, ® Z, coefficients, all state sums of such kind (with 4 colors) are linear combinations of
the state sums correspondingZe coefficients. One can consider algg-cycles (this urges to
involve orientations of 2-strata and thus to reduce the class of 2-polyhedra). In this case there is
essentially only one state sum, and its value equals the number of elemé&htsoZ3) (for the
information on state sums relatedZe ® Z, andZs we are indebted to G. Mikhalkin).
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APPENDIX 1
RELATIVE ALEXANDER THEOREM

Here we prove Theorem 3.2.A above. Recall its statement.

3.2.A THEOREM. Let P be a dimensionally homogeneous polyhedron @nids subpoly-
hedron. Any two triangulations aP coinciding onQ can be transformed one to another by
a sequence of Alexander moves and transformations inverse to Alexander moves, which do not
change the triangulation of.

First, remind some results of Alexander [1] and Newman [12].

Recall that the bounda®/P of a dimensionally homogeneous polyhed®dmnf dimensiomn
is defined to be the union of the closed— 1)-simplexes ofP which are faces of an odd number
of n-simplexes. For manifolds this notion coincides with the usual notion of boundary. A star
subdivision of P along a simplex is said to banternalif £ does not lie i P.

A triangulated polyhedron is calledfarmal cellif one can transform it into a simplex by a
series of star subdivisions and inverse operations.

A.1.A NEWMAN’S THEOREM Any linearly triangulated convex compact subset of an
Euclidean space is a formal cell.

A short proof of A.1.A see in [1, Section VI].

A.1.B ALEXANDER'S THEOREM[1, Section [13:2]].Any formal cell can be transformed
into the cone over itéiriangulated boundary by a series of internal star subdivisions and inverse
operations.

Now let us proceed to prove Theorem 3.2.A. It suffices to consider the case when one of the
two triangulations ofP is a subdivision of the other one. Indeed, for any two combinatorially
equivalent triangulations a? coinciding onQ we can consider the cell subdivision Bfformed
by intersections of their simplexes. Inductivelymn= 0, 1, ... we replace each-cell not lying
in O by the cone over its boundary. This produces a triangulatioR @fhich is finer than the
two initial ones and coincides with them @h

We use induction odim P. Fordim P = 0 the claim is obvious. Assume that féim P < n
the claim holds true. Let us prove it faim P = n. Let X andY be two triangulations o
coinciding onQ and letY be finer thanX. For each closed-simplex A of X the simplexes
of Y lying in A form a triangulation ofdA. By A.1.A this triangulation maked a formal cell.
Using A.l.B we transform this triangulation of into the cone ove8 A. Thus the triangulation
Y is transformed to a triangulatiafi such that it is finer thaX and on eacl-simplexA of X
it is the cone over the triangulation 8# induced byZ.

Consider the triangulated paiX,_1, X,—1 N Q), whereX, _; is the (n — 1)-skeleton ofX.

The triangulationZ induces a subdivision ok,_1 identical onX,_1 N Q. By the inductive
assumption this subdivision can be “Alexander” transformed identicallXpn N Q to the
triangulation induced by. Because of the cone structure Bfon n-simplexes ofX, these
transformations can be extended to a chain of Alexander transformations identicalbod
convertingZ to X.
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Remark.In fact Alexander [1] refined Theorem 3.1.A. He proved that it is sufficient to use
the Alexander transformations along edges (and their inverses) only. This refinement can not
be directly extended to the relative case. For examplePl&e a simplex and)? = dP. The
canonical triangulation oP can be converted into any of its non-trivial subdivisions identical on
0 by no chain of internal Alexander moves along edges and their inverses. This follows from the
fact that the canonical triangulation #fhas no internal edges.

Under certain assumptions @ one may use Alexander’s arguments to show that any two
combinatorially equivalent triangulations of a polyhed®m Q coinciding onQ can be related
by a sequence of Alexander transformations along edges not lyiggand inverses of such
transformations. Here is an example of such an assumptiap:@ny 3 edges o) forming a
triangle bound a 2-simplex @. This assumption is not restrictive since each triangulation has
a subdivision satisfying it. For example one may take the first barycentric subdivision.

APPENDIX 2
STRATIFICATIONS, SPINES AND PRESENTATIONS OF MANIFOLDS

A.2.1 StratificationsBy a stratification of a (piecewise linear) manifol& we mean a
partition of X on disjoint parts (which are callestrata) with the following properties:
(1) each stratum is a submanifold of eithetX or 9X;
(2) as a manifold each stratum has empty boundary;
(3) the closure of each stratum is a subpolyhedroki @fhich is the union of a finite number
of strata.

We consider only stratifications which satisfy an additional property of “local triviality”
along strata. An arbitrary stratification can be canonically subdivided to satisfy this property.
A stratification of a manifoldX is said to bdocally trivial if each point of any stratur§ has a
neighborhood’ in X such that there exists a homeomorphigm> V x R4, whereV is R” or
R%, mappingU N S onto pt x R* and the intersection df with any stratum ont@ x R*, where
C is a submanifold o¥ . TheseC'’s constitute a stratification of .

A locally trivial stratification ofX is said to besimple if for each point ofX the stratification
of V mentioned above is homeomorphic to the cone over the standard stratification (by faces) of
the boundary of the-dimensional simplex, in the case=R”, and, in the cas& =R, to the
same stratification, but with ong-dimensional stratum removed.

If each stratum is homeomorphic to an Euclidean space, then the stratification is called a
cellular stratification.

The most classical stratifications of manifolds are triangulations. They are locally trivial
cellular stratifications, but in general they are not simple (in the sense specified above).

Another classical set of locally trivial cellular stratifications are stratifications dual to
triangulations of manifolds without boundary, i.e. partitions of manifolds on barycentric stars
of simplexes of triangulations. These are simple stratifications.

In the case of a manifold with non-empty boundary the corresponding simple stratifications
consist of the intersections of the barycentric stars with the interior and the boundary of the
manifold.

Remark.There is another version of the theory, in some sense dual to the version above,
but coinciding with it in the case of empty boundary. In this variant strata are allowed to
have boundary, but forbidden to lie . Then a triangulation of a manifold with non-empty
boundary is not a stratification, but the barycentric stars form a stratification in this sense.

A.2.2 Simple polyhedra.et 1" be then-th skeleton of the standard triangulation of the
boundary of the standaxd + 2)-dimensional simplex. In particulaf® consists of three points,
I1! is the graph homeomorphic to a circle with 3 radii;* = &.

Let X7 with 0 < ¢ <n + 1 be theg-fold suspension ovell"~“. In particular,=§ = I*, £1
is homeomorphic to a circle with diametét; is the 2-fold suspension of the empty set, i.e. a
circle.
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A polyhedronX is called asimple polyhedrowof dimensiom: if the link of each its point is
homeomorphic to::;*1 for someg, 0< ¢ < n. (This condition can be reformulated as follows:
any point ofX has a neighborhood homeomorphic to the cdi& 2-9) x R.) In particular, for
n = 2 this definition is equivalent to the one given in Section 4.1.

Simple polyhedra appear naturally as skeletons of codimension one of simple stratifications
of manifolds. In particular, simple 2-skeletons of 3-manifolds introduced in Section 6.1 are
skeletons of codimension one of the corresponding simple stratifications of the manifolds.

It is obvious that a simple-dimensional polyhedron has a natural stratification in which the
strata of dimensiog consist of points with links homeomorphicEg*.

Simple polyhedron is said to beellular if each stratum of the natural stratification is
homeomorphic to Euclidean space. The codimension 1 skeleton of simple cellular stratification
of a manifold is a simple cellular polyhedron.

An (n — 1)-dimensional spine of am-manifold, which is (as a polyhedron) simple
(respectively simple cellular), is called a simple (respectively simple cellular) spine.

The following generalizes Theorem 6.1.A.

A.2.2.A THEOREM. Any compact manifold has a simple cellular spine.

This theorem, as well as the next one, was proved for 3-dimensional manifolds by Casler [4]
and in the general case by Matveev [10].

A.2.2.B THEOREM. Iftwo compact manifolds have the same simple cellular spine and either
both are closed or both have non-empty boundary, then these manifolds are homeomaorphic.

Theorem A.2.2.B can not be extended straightforwardly to the case of simple non-cellular
spines. Indeed, the Klein bottle with a disk adjoined along a circle which is a fiber of the fibration
of the Klein bottle ovess?, is a simple spine of both

$2 x S — (open bal)
and
(non orientableD?-bundle overs*) — (open bal).

But this effect is due to existence 2-stratum with more than one end only. Here is an appropriate
generalization of Theorem A.2.2.B:

A.2.2.C THEOREM. If two compact manifolds have the same simple spine, 2athatum
of which is a surface with at most one end, and either both are closed or both have nonempty
boundary, then these manifolds are homeomorphic.

The proof of A.2.2.C is not difficult. We omit it since we do not use this theorem.

Simple spines of an-manifold M and simple spines a¥/ with several open balls removed
will be called simple (n — 1)-skeletons of\f. For example, for any compaetmanifold M
the union of the barycentric stars of alsimplexes ofint M with r > 0 is a simple(n — 1)-
skeleton ofM. It is clear that each oriented compact conneetadanifold M is restored (up
to homeomorphism), if one knows its simp{e — 1)-skeleton and the number of spherical
components of its boundary.

Theorem 6.1.B admits the following high-dimensional generalization.

A.2.2.D. Any compact manifold/ with non empty boundary is homeomorphic to the
cylinder of a topological immersion @M onto an arbitrary simple spine d#f.

Remark.Note that 6.1.B gives a convenient way of description of 3-manifolds. (It can be
also generalized to higher dimensions, but in high-dimensional situation it does not give a
visualization of manifolds.) Namely, consider the inverse image of the natural stratification of a
simple spine of a 3-manifold under the topological immersion given by 6.1.B. Itis a stratification
with 1-skeleton being a simple graph. Each O-stratum of it consists of 4 points, and if the simple
spine is in factcellular then each 1-stratum consists of 3 segments and each 2-stratum consists
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of 2 disks. The components of strata are provided with natural identifications. This picture can
be used to describe compact 3-manifolds: any stratification of the boundary of a compact 3-
manifold with the properties listed above and with identifications of components of strata agreed
in the obvious sense on adjacent strata determines a special 2-polyhedron (as the quotient space)
and a topological immersion (the factorization map) and thus the 3-manifold (as the cylinder
of this immersion). The natural version of this construction for the casgosed3-manifolds
is essentially the classical presentation via a polyhedron with pairwise identification of faces,
see [14] and Starets [15]. The restrictions on identifications of vertices (4-fold identification as
above) and edges (3-fold identification) are not involved in these classical presentations of closed
3-manifolds. These restrictions guarantee that the quotient space is a 3-manifold, but in the closed
case it is sufficient to put a weaker restriction in terms of Euler characteristic, see [14]. The same
relaxation of restrictions can be done in the case of 3-manifolds with boundary. It leads to the
following type of descriptions.

Fix a cell decomposition of a closed surfage fix a division of the set of 2-cells (faces)
on pairs, and for each of these pairs fix a homeomorphism between the faces involved. The
homeomorphisms are assumed to preserve the natural partitions of the boundaries of the 2-cells.
Denote byM the quotient space df x [0, 1] by identification of each pointc, 1) of F x 1 with
(h(x), 1) for all the fixed homeomorphisnisof faces. Suppose thgt(M) = x (F)/2. ThenM
is a manifold with boundary.

A.2.3 Remarks on Matveev moviatveev and Piergallini considered (together withand
L) the move shown in Fig. 17. We will denote it bfy. It is clear thatF can be considered as a
special case of and thatZ is simpler thanF. However from some point of view is better.
Indeed, applications af ** and M*! to a simple cellular spine of a compact 3-manifold can
be realized inside this 3-manifold and thus give simple cellular spines of the same 3-manifold.
Moreover Matveev and Piergallini [11,21] proved the following theorem which is more general
than Theorem 6.2.B.

A.2.3.A. Two simple cellular2-dimensional polyhedra, one of which is a simple cellular
spine of som&-manifold, are simple cellular spines of the saBmanifold, if and only if one
of the polyhedra can be obtained from the other one by a sequence of transfornfatibasd
MEL,

Contrary to7*! and M*!, an application of to a simple cellular spine of a 3-manifold
can give a simple cellular polyhedron which is a spine of no 3-manifold. Thus one can not just
replaceZ ** by £*1in A.2.3.A.

If an application ofL to a spine gives a spine of some 3-manifold, then this 3-manifold is
homeomorphic to the initial one. Further, an applicatiorCot to a simple cellular polyhedron
can give a simple polyhedron, which is not cellular. But any applicatioi dfto some simple
spine of a 3-manifold gives a simple spine of the same 3-manifold.

A.2.4 Moves of high-dimensional simple cellular polyhedize system of moves, M, B
can be generalized straightforwardly to the case of arbitrary simyplelyhedra in such a way

/
Y,

N
|

Fig. 18.
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that a generalization of Theorem 6.2.A holds true. Except the analogBetbése moves can

be described as follows. One of the highest-dimensional strataR s&/ moving via isotopy

of its boundary in the complement & so that the intersection gfR with another stratum
undergoes a Morse modification of some index. In Fig. 18 this system of moves is shown for
n = 2. For arbitrary odd: it consists of(n? + 3) /4 transformations, and for everof (n? + 4) /4
transformations.

In high-dimensional situation combinatorics of a simple stratification of a manifold is not
as rich as in dimensions 3, since it does not contain an important part of the topological
information on the manifold. This information can be hidden in the topology of strata. Thus it is
more natural to consider simptellular polyhedra and heir moves.

The system of moves for simple cellukapolyhedra consists of movests, ..., M, 1. The
simplest (however slightly implicit) description o¥1; is the following: a simple cellular-
polyhedrony is obtained from a simple cellularpolyhedronX by M;, if there exist a simple
(n + 1)-polyhedronZ and aP L-function f : Z — R such that

1) X= 10

2 Y=,

(3) arestriction off to each stratum of intersectsf [0, 1] has no critical point,

(4) f710, 1] contains only one vertexof Z,

(5) oni of n + 2 edges o adjacent to this vertexthe functiony takes values: f(c) and

on the othera + 2 — i edges it takes values f(c).

(These conditions mean that in the sense of the Goresky—MacPherson stratified Morse theory
fl¢101 is a Morse function with only one critical point, which és and inc it has indexi
in the sense of Khovansky. Thus one can consider our mdygas a kind of stratified Morse
modification of index .)

It is easy to see tha¥; is inverse toM,,» ;. If i #1,n + 1 it is a replacement of one
(i — 1)-stratum ofX with the closure homeomorphic to simplex by a new+ 2 — i)-stratum
with the closure homeomorphic to simplex: = 1 thenM; is an inserting the boundary of the
(n + 1)-simplex with the canonical stratification instead of a verteXof

In the 2-dimensional case considered in the main text of this pagers just the Matveev
move M and Mz = M~ In Fig. 19 we show the move$t; and M for n = 1 andM; for
n=2.

The transformations of simple cellular stratificationsmefmanifolds inducingM; on the
(n — 1)-skeletons will be called als$1;.

One can show that any two simple cellular stratifications of a clesathnifold can be
transformed one to another by a series of mav¥és Furthermore one can modify the theory
to the relative case as in Section 6.

A.2.5 Singular triangulations and their dualizatiofin important property of triangulations

is that each triangulation can be completely described (up to homeomorphism) in a discrete
combinatorial way. Therefore triangulations provide a method of combinatorial description of

AAX&.

dim =1

dim = 2

Fig. 19.
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move dual to M

2 tetrahedra
P -,
7
e
movedualto L ;7
/
. pillow divided to
2triangles 2 tetrahedra

Fig. 20.

manifolds. But usually triangulations have so many simplexes that it is hard to use them in
practice when some manifold is to be described. The natural way to avoid this difficulty is to

generalize triangulations. The most usual generalization is the noticieicomplex, but it

leads to a loss of the combinatorial character of the theory. The following notion lies between the
notions of triangulation and W-complex.

Let X be a space. A family of continuous maps: 7% — X,,, « € A, of standard simplexes
T4, d, € Z,, is called asingular triangulationof X, if

(1) all g4 |int7e are embeddings,

(2) ¢.(INtT%) are open cells of somE&W -decomposition of,

(3) for any faceF of T% the restrictionp,|r can be obtained from somg by composition

with a linear isomorphisn¥ — T%.

Note that replacing,, |;.:7« by ¢, in (1) and incorporating the condition that the intersection
of any two simplexes is their common face convert this definition into a definition of
triangulation.

The construction of the barycentric star stratification can be generalized in an obvious way
to a construction which assigns to any cellular stratification of a manifold a dual stratification
defined up to ambient isotopy. An application of this construction to a singular triangulation of a
P L-manifold gives a simple cellular stratification. Conversely an application of this construction
to any simple cellular stratification gives a singular triangulation. Thus the construction yields a
1-1 correspondence between singular triangulations and simple cellular stratifications.

Usually one can find for a given manifold singular triangulations and simple cellular
stratifications which are considerably smaller than triangulations. For example it is easy to prove
that any closed connected manifold has a singular triangulation with only one vertex. A closed
orientable surface of gengshas singular triangulations withg4- 2 triangles.

The movesM, £ of simple 2-polyhedra introduced in Section 4.3, being applied to a
simple cellular 2-skeleton of a 3-manifold, induce transformations of the corresponding simple
cellular stratification of the 3-manifold. The corresponding transformations of the dual singular
triangulation are shown in Fig. 20.

A.2.5.A COROLLARY OF 6.2.B. Any two singular triangulations of a compagimanifold
with the same number of vertices can be transformed one to another by a sequence of
transformations dual toVi** and £+

Since the bubble move transforms a simple cellular stratification of a 3-manifold into a non-
cellular one, it can not have a dual move. The bubble move can be replaced in this situation by the
Alexander move along 3-simplex. It follows from A.2.5.A that this move together with moves
shown in Fig. 20 (and their inverses) enable one to relate any two singular triangulations of a
compact 3-manifold.

Let us describe now the move which is dual to the mé&x¢eof Section A.2.4. Note first that
the move dual toV, is just the Alexander move along a simplex of dimensipwheren is the
dimension of the manifold under consideration. Consider now the cas# ofith i > 1.
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Suppose for a moment for the sake of simplicity that the triangulation is non-singular. Let
the link of one of the(i — 1)-simplexes is strata preserving homeomorphic to the canonically
triangulated boundary @fi — i + 1)-simplex. Then the star of thig — 1)-simplex s triangulated
as a join of it with the boundary af: — i)-simplex and the boundary of the star is triangulated
as a join of boundaries ai — 1)- and (n — i)-simplexes. It can be span by the join@f— i)-
simplex with the boundary afi — 1)-simplex. The transformation dual 1d1; replaces the star
of the (i — 1)-simplex by this join of(n — i)-simplex with the boundary af — 1)-simplex.*

Consider now the case singulartriangulations. The move dual td1; can be applied iff the
closure of the barycentric star of one of tfie- 1)-simplexes is strata preserving homeomorphic
to the canonically triangulate@ — i + 1)-simplex. Note that for any simplexthere is a natural
strata preserving map of the join of the closureSoénd the boundary of its barycentric star
onto the closed star of, this map is identity or§ and 1-1 on the complement of the boundary
of the barycentric star. In the situation under consideration the move duel; teeplaces the
stratification of the star of thé — 1)-simplex by the image under this map of the triangulation
of the join above presented as the join of the barycentric star with the boundary @f-thbB -
simplex.

Since any two simple cellular stratifications of a closed manifold can be transformed one to
another by a series of moves!;, any two singular triangulations of a closed manifold can be
transformed one to another by a series of the moves dusl t6*

* Added in proof: Transformations dual fot; for triangulations were introduced by Udo Pachner in [19]. Pachner called
thembistellar transformationsin [20] he proved that any two triangulations of the same PL-manifold can be obtained
from each other by a sequence of bistellar transformations.

** Added in proof: It follows from Pachner’s results [20].



