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Abstract. For a nonsingular real algebraic curve in the 3-dimensional pro-
jective space or sphere, a new integer valued characteristic is introduced. It
is invariant under rigid isotopy and multiplied by -1 under a mirror reflection.
In a sense, it is a Vassiliev invariant of degree 1 and a counter-part of a link
diagram writhe.

1. Introduction

This paper is a detailed version of my preprint [9] which was written about 5
years ago. Here I do not discuss results which have appeared since then. I plan to
survey them soon in another paper. The subject is developing evolving now to a
real algebraic knot theory.

This paper is dedicated to the memory of my teacher Vladimir Abramovich
Rokhlin. It was V. A. Rokhlin, who suggested to me, a long time ago, in 1977, to
develop a theory of real algebraic knots. He suggested this as a topic for my second
dissertation (post PhD, like habilitation). Following this suggestion, I moved then
from the knot theory and low-dimensional topology to the topology of real algebraic
varieties. However in the topology of real algebraic varieties problems on spatial
surfaces and plane curves were more pressing than problems on spatial curves,
and my second dissertation defended in 1983 was devoted to constructions of real
algebraic plane curves and spatial surfaces with prescribed topology.

The change of the topic had happened mainly because I managed to obtain
decent results in other direction, on plane curves. There was also a less respectable
reason: I failed to relate the traditional techniques of the classical knot theory to
real algebraic knots. One of the obstacles was a phenomenon which became the
initial point of this paper. A large part of the traditional techniques in the knot
theory uses plane knot diagrams, i.e. projections of knots to plane. The projection
of an algebraic curve is algebraic, and one could try to apply results on plane real
algebraic curves. However, the projection contains extra real points, which do not
correspond to real points of the knot. These points are discussed below. In the
seventies they ruined my weak attempts to study real algebraic knots. Now they
allow us to detect crucial differences between topological and real algebraic knots.

I am grateful to Alan Durfee, Tobias Ekholm and V. M. Kharlamov for stimu-
lating conversations.
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A lengthy informal introduction, which follows, is intended to explain the matter
prior to going into details. I cannot resist the temptation to write in the style of
popular mathematics and apologize to the reader whom this style may irritate.

1.1. Knot Theory and Algebraic Geometry. In the classical knot theory, by
a link one means a smooth closed 1-dimensional submanifold of the 3-dimensional
sphere S3, i.e. a union of several disjoint circles smoothly embedded into S3. A link
may be equipped with various additional structures such as orientation or framing
and considered up to various equivalence relations like smooth (or ambient) isotopy,
PL-isotopy, cobordism or homotopy. See, e.g., [5] or [1].

In algebraic geometry classical links naturally appear as links of singular points
of complex plane algebraic curves. Given a singular point p of a complex plane
algebraic curve C, the intersection of C with the boundary of a sufficiently small
ball centered at p is called the link of the singularity. It provides a base for a fruitful
interaction between topology and algebraic geometry with a long history and lots
of important results.

Another obvious opportunity for an interaction between algebraic geometry and
knot theory is based on the fact that a classical link may emerge as the set of real
points of a real algebraic curve. This opportunity was completely ignored, besides
that a number of times it was proven that any classical link is approximated by
(and hence isotopic to) the set of real points of a real algebraic curve. There are two
natural directions in which the algebraic geometry and knot theory may interact in
the study of real algebraic links: first, a study of relations between invariants which
are provided by the link theory and algebraic geometry, second, developing a theory
parallel to the classical link theory, but taking into account the algebraic nature
of the objects. From the viewpoint of this second direction, it is more natural to
consider real algebraic links up to isotopy consisting of real algebraic links, which
belong to the same continuous family of algebraic curves, rather than up to smooth
isotopy in the class of classical links. I call an isotopy of the former kind a rigid
isotopy following the terminology established by Rokhlin [4] in a similar study of
real algebraic plane projective curves and the likes (see, e.g., a survey [8]). Of
course, there is a forgetting functor: any real algebraic link can be considered as a
classical link and a rigid isotopy as a smooth isotopy. It is interesting, how much
is lost under that transition.

In this paper I point out a real algebraic link invariant which is lost. It is
unexpectedly simple. In an obvious sense it is a nontrivial Vassiliev invariant of
degree 1 on the class of real algebraic knots (Recall that a knot is a link consisting
of one component). In the classical knot theory the lowest degree of a nontrivial
Vassiliev knot invariant is 2. Thus there is an essential difference between the
classical knot theory and the theory of real algebraic knots. Of course this difference
has a simple topological explanation: a real algebraic link is more complicated
topologically, besides its set of real points it contains the set of complex points
invariant under the complex conjugation and a rigid isotopy induces an equivariant
smooth isotopy of this set.

The invariant of real algebraic links which is defined below is very similar to
the self-linking number of a framed knot. I call it also a self-linking number. Its
definition looks like a refinement of an elementary definition of the writhe of a knot
diagram, but taking into consideration the imaginary part of the knot.
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1.2. Self-Linking of Non-Algebraic Knot. The linking number is a well-known
numerical characteristic of a pair of disjoint oriented circles embedded in the three-
dimensional Euclidean space. Roughly speaking, it measures how many times one
of the circles runs around the other. It is one of the most classical topological
invariants, introduced in the nineteenth century by Gauss [3].

In the classical theory, a self-linking number of a knot is defined if the knot is
equipped with an additional structure like a framing or just a vector field nowhere
tangent to the knot.1 The self-linking number is the linking number of the knot
oriented somehow and its copy obtained by a small shift in the direction specified
by the vector field. It does not depend on the orientation, since reversing the
orientation of the knot is compensated by reversing the induced orientation of its
shifted copy. Of course, the self-linking number depends on the homotopy class of
the vector field.

A knot has no natural preferable homotopy class of framings, which would allow
us to speak about a self-linking number of the knot without a special care on the
choice of a framing.2 Some framings appear naturally in geometric situations. For
example, if one fixes a generic projection of a knot to a plane, the vector field
of directions of the projection appears. The corresponding self-linking number is
called the writhe of the knot. However, it depends on the choice of the projection
and changes under isotopy.

The linking number is a Vassiliev invariant of order 1 of two-component oriented
links. This means that it changes by a constant (in fact, by 2) when the link
experiences a homotopy with a generic appearance of an intersection point of the
components. Whether the linking number increases or decreases depends only on
the local picture of orientations near the double point: when it passes from
through to , the linking number increases by 2. Generalities on Vassiliev
invariants see, e.g., in [7].

In a sense the linking number is the only Vassiliev invariant of degree 1 of two-
component oriented links: any Vassiliev invariant of degree 1 of two-component
oriented links is a linear function of the linking number. Similarly, the self-linking
number is a Vassiliev invariant of degree 1 of framed knots (it changes by 2 when
the knot experiences a homotopy with a generic appearance of a self-intersection
point) and it is the only Vassiliev of degree 1 of framed knots in the same sense.
Necessity of a framing for a definition of self-linking number can be formulated now
more rigorously: only constants are Vassiliev invariants of degree 1 of (non-framed)
knots.

The diagrammatical definition of the writhe, which is imitated below, runs as
follows: for each crossing point of the knot projection one defines a local writhe
equal to +1 if near the point the knot diagram looks like and −1 if it looks like

. Then one sums up the local writhes over all double points of the projection.
The sum is the writhe.

1A framing is a pair of orthogonal to each other normal vector fields on a knot. There is an
obvious construction which makes a framing from a non-tangent vector field and establishes one
to one correspondence between homotopy classes of framings and non-tangent vector fields. The
vector fields are more flexible and relevant to the case.

2 Moreover, the self-linking number is used to define a natural class of framings: namely, the
framings with the self-linking number zero.
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A continuous change of the projection may cause vanishing of a crossing point.
This happens under the first Reidemeister move shown in the left hand half of
Figure 1. This move changes the writhe by ±1.

1.3. Algebraicity Enhances Self-Linking Number. If a link is algebraic, then
its projection to a plane is algebraic, too. A generic projection has only ordinary
double points and the total number of its complex double points is constant.3 The
number of real double points can vary, but only by an even number. A real double
point cannot turn alone into an imaginary one, as it seems to happen under the
first Reidemeister move. Under an algebraic version of the first Reidemeister move,
the double point stays in the real domain, but becomes solitary, like the only real
point of the curve x2 +y2 = 0. The algebraic version of the first Reidemeister move
is shown in the right hand half of Figure 1.

Figure 1. Topological (left) and real algebraic (right) versions of
the first Reidemeister move. At the solitary crossing point, which
is on the right hand side of the picture, the conjugate imaginary
branches are indicated by dashed segments, according to an out-
dated tradition of Analytic Geometry.

It is not difficult to prove that a family of spatial curves, which realizes this
move, can be transformed by a local diffeomorphism to the family of the affine
curves defined by the following system of equations

{

xz + y = 0
x + z2 + τ = 0,

where τ is the parameter of the deformation. These are rational curves, admitting
a rational parametrization











x = −t2 − τ
y = −t(t2 + τ)
z = −t.

The projection corresponds to the standard projection (x, y, z) 7→ (x, y) to the
coordinate xy-plane. It maps these curves to the family of affine plane rational
cubic curves defined by y2 + x2(τ + x) = 0 with τ ∈ R.

A solitary double point of the projection is not the image of any real point
of the link. It is the image of two imaginary complex conjugate points of the
complexification of the link. The preimage of the point in the 3-space under the

3Here by a generic projection we mean a projection from a generic point. When one says
that a generic projection has some properties, this means that for an open everywhere dense
set of points the projection from any point of this set has these properties. For the properties
under consideration, there is no need even to improve the ambient space: in the projective space
there are lesser types of undesirable points than in the affine space, but anyway the whole set of
undesirable points is closed nowhere dense (although it depends on the space and the properties
under consideration). A proof is an easy exercise either on Sard Lemma, or Bertini Theorem.
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projection is a real line. It is disjoint from the real part of the link, but intersects
its complexification in a couple of complex conjugate imaginary points.

In the model of the first Reidemeister move above, (0, 0) is the double point of
the projection for each τ 6= 0. If τ < 0, it is a usual crossing point. Its preimage
consists of two real points (0, 0,

√
−τ) and (0, 0,−

√
−τ). If τ > 0, it is a solitary

double point. Its preimage consists of two imaginary conjugate points (0, 0, i
√

τ)
and (0, 0,−i

√
τ), which lie on a real line x = y = 0

Below, in Section 2.2, with any solitary double point of the projection, a local
writhe equal to ±1 is associated. This is done in such a way that the local writhe
of the crossing point vanishing in the first Reidemeister move is equal to the local
writhe of the new-born solitary double point. In the case of an algebraic knot
the sum of local writhes of all double points, both solitary and crossings, does not
depend on the choice of projection and is invariant under rigid isotopy. This sum
is the self-linking number.

1.4. Self-Linking Numbers for Non-Oriented and Semi-Oriented Links.
A construction similar to the construction of the self-linking number of an algebraic
knot can be applied to an algebraic link. However in this case there are two versions
of the construction.

In the first of them, we define a self-linking number generalizing the self-linking
number defined above for knots. We consider a link diagram and the sum of local
writhes at solitary double points and crossing points where the branches belong the
same connected component of the set of real points. At these crossing point, to
define a local writhe we need orientations of the branches. As above, we choose an
orientation on each of the components. If we make another choice, at a crossing
point, where the branches belong the same component, either both orientations
changes or none. Hence the local writhe numbers at crossing points of this kind
does not depend on the choice. In Section 2 below we prove that the whole sum of
local writhes over crossing points of this kind and solitary double points does not
depend on the projection and is invariant under rigid isotopy. We call the sum the
self-linking number of the link A and denote by slk(A).

In the second version of the construction we consider a real algebraic link which
is equipped with an orientation of the set of real points, use these orientations
to define local writhe numbers at all crossing points and sum up the local writhe
numbers over all crossing points and all solitary double points. The result is called
the self-linking number of an oriented real algebraic link. This self-linking number
does not change when the orientation reverses. An orientation considered up to
reversing is called a semi-orientation. Thus the self-linking number depends only
on the semi-orientation of the link.

The (semi-)orientation may be an artificial extra structure, but it may also ap-
pear in a natural way, say, as a complex orientation, if the set of real points divides
the set of real points, see [4]. In fact, the complex orientation is defined up to
reversing, so this is a semi-orientation. Another important class of semi-oriented
algebraic links appears as transversal intersections of two real algebraic surfaces of
degrees p and q with p ≡ q mod 2.

The self-linking number of (semi-)oriented real algebraic link differs from the
self-linking number of the same link without orientation by the sum of all pairwise
linking numbers of the components multiplied by 2: let A be a real algebraic link,
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let Ā be the same link equipped with an orientation of its set of real points and Ā1,
. . . Ān the (oriented) connected components of this set, then

slk(Ā) = slk(A) + 2
∑

1≤i≤j≤n

lk(Āi, Āj).

1.5. Self-Linking and Framings. In the case of a knot, the self-linking number
defines a natural class of framings, since homotopy classes of framings are enu-
merated by their self-linking numbers and we can choose the framing having the
self-linking number equal to the algebraic self-linking number constructed here. I
do not know any direct construction of this framing. Moreover, there seems to
be a reason for absence of such a construction. In the case of links the construc-
tion above gives a single number, while framings are enumerated by sequences of
numbers with entries corresponding to components.

2. Real Algebraic Projective Links

Let A be a nonsingular real algebraic curve in the 3-dimensional projective space.
Then the set RA of its real points is a smooth closed 1-dimensional submanifold of
RP 3, i. e. a smooth projective link. The set CA of its complex points is a smooth
complex 1-dimensional submanifold of CP 3.

Let c be a point of RP 3. Consider the projection pc : CP 3 r c → CP 2 from c.
Assume that c is such that the restriction to CA of pc is generic. This means that
it is an immersion without triple points and at each double point the images of the
branches have distinct tangent lines. As it follows from well-known theorems, those
c’s for which this is the case form an open dense subset of RP 3 (in fact, it is the
complement of a 2-dimensional subvariety).

The real part pc(CA) ∩ RP 2 of the image consists of the image pc(RA) of the
real part and, maybe, several solitary points, which are double points of pc(CA).

2.1. The Local Writhe of a Crossing. There is a purely topological construction
which assigns a local writhe equal to ±1 to a crossing belonging to the image of
only one component of RA. This construction is well-known in the case of classical
knots. Here is its projective version. I borrow it from Drobotukhina’s paper [2] on
generalization of Kauffman brackets to links in the projective space.

Let K be a smooth connected one-dimensional submanifold of RP 3, and c be a
point of RP 3 rK. Let x be a generic double point of the projection pc(K) ⊂ RP 2

and L ⊂ RP 3 be the line which is the preimage of x under the projection. Denote
by a and b the points of L ∩ RP 3. The points a and b divide the line L into two

Figure 2. Construction of the frame v, l, w′.

segments. Choose one of them and denote it by S. Choose an orientation of K.
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Let v and w be tangent vectors of K at a and b respectively directed along the
selected orientation of K.

Let l be a vector tangent to L at a and directed inside S. Let w′ be a vector
at a such that it is tangent to the plane containing L and w and is directed to the
same side of S as w (in an affine part of the plane containing S and w). See Figure
2. The triple v, l, w′ is a base of the tangent space TaRP 3. Define the local writhe
of x to be the value taken by the orientation of RP 3 on this frame.

The construction of the local writhe of x contains several choices. Here is a proof
that the result does not depend on them.

We have chosen an orientation of K. If the opposite orientation was selected
then v and w′ would be replaced by the opposite vectors −v and −w′. It would not
change the result, since −v, l,−w′ defines the same orientation as v, l, w′.

We have chosen the segment S. If the other half of L was selected, then l and
w′ would be replaced by the opposite vectors. But v,−l,−w′ defines the same
orientation as v, l, w′.

The construction depends on the order of points a and b. The other choice (with
the same choice of the orientation of K and segment S) gives a triple of vectors
at b. It can be moved continuously without degeneration along S into the triple
w′,−l, v, which defines the same orientation as v, l, w′.

2.2. Local Writhe of a Solitary Double Point. Let A, c and pc be as in the
beginning of Section 2 and let s ∈ RP 2 be a solitary double point of pc. Here is a
construction assigning ±1 to s. I will call the result also a local writhe of s.

Denote the preimage of s under pc by L. This is a real line in RP 3 connecting
c and s. It intersects CA in two imaginary complex conjugate points, say, a and b.
Since a and b are conjugate they belong to different components of CLrRL.

Choose one of the common points of CA and CL, say, a. The natural orientation
of the component of CL r RL defined by the complex structure of CL induces an
orientation on RL as on the boundary of its closure. The image under pc of the
local branch of CA passing through a intersects the plane of the projection RP 2

transversally at s. Take the local orientation of the plane of projection such that
the local intersection number of the plane and the image of the branch of CA is
+1.

Thus the choice of one of two points of CA ∩ CL defines an orientation of RL
and a local orientation of the plane of projection RP 2 (we can speak only on a local
orientation of RP 2, since the whole RP 2 is not orientable). The plane of projection
intersects4 transversally RL in s. The local orientation of the plane, orientation
of RL and the orientation of the ambient RP 3 determine the intersection number.
This is the local writhe.

It does not depend on the choice of a. Indeed, if one chooses b instead, then
both the orientation of RL and the local orientation of RP 2 would be reversed. The
orientation of RL would be reversed, because RL receives opposite orientations
from the different halves of CL r RL. The local orientation of RP 2 would be
reversed, because the complex conjugation involution conj : CP 2 → CP 2 preserves

4We may think on the plane of projection as embedded into RP 3. If you would like to think
on it as on the set of lines of RP 3 passing through c, please, identify it in a natural way with any
real projective plane contained in RP 3 and disjoint from c. All such embeddings RP 2 → RP 3 are
isotopic.
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the complex orientation of CP 2, preserves RP 2 (point-wise) and maps one of the
branches of pc(CA) at s to the other reversing its complex orientation.

2.3. Self-Linking Number and Its Invariance. Now for any real algebraic pro-
jective link A choose a point c ∈ RP 3 such that the projection of A from c is generic
and sum up writhes of all crossing points of the projection belonging to image of
only one component of RA and writhes of all solitary double points. The sum is
called the self-linking number of A.

I have to show that it does not depend on the choice of projection. The prove
given below proves more: the sum is invariant under rigid isotopy of A. By rigid
isotopy we mean an isotopy consisting of nonsingular real algebraic curves. The
effect of a movement of c on the projection can be achieved by a rigid isotopy
defined by a path in the group of projective transformations of RP 3. Therefore
the following theorem implies both independence of the self-linking number on the
choice of projection and its invariance under rigid isotopy.

2.A. Theorem. For any two rigidly isotopic real algebraic projective links A1 and
A2 such that their projections from the same point c ∈ RP 3 are generic, the self-
linking numbers of A1 and A2 defined via c are equal.

This theorem is proved in Section 2.5.

2.B . Corollary 1. The self-linking number of a real algebraic projective link does
not depend on the choice of projection which is involved in its definition.

Proof of 2.B. A projection depends only on the center from which it is done. The
effect on the projection of a movement of the center can be achieved by a rigid
isotopy defined by a path in the group of projective transformations of RP 3.

Thus the self-linking number is a characteristic of a real algebraic link.

2.C . Corollary 2. The self-linking number of a real algebraic projective link is
invariant under rigid isotopy.

2.4. Algebraic Counter-Parts of Reidemeister Moves. As in purely topo-
logical situation of an isotopy of a classical link, a generic rigid isotopy of a real
algebraic link may be decomposed to a composition of rigid isotopies, each of which
involves a single local standard move of the projection. There are 5 local standard
moves. They are similar to the Reidemeister moves. The first of these 5 moves is
shown in the right hand half of Figure 1. The other moves are shown in Figure 3.
The next two coincide with the second and third Reidemeister moves. The fourth

Figure 3.
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move is similar to the second Reidemeister move: also two double points of pro-
jection come to each other and disappear. However the double points are solitary.
The fifth move is similar to the third Reidemeister move: also a triple point appears
for a moment. But at this triple point only one branch is real, the other two are
imaginary conjugate to each other. In this move a solitary double point traverses
a real branch.

2.5. Reduction of Theorem 2.A to Lemmas. To prove Theorem 2.A, first
replace the rigid isotopy by a generic one and then decompose the latter into local
moves described above, in Section 2.4. Only in the first, fourth and fifth moves
solitary double points are involved. The invariance under the second and the third
move follows from the well-known fact of knot theory that the topological writhe
is invariant under the second and third Reidemeister moves. Cf. [2]. Thus the
following three lemmas imply Theorem 2.A.

2.D. Lemma. In the fifth move the writhe of the solitary point does not change.

2.E . Lemma. In the fourth move the writhes of the vanishing solitary points are
opposite

2.F . Lemma. In the first move the writhe of vanishing crossing point is equal to
the writhe of the new-born solitary point.

2.6. Proof of Lemmas 2.D and 2.E . Proof of Lemma 2.F is postponed to
Section 2.7. Note that although Lemma 2.F is the most difficult to prove, it is
the least significant: here its only role is to justify the choice of sign made in the
definition of local writhe in solitary double point of the projection. It is clear that
the writhes of vanishing double points involved in the first move are related, and
if they were opposite to each other, then the definition of the self-linking number
should be changed, but would not be destroyed irrecoverably.

Proof of Lemma 2.D. This is obvious. Indeed, the real branch of the projection
does not interact with the imaginary branches, it just passes through their inter-
section point.

Proof of Lemma 2.E. At the moment of the fourth move take a small ball B in
the complex projective plane centered in the solitary self-tangency point of the
projection of the curve. Its intersection with the projection of the complex point
set of the curve consists of two smoothly embedded disks tangent to each other and
to the disk B ∩ RP 2. Under the move each of the disks experiences a diffeotopy.
Before and after the move the intersection the curve with B is the union of the two
disks meeting each other transversally in two points, but before the move the disks
do not intersect RP 2, while after the move they intersect RP 2 in their common
points.

To calculate writhe in both vanishing solitary double points, let us select the
same imaginary branch of the projection of the curve passing through the points.
It means that we select one of the disks described above. The sum of the local
intersection numbers of this disk (equipped with the complex orientation) and B ∩
RP 2 (equipped with some orientation) is zero since under the fourth move the
intersection disappears, while in the boundary of B no intersection happens.
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Therefore the local orientations of the projective plane in the vanishing solitary
double points defined by this branch define opposite orientations of B ∩RP 2. (Re-
call that the local orientations are distinguished by the condition that the local
intersection numbers are positive.)

On the other hand, under the move the preimages of the vanishing solitary double
points come to each other up to coincidence at the moment of the move and their
orientations defined by the choice of the same imaginary branch are carried to the
same orientation of the preimage of the point of solitary self-tangency. Indeed, the
preimages are real lines and points of intersection of their complexifications with the
selected imaginary branch of the curve also come to the same position. Therefore
the halves of the complexifications containing the points come to coincidence, as
well as the orientations defined by the halves on the real lines.

It follows that the intersection numbers of B with the preimages of the vanishing
solitary double points equipped with these orientations are equal. Since the local
orientations of the projective plane in the vanishing solitary double points define
distinct orientations of B ∩ RP 2, the writhes are opposite to each other.

2.7. Proof of Lemma 2.F . It is sufficient to consider the model family of curves
described in Section 1.3. Recall that the curves of this family are defined by the
following system of equations

{

xz + y = 0
x + z2 + τ = 0,

where τ is the parameter of the deformation. They admit a rational parametrization










x = −t2 − τ
y = −t(t2 + τ)
z = −t.

The projection corresponds to the standard projection (x, y, z) 7→ (x, y) to the
coordinate xy-plane. It maps these curves to the family of affine plane rational
cubic curves defined by y2 + x2(τ + x) = 0 with τ ∈ R.

We have to prove that the local writhe at (0, 0) for τ < 0 coincides with the local
writhe at (0, 0) for τ > 0.

Let us calculate the local writhe for τ < 0. Denote
√
−τ by ρ. The preimage

of (0, 0) consists of points a = (0, 0, ρ) and b = (0, 0,−ρ) corresponding to the
values −ρ and ρ of t, respectively, see Figure 4. The tangent vectors to the curve
at these points are v = (2ρ,−2ρ2,−1) and w = (−2ρ,−2ρ2,−1). The vector l
connecting a and b is (0, 0,−2ρ). By the definition, the writhe is the value taken
by the orientation of RP 3 on the frame v, l, w′. This value equals the value of this
orientation on the frame (1, 0, 0), (0, 1, 0), (0, 0, 1) multiplied by the sign of

det





2ρ −2ρ2 −1
0 0 −2ρ
−2ρ −2ρ2 −1



 = −16ρ4 < 0.

Let us calculate the local writhe for τ > 0. Denote
√

τ by ρ. The preimage
of (0, 0) consists of points a′ = (0, 0, iρ) and b′ = (0, 0,−iρ) corresponding to the
values −iρ and iρ of t. Choose the branch which passes through a′. It belongs
to the upper half of the line x = y = 0, which induces the positive orientation of
the real part directed along (0, 0, 1). At a′ the branch of the curve has tangent
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RA BR

a

b

Figure 4. Real algebraic version of the first Reidemeister move.

vector v = (2iρ, 2ρ2,−1) and the real basis consisting of v and iv = (−2ρ, 2iρ2,−i)
positively oriented with respect to the complex orientation of this branch. The
projection maps this basis to the positively oriented basis (2iρ, 2ρ2), (−2ρ, 2iρ2) of
the projection of the branch. The intersection number of this projection and R2 in
C2 is the sign of

det









0 2ρ 2ρ2 0
−2ρ 0 0 2ρ2

1 0 0 0
0 0 1 0









= −4ρ3 < 0

Hence the orientation of R2 such that its local intersection number with the se-
lected branch of the projection does not coincide with the orientation defined by
the standard basis. The intersection number of the line x = y = 0 with the stan-
dard orientation and the xy-plane with the standard orientation is the value of the
orientation of the ambient space R3 taken on the standard basis (1, 0, 0), (0, 1, 0),
(0, 0, 1). Therefore the local writhe is opposite to this value.

Remark 1 . There is a more conceptual proof of Lemma 2.F . It is based on a local
version of the Rokhlin Complex Orientation Formula, see [4] and [8]. In fact, the
original proof was done in that way. However, the Complex Orientation Formula
is more complicated than the calculation above.

2.8. Self-Linking of an Algebraic Link as a Vassiliev Invariant of Degree
One. To speak about Vassiliev invariants, we need to fix a connected family of
curves, in which links under consideration comprise the complement to a hyper-
surface. In the case of classical knots one could include all knots in such a family
by adjoining knots with self-intersections and other singularities. A singular knot
is a right equivalence class of a smooth map of the circle to the space (recall that
two maps from a circle are right equivalent if one of them is a composition of a
self-diffeomorphism of the circle with the other one).

In the case of real algebraic knots such a family including all real algebraic
knots does not exists. Even the space of complex curves in the three-dimensional
projective space consists of infinitely many components. It is impossible to change
the homology class realized by the set of complex points of an algebraic curve in CP 3

in a continuous deformation. Recall that the homology class belongs to the group



12 OLEG VIRO

H2(CP 3) = Z and is a positive multiple d[CP 1]of the natural generator of [CP 1] ∈
H2(CP 3) realized by a line. The coefficient d is called the order of the curve.
The genus is another numerical characteristic of a complex curve which takes the
same value for all non-singular curves in any irreducible family. As is well known,
the non-singular complex curves of given order and genus in the three-dimensional
projective space are parametrized by a finite union of quasi-projective varieties.
For each of these varieties, one can try to build a separate theory of Vassiliev
invariants on a class of non-singular real algebraic curves whose complexifications
are parametrized by points of this variety. (A similar phenomenon takes place in
topology: links with different numbers of components cannot be included into a
reasonable connected family, and therefore for each number of components there is
a separate theory of Vassiliev invariants.)

Among the varieties of algebraic curves in the three-dimensional projective space,
there are two special families: for each natural number d there is an irreducible
variety of rational curves of order d (recall that a an algebraic curve is called rational
if it admits an algebraic parametrization by a line), and for each pair of natural
number p and q there is an irreducible variety of curves which can be presented as
intersection of surfaces of degrees p and q.

In the class of real algebraic rational curves of order d, singular curves comprise
a discriminant hypersurface in which a generic point is a rational curve such that
it has exactly one singular point and this point is an ordinary double point. An
ordinary double point may be of one of the following two sorts: either it is an
intersection point of two real branches, or two imaginary conjugate branches.

Any two real algebraic rational non-singular curves of order d can be connected
by a path in the space of real rational curves of degree d which intersects the
discriminant hypersurface only transversally at finite number of generic points.
Such a path can be considered as a deformation of a curve to the other one. When it
intersects the discriminant hypersurface in a point, which is a curve with singularity
on real branches, the set of real points of the curve behaves as in the classical
knot theory: two pieces of the set of real points come to each other and pass
through each other. As in the classical knot theory, at the moment of intersection
a generic projection of the curve experiences an isotopy. Nothing happens besides
that one crossing point becomes for a moment the image of a double point and
then turns back into a crossing point, but with the opposite writhe. When the path
intersects the discriminant hypersurface in a point, which is a curve with singularity
on imaginary branches, two complex conjugate imaginary branches pass through
each other. At the moment of passing, they intersect in a real isolated double point.
At this moment the set of real points of a generic projection experiences an isotopy.
No event happens besides that a solitary double point becomes for a moment the
image of a solitary real double point of the curve and then turns back into a usual
solitary double point of the projection (which is not an image of a real point of the
knot), but with the opposite writhe number.

It is clear that the self-linking number of an algebraic curve changes under a
modification of each of these kinds by ±2, with the sign depending only on the
local structure of the modification near the double point. This means that the
self-linking number on the family of real rational curves under consideration is a
Vassiliev invariant of degree 1.

This is true also for any space of non-singular real algebraic curves which can be
included into a connected family of real algebraic curves by adjoining a hypersurface,
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penetration through which in a generic point looks as in the family of rational curves
described above.

There are many families of this kind besides the families of rational knots. How-
ever, in many families of algebraic curves a transversal penetration through the
discriminant hypersurface in a generic point looks differently. In particular, for
intersections of two surfaces it is a Morse modification of the real part of the curve.
At the moment, the old double points of the projection, both solitary and crossing,
do not change. An additional double point appears just for a moment. However the
division of crossing points to self-crossing points of a single component and cross-
ing points of different components may change. Therefore the self-linking number
changes in a complicated way. If the degrees of the surfaces defining the curve
are of the same parity, the real part of the curve has a natural semi-orientation.
The Morse modification respects this semi-orientation. Therefore the self-linking
number of the semi-oriented curve does not change.

2.G. Theorem. The self-linking number of any non-singular semi-oriented real
algebraic link which is a transversal intersection of two real algebraic surfaces whose
degrees are of the same parity is zero.

Proof. Any two non-singular real curves of the type under consideration can be
connected by a path as above. Hence their self-linking numbers coincide. On
the other hand, it is easy to construct, for any pair of natural numbers p and q
of the same parity, a pair of transversal to each other non-singular real algebraic
surfaces of degrees p and q in the three-dimensional projective space such that their
intersection has zero self-linking number.

In contrast to this vanishing result, one can prove that the self-linking number of
a real algebraic rational knots of degree d can take any value in the interval between
− (d−1)(d−2)

2 and (d−1)(d−2)
2 including these limits and congruent to them modulo

2.

3. Generalizations

3.1. The Case of an Algebraic Link with Imaginary Singularities. The
same construction may be applied to real algebraic curves in RP 3 having singular
imaginary points, but no real singularities. In the construction we can eliminate
projections from the points such that some singular point is projected from them to
a real point. Indeed, for any imaginary point there exists only one real line passing
through it (the line connecting the point with its complex conjugate), thus we have
to exclude a finite number of real lines.

This gives a generalization of self-linking numbers with the same properties: it
is invariant with respect to rigid isotopies (i.e., isotopies made of curves from this
class), and is multiplied by −1 under a mirror reflection.

3.2. Real Algebraic Links in Sphere. The construction of this paper can be
applied to algebraic links in the sphere S3. Although from the viewpoint of the knot
theory this is the most classical case, from the viewpoint of algebraic geometry the
case of curves in the projective space is simpler. The three-dimensional sphere S3

is a real algebraic variety. It is a quadric in the four-dimensional real affine space.
A stereographic projection is a birational isomorphism of S3 onto RP 3. It defines
a diffeomorphism between the complement of the center of projection in S3 and a
real affine space.
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Given a real algebraic link in S3, one may choose a real point of S3 from the
complement of the link and project the link from this point to an affine space.
Then include the affine space into the projective space and apply the construction
above. The image has no real singular points, therefore we can use the result of the
previous section.

This construction blows up the center of projection, making a real projective
plane out of it, and maps the complement of the center of the projection in the set
of real points of the sphere isomorphically onto the complement of the projective
plane. In the imaginary domain, it contracts each generatrix of the cone which is
the intersection of the sphere with its tangent plane at the center of projection.
The image of the cone is an imaginary quadric curve contained in the projective
plane which appeared as the result of blowing up of the central point.

3.3. Other Generalizations. It is difficult to survey all possible generalizations.
Here I indicate only two directions.

First, consider the most straightforward generalization. Let L be a nonsingular
real algebraic (2k − 1)-dimensional subvariety in the projective space of dimension
4k − 1. Its generic projection to RP 4k−2 has only ordinary double points. At each
double point either both branches of image are real or they are imaginary complex
conjugate. If the set of real points is orientable then one can repeat everything
with obvious changes and obtain a definition of a numeric invariant generalizing
the self-linking number defined above.

Let M be a nonsingular three-dimensional real algebraic variety with oriented set
of real points equipped with a real algebraic fibration over a real algebraic surface F
with fiber a projective line. There is a construction which assigns to a real algebraic
link (i. e., a nonsingular real algebraic curve in M) with a generic projection to F
an integer, which is invariant under rigid isotopy, multiplied by −1 under reversing
of the orientation of M and is a Vassiliev invariant of degree 1. This construction
is similar to the one presented above, but uses, instead of projection to RP 2, an
algebraic version of Turaev’s shadow descriptions of links [6].
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