
WHAT IS an amoeba?
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In mathematical terminology the word amoeba
is a recent addition.1 It was introduced by
I.M.Gelfand, M.M.Kapranov and A.V.Zelevinsky
in their book [2] in 1994. A mathematical amoeba
falls short of similarity to its biological prototype.
In the simplest case, it is a region in R2 that may
pretend to be a picture of an amoeba: a body
with several holes (vacuoles) and straight narrow-
ing tentacles (pseudopods) going to infinity.

A planar amoeba is the image of the zero locus
of a polynomial in two variables under the map
Log : (C r 0)2 → R2 : (z, w) 7→ (log |z|, log |w|).
The zero locus of a polynomial in two vari-
ables is called a plane complex algebraic curve.
This is a surface in the 4-space C2 defined by
the equation f(z, w) = 0, where f is a poly-
nomial

∑
cpqz

pwq with complex coefficients cpq.
The minimal convex polygon ∆ that contains all
points (p, q) ∈ R2 corresponding to non-zero coef-
ficients of the equation is called the Newton poly-
gon of f . It represents geometry of the equation,
and, as we will see, its geometry is closely re-
lated to the geometry of the corresponding com-
plex curve C ⊂ C2 and its amoeba A ⊂ R2.

An amoeba reaches infinity by several tenta-
cles. Each tentacle accommodates a ray and nar-
rows exponentially fast towards it. Thus there is
only one ray in a tentacle. The ray is orthogo-
nal to a side of the Newton polygon and directed
along an outward normal of the side. For each
side of ∆ there is at least one tentacle associated

to it. The maximal number of such tentacles is a
sort of lattice length of the side: the number of
pieces into which the side is divided by integer lat-
tice points (i.e., points with integer coordinates).

Each connected component of an amoeba’s
complement R2 r A is convex. Besides com-
ponents lying between tentacles, there can be
bounded components. The number of bounded
components is at most the number of interior in-
teger lattice points of ∆, and hence the total num-
ber of components of R2rA is at most the num-
ber of all integer lattice points of ∆. Each com-
ponent corresponds to some integer lattice point
of ∆.

To establish this correspondence, take a point
in a component of R2rA, and consider its preim-
age under the map Log. The preimage is a
torus and consists of points whose complex co-
ordinates have fixed absolute values, but varying
arguments. On the torus there are circles: merid-
ians, along which z is fixed, and parallels, along
which w is fixed. Consider a meridian, and call
the disk it bounds D. Let us count the inter-
sections, with multiplicities, between D and the
complex curve C (so this is the homological inter-
section number D ◦ C, or, if you like, the linking
number lk(m, C)). Denote the intersection num-
ber by q. In the same way, consider a parallel and
the disk it bounds, count (with multiplicities) the
intersections of the disk with C, and denote the
intersection number by q. The point (p, q) ∈ R2

1I was told that in mathematical logic amoebas have been known for more than twenty years. However, they belong
to an entirely different class of mathematical microbes, and have never bitten me, so I cannot tell you about them.
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belongs to ∆ and corresponds to the component
of R2rA we started with. (The numbers p and q
are independent of the choice of meridian or par-
allel and depend only on the connected compo-
nent of R2rA.) Different components of R2rA
give rise to different integer lattice points of ∆.
It may happen that some integer lattice points
of ∆ do not correspond to any component. Only
vertices of ∆ necessarily correspond to compo-
nents. Any collection of integer lattice points of
∆, which includes all vertices, is realizable by the
amoeba of an appropriate algebraic curve with
this Newton polygon ∆.

Although a planar amoeba is not bounded, its
area is finite. Moreover,

Area(A) ≤ π2Area(∆).
Complex curves whose amoebas have the ex-
tremal area are very special. In particular, R2rA
has the maximal number of components. A map-
ping C2 → C2 : (z, w) 7→ (az, bw) with appropri-
ate a, b ∈ C makes such a curve real, i.e., defined
by a polynomial equation with real coefficients.
The geometry of the real part of this curve is also
very special. Real algebraic curves of this kind
were discovered by A.Harnack in 1876 when he
constructed real algebraic plane projective curves
with the maximal number of components for each
degree. Only one component of a Harnack curve
meets the coordinate axes (including the line at
infinity), and the intersections with the axes lie on
disjoint arcs of this component. Consideration of
amoebas allowed G.Mikhalkin to prove that any
real curve with these properties must be topolog-
ically isotopic to a Harnack curve.

One of the main analytic tools used in the
study of amoebas is the remarkable Ronkin func-
tion Nf : R2 → R. For a polynomial f , it is
defined by
Nf (x, y) =

∫
Log−1(x,y)

log |f(z, w)| d z
2πi|z|d

w
2πi|w| .

If f is a monomial azpwq, then Nf is a linear
function, Nf (x, y) = px + qy + log |a| with gradi-
ent (p, q). For a general f , the Ronkin function is
convex. On each component of R2rA, the func-
tion Nf behaves like the Ronkin function of a
monomial: it is linear, and its gradient is the cor-
responding integer point of ∆. The maximum of
these linear functions is a piecewise linear convex
function. The set where it is not differentiable is a
union of segments and rays that are contained in
the amoeba and that constitute its deformation
retract. This set is called the spine of A.

Logarithmic coordinates and amoebas disclose
a piecewise linear stream in the nature of alge-
braic geometry. There is a non-archimedian ver-
sion of amoebas that brings these ideas to alge-
braic varieties over other fields. There is also a
similar theory in higher dimensions. The notion
of an algebraic curve is replaced by the notion
of an algebraic variety, and the Newton polygon
becomes a Newton polytope. Amoebas provide
a new way to visualize complex algebraic vari-
eties. Looking at an amoeba, one can see han-
dles of complex curves and cycles in high dimen-
sional varieties, watch degenerations, and build
more complicated varieties from simple ones.

The theory of amoebas is a fresh and beautiful
field of research, still quite accessible to a new-
comer, where exciting discoveries are still ahead.
The impressive results described above were ob-
tained during a short period of about 8 years by
various people. The definition and initial fun-
damental observations are due to I.M.Gelfand,
M.M.Kapranov and A.V.Zelevinsky. Relations
between components of R2 r A and integer lat-
tice points of ∆ were discovered by M.Forsberg,
M.Passare, and A.Tsikh. The spine of an
amoeba, the Ronkin function, and the estimate
of the area are due to H.Rullg̊ard and M.Passare.
Homological interpretations and relations to real
algebraic geometry are due to G.Mikhalkin. I en-
joyed the feast. About 20 years ago I found a
way to construct real algebraic curves by sort of
gluing curves to each other. I heard that this glu-
ing and the use of logarithmic coordinates in its
description, after being replanted to the complex
soil, motivated the introduction of amoebas. A
version of the gluing is used to glue amoebas.
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