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Introduction

0.1. In this paper we improve a method of [BuI] to deal with asymptotic behavior
of volume. We combine our approach from [BuI] with the technique for estimates
of volume used in numerous papers—see [GLP], [G1], [B] and references there.
We prove the estimate conjectured in [B] (also the same inequality was proven in
[C] for manifolds without conjugate points). For further information concerning
asymptotic volume growth see [G3] and references there.

We consider a universal cover of a Riemannian n-torus (and some more general
Zn-periodic metrics). The main term of the volume of a ball of radius R in such
a metric is cRn for some c > 0 (see [GLP]). We show that c ≥ cE where cE is the
constant for a flat metric, and the equality holds iff our metric is flat (Theorem 1).

As another application of the method we prove that passing to the limit of
Riemannian metrics on the same manifold decreases the volume, whenever the
limit metric is a Finsler one (Theorem 2).

0.2. Certain arguments of the proof of the volume growth theorem are essentially
Riemannian, as well as in the proof of the Hopf conjecture ([BuI]). The latter
is hardly surprising since the examples of non-flat Finsler tori without conjugate
points do exist. However it is unclear whether the volume growth theorem holds in
the Finsler case, and this problem seems to be rather intriguing.

To the best of our knowledge, all the known examples of Finsler tori without
conjugate points are obtained by some simplectic transformations from a flat one,
and they have the same asymptotic volume growth and C∞-smooth horospherical
foliation. On the other hand, if there exists a Finsler contrexample for the volume
growth theorem, then rather likely it can be found among metrics without conjugate
points. Indeed, if we slightly decrease the metric in a small neighborhood of a
vector tangent to a geodesic with conjugate points, we do not influence on the
shape of large balls and just decrease their volume. Such examples of Finsler
metrics without conjugate points should have completely other nature than the
known ones and might give another view on the geodesic flow on manifolds without
conjugate points.

0.3. The asymptotic behavior of the distance function of a Zn-periodic metric is
the same as of a Banach norm (see 3.1). Then some estimates may be obtained by
comparing the norm with a Euclidean one. In particular, inscribing the norm’s unit
ball into a proper (affine) cube may be often useful in order to apply arguments of
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the type “in the base directions our metric is greater than Euclidean, so ...”. For
instance, in [B] the volume growth constant of the metric is estimated from below
by inscribing the norm’s unit ball into a cube of minimal possible volume and then
applying the Besikovitch inequality. Unfortunately, the best cube may be not so
close to the norm’s ball as the standard cube is to the standard Euclidean ball, so
the estimate obtained this way is not exact.

To avoid that difficulties we use another method. Roughly (and wrongly) speak-
ing, we replace the cube to inscribe a body into, by a polyhedron. More precisely,
for every symmetric convex body (the unit ball of a norm) we find a number of
supporting it linear functions in terms of which an ellipsoid inscribed into the body
is expressed in a nice way (similar to the expression of the standard Euclidean ball
in terms of coordinate functions). To get the volume growth estimate we apply to
these linear functions (considered as “directions” in our metric space) a version of
Besikovitch inequality described in §2.

The authors would like to thank Prof. M. Gromov who has attracted their
attention to the problem.

§1. Representation of Inscribed Ellipsoid

1.1. Let ‖ · ‖ be a Banach norm in a linear space V n. We fix the notation F for
its unit sphere, F = {x ∈ V n : ‖x‖ = 1}. For a linear function L : V n → R denote
by ‖L‖ its norm in the space (V n, ‖ · ‖)∗, i.e. ‖L‖ = max{|L(x)| : ‖x‖ = 1}. We
say that a linear function L supports F at a point p ∈ F if ‖L‖ = 1 and L(p) = 1.
The set of linear functions supporting F is denoted by F ∗.

1.2. For a convex surface F we construct an inscribed ellipsoid whose quadratic
form admits a nice representation as a sum of a finite number of squares of sup-
porting F linear functions with positive coefficients whose sum is equal to n. This
construction has been used in [BuI, Lemma 4.2] to distinguish ellipsoids among all
convex surfaces by an extremal property in terms of integrals of squares of linear
functions. We extract this construction as a separate lemma.

1.3. Lemma 1. There exists a finite collection of linear functions Li ∈ F ∗ and
real numbers ai > 0 (i = 1, . . . , N ≤ n(n + 1)/2 + 1) with

∑

ai = n such that

a) Quadratic form Q =
∑

aiL
2
i satisfies Q(x) ≥ ‖x‖2 for all x ∈ V n. In

particular, Q is positive definite and the unit ball of Q lies inside F .
b) For each i ≤ N , Li supports F at some point pi with Q(pi) = 1.

Proof. Let AF = {nL2 : L ∈ F ∗} and ĀF be the convex hull of AF in the space
of all quadratic forms on V n. By the Caratheodory theorem every Q ∈ ĀF can be
represented as

Q =

N
∑

i=1

aiL
2
i , N ≤ n(n + 1)/2 + 1, Li ∈ F ∗, ai > 0,

∑

ai = n.

For Q ∈ ĀF we denote its unit ball {x ∈ V n : Q(x) ≤ 1} by BallQ and define

v(Q) = Vol−2(BallQ), where Vol is the Lebesgue measure (if Vol(BallQ) is infinite
we put v(Q) = 0).

For a positive definite Q ∈ ĀF and L ∈ F ∗ let ‖L‖Q = max{L(x) : Q(x) = 1}.
Then we have

(*)
d

dε

∣

∣

∣

∣

ε=0

v
(

(1 − ε)Q + nεL2
)

= nv(Q)(‖L‖2
Q − 1).
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Indeed, in coordinates (x1 = L/‖L‖, x2, . . . , xn) orthonormal with respect to Q
the quadratic form (1 − ε)Q + nεL2 has a diagonal matrix with diagonal elements
1 + (n‖L‖2

Q − 1)ε, 1 − ε, . . . , 1 − ε. Hence

v
(

(1 − ε)Q + nεL2
)

= (1 − ε)n−1
(

1 + (n‖L‖2
Q − 1)ε

)

v(Q)

and then (*) follows directly.

Let Q =
∑N

1
aiL

2
i maximize the function v over ĀF . Clearly Q is positive

definite. Then (*) implies that ‖L‖Q ≤ 1 for all L ∈ F ∗ and moreover ‖Li‖Q = 1
for each i. This means that no hyperplane supporting F crosses BallQ and ones

of the form L−1

i (1) touch it at some points which we denote by pi. Thus BallQ is
inscribed into F and Li support F at pi. The lemma follows. �

1.4. If the norm ‖ · ‖ is Euclidean then for Q from Lemma 1 we have Q = ‖ · ‖2.
Since Q is a volume-minimizer we get the following

Lemma 2. If ‖ · ‖ is a Euclidean norm on some n-dimensional space then any
quadratic form represented as

∑

aiL
2
i (where ‖Li‖ ≤ 1, ai ≥ 0 and

∑

ai = n) has
the volume of its unit ball greater or equal to the one of ‖ · ‖, and the equality holds
only if Q = ‖ · ‖2.

1.5. Lemma 2 implies that the unit ball of Q from Lemma 1 is actually the
maximal-volume ellipsoid lying inside F . Therefore such a quadratic form Q (but
not the representation as

∑

aiL
2
i ) is uniquely determined by F .

§2. Generalized Besikovitch Inequality

2.1. Many inequalities were inspired by the Besikovitch inequality (see [G1], [BurZ,
pp. 294–296] and references there). In this section we generalize Derrick’s proof
([D1], [D2]) for the Besikovitch inequality for the case where the number of functions
is greater than the dimension.

2.2. Lemma 3. Let Mn be a Riemannian manifold and Bi : M → R (i =
1, . . . , N) be Lipschitz functions with Lipschitz constant 1. Then for any collection
of nonnegative numbers ai with

∑

ai = n the mapping B : M → RN defined by

(1) B(x) = (
√

a1B1(x), . . . ,
√

aNBN (x))

is volume non-increasing (with respect to Riemannian volume on M and n-dimen-
sional Hausdorff measure on RN ).

Proof. B is differentiable almost everywhere since B is Lipschitz. It suffices to
show that the Jacobian Jac(B) is not greater than 1 a.e. Let B be differentiable
at x and then dxB = (

√
a1dB1, . . . ,

√
aNdBN ) : Tx M → RN . The pre-image of

the unit ball of RN under dxB is the unit ball of the quadratic form
∑

ai(dxBi)
2.

Applying Lemma 2 we obtain that this ball is not less by the volume than the unit
ball of Riemannian scalar product. Thus dxB is not volume increasing and hence
Jacx(B) ≤ 1. �

2.3. Let M be a region Ω ⊂ V n with a Riemannian metric and Bi : Ω → R
(i = 1, . . . , N) be Lipschitz-1 functions. Let c ∈ R and Li : V n → R be linear
functions such that |Bi − Li| ≤ c for all i ≤ N , x ∈ Ω.

We consider a Euclidean metric dQ determined by a quadratic form Q =
∑

aiL
2
i

where ai ≥ 0,
∑

ai = n (supposing that Q is non-degenerated). Denote by VolQ
the volume of this Euclidean structure.
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Lemma 4. In the above notations, we have

Vol(Ω) ≥ VolQ(IntQ,c
√

n(Ω))

where IntQ,c
√

n(Ω) = {x ∈ Ω : dQ(x, ∂Ω) > c
√

n }.

Proof. Define a linear map L : V n → RN by

L(x) = (
√

a1L1(x), . . . ,
√

aNLN (x))

An obvious computation shows that L is an isometric embedding of the Euclidean
space (V n, Q) into RN . Denote by P the orthogonal projector of RN onto its
subspace L(V n). The idea is to compare L and the function B defined by (1). The
n-volume of L(IntQ,c

√
n(Ω)) is equal to that of IntQ,c

√
n(Ω) and B is volume non-

increasing by Lemma 3. Hence P ◦B is also volume non-increasing and it suffices to
show that the image P ◦B(Ω) contains L(IntQ,c

√
n(Ω)). Notice that |B−L| ≤ c

√
n

since |Bi − Li| ≤ c and
∑

ai = n. Hence |P ◦ B − L| ≤ c
√

n on Ω.
Let x be a point of Ω with dQ(x, ∂Ω) > c

√
n. The estimate above implies that

(P ◦B)-image of dQ-sphere of radius c
√

n centered at x encloses L(x) in the space
L(V n) and hence L(x) ∈ P ◦ B(Ω). �

§3. Volume Growth Theorem

3.1. Theorem 1. Let d be a Riemannian Zn-periodic metric on a vector space
V n, i.e. it is invariant under a co-compact action of Zn by translations. Denote by
Ballr the ball of radius r in (V n, d) centered at the origin. Let εn be the standard
volume of the standard Euclidean ball. Then

a) lim inf
r→∞

Vol(Ballr)

εnrn
≥ 1.

b) If the inequality turns out to be equality then d is flat.

Proof. a) It is known (see [Bu1]) that there exists a norm ‖·‖ on V n and a constant
c such that

(2) ∀x, y ∈ V n | d(x, y) − ‖x − y‖ | ≤ c

Let Li ∈ F ∗, ai > 0 (i = 1, . . . , N) and Q =
∑

aiL
2
i be the quadratic form

guaranteed by Lemma 1 for the norm ‖ · ‖ (we keep all the notations introduced in
the first section).

For each i ≤ N we define a function Bi : V n → R by

Bi(x) = lim sup
‖y‖→∞

(Li(y) − d(x, y))

Bi is Lipschitz-1 as an upper limit of distance functions. Applying (2) and the
equality

Li(x) = lim sup
‖y‖→∞

(Li(y) − ‖x − y‖)

(which holds since ‖Li‖ = 1) we have |Bi − Li| ≤ c.
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Denote the unit ball of ‖ · ‖ by D. Applying Lemma 4 for Ω = (r − c)D we have

Vol(Ballr) ≥ Vol(Ω) ≥ VolQ((r − c − c
√

n)D) = (r − c − c
√

n)n VolQ(D)

since Ballr ⊃ Ω by (2) and D contains the unit ball of Q by Lemma 1. Therefore

(3) lim inf
r→∞

Vol(Ballr)

rn
≥ VolQ(D) ≥ εn

b) Since we have equality in the second part of (3), ‖ · ‖ is the Euclidean norm
determined by Q. Represent Q as

∑n
1

L2
i where Li ∈ F ∗ form an orthonormal basis

of (V n, ‖ · ‖)∗ and consider the functions Bi (i = 1, . . . , n) defined as in the first
part of the proof. The periodicity of the metric implies that

Bi(x + k) = Bi(x) + Li(k) ∀x ∈ V n, k ∈ Zn(0)

i.e. the functions (Bi − Li) are Zn-periodic.

Consider B = (B1, . . . , Bn) : (V n, d) → (Rn, standard metric). Since B is peri-
odic it does not decrease volume, otherwise we would get a strict inequality in the
first part of (3). From the proof of Lemma 3 it follows that Jac(B) ≤ 1 almost
everywhere. Therefore Jac(B) = 1 a.e. and Lemma 2 implies that for almost all
x ∈ V n the derivative dxB : Tx(V n, <,>d) → (Rn, standard <,>) is a linear
isometry. The following Sublemma concludes the proof.

Sublemma. Let (Mn, d) be Riemannian manifold and B : Mn → Rn be Lipschitz
volume-preserving map whose derivative is a linear isometry almost everywhere.
Then B is an isometry and hence d is a flat metric.

Proof. Since dB is a linear isometry a.e., the Lipschitz constant of B is 1. We prove
that B is bi-Lipschitz homeomorphism. Let x, y ∈ V n and choose ρ > |B(x)−B(y)|.
Then

Vol
(

Ballρ(x) ∪ Ballρ(y)
)

≤ Vol
(

Ballρ(B(x)) ∪ Ballρ(B(y))
)

≤ (2 − 1/2n)εnρn

since the common part of Ballρ(B(x)) and Ballρ(B(y)) contains a ball of radius ρ/2
and hence takes at least εn(ρ/2)n off their volume. Suppose that ρ is so small that
Vol(Ballρ(x))/εnρn > 1 − 1/2n+1 and the same holds for Ballρ(y). Then the sum
of volumes of these balls exceeds the left part of the above inequality, so they must
intersect. Hence d(x, y) < 2ρ.

We have proved that d(x, y) ≤ 2|B(x)−B(y)|, if B(x) and B(y) are close enough
to each other. Thus B is injective and B−1 is Lipschitz. Therefore the derivative
d(B−1) = (dB)−1 does exist almost everywhere. Hence B−1 is Lipschitz-1 as well
as B, so B preserves the distance. �

3.2. Note that the second part of the theorem is more delicate than the first one.
One can prove the volume growth estimate (3) for any Riemannian metric (not
necessarily periodic) satisfying a weaker condition: d(x, y)/‖x−y‖ → 1 as ‖x−y‖ →
∞. It will follow from Theorem 2.
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3.3. Some of the above arguments on periodic metrics do not require the vector-
space topology. We say a metric space (M,d) to be Zn-periodic if d is invariant
under a co-compact totally disconnected action of Zn on M . For such a metric,
assertion (2) may be re-read in terms of a norm ‖ · ‖ on Zn as

| d(x, x + k) − ‖k‖ | ≤ c, x ∈ M,k ∈ Zn

and holds in the most general cases (e.g. for all Zn-periodic inner metric spaces).
As pointed out by M. Gromov, Theorem 1 also remains true under weaker topol-

ogy assumptions. Namely, it holds for a Zn-periodic Riemannian metric on a man-
ifold Mn whose quotient Mn/Zn admits a nonzero-degree map onto an n-torus
which can be lifted as a Zn-invariant map from Mn onto Rn. The proof for this
version of Theorem 1 is similar to the original one; the nonzero-degree map is needed
for arguments from Lemma 4.

For manifolds of arbitrary topology Theorem 1 does not hold. As a counter-
example, consider the surface of a small neighborhood of a 2-dimensional grid in
R3

§4. Volume of Limit Finsler Metric

4.1. Let Mn be a smooth manifold and d be a Finsler metric on M . That is, d is
determined in a usual way by a family of Banach norms {‖ · ‖x : x ∈ M} on the
tangent spaces TxM and these norms form a continuous vector-length function on
TM . It is known that d may be represented as a limit of a sequence of Riemannian
metrics dk on M where convergence dk → d is uniform on compact subsets of
M ×M . (A class of such sequences of metrics whose limits coincide with all Finsler
metric is investigated in [Bu2]).

In this section we investigate the relations between the volume of our Finsler
manifold (M,d) and volumes of its approximations (M,dk). By volume we mean
here the Hausdorff measure (normalized to have Riemannian volume for Riemann-
ian metrics). However, all the sequel is valid for any volume definition, whenever
the volume is monotonous with respect to metric and coincides with the standard
Riemannian one for Riemannian manifolds.

4.2. Theorem 2. If a sequence of Riemannian metrics dk on M converges to d
as above, then

(4) Vol(M,d) ≤ lim inf Vol(M,dk)

Moreover, if the equality holds then d is a Riemannian metric.

Remark. In [BuI] we have formulated this theorem not quite correctly. This
theorem holds for uniform convergence of metric function but not for Hausdorff
convergence, because for a metric close by Hausdorff it still may be no almost isom-
etry of nonzero degree. There are examples of Hausdorff convergence of Riemannian
metrics which increases the volume.

Proof. The proof is similar to the one for Theorem 1 (it suffices to get the required
inequality only for small regions in M). We will prove (4) up to an arbitrary ε > 0.
Having fixed a point x ∈ M , consider a Banach space (V n, ‖ · ‖) = (TxM, ‖ · ‖x)
and a quadratic form Q =

∑

aiL
2
i obtained from Lemma 1 (i = 1, . . . , N , ai > 0,
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∑

ai = n and Li ∈ F ∗ where F is the unit sphere of ‖ · ‖). Recall that the unit ball
of Q is inscribed into F and touches F at some points pi with Li(pi) = 1. Let dQ be
the Euclidean metric on V determined by Q. From the inequalities Li ≤ ‖ · ‖ ≤ dQ

and the obvious formula

lim
R→∞

(R − dQ(Rpi, q)) = Li(q) = lim
R→∞

(R − L(Rpi − q)), q ∈ V

we have R − ‖Rpi − q‖ → Li(q) as R goes to infinity. Therefore one can choose
large enough R for which

(5)
∣

∣R − ‖Rpi − q‖ − Li(q)
∣

∣ ≤ ε, q : ‖q‖ ≤ 1, i ≤ N

(the convergence above is uniform on compact sets).
Identify a neighborhood of x in M with a region in V by a proper local coor-

dinates. We will use the same notations d and dk for metrics induced on V from
d and dk on M . One may suppose that the norm on T0V ∼= V determined by the
Finsler metric d on V coincides with ‖ · ‖ = ‖ · ‖x. Let δ > 0 be so small that

1 − ε

R + 2
≤ d(p, q)

‖p − q‖ ≤ 1 +
ε

R + 2

whenever ‖p‖, ‖q‖ ≤ Rδ. Then from (5) we have

|Rδ − d(Rδpi, q) − Li(q)| ≤ 2εδ, ‖q‖ ≤ δ, i ≤ N

Hence for dk close enough to d

|Rδ − dk(Rδpi, q) − Li(q)| ≤ 3εδ, ‖q‖ ≤ δ, i ≤ N

Thus we may apply Lemma 4 to the set Ω = {q ∈ V : ‖q‖ ≤ δ} and Lipschitz-1
(with respect to dk) functions Bi(q) = Rδ − dk(Rδpi, q), obtaining

Vol(Ω, dk) ≥ (1 − C(n)ε)Vol(Ω, dQ) ≥ (1 − C(n)ε)Vol(Ω, ‖ · ‖)

(the second inequality is implied by dQ ≥ ‖ · ‖).
By the standard covering arguments we derive from these estimates for all x ∈ M

that (1− C(n)ε)Vol(M,d) ≤ lim inf Vol(M,dk). Since ε is arbitrary the inequality
(4) follows. If it turns out to be equality then for every point x ∈ M in the
above construction we should have dQ = ‖ · ‖ and hence our metric d is actually
Riemannian. �
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