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Abstract. We study the differentiability of the stable norm ‖·‖ associated with a

Zn-periodic metric on Rn. Extending one of the main results of [Ba2], we prove that
if p ∈ Rn and the coordinates of p are linearly independent over Q, then there is a
linear 2-plane V containing p such that the restriction of ‖·‖ to V is differentiable
at p. We construct examples where ‖·‖ is not differentiable at a point with coordinates

linearly independent over Q.

Introduction

0.1. In this paper we study the large-scale geometry of an abelian cover of a com-
pact Riemannian manifold Mm. If M̂ is a normal cover of M with deck group Zn,
then M̂ is within finite Gromov-Hausdorff distance from an n-dimensional normed
vector space, [Bu1], which we denote (Rn, ‖·‖). We call this the stable norm.

We denote by B and F the unit ball and the unit sphere of the norm ‖·‖, i.e.
B = {v ∈ Rn : ‖v‖ ≤ 1}, F = {v ∈ Rn : ‖v‖ = 1}, respectively. Our subject is the
local structure of the surface F , namely, the shape of its tangent cone at certain
points. This is a part of the general (and wide open) question: what norms can
arise as stable norms of periodic Riemannian metrics?

In [Ba2] V. Bangert – inspired by [AuMa] – made substantial progress on this
question in the case of two dimensional tori (analogous results were obtained inde-
pendently by F. Nazarov [Na]). [Ba2] proved that the stable norm is differentiable
at every irrational point1 in R2, and that it is differentiable at a rational point only
if the torus is foliated by closed geodesics representing the corresponding element
of Z2 ≃ H1(T

2;Z).

In this paper, we consider the higher dimensional case, and the regularity of the
stable norm in irrational directions. The following theorem is a partial generaliza-
tion of V. Bangert’s result [Ba2], see also [Ba4].

Theorem 1. Assume that m ≤ n, and p is an irrational point in Rn. Then the

stable norm ‖·‖ is differentiable in at least one nonradial direction at p; in other
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1A point p ∈ Rn is irrational if its coordinates are linearly independent over Q.
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words, the tangent cone to F at p
‖p‖ splits as a metric product of R with another

cone.

The examples described in the next theorem show that the stable norm can be
nondifferentiable at irrational points; hence the most optimistic attempt to gener-
alize [Ba2] fails.

Theorem 2. For every k, there is an n such that for almost every irrational point

p ∈ Rn, there is a Ck-smooth Riemannian metric on n-torus whose stable norm is

not differentiable at p.

It turns out that the (non)differentiability of the asymptotic norm is directly re-

lated to the structure of certain minimizing geodesics in M̂ and their interplay with
a class of distance-like functions. Differentiability – or more precisely directional
differentiability – correlates with the existence of curves which deviate arbitrar-
ily far from a minimizing geodesic with bounded additional “cost”. Such curves
must lie in a small neighborhood of the family of minimizers associated with the
point of Rn; the idea behind theorem 1 was that such curves may be constructed
by joining long pieces of minimizers with short segments. We note that even for
smooth metrics, the set of minimizing geodesics can be badly behaved. In the ex-
ample of theorem 2, the surface formed by the set of minimizing geodesics is highly
corrugated; every curve that stays close to it must be “long”.

Theorems 1 and 2 give some new information about possible singularities of the
stable norm, but the picture is still far from complete. The following two questions
remain open:

1. Is the finite smoothness essential for the examples in theorem 2, or are there
similar C∞ examples?

2. If the stable norm is smooth and uniformly convex on an open set, is M̂
foliated by minimizing geodesics?

To simplify notation, we will deal with the case where M is diffeomorphic to Tn,
and M̂ is the universal cover of M ; therefore we may identify M̂ with Rn. Although
this identification is non-invariant, the image of Zn ⊂ Rn under this identification
is. Then the stable norm ‖·‖ is given by

‖v‖ = lim
λ→∞

ρ(0, λv)

λ

where ρ(·, ·) is the distance function on M̂ ≃ Rn. Sometimes this norm is also
called limit norm or asymptotic norm of a metric ρ. The Banach space (Rn, ‖·‖)
approximates the metric space (Rn, ρ) in a very strong sense: there exists a constant
C = C(ρ) such that

(1) ∀ x, y ∈ Rn
∣

∣‖x − y‖ − ρ(x, y)
∣

∣ ≤ C

(see [Bu1]). This estimate refines the statement that the Gromov–Hausdorff dis-
tance between (Rn, ρ) and (Rn, ‖·‖) is finite.

We will use ρ to denote the periodic metric under consideration and ρ̄ for the
corresponding metric on the torus Tn = Rn/Zn. We denote by UTTn and UTRn

the unit tangent bundles for metrics ρ̄ and ρ. All geodesics are parameterized by
arc length. We call a geodesic γ in (Tn, ρ̄) minimal if its lift γ̃ is minimal, i.e. if
ρ(γ̃(a), γ̃(b)) = |a − b| for all a, b ∈ R.
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1. Rotation vectors and uniformly recurrent geodesics

1.1. We define the direction at infinity D(γ) ∈ Rn for a geodesic γ : R → (Rn, ρ)
by

D(γ) = lim
t→∞

γ(t) − γ(0)

t

if the limit exists. Since ρ(γ(t), γ(0)) ≤ t for all T ∈ R, we have

‖D(γ)‖ = lim
t→∞

‖γ(t) − γ(0)‖

t
= lim

t→∞

ρ(γ(t), γ(0))

t
≤ 1

(the second equality follows from (1)). The rotation vector (see [?]) R(γ) ∈ Rn of
a geodesic γ : R → (Tn, ρ̄) is defined by R(γ) = D(γ̃) where γ̃ is a lift of γ.

Recall that a geodesic γ : R → (Tn, ρ̄) is uniformly recurrent if for any t0 ∈ R

the trajectory {γ′(t) : t ∈ R} visits any neighborhood of γ′(t0) in UTTn with a
positive frequency. The purpose of this section is to prove the following

1.2. Proposition. If v is an extreme point of B (i.e. v is not the midpoint of a

line segment contained in B), then there is a uniformly recurrent geodesic γ : R →
(Tn, ρ̄) with R(γ) = v.

1.3. Remark. It follows from 2.4 that a geodesic γ given by Proposition 1.2 is a
minimal one. Thus we obtain a kind of existence statement for minimal geodesics
with a given rotation vector. In general, not every vector v ∈ F can be obtained as
a rotation vector of a minimal geodesic. For n ≥ 3 there exist examples of periodic
metrics for which B is a polyhedron and its vertices are only possible rotation
vectors of minimal geodesics (see [Ba1]).

1.4. We will prove Proposition 1.2 using the technique of minimal measures intro-
duced by J. Mather [M2]. In fact, we only adopt the basic constructions of [M2] to
our settings.

We may also view the rotation vector of a geodesic as a function of its velocity
vector, i.e. for w ∈ UTTn we set R(w) = R(γ) where γ is a geodesic in (Tn, ρ̄)
with γ′(0) = w. This way R becomes a function defined on a subset of UTTn.
Define a map ω : TTn → Rn as the second projection of the natural decomposition
TTn ∼= Tn ×Rn. The rotation vector of a geodesic γ in (Tn, ρ̄) may be written in
the form

(2) R(γ) = lim
t→∞

1

t

∫ t

0

γ̃′ = lim
t→∞

1

t

∫ t

0

ω ◦ (γ′) .

(here γ̃ denotes a lift of γ in Rn). Thus the function R is the average along
trajectories of the function ω.

Let m be a finite Borel measure on UTTn. We define its rotation vector R(m) ∈
Rn by the formula

R(m) =

∫

UTT n

ω dm .
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Clearly R(m) is a linear function of m. We call a measure m on UTTn invariant

if it is preserved by the geodesic flow of (Tn, ρ̄). If m is an invariant probability
measure then (by (2) and the Birkhoff ergodic theorem) the function R is defined
m-almost everywhere, and

R(m) =

∫

UTT n

R(w) dm(w) .

In particular, ‖R(m)‖ ≤ 1. The first observation about invariant measures is the
following

1.3. Lemma. For every v ∈ F there is an invariant probability measure m with

R(m) = v.

Proof. Let (λi) be a sequence of positive numbers, λi → ∞. For each i let
γi : [0, li] → (Tn, ρ̄) be a minimal geodesic whose lift joins points 0 and λiv in
(Rn, ρ). Here li = ρ(0, λiv). Then consider a probability measure uniformly dis-
tributed along the segment [0, li] ⊂ R and let mi be the image of that measure
in UTTn under the map t 7→ γ′(t). Some subsequence of (mi) converges weakly
in the space of probability measures on UTTn. We may assume that the original
sequence (mi) converges to some measure m. It is trivial that m is an invariant
measure. Then

R(m) =

∫

UTT n

ω dm = lim

∫

UTT n

ω dmi = lim
λiv

li
=

v

‖v‖

(the last equality follows from the definition of the stable norm). Since ‖v‖ = 1,
the lemma follows. �

1.4. Now suppose that v is an extreme point of B (i.e. no line segment contained
in B has its midpoint at v). Let M(v) denote the set of all invariant probability
measures m with R(m) = v. This set is convex and compact (with respect to
the weak topology). By the Krein–Milman theorem there is a measure m which
is an extreme point of M(v). Such a measure m is ergodic with respect to the
geodesic flow. Indeed, if 0 < λ < 1 and m = λm1 + (1 − λ)m2 for some invariant
probability measures m1 and m2, then v = R(m) = λR(m1) + (1 − λ)R(m2), so
the extremeness of v in B implies that R(m1) = R(m2) = v. Since m is an extreme
point of M(v) it follows that m1 = m2.

Let U be an open subset of UTTn with m(U) > 0. The ergodicity of m implies
that m-almost every trajectory of the geodesic flow visits U with positive frequency.
Since the topology of UTTn has a countable base, m-almost every trajectory does
this for all open sets of positive measure. Note that m-almost every trajectory is
contained in supp(m), the support of measure m. Since for an open U ⊂ UTTn the
condition U ∩ supp(m) 6= ∅ implies m(U) > 0, it follows that m-almost every tra-
jectory is uniformly recurrent. On the other hand, R(w) = R(m) = v for m-almost
all w ∈ UTTn since m is ergodic. This completes the proof of Proposition 1.2.

2. Generalized coordinates and minimizers

2.1. If L : Rn → R is a linear function we let ‖L‖ denote its norm in the space
(Rn, ‖·‖)∗, i.e. ‖L‖ = max{|L(x) : ‖x‖ = 1}. We say that a linear function L
supports B at a point v ∈ F if ‖L‖ = 1 and L(v) = 1. Geometrically it means that
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a hyperplane L−1(1) touches the surface F at p. We denote by F ∗(v) the set of
linear functions supporting B at v, and by F ∗ the set of all linear functions L with
‖L‖ = 1.

Let L ∈ F ∗ and let f be a real-valued function on (Rn, ρ). We say that f is a
generalized coordinate associated with L if

(2.1.1) f is a 1-Lipschitz function with respect to ρ, i.e. |f(x) − f(y)| ≤ ρ(x, y) for
all x, y ∈ Rn.

(2.1.2) The function (f − L) is Zn-periodic, i.e. for every x ∈ Rn and h ∈ Zn we
have f(x + h) = f(x) + L(h).

Such function were used in [BuI2] to make volume estimates. We extract a con-
struction from [BuI2] in the following statement.

2.2. Proposition. For any L ∈ F ∗ there is a generalized coordinate associated

with L.

Proof. Define a function f on Rn by

f(x) = lim sup
‖y‖→∞

(L(y) − ρ(x, y)) .

First, we need to prove that all values of f are finite. This follows from (1) and the
equality

lim sup
‖y‖→∞

(L(y) − ‖x − y‖) = L(x)

which holds since ‖L‖ = 1. Then f is 1-Lipschitz as it is the supremum of a family
of 1-Lipschitz functions. Finally, for any x ∈ Rn and h ∈ Zn we have

f(x + h) = lim sup
‖y‖→∞

(L(y) − ρ(x + h, y))

= lim sup
‖y−h‖→∞

(

L(y − h) − ρ(x, y − h)
)

+ L(h) = f(x) + L(h) ,

so f satisfies (2.1.2). �

2.3. Let f be a generalized coordinate and let γ : R → (Rn, ρ) be a geodesic. We
say that γ is calibrated by f , or that γ is an f-calibrated [HaLa], if

(3) f(γ(b)) − f(γ(a)) = b − a

for all a, b ∈ R.
Note that for an arbitrary unit-speed curve γ in (Rn, ρ) we have

f(γ(b)) − f(γ(a)) ≤ ρ(γ(a), γ(b)) ≤ |b − a|

for all a, b ∈ R. Therefore if γ is f -calibrated then γ is a minimal geodesic. It is
clear that being f -calibrated is actually a local property: if γ is not f -calibrated
then for any ε > 0 there exists a ∈ R such that (3) fails for [a, b] = [a, a + ε]. From
(2.1.2) it follows that any integer translate of an f -calibrated geodesic is also an
f -calibrated.
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2.4. Proposition. Let γ : R → (Rn, ρ) be a lift of a uniformly recurrent geodesic

with D(γ) = v ∈ F , and L ∈ F ∗(v). Then γ is calibrated by any generalized

coordinate associated with L.

Proof. Let f be a generalized coordinate associated with L, and suppose that γ
is not f -calibrated. We may assume that (3) fails for a = 0 and b = 1, say
f(γ(1))− f(γ(0)) = 1− ε where ε > 0. Let U be a neighborhood of γ′(0) in UTRn

such that for every geodesic γ1 in (Rn, ρ) with γ′
1(0) ∈ U we have ρ(γ1(t), γ(t)) <

ε/3 for all t ∈ [0, 1]. Since γ is a lift of a uniformly recurrent geodesic, there
exists a sequence (ti)

∞
i=1 of real numbers such that for all i we have ti+1 ≥ ti + 1,

ti/i ≤ T0 < ∞, and γ′(ti) ∈ U + hi for some hi ∈ Zn. By (2.1.2) and the choice of
U we have

f(γ(ti + 1)) − f(γ(ti)) ≤ 1 − ε/3

for each i. Summing up these inequalities for i = 1, . . . ,m, together with obvious
ones

f(γ(ti+1)) − f(γ(ti)) ≤ ti+1 − ti

we obtain that

f(γ(tm + 1)) − f(γ(0)) ≤ tm + 1 −
iε

3
≤

(

1 −
ε

3T0

)

tm + 1 .

Therefore

lim sup
t→∞

f(γ(t)) − f(γ(0))

t
≤ 1 −

ε

3T0
< 1 .

Since |f − L| is bounded, one may replace f by L in this estimate. On the other
hand,

lim
t→∞

L(γ(t)) − L(γ(0))

t
= L(D(γ)) = L(v) = 1

(the first equality follows from the definition of D(γ), see 1.1). This contradiction
proves the proposition. �

We will apply Proposition 2.4 at a point v ∈ F where B has several different
linear support functions (this may happen if F is not smooth at v), so the same
geodesic γ will be calibrated by the generalized coordinates associated with each
of these functions. The following Proposition 2.5 tells us that in this case all the
generalized coordinates calibrating γ have similar local behavior near γ.

2.5 Proposition. Let ρ be a C3 metric. Then there is a constant C = C(ρ) with

the following property. If a geodesic γ is calibrated by two generalized coordinates f1

and f2 (possibly associated with different linear functions), then for d = f1(γ(0))−
f2(γ(0)) the inequality

|f1(x) − f2(x) − d| ≤ C · ρ(x, γ)2

holds for all x ∈ Rn. Here ρ(x, γ) denotes inf{ρ(x, γ(t)) : t ∈ R}.

Proof. It suffices to prove the statement only in the case d = 0 (just add a constant
to f2). Pick constants ε > 0 and r > ε such that r + ε is less than the injectivity
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radius of (Rn, ρ). Fix t ∈ R and denote c = f1(γ(t)) = f2(γ(t)). Since f1 and f2

are 1-Lipschitz functions, we have

fi(γ(t + r)) − ρ(γ(t + r), x) ≤ fi(x) ≤ fi(γ(t − r)) + ρ(γ(t − r), x) ,

or

flow(x) := c + r − ρ(γ(t + r), x) ≤ fi(x) ≤ c − r + ρ(γ(t − r), x) := fup(x)

for any x ∈ Rn, i = 1, 2. Both flow and fup are C2-smooth functions of x within
ε-neighborhood of γ(t), and their values and first derivatives at γ(t) coincide. (The
values are equal to c and the gradients are equal to γ′(t)). So if C > 2/ε and C is
an upper bound for the second derivative of a function ρ(x0, ·) between its values
r − ε and r + ε, then

|f1(x) − f2(x)| ≤ fup(x) − flow(x) ≤ C · ρ(x, γ(t))2

Since t is arbitrary, the proposition follows. �

3. A tangent cone of B at an irrational point

3.1. We call a vector v ∈ Rn irrational if its coordinates are linearly independent
over Q: v is not an irrational vector if and only if there is a nonzero linear function
L ∈ (Qn)∗ ⊂ (Rn)∗ such that L(v) = 0. The latter description implies that non-
irrational vectors form a set of zero measure in Rn since this set is a union of
countably many hyperplanes. If v is an irrational vector then λv is irrational for
any λ 6= 0.

For v ∈ Rn we denote by 〈v〉 the line {λv : λ ∈ R} ⊂ Rn. If v is an irrational
vector the union of lines 〈v〉 + Zn :=

⋃

h∈Zn

(

〈v〉 + h
)

is dense in Rn.

3.2. For v ∈ F we denote by Cv(B) the tangent cone of B at v. We define a
tangent cone as an intersection of half-spaces

(4) Cv(B) =
⋂

L∈F∗(v)

{x ∈ Rn : L(x) ≤ 0}

A convex cone is called sharp if it contain no straight lines. From (4) it follows that
Cv(B) is sharp if and only if F (v) contains n linearly independent linear functions.
If Cv(B) is sharp then obviously v is an extreme point of B.

3.3. Theorem. Let ρ be a C3-smooth periodic Riemannian metric on Rn, let B
be the unit ball of its stable norm, and let v be an irrational vector in the boundary

of B. Then the tangent cone Cv(B) is not sharp.

Proof. Suppose that Cv(B) is a sharp cone. By Proposition 1.5 there exists a
geodesic γ : R → (Rn, ρ) with D(γ) = v which is a lift of a uniformly recurrent
geodesic. Pick n linearly independent functions L1, . . . , Ln from F ∗(v). For each i =
1, . . . , n construct a generalized coordinate fi associated with Li. We may assume
that fi(γ(0)) = 0 and so fi(γ(t)) = t for all t ∈ R. Define a map f̄ : (Rn, ρ) → Rn−1

by
f̄ = (f1 − f2, f2 − f3, . . . , fn−1 − fn) .
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For any x ∈ Rn and h ∈ Zn we have

f̄(x + h) = f̄(x) + L̄(h)

where the linear map L̄ : Rn → Rn−1 is defined by

L̄ = (L1 − L2, L2 − L3, . . . , Ln−1 − Ln) .

Therefore for any h ∈ Zn the values of f̄ are equal to L̄(h) along the geodesic γ +h,
so we have the estimate

|f̄(x) − L̄(h)| ≤ C · ρ(x, γ + h)2 .

(see 2.4 and 2.5). Applying this for points x of another geodesic γ + h1 we obtain
that

|L̄(h1) − L̄(h)| ≤ C · ρ(γ + h1, γ + h)2

for all h, h1 ∈ Zn. (For two geodesics γ1 and γ2 we denote by ρ(γ1, γ2) the distance
between them as subsets of (Rn, ρ)). Therefore

(5) ρ(γ + h1, γ + h) ≥
√

|L̄(h1) − L̄(h)|/C

for all h, h1 ∈ Zn.

The functions fi−Li are bounded and fi(g(t)) = t for t ∈ R, so |Li(γ(t))−t| ≤ C
for some constant C not depending on t. Hence there is an R > 0 such that
|γ(t) − vt| ≤ R for all t ∈ R (this follows from the fact that vt is the only point of
Rn at which the values of functions Li are all equal to t). Thus any straight line of
the form 〈v〉+h is contained within R-neighborhood of the corresponding geodesic
γ + h.

Note that the map L̄ is surjective and Ker L̄ = 〈v〉. Let U be a bounded neigh-
borhood of a unit cube in Rn−1, U1 be a bounded set in Rn such that U ⊂ L(U1),
and U2 be the R-neighborhood of U2. Since 〈v〉+ Zn is dense in Rn and L̄(v) = 0,
the set L̄(Zn) is dense in Rn−1. For a small ε > 0 one can find a collection of points
y1, . . . , yN ∈ U ∩ L̄(Zn) such that N ≥ (1/ε)n−1 and |yi − yj | > ε for i 6= j. Let
yi = L̄(hi) where hi ∈ Zn. Consider the geodesics γ + hi in (Rn, ρ). They all cross
the region U2. If U3 is the 1-neighborhood of U2 in (Rn, ρ), then the intersection
of each of our geodesics γ + hi with U3 will contain an interval of length 2.

By (5), the pairwise distances between the geodesics γ + hi are not less than
√

ε/C. Hence their tubular neighborhoods of radius
√

ε/4C are disjoint. Summing
up Riemannian volumes of these tubular neighborhoods we obtain a lower bound
for the volume of U3:

Vol(U3) ≥ (1/eps)n · (ε/4C)(n−1)/2 = c1ε
−(n+1)/2

for some c1 > 0. Since ε is arbitrarily small, it follows that Vol(U3) = ∞. This is
impossible since U3 is bounded. �
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4. An example

In this section we construct the examples described in theorem 2. The idea of
the construction is to begin by producing a set of minimizers. This set will be
(the closure of) a highly corrugated surface. The estimate (5), together with el-
ementary geometric considerations, suggests that the cross-section of this surface
may be regarded as a curve which stretches distance in the following very strong
sense: the distance between the images is at least the square root of the distance
between pre-images modulo 1. On the other hand, this curve has to have irrational
rotation vector, and it has to be invariant under a group of diffeomorphisms. We
construct this curve as a sum of two curves. One of them is a small periodic curve
(with rotation vector zero), which stretches distance and persists under a group dif-
feomorphisms having dense orbits on the curve. The other is a smooth curve with
irrational rotation vector which lies in a submanifold of high codimension. The first
curve will be constructed using trigonometric series, where the following approxi-
mation condition is a technical requirement used to estimate the denominators in
the coefficients of the series.

We call a number α ∈ R approximable if for any ε > 0 there exists a sequence of
rational numbers {pk/qk}

∞
k=1 such that

|α − pk/qk| < 1/q2
k

and

(6) q
1+ε/2
k < qk+1 <

1

2
q1+ε
k

for all k ≥ 1.

4.1. Lemma. Almost all real numbers are approximable.

Proof. For a given α ∈ R, every convergent pk/qk of the corresponding continued
fraction satisfies |α − pk/qk| < 1/q2

k. It is known [?] that for almost every α the
denominators of these convergents grow exponentially: there exists a positive limit
limk→∞(log qk)/k. For such α, it is certainly possible to find a subsequence of {qk}
to satisfy (6). �

Let γ : R → Rn be a continuous curve and r > 1 be an integer. We say that γ
is r-stretching if there exists δ > 0 such that |γ(x) − γ(y)| ≥ |x − y|1/r whenever
|x − y| ≤ δ.

4.2. Proposition. Let r > 1 be an integer, and let α ∈ R be approximable. Then

there exists an r-stretching 1-periodic curve γ : R → R8r such that the function

x 7→ γ(x + α) − γ(x)

is C1-smooth.

Proof. Let ε = 1/2(r − 1) and pick a sequence {pk/qk} as in 4.1. We assume that
q1 > 104r(r−1) which, by (6), implies that qk+1 > 10rqk for all k.

We identify R8r with C4r and use the notation E(t) = exp(2πit) ∈ C for t ∈ R.
Let vk be the kth basis vector of C4r for 1 ≤ k ≤ 4r, and vk+4r = vk for all k ∈ Z.
Define γ : R → C4n by

γ(x) =
∞
∑

k=1

q
−1/2r
k E(qkx)vk .



10 D. BURAGO, S. IVANOV, AND B. KLEINER

Then

γ(x + α) − γ(x) =

∞
∑

k=1

q
−1/2r
k E(qkα)E(qkx)vk .

The formal derivative of these series has the form

∞
∑

k=1

q
1−1/2r
k E(qkα)E(qkx)vk .

Since qkα−pk < 1/qk, we have E(qkα) < 2πq−1
k , so this formal derivative converges

absolutely. It follows that the function x 7→ γ(x + α) − γ(x) is C1.
We will prove that |γ(x)− γ(y)| ≥ |x− y|1/r whenever |x− y| < 1/2q1. Assume

that x < y < x + 1/2q1 and denote δ = y − x. We have

γ(y) − γ(x) =
∞
∑

k=1

q
−1/2r
k E(qkx)(E(qkδ) − 1)vk .

The right inequality in (6) implies 1
2q−1

k+1 > q−1−ε
k , so the intervals (q−1−ε

k , 1
2q−1

k )

cover the interval (0, 1/2q1). Pick an index m for which δ ∈ (q−1−ε
m , 1

2q−1
m ). For

every integer j > −m/4r denote aj = qm+4rj and set aj = 0 for j ≤ −m/4r. We

have δ ∈ (a−1−ε
0 , 1

2a−1
0 ), so

δ−1/(1+ε) < a0 <
1

2
δ−1 ,

and, by (6),

aj+1 > a
(1+ε/2)4r

j > a1+2rε
j = a2+2ε

j .

It follows that aj+1 ≥ 102raj for all j, and

a1 > a2+2ε
0 > δ−(2+2ε)/(1+ε) = δ−2 ,

a−1 < a
1/(2+2ε)
0 < a

1/2
0 < δ−1/2 .

The mth coordinate of the vector γ(y) − γ(x) can be written as

∑

j∈Z

a
−1/2r
j E(ajx)(E(ajδ) − 1) .

So
|γ(y) − γ(x)| ≥ a

−1/2r
0

∣

∣E(a0δ) − 1
∣

∣ −
∑

j 6=0

a
−1/2r
j

∣

∣E(ajδ) − 1
∣

∣

Since |E(t) − 1| ≥ 4t for 0 ≤ t ≤ 1/2, we have

a
−1/2r
0

∣

∣E(a0δ) − 1
∣

∣ ≥ 4δa
1−1/2r
0 > 4δ1−(1−1/2r)/(1+ε) = 4δ1/r .

For j > 0 we have aj > 102r(j−1)a1 > 102r(j−1)δ−2, so

∑

j>0

a
−1/2r
j

∣

∣E(ajδ) − 1
∣

∣ ≤
∑

j>0

2a
−1/2r
j <

∑

j>0

2(102r(j−1)δ−2)−1/2r

=
∑

j>0

2 · 10−j+1δ1/r < 2.5 δ1/r .
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For −m/4 < j < 0 we have 104r < aj < 10j+1a−1 < 10j+1δ−1/2, so
∑

j<0

a
−1/2r
j

∣

∣E(ajδ) − 1
∣

∣ ≤
∑

j<0

10−2 · 2πajδ ≤
∑

j<0

10−1(10j+1δ−1/2)δ

=
∑

j<0

10jδ1/2 < 0.5 δ1/2 ≤ 0.5 δ1/r .

It follows that |γ(x) − γ(y)| ≤ (4 − 2.5 − 0.5)δ1/r = δ1/r. �

4.3. Proposition. For every integer n ≥ 7 and v ∈ Rn there is a three-dimensional

smooth submanifold M ⊂ Tn and a smooth flow on M , one of whose trajectories

has the rotation vector v (as a curve in Tn).

Proof. Let M0 be a two-dimensional orientable surface of genus n equipped with a
negatively curved Riemannian metric, and let UTM0 be its unit tangent bundle.
Every map UTM0 → Tn is homotopic to a self-transversal smooth map which has
to be an embedding since n ≥ 7. Choose such an embedding UTM0 →֒ Tn which
induces an epimorphism of fundamental groups; let M be the image of UTM0 in Tn.

We consider flows on M ≃ UTM0 preserving the Liouville measure. Each flow
is generated by a divergence-free vector field on M . The rotation vector R(X) ∈
Rn ∼= H1(T

n;R) of such a vector field X is the average value of rotation vectors
of its trajectories as curves in Tn. The map X → R(X) is linear and the set of its
values is the entire Rn. (To prove this, observe that a homology class of any closed
geodesic in UTM0 can be represented as a rotation vector of some flow concentrated
in a small neighborhood of the geodesic.) Let Y be a divergence-free vector field
with R(Y ) = v.

Let X0 be a vector field which generates the geodesic flow of our metric. It is
skew-symmetric with respect to the reflection w 7→ −w of UTM0, so R(X0) = 0.
Since the metric has negative curvature, its geodesic flow is an Anosov’s flow. Hence
the vector field Xε := X0 + εY still generates ergodic flow for ε small enough. In
particular, almost every trajectory generated by Xε has the rotation vector equal
to R(Xε) = εv. To complete the proof, consider the flow generated by Xε/ε. �

4.4. Let n = 8r + 6, v ∈ Rn be a completely irrational vector. Fix M ⊂ Tn and a
trajectory γ : R → M of a smooth flow on M constructed by Proposition 4.3. For
each x ∈ Tn, identify the tangent space TxTn with Rn in the standard way, and
then consider the family {Lx = TxM : x ∈ M} of 3-dimensional linear subspaces
of Rn. Pick a (8r)-dimensional linear subspace L ⊂ Rn which is transversal to this
family, i. e. L ∩ Lx = {0} for all x ∈ M . Transversality implies that there exist
ε > 0, a tubular neighborhood U ⊂ Tn of M , and a smooth retraction p : U → M
such that p(x + y) = x whenever x ∈ M , y ∈ L and |y| < ε.

Let α ∈ R be an approximable number. Using Proposition 4.2, construct an
r-stretching 1-periodic continuous curve γ1 : R → L such that the map f : R → L
given by

f(s) = γ1(s + α) − γ1(s)

is C1-smooth. After a suitable homothety we may assume that |γ1(s)| < ε/8, and
hence |f(s)| < ε/4, for all s ∈ R.

Denote σ = 1/3. Fix a smooth function ϕ : [0, 1 + σ] → [0, 1] such that ϕ(t) = 0
for t ∈ [0, σ] and ϕ(t) = 1 for t ∈ [1, 1+σ]. Define Γ: R× [0, 1+σ] → Tn+1 ×R by

Γ(s, t) = (γ(s + αt) + γ1(s) + f(s)ϕ(t), (s + αt) mod 1, t) ∈ Tn × S1 × R .
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4.5. Lemma. There exists c > 0 such that

(7) |Γ(s, t) − Γ(s′, t′)| ≥ c |(s − s′) mod 1|1/r

for all s, s′ ∈ R, t, t′ ∈ [0, 1 + σ].

Proof. For values of |(s−s′) mod 1| bounded away from zero, we may find a constant
c satisfying (7) since

|Γ(s, t) − γ2(s
′, t′)| ≥ min{1, 1/|α|} · |(s − s′) mod 1|

and the function x 7→ x1/r/x is bounded outside any neighborhood of zero. So it
suffices to prove the statement of lemma when |(s− s′) mod 1| is sufficiently small.

First let t′ = t = 0. We have

|Γ(s, 0) − Γ(s′, 0)| ≥ |γ(s) + γ1(s) − γ1(s
′) − γ(s′ + αt)|

≥ dist(M + γ1(s) − γ1(s
′),M) ≥ c1|γ1(s) − γ1(s

′)|

since the vector γ1(s) − γ1(s
′) lies in L and its length is less than ε. Then (7) for

t′ = t = 0 follows from the fact that γ1 is r-stretching and 1-periodic.
Since Γ(s, t)−Γ(s, 0) is a C1 (and hence Lipschitz) function of (s, t), the estimate

(7) for t′ = t = 0 implies the same for t′ = t 6= 0. Then the complete statement
follows since |t − t′| ≤ |Γ(s, t) − Γ(s, t′)| ≤ C · |t − t′| for some constant C. �

Define Γ0 : R× [0, 1+σ] → Tn+2 to be π ◦Γ where π : Tn+1×R → Tn+1×S1 =
Tn+1 is the standard factorization. Note that for t ∈ [0, σ],

Γ(s, t + 1) = (γ(s + α + αt) + γ1(s) + f(s), (s + α + αt) mod 1, t + 1)

= Γ(s + α, t) + (0, 0, 1) ∈ Tn × S1 × R ,

so

(8) Γ0(s, t + 1) = Γ0(s + α, t) for all s ∈ R, t ∈ [0, σ].

In other words, a piece of the surface Γ0(s, t) where t ∈ [1, 1 + σ] matches the one
where t ∈ [0, σ], up to the parameter shift s 7→ s+α. Γ has no other self-intersections
since the last coordinate of Γ0(s, t) is t mod 1.

Let w0 be the vector field along Γ0 given by w0(s, t) = d
dtΓ0(s, t). We are going

to consider w0(s, t) as a function of point Γ0(s, t) ∈ Tn+2. Though w0(s, t) is only
C1 as a function of (s, t), it turns out to be smoother when viewed as a function
on a subset of Tn+2.

4.6. Lemma. There exists a Cr−1-smooth vector field W0 on Tn+2 such that w0 =
W0 ◦ Γ0.

Proof. In view of (8) it suffices to prove the same statement for a similar vector
field along Γ, w(s, t) = d

dtΓ(s, t). By Whitney’s extension theorem [?] it suffices to
construct for each (s, t) ∈ R× [0, 1+σ] a smooth vector field ϕs,t in a neighborhood
of Γ(s, t) ∈ Tn+1 × R so that

|w(Γ(s′, t′)) − ϕs,t(s
′, t′)| ≤ O(|Γ(s′, t′) − Γ(s, t)|r) , (s′, t′) → (s, t) .
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Recall that γ is a trajectory of a smooth flow on M ⊂ Tn, so there is a smooth
vector field V on M such that γ′(t) = V (γ(t)) for all t ∈ R. So

w(s, t) = (αV (γ(s + αt)) + f(s)g′(t), α, 1)

is a C1-smooth function of (s, t). In particular,

(9) |w(t′, τ ′) − w(t, τ ′)| ≤ C|t′ − t|

for some C > 0. Let U be a neighborhood of M ⊂ Tn and p : U → M be a
retraction as described in 4.4. Define ϕs,t by

ϕs,t(x, y, z) = (αV (p(x − f(s)g(z))) + f(s)g′(z), α, 1) ,

x ∈ U + f(s)g(z) ⊂ Tn, y ∈ S1, z ∈ [0, 1 + σ] .

Then ϕs,t is a smooth function and ϕs,t(Γ(s, t)) = w(s, t) for all s ∈ R, t ∈ [0, 1+σ].
Since f is 1-periodic, ϕs+m,t = ϕs,t for any m ∈ Z. Also, ϕs,t does not depend on
t and ϕs,t(x, y, z) is a C1-smooth function of (s, x, y, z). Then for any m ∈ Z we
have

|w(s′, t′) − ϕs,t(Γ(s′, t′))| = |ϕs′,t′(Γ(s′, t′)) − ϕs+m,t′(Γ(s′, t′))| ≤ C|s′ − s − m|

for some constant C. Since m is arbitrary,

|w(s′, t′) − ϕs,t(Γ(s′, t′))| ≤ C|(s′ − s) mod 1|

Using 4.5 we conclude that

|w(s′, t′) − ϕs,t(Γ(s′, t′))| ≤ C|Γ(s′, t′) − Γ(s, t)|r ,

and the lemma follows. �

Thus we have a flow on Tn+2 (generated by a Cr−1-smooth vector field W0)
such that all the curves Γs

0 := Γ0(s, ·) : [0, 1] → Tn+2 are intervals of its trajectories.
Every curve Γs

0 joins the points (γ(s), s, 0) and (γ(s+α), s+α, 0) in Tn+2, and then
the similar curve Γs+α

0 forms the next piece of a trajectory. Clearly Γs
0 is homotopic

to a curve t 7→ (γ(s + αt), s + αt, t) ∈ Tn+2, so the rotation vector of the entire
trajectory is equal to (αv, α, 1), where v ∈ Rn is the rotation vector of γ (see 4.4).

Since the last two coordinates of w0(·) are the constants α and 1, we may assume
the same for W0(·), i.e., W0(·) = (W1(·), α, 1) for some smooth W1 : Tn+2 → Rn.

4.7. Let M ⊂ Tn+2 be the image of Γ0. Let W̃0 and M̃ be the lifts of W0 and
M from Tn+2 to Rn+2. Both W̃0 and M̃ are Zn+2-invariant. Define two linear
functions L and H on Rn+2 by L(x, y, z) = y − αz and H(x, y, z) = z for x ∈ Rn,

y, z ∈ R. Here are the properties of W̃0 and M̃ that we will need:

(1) W̃0 is a Cr−1-smooth vector field whose last two coordinates are α and 1.
In particular, L is constant and H increases at the constant rate 1 under
the flow generated by W̃0.

(2) M̃ ⊂ Rn+2 is invariant under the flow generated by W̃0. At least one

trajectory of W̃0 lies in M and has rotation vector (αv, α, 1).
(3) There exists c > 0 such that

|p − q| ≥ c|L(p) − L(q)|1/r for all x, y ∈ M̃.

These properties follow immediately from Lemma 4.5.
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Let g0 be a Riemannian metric on Rn+2 which induces the standard flat metric
on every hyperplane Rn+1 ×{const} and such that W̃0 is a unit-length vector field
orthogonal to these hyperplanes with respect to g0. Clearly g0 is uniquely deter-
mined, Cr−1-smooth, and Zn+2-periodic. Let ρ0 denote the distance associated
with g0. Note that L and H are 1-Lipschitz functions with respect to ρ0.

It is easy to construct a Cr−2-smooth Zn-periodic function ϕ : Rn+2 → R such
that ϕ|M̃ ≡ 0 and ϕ(x) ≥ ρ0(x,M̃)r−1 for all x ∈ Rn+2. Define a Riemannian
structure g on Rn+2 by g = g0/(1 + ϕ)2. g0 is periodic and Cr−2-smooth.

Let ρ be the metric determined by g and let ‖·‖ be the stable norm of ρ. We
will prove that the unit sphere of ‖·‖ is nonsmooth at the point (αv, α, 1) ∈ Rn+2.
First note that ‖(αv, α, 1)‖ ≤ 1 by (2) above.

4.8. Lemma. There exists an ε > 0 such that

ρ(p, q) ≥ |H(p) − H(q)| + ε|L(p) − L(q)|

whenever H(p) − H(q) is integer, p, q ∈ Rn+2.

Proof. Without loss of generality we may assume 0 ≤ H(p) < 1 and H(q) ≥ H(p).
Since ρ is a length metric, there is a sequence of points p0 = p, p1, . . . , pN = q such
that ρ(p, q) =

∑

ρ(pi, pi+1) and for each i = 0, . . . , N − 1 either H(pi+1) = H(pi),
or H(pi+1) = H(pi) + 1 and a shortest curve joining pi and pi+1 lies between
the hyperplanes H−1(H(pi)) and H−1(H(pi+1)). It suffices to prove the desired
estimate for each pair of points (pi, pi+1) instead of (p, q). In the case H(pi) =
H(pi+1) it holds with ε = 1 because L is 1-Lipschitz with respect to ρ.

Let H(q) = H(p) + 1 and let γ be a C1-smooth curve joining p and q and
which lies between the hyperplanes {H = H(p)} and {H = H(q)}. We assume
that γ : [0, 1] → (Rn+2, ρ) is a constant speed parametrization. Let ℓ(γ) denote the
length of γ in (Rn+2, ρ). We have to check that ℓ(γ) ≥ 1 + ε|L(p)−L(q)| for some
ε > 0 independent of γ, p and q.

Consider the map f : Rn+1 × [0, 2] → Rn+2 defined as follows: for x ∈ Rn+1,

y ∈ [0, 2], f(x, y) is the y-shift of the point (x, 0) ∈ Rn+2 along the vector field W̃0.
Clearly f preserves hyperplanes of the form {H = const}, and f−1 is a change of

variables in Rn+1 × [0, 2] which transforms W̃0 into the (n+2)nd coordinate vector
field. Since f is a Zn+1-periodic C1-smooth diffeomorphism, there are constants
c1, c2 > 0 such that

|x − y|/c1 ≥ ρ0(f(x), f(y)) ≥ c1|x − y| for all x, y ∈ Rn+1 × [0, 2]

and
|x − y| ≥ c2|L ◦ f(x) − L ◦ f(y)|1/r whenever x, y ∈ f−1(M̃).

Note that L ◦ f is the (n + 1)st coordinate function on Rn+1 × [0, 2].
We may write γ(t) = f(γ1(t), γ2(t)) for some γ1 : [0, 1] → Rn+1 and γ2 : [0, 1] →

[0, 2]. Clearly g2(t) = H ◦ γ(t) for all t. Since the vector field W̃0 is orthogonal to
the hyperplanes {H = const} with respect to g̃, we have

‖γ′(t)‖g = (1 + ϕ(γ(t)) · ‖g′(t)‖g0
≥ (1 + ϕ(γ(t))

√

c1γ′
1
2 + γ′

2
2 .

Let δ = |L(p) − L(q)|. Consider the following cases.
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Case 1: δ ≥ 2. Then ℓ(γ) ≥ ρ(p, q) ≥ |L(p) − L(q)| = δ ≥ 1 + δ/2. In the
remaining cases we suppose δ < 2.

Case 2: ρ0(p,M̃) and ρ0(q,M̃) are less than c3δ
1/r where c3 = c1c2/3. It follows

that γ1(0) and γ1(1) lie within (1
3c2δ

1/r)-neighborhood of f−1(M̃) in Rn+1× [0, 2],

so |γ1(0) − γ1(1)| ≥ 1
3c2δ

1/r. Then

ℓ(γ)2 =

∫ 1

0

‖γ′(t)‖2
g ≥

∫ 1

0

c1γ
′
1
2

+ γ′
2
2

≥ c1|γ1(1) − γ1(0)|2 + |γ2(1) − γ2(0)|2 ≥ 1 +
c1c

2
2

9
δ2/r .

Since r ≥ 2, it follows that ℓ(γ) ≥ 1+ c4δ where c4 can be easily expressed in terms
of c1, c2 and the upper bound for δ (that is, 2).

Case 3: ρ0(p,M̃) ≥ c3δ
1/r (or similar case with q). Let ℓ0 denote length with

respect to ρ0 and let γ0 be the starting interval of γ such that ℓ0(γ0) = 1
2c3d

1/r.

Then γ0 lies entirely outside the (1
2c3δ

1/r)-neighborhood of M in (Rn+2, ρ0). In

this region, we have ϕ ≥ ( 1
2c3δ

1/r)r−1 = c5δ
1−1/r. Therefore

ℓ(γ) ≥ ℓ0(γ) + c5δ
1−1/rℓ0(γ0) ≥ 1 + c6δ

1/rδ1−1/r = 1 + c6δ

where c6 = c3c5/2.
In all three cases, ℓ(γ) ≥ 1 + εδ for ε = min{1/2, c4, c6}. �

4.9. Corollary. ‖·‖ ≥ H + ε|L|. �

Since ‖(αv, α, 1)‖ = 1 and L(αv, α, 1) = 0, both of the linear functions H − εL
and H + εL support the unit ball of ‖·‖ at the point (αv, α, 1). It follows that the
unit sphere of ‖·‖ is nonsmooth at (αv, α, 1).
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