Serge N. Gavrilov

  1. S.N. Gavrilov, V. A. Eremeyev, G. Piccardo, A. Luongo. A revisitation of the paradox of discontinuous trajectory for a mass particle moving on a taut string. Nonlinear Dynamics, DOI 10.1007/s11071-016-3080-y. (NEW!)

  2. S.N Gavrilov, E.V. Shishkina. Scale-invariant initial value problems with applications to the dynamical theory of stress-induced phase transformations. Proc.Int. Conf. DAYS on DIFFRACTION 2015, pp. 96–101.

  3. E.V. Shishkina, S.N. Gavrilov. A strain-softening bar with rehardening revisited. Mathematics and Mechanics of Solids (2016) 21(2):137-151 .

  4. S.N. Gavrilov, E.V. Shishkina. A strain-softening bar revisited. ZAMM (2015) 95(12): 1521–1529.

  5. S.N. Gavrilov, E.V. Shishkina. New phase nucleation due to the collision of two nonstationary waves. Doklady Physics (2014) 59(12): 577–581.

  6. S.N. Gavrilov, G.C. Herman. Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading. Journal of Sound and Vibration, (2012), 331(20): 4464-4480.

  7. S.N. Gavrilov, E.V. Shishkina. On stretching of a bar capable of undergoing phase transitions. Continuum Mechanics and Thermodynamics (2010), 22(4), 299-316.

  8. E.V. Shishkina, I.I. Blekhman, M.P. Cartmell, S.N. Gavrilov. Application of the method of direct separation of motions to the parametric stabilization of an elastic wire. Nonlinear Dynamics (2008) 54: 313-331.

  9. S. N. Gavrilov. Dynamics of a free phase boundary in an infinite bar with variable cross-sectional area. ZAMM (2007) 87(2):117-127.

  10. S. N. Gavrilov. Proper dynamics of phase interface in an infinite elastic bar with variable cross section. Doklady Physics (2007) 52(3):161-164.

  11. S.N. Gavrilov. The effective mass of a point mass moving along a string on a Winkler foundation. PMM J. Appl. Math. Mechs (2006) 70: 582-589.

  12. S.N. Gavrilov, G.C. Herman. Oscillation of a Punch Moving on the Free Surface of an Elastic Half Space. Journal of Elasticity (2004) 75: 247-265.

  13. S.N. Gavrilov, D.A. Indeitsev. On the evolution of localized mode of oscillation in system "string on an elastic foundation - moving inertial inclusion". PMM J. Appl. Math. Mechs (2002) 66(5):825-833.

  14. S. Gavrilov. Nonlinear investigation of the possibility to exceed the critical speed by a load on a string. Acta Mechanica (2002) 154:47-60.

  15. S. Gavrilov. Transition through the critical velocity for a moving load in an elastic waveguide. Technical Physics (2000) 45(4):515-518.

  16. S. Gavrilov. Non-stationary problems in dynamics of a string on an elastic foundation subjected to a moving load. Journal of Sound and Vibration (1999) 222(3):345-361.

Last updated: 2016-10-01