

6-й КЛАСС

1966.01. Какое из чисел больше:

$$\underbrace{1000\dots001}_{1965 \text{ нулей}} / \underbrace{1000\dots001}_{1966 \text{ нулей}}$$
 или $\underbrace{1000\dots001}_{1966 \text{ нулей}} / \underbrace{1000\dots001}_{1967 \text{ нулей}} ?$

- **1966.02.** В футбольном чемпионате участвуют 30 команд. Докажите, что в любой момент найдутся две команды, сыгравшие к этому моменту одинаковое число матчей.
- **1966.03.** На доске выписаны все целые числа от 1 до 1966. Разрешается стереть любые два числа, записав вместо них их разность. Докажите, что многократным повторением такой операции нельзя добиться, чтобы на доске остались только нули.
- **1966.04.** На белую плоскость брызнули черной краской. Докажите, что найдутся три точки одного цвета, лежащие на одной прямой, причем так, что одна из точек лежит посередине между двумя другими.
- **1966.05.** В шахматном турнире играют более трёх шахматистов и каждый играет с каждым одинаковое число раз. В турнире было 26 туров. После 13 тура один из участников обнаружил, что у него нечетное число очков, а у каждого из других участников четное число очков. Сколько шахматистов участвовало в турнире?

7-Й КЛАСС

1966.06. См. задачу 3.

- **1966.07.** Докажите, что радиус окружности равен разности длин двух хорд, одна из которых стягивает дугу в 1/10 окружности, а другая дугу в 3/10 окружности.
- **1966.08.** Докажите, что при любом натуральном n число $n(2n+1)(3n+1)\dots(1966n+1)$ делится на каждое простое число, меньшее 1966.

- **1966.09.** Какое число нужно поставить на место *, чтобы следующая задача имела единственное решение: "На плоскости расположено n прямых, пересекающихся 6* точках. Найти n."?
 - **1966.10.** См. задачу 4.
- **1966.11.** На плоскости расположены n точек так, что любой треугольник с вершинами в этих точках имеет площадь меньше 1. Докажите, что все эти точки можно заключить в треугольник площади 4^1 .

<u>8-й КЛАСС</u>

1966.12. См. задачу 9^2 .

1966.13. См. задачу 8.

1966.14. См. задачу 11.

- **1966.15.** Докажите, что сумма всех делителей числа n^2 нечётна.
- **1966.16.** В четырехугольнике три тупых угла. Докажите, что большая из двух его диагоналей выходит из вершины острого угла.
- **1966.17.** Числа x_1, x_2, \ldots строятся по следующему правилу: $x_1 = 2$, $x_2 = (x_1^5 + 1)/5x_1, x_3 = (x_2^5 + 1)/5x_2, \ldots$ Докажите, что сколько бы мы ни продолжали такое построение, все получающиеся числа будут не меньше 1/5 и не больше 2.

<u>9-й класс</u>

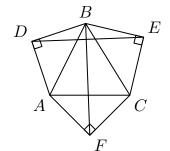
- **1966.18.** Вырезать из данного прямоугольника ромб наибольшей площади.
- **1966.19.** Сколько решений в целых числах имеет уравнение $\sqrt{x} + \sqrt{y} = \sqrt{1960}$?
- **1966.20.** Докажите, что можно раскрасить плоскость с помощью девяти красок таким образом, чтобы расстояние между любыми двумя точками одного цвета было отлично от 1966 метров.

¹ В одном из архивных вариантов 7 класса вместо задачи 11 приведена задача 5.

² В книге [?], в приложении к которой даны варианты олимпиад 1964—66 годов, к сожалению, допущено несколько ошибок; в том числе и в вариантах 1966 года — вместо задачи 12 приведена задача 4.

1966.21. P и Q — простые числа, Q^3 — 1 делится на P, P — 1 делится на Q. Докажите, что $P=1+Q+Q^2$.

1966.22. На сторонах треугольника ABC, как на гипотенузах, строятся во внешнюю сторону равнобедренные прямоугольные треугольники ABD, BCE и ACF. Докажите, что отрезки DE и BF равны и взаимно перпендикулярны.



1966.23.* Имеется k красок. Сколькими способами можно раскрасить стороны данного правильного n-угольника так, чтобы соседние стороны были окрашены в разные цвета (многоугольник поворачивать нельзя)?

10, 11-Е КЛАССЫ

1966.24. См. задачу 18.

1966.25. См. задачу 19.

1966.26. См. задачу 20 для 11 красок.

1966.27. См. задачу 23.

1966.28. Для каких ε можно разбить отрезок длины 2a на n отрезков, каждый из которых имеет длину не большую a, так, чтобы из них нельзя было составить отрезка, длина которого отличается от a меньше, чем на ε 3 ?

1966.29. Найдите все комплексные решения системы уравнений:

$$\begin{cases} x_1 + x_2 + \dots + x_n = n \\ x_1^2 + x_2^2 + \dots + x_n^2 = n \\ \dots \\ x_1^n + x_2^n + \dots + x_n^n = n \end{cases}$$

³ Условие задачи 28 звучит несколько двусмысленно; видимо, на самой олимпиаде давались необходимые пояснения к этой задаче.

Отборочный тур

- **1966.30.** m и n натуральные числа, причем m нечетно. Докажите, что числа 2^n+1 и 2^m-1 взаимно просты.
- **1966.31.*** Пусть T_n площадь наибольшего по площади n-угольника, содержащегося в данном выпуклом k-угольнике (при 3 < n < k). Докажите, что для любого n < k имеем $T_{n-1} + T_{n+1} \leqslant 2T_n$.
- **1966.32.** Из ряда чисел $1,2,3,4,\ldots,2^n$ выбрасывается $[(2^n-2)/3]$ чисел. Докажите, что среди оставшихся чисел найдутся два, одно из которых вдвое больше другого.
- **1966.33.** Разложением квадрата называется разбиение его на конечное число прямоугольников, стороны которых параллельны сторонам квадрата. Разложение называется примитивным, если оно не является разбиением более крупного разложения. При каких n существует примитивное разложение квадрата на n прямоугольников?
- **1966.34.*** На плоскости дано n точек общего положения. Некоторые из них соединены отрезками так, чтобы из каждой точки в любую другую можно было пройти единственным способом. Докажите, что таких способов соединения существует n^{n-2} .
- **1966.35.*** В круг вписан n-угольник со сторонами a_1, a_2, \ldots, a_n , причем так, что центр круга лежит внутри n-угольника. Докажите, что этот круг можно покрыть n кругами радиусов $na_1/6, na_2/6, \ldots, na_n/6$.

Комментарий.

На олимпиаде 1966 года был установлен своеобразный рекорд по количеству первых премий, присужденных в одной параллели: школьники 11 класса получили 34 диплома первой степени.