
SOME OPEN PROBLEMS FOR COHERENT CONFIGURATIONS

ILIA PONOMARENKO

1. Introduction

Coherent configurations were introduced independently by D. Higman [42] as a
tool to study permutation groups, and by B. Weisfeiler and A. Leman [69] in con-
nection with the graph isomorphism problem. In subsequent twenty years, except
for a seminal Babai’s paper [2] on an upper bound for the order of uniprimitive
permutation groups, the main attention was paid to association schemes [6] and
distance-regular graphs [11]. By the end of 90s, the theory of coherent configura-
tions received an impetus related to a deeper study of the homogeneous case [33,74]
and new applications to the graph isomorphism problem. The theory, developed in
the mid-2000s, is presented in a special issue of the European Journal of Combina-
torics [64]. In spite of several important results obtained in recent years (including
Babai’s algorithm testing graph isomorphism in quasipolynomial time [3]), it should
be recognized that the general theory of coherent configuration is far from being
complete.

This text presents some general problems in the theory of coherent configura-
tions. The list of these problems is not exhaustive and mainly reflects the tastes of
the author, who became acquainted with coherent configurations, researching the
graph isomorphism problem. In particular, it does not include many interesting
problems, arising in the structural theory and representation theory; two surveys
concerning these topics can be found in [76] and [34], respectively. However, we
believe that a solution of each of presented problems can lead to a better under-
standing of coherent configurations and further development of the theory.

We do not give a sufficient motivation for the presented problems, focusing
mainly on the context in which they arise. We divided them into seven groups,
each of which is allocated to a separate section. Sections 2–7 contain the problems
concerning, respectively, exponentiation of a coherent configuration by a group,
primitive coherent configurations, combinatorial bases, equivalenced coherent con-
figurations, the Klin conjecture, and the separability number. In Section 8, we
present a number of specific problems that are not related to each other. Unfor-
tunately, at present there is no common system of notation and concepts in the
theory of coherent configurations. Therefore, for the sake of convenience, we have
collected the relevant material in Section 9.

Notation. In what follows, Ω always denotes a finite set of cardinality n. The
symmetric group of Ω is denoted by Sym(Ω), and also Sym(n) if Ω = {1, . . . , n}.
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2. Exponentiation

Let m be a positive integer, G ≤ Sym(m), and X a coherent configuration. Then
the group G acts as an isomorphism group of the direct sum or tensor product of
m copies of X . Denoting this coherent configuration by Xm in both cases, one
can see that the algebraic fusion (Xm)G is canonically isomorphic, respectively,
to the wreath product X o G [31, Subsecion 3.3] and exponentiation X ↑ G of the
configuration X by the group G [23, Section 3]. In the former case, we also have
X oG = X o Y, where Y is the coherent configuration associated with G.

Question 2.1. How to define the exponentiation X ↑ Y of the coherent configura-
tions X and Y so that if Y is associated with a group G, then X ↑ Y = X ↑ G?

It is easily seen that if X is of degree n, then X ↑ G has a fusion isomorphic to
the Hamming scheme

H(n,m) = Tn ↑ Sym(m).

On the other hand, it is well known (see e.g. [11, Theorem 9,2,1]) that

Aut(H(n,m)) = Sym(n) ↑ Sym(m),

where the right-hand side denotes the wreath product of Sym(n) by Sym(m) in the
product action. Thus, if we need to use the O’Nan-Scott theorem [73, Theorem 2.4]
to analyze the automorphism group of a coherent configuration, then we should be
able to solve the following computational problem.

Problem 2.2. Given a primitive coherent configuration X , test whether it has a
fusion isomorphic to H(m,n) with m > 1 and n > 1, and if so, then find this fusion
and an explicit isomorphism from it onto H(m,n).

This problem can be solved in polynomial time in n whenever X is associated
with a group of odd order: by [62], one can efficiently find the group Aut(X ) and
then apply algorithm from [24, Subsection 5.1]. In fact, we do not even know
any efficient algorithm to test whether a given primitive permutation group is a
subgroup of the wreath product in product action of two smaller groups.

It is a folklore that Aut(X oY) = Aut(X ) oAut(Y). In the case of exponentiation,
it was proved in [23, Section 3] that X ↑ G is schurian (respectively, primitive) if X
is schurian (resp. G is transitive and X is primitive and non-regular). Moreover, it
was observed there that

Aut(X ) ↑ G ≤ Aut(X ↑ G) ≤ Aut(X ) ↑ G(1),

where G(1) is largest subgroup of Sym(m) that has the same orbits as G (both
inclusions are attained for X = T2 and for G = Alt(5) ≤ Sym(6) and G = Alt(4),
respectively). In particular, this shows that the group Aut(X ↑ G) preserves the
product decomposition Ωm.

Problem 2.3. Find the automorphism group of X ↑ G in terms of Aut(X ) and G.

In fact, the exponentiation can be defined in slightly general situation. Namely,
suppose we are given a family F = {Xi}mi=1 of pairwise algebraically isomorphic
coherent configurations. Then any group G ≤ Sym(m) acts on the product

Y = X1 ⊗ . . .⊗Xm
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as a group of algebraic isomorphisms. The algebraic fusion YG is called the expo-
nentiation of the family F by the group G, and denoted by F ↑ G.1 This enables
us to construct algebraically isomorphic exponentiations, which are not isomorphic.
For example, let m = 2, X1 = H(4, 2) and X2 the coherent configuration associated
with the Shrikhande graph [11, p.104]. Then F ↑ Sym(2) is the coherent config-
uration associated with a Doob graph, which is a distance-regular graph with the
same parameters as the Hamming graph associated with H(4, 4). Thus, the coher-
ent configurations F ↑ Sym(2) and H(4, 4) are algebraically isomorphic. They are
not isomorphic, because no Doob graph is isomorphic to a Hamming graph.

Question 2.4. Is it true that any coherent configuration algebraically isomorphic
to F ↑ G is isomorphic to F ′ ↑ G′ for some family F ′ and a group G′ such that
|F ′| = |F| and G′ ≤ Sym(m)?

3. Primitive coherent configurations

By Sims’s conjecture proved in [15], the maximal subdegree of a primitive group
is bounded from above by a function of the minimal subdegree. Since the subde-
grees of a transitive group are equal to the valences of the coherent configuration
associated with this group, the following conjecture is true in the schurian case.

Conjecture 3.1. (L. Babai) The maximal valency nmax of a primitive coherent
configuration X is bounded from above by a function of the minimal valency nmin.

The conjecture is true if the degree of X is a prime [36] or nmin ≤ 2 [70, pp.71-72].
Even for nmin = 3, the validity of the conjecture is not known (some partial results
on primitive coherent configurations with nmin = 3 can be found in [7] and [41]).
In this connection, it is also worth mentioning result [19, Theorem 3] stating that

nmin ≤ 2cm

for some constant c > 0, where m is the minimal multiplicity of a nonprincipal
irreducible representation of the adjacency algebra of X in the standard represen-
tation.

Only a few is known on antisymmetric primitive coherent configurations X , i.e.
those in which s 6= s∗ for all nonreflexive s ∈ S. It is easily seen that in this case,
Aut(X ) is a group of odd order. Therefore, in the schurian case, from the Feit-
Thompson theorem, it follows that the socle of Aut(X ) is an elementary abelian
regular group. This implies that X is isomorphic to a Cayley scheme over this
group, and, hence, the coherent configurations X is commutative.

Question 3.2. What is the minimal positive integer m = m(n) for which every
m-closed primitive antisymmetric coherent configuration X of degree n is commu-
tative?

One can see that m can be taken of order n1/3 up to a polylogarithmic fac-
tor. Indeed, in this case, from [68, Theorem 4], it follows that X is symmetric
or b(X ) ≤ m; however, in the latter case, the (m + 1)-closedness of X implies
the schurity [22, Theorem 4.8]. It should be remarked that at present, we know
not so many examples of antisymmetric primitive coherent configurations: except
for schurian ones, there are several constructions producing rank 3 configurations

1In fact, this was the original definition of the exponentiation in [23, Section 3].
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(e.g. [57] and [32, Theorem 2.6.6]), by means of which one can get configurations of
larger ranks via the exponentiation by a transitive group of odd order (Section 2).

The following question is taken from [61, p.11] and goes back to H. Wielandt: is
it true that if a point stabilizer of a primitive permutation group G has a nontrivial
subgroup with k non-singleton orbits, then k + 1 is greater or equal than the rank
of G? We note that the orbits of any subgroup of G forms an equitable partition of
the coherent configuration associated with G (the defining property of an equitable
partition a coherent configuration X is that the adjacency matrix of the correspond-
ing equivalence relation on the points of X commutes with the adjacency matrix
of each basis relation). Thus, a combinatorial analog of the Wielandt question can
be formulated as follows.

Question 3.3. Let Π be an equitable partition of a primitive coherent configuration
of rank r that has 1 ≤ k < |Π| non-singleton classes. Is it true that k + 1 ≥ r?

For k = 1, the answer is “yes” by [45, Theorem 3.1]. Since the fibers of any
fission of X forms an equitable partition, the latter result shows also that the only
primitive fusion of the wreath product X o Y is of rank 2 provided that the degrees
n and m of the configurations X and Y are greater than one: in this case, as the
fission, one can take the direct sum of X and the complete configurations on nm−n
points.

Question 3.4. For which coherent configurations, the only primitive fusion of it
is of rank 2?

We do not think that the coherent configurations in Question 3.4 can be com-
pletely characterized. Instead, we are interested in enough general sufficient con-
ditions providing the corresponding property. An example of such a condition is
closely related with a concept of B-group [71, Section 25], by which we mean a
group G such that any primitive group containing a regular subgroup isomorphic
to G, is 2-transitive. Any abelian group of composite order having a cyclic Sylow
subgroup is a B-group [71, Theorem 25.4]. A careful analysis of the proof shows
that, in fact, the only primitive Cayley scheme over G is of rank 2. Thus, every
Cayley scheme of rank at least 3 over the group G gives the coherent configuration
in Question 3.4.

In [11, p.68], a conjecture on a possibe structure of a primitive symmetric Cayley
scheme over an abelian group was formulated. A counterexample was found by
A. E. Brouwer in [9]. We believe that a modified conjecture below could be true.2

In what follows, under an LS-scheme, we mean a coherent configuration, all the
basis graphs of which are strongly regular and have the same type: Latin square or
negative Latin square.

Conjecture 3.5. Let X be a nontrivial primitive Cayley scheme over an abelian
group. Then one of the following statements holds:

(1) X has a fusion isomorphic to the exponentiation of smaller schemes,
(2) X is isomorphic to a Cayley scheme over the direct product of elementary

abelian groups,
(3) X is an LS-scheme.

2This statement appeared after discussions with M. Muzychuk and S̆.Miklavic̆.
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Conjecture 3.5 is true when the scheme X is schurian [52, Theorem 1.1]. It should
also be remarked that in each of these three cases, there is a scheme that does not
satisfy the conditions of the two other cases. To see this, let X be the coherent
configuration of the Schrikhande graph [11, p.104]. Then we are in case (3) and
not in case (1). Since, the only abelian regular subgroup of the group Aut(X ) is
isomorphic to Z4 × Z4, we are also not in case (2). An easy argument shows that
X ↑ Z3 belongs to case (1) and does not belong other cases. Finally, any strongly
regular graph on 4000 = 5325 points [9] gives an example belonging only to case (2).

4. Combinatorial base of a coherent configuration

Let X be the coherent configuration associated with a permutation group G.
Then, obviously,

b(G) ≤ b(X ),

where b(G) is the base number of G. This inequality can be strict, because X is also
associated with the group G(2) = Aut(X ),3 whereas, in general, b(G) 6= b(G(2)).
On the other hand, the equality b(Aut(X )) = b(X ) holds for cyclotomic schemes
[26, Theorem 1.2], for schurian primitive antisymmetric coherent configurations
that are not a fission of a Hamming schemes [62, Theorem 9.1] and the coherent
configurations associated with some finite simple permutation groups [63]).

Question 4.1. How big can b(X ) be in comparison with b(Aut(X )), where X is a
(primitive) schurian coherent configuration X .

Clearly, b(Aut(X )) = 0 if and only if b(X ) = 0. A pure combinatorial charac-
terization of coherent configurations of groups G with b(G) = 1 [26, Theorem 9.3]
shows that b(Aut(X )) = 1 if and only if b(X ) = 1 in the schurian case. No answer
is known when b(Aut(X )) = 2 (some partial results are discussed in the end of this
section).

In [23, Corollary 4.8], it was proved that b(X ) ≤ nav for all nontrivial primitive
coherent configurations X , where nav is the average valency of X . If the Babai
conjecture 3.1 was true, then this would imply that b(X ) is bounded from above
by a function on nmin. Again, nothing is known even for nmin = 3.

Conjecture 4.2. The base number of a primitive coherent configuration X is
bounded from above by a function of the minimal valency nmin.

By [67, Theorem 1.3], all primitive groups of odd order have a base of size at
most 3. This result was slightly generalized in [62, Theorem 9.1], where it was
proved that b(X ) ≤ 3 for any schurian primitive antisymmetric coherent configu-
ration X . If we drop the schurity condition, then the upper bound b(X ) ≤ log n
is unknown even under an additional assumption that X is (log n)-closed. This
suggests the following question.

Question 4.3. What is the minimal positive integer m for which b(X ) ≤ 3 for
every m-closed primitive antisymmetric coherent configuration X?

From [18, Section 5] (see also [1]), it follows that ifm in Question 4.3 is a constant,
then the problem of finding a nontrivial factor of a univariable polynomial over a
finite field can be solved efficiently assuming the generalized Riemann hypothesis.

3According to [72], one can define the 2-closure G(2) of a permutation group G as the auto-

morphism group of the coherent configuration associated with G.
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General upper bounds for the base number of a nontrivial primitive coherent
configuration X were given in [2, Theorem 2.4] in terms of n, rk(X ), and nmax,
and in [23, Corollary 4.8] in terms of nav (see above). We observe that if X is
equivalenced of valency k = log n, then these results give the upper bounds cn and
log n, respectively; the situation is completely reversed for k = cn. The primitivity
assumption is essential in both results. On the opposite side, it was proved in [63]
that b(X ) ≤ 2 for a homogeneous coherent configuration X , whenever

2c(nmax − 1) < n,

where c is the maximum number c(s) =
∑
r∈S c

s
rr∗ with nonreflexive s ∈ S.

Problem 4.4. Given an integer k ≥ 3, find a nontrivial sufficient condition in
terms of intersection numbers of a homogeneous coherent configuration X to guar-
antee the fulfillment of the inequality b(X ) ≤ k.

From [22, Subsection 7.6], it follows that b(X ) ≤ log log q, where X is the co-
herent configuration of rank 4 associated with a projective plane of order q. One
can see that in this case, b(X ) ≥ k for some k ≥ 4, only if every k points of the
projective plane form a proper subplane whenever among these points there is a
quadrangle. Thus, the base of X is large only if the plane has sufficiently many dif-
ferent subplanes. It should be remarked that such a plane can not be Desarguesian
(in fact, in the Desarguesian case, b(X ) ≤ 5).

Question 4.5. Is it true that there is an integer b ≥ 5 such that the base number
of the coherent configuration associated with a projective plane is at most b?

5. Equivalenced coherent configurations

Following [58], a pseudocyclic scheme X can be defined as an equivalenced co-
herent configuration of valency k such that

c(s) = k − 1

for all s ∈ S#, where c(s) is defined as in Section 9.7. A natural example of a
pseudocyclic scheme is given by a Frobenius scheme, by which we mean the coher-
ent configuration associated with a Frobenius group in its standard permutation
representation (the one point stabilizer coincides with the Frobenius complement).4

It turns out [58, Theorem 7.4] that any pseudocyclic scheme of valency k > 1 and
rank at least 4(k−1)k3 is a Frobenius scheme (if k = 1, then the scheme is regular).
This bound was improved to 6(k − 1)2 in [16]

Problem 5.1. Given an integer k > 1, find the minimum number r = r(k) such
that any pseudocyclic scheme of valency k > 1 and rank r is a Frobenius scheme.

Given an affine plane of order q, one can construct a pseudocyclic scheme X on q2

points of this plane: every (nonreflexive) basis graph of X is a disjoint union of q
complete graphs, the vertices of which are the points of the affine lines belonging
to a given parallel class. Thus, X is of valency q − 1 and rank q + 2 (there are
exactly q+ 1 parallel classes). As was observed in [58, Theorem 4.1], the scheme X

4Thus, any Frobenius scheme is schurian, but the automorphism group of it is not necessarily

a Frobenius group.
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is schurian if and only if the affine plane is Desarguesian. Since there are infinitely
many non-Desarguesian affine planes, we conclude that

r(k) ≥ k + 3

for infinitely many k’s.

Let p be a prime. In [36, Theorem 3.3], it was proved that every homogeneous
coherent configuration X of degree p is a commutative pseudocyclic scheme. From
the above mentioned result, it follows that X is schurian whenever

p > ck3

for some constant c > 0. We do not believe that the exponent 3 here is best possible.
In fact, we do not know any nonschurian homogeneous coherent configuration of
degree p and rank greater than 3.

Question 5.2. What is the maximal rank of a nonschurian homogeneous coherent
configuration of prime degree?

Concerning the rank 3 case, one can find sporadic examples with p = 19, 23, 29
in the catalog of small association schemes [35]. The construction described in [32,
Theorem 2.6.6] enables us to construct an antisymmetric scheme of degree 2n + 1
and rank 3 from any antisymmetric scheme of degree n and rank 3. Statement 3
in Theorem 2.6.6 from that paper states that the obtained scheme is non-schurian
for n ≥ 7. However, the proof of this statement was not presented there. I was
able to prove this only under an additional assumption that the original scheme
has intransitive automorphism group. However, using this statement and the above
sporadic examples, I cannot construct any infinite family of non-schurian schemes
of prime degree and rank 3.

Question 5.3. Whether there exists an infinite family of non-schurian schemes of
prime degree and rank 3?

One can see that the coherent configuration of a permutation group is pseu-
docyclic (respectively, equivalenced) if and only if the group is Frobenius (respec-
tively, 3/2-transitive). On the other hand, a recent complete characterization of
3/2-transitive groups [53] shows that if such a group has rank r and subdegree k,5

then it is a Frobenius group, whenever

r > ck2

for some c > 0 and the degree is large enough. Thus, the following conjecture is
true at least in the schurian case.

Conjecture 5.4. Every equivalenced coherent configuration X of valency k and
rank r > ck2 is pseudocyclic, whenever the degree of X is large enough.

Conjecture 5.4 is true for k ≤ 3. Indeed, for k = 1, this obvious. In [46], this
was proved for k = 3. Finally, let X be an equivalenced coherent configuration of
valency 2. Then X is commutative and no multiplicity of a nonprincipal irreducible
representation of the adjacency algebra of X in the standard representation, equals 1
[44, Lemma 4.2]. This immediately implies that all of these multiplicities equal 2.
Thus, X is pseudocyclic.

5This exactly means that the equivalenced coherent configuration associated with this group

is of rank r and valency k.
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Every imprimitive 3/2-transitive group is a Frobenius group [71, Theorem 10.4].
A natural analog of this theorem for coherent configurations could be formulated
as follows: every imprimitive equivalenced coherent configuration X is a Frobenius
scheme. If this was true, then Conjecture 5.4 holds in imprimitive case. However,
we can prove this statement only if X is 2-closed [23, Theorem 5.11]. This suggests
the following weakening of Conjecture 5.4.

Question 5.5. Is Conjecture 5.4 is true if the coherent configuration X is 2-closed?

It is easily seen that every coherent configuration with all valences equal to one
is schurian and separable. However, there exist non-schurian and non-separable
quasi-thin coherent configurations, i.e., those in which ns ≤ 2 for all s ∈ S. In
homogeneous case, they were in a sense characterized in [59, Theorem 1.1]. How-
ever, this result cannot be considered as final. First, because nothing is known in
non-homogeneous case. Second, even in homogeneous case it is not clear how broad
is the class of non-schurian and/or non-separable such schemes. A partial result
obtained in [59] states that any homogeneous coherent configuration of degree n
and maximal valency 2 is schurian whenever

n2 > 3n/7,

where n2 is the number of basis relations of valency 2.

Question 5.6. Is it possible to find a necessary and sufficient condition for a
quasi-thin coherent configuration to be schurian and/or separable?

6. The Klin conjecture

Let G be an undirected graph. Following [40,65], we say that two subgraphs of G
are of the same type with respect to a pair (α, β) of vertices if both contain α and β
and there exists an isomorphism of one onto the other mapping α to α and β to β.

Definition 6.1. The graph G satisfies the t-vertex condition for t ≥ 2 if the number
of t-vertex subgraphs of a given type with respect to a given pair (α, β) of vertices
depends only on whether α and β are equal, adjacent, or nonadjacent.

Clearly, the graph G is regular (resp. strongly regular) if and only if it satisfies
the t-vertex condition for t = 2 (resp. t = 3). Moreover, an n-vertex graph satisfies
the n-vertex condition if and only if it is a rank 3 graph, i.e. the associated coherent
configuration of rank 3 is schurian. A lot of examples of non-rank 3 strongly regular
graphs satisfying the 4-vertex condition can be found in [49].

Conjecture 6.2. (M.Klin, see [32, p.74]) There exists an integer t0 such that any
strongly regular graph satisfying the t0-vertex condition is of rank 3.

Let us cite some results supporting the Klin conjecture. The class of strongly
regular graphs with fixed minimal eigenvalue −m, where m ≥ 2 is an integer,
contains finitely many graphs other than Latin square graphs LSm(n) and Steiner
graphs Sm(n) [60]. The graphs with m = 2 were characterized in [66]; one can
check that each of them is of rank 3 or does not satisfy the 4-vertex condition.
Next, any LS3(n)- or S3(n)-graph satisfying the 4-vertex condition is of rank 3: for
the Steiner graphs, this follows from [48], whereas for the Latin square graphs, it
can be proved by the technique used in [17].

Problem 6.3. Check Klin’s conjecture for LSm(n)- and Sm(n)-graphs with m ≥ 4.
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In fact, 8 ≤ t0 ≤ n. The low bound was proved in [65], where an infinite
family of non-rank 3 strongly regular graphs satisfying the 7-vertex condition was
constructed. The trivial upper bound can be replaced by n/3 under an additional
assumption. Namely, we note that Definition 6.1 can be naturally extended to
directed and colored graphs. Then, one can say that a coherent configuration
X satisfies the t-vertex condition if every basis graph of X satisfies the t-vertex
condition [32, p.71]. In these terms, by [22, Theorem 6.4], any m-closed coherent
configuration satisfies the 3m-vertex condition. This implies that a strongly regular
graph is of rank 3 whenever the associated coherent configuration is n/3-closed.

Question 6.4. Is it true that there exists a function f(t) : N → N such that a
coherent configuration satisfying the t-vertex condition is f(t)-closed?

It was proved in [21, Theorem 1.1] that there exists ε > 0 such that for any suf-
ficiently large positive integer n, one can find a nonschurian coherent configuration
on n points, which is m-closed for some m ≥ bεnc. 6 Since a strongly regular graph
is of rank 3 if and only if the associated coherent configuration is schurian, this
shows that an analog of the Klin conjecture for the colored graphs is not true.

Question 6.5. Is it true that given an integer r ≥ 3, for every sufficiently large
m ≥ r, there exists a homogeneous nonschurian m-closed coherent configuration of
rank r?

Note that if the answers to Questions 6.4 and 6.5 are positive, then the Klin
conjecture is false.

Let Xi be the coherent configuration associated with a strongly regular graph Gi,
i = 1, 2. Then from [22, Theorem 6.1], one can deduce that if X1 and X2 are
algebraically m-isomorphic and G1 satisfies the m-vertex condition, then G2 also
satisfies the m-vertex condition. Thus, if the Klin conjecture is true, then G1 is
a rank 3 graph if and only if so is G2. This enables us to formulate a weaker
conjecture.

Conjecture 6.6. There exists an integer t1 such that if X1 is a schurian coher-
ent configuration of rank 3 and X2 is a coherent configuration algebraically m-
isomorphic to X1, where m ≥ t1, then X1 and X2 are isomorphic.

In terms of Section 7, this conjecture states that any schurian coherent configu-
ration X of rank 3 is t1-separable. For many of them of small degree, this is true
for t1 = 1, which exactly means that the corresponding graph of rank 3 is uniquely
determined by its parameters (see [11]). From [22, Section 7], it also follows that
for the Hamming, Johnson and Grassmann coherent configurations of rank 3, one
can take t1 = 2. We believe that Conjecture 6.6 can be proved with the help of the
classification of rank 3 groups (see [12, Section 6]).

It seems that the schurity condition in Conjecture 6.6 is essential. This is sup-
ported by the following considerations. Take two nonisomorphic finite groups G1

and G2. Then the Latin square graphs associated with the multiplication tables of
G1 and G2 are strongly regular and nonisomorphic (see [38, Section 3]). Assume,
in addition, that G1 and G2 can not be distinguished by the “m-dimensional in-
variants”7 (it can be expected that such groups do exist among the p-groups of

6Such a coherent configuration can be chosen to be homogeneous [18, p.93].
7For instance, there exists an isomorphism preserving bijection between the k-generated sub-

groups of G1 and G2 with k ≤ m.
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class 2). In this situation, it seems very likely that the coherent configurations
of rank 3 associated with the above graphs are algebraically cm-isomorphic for a
constant c > 0.

Question 6.7. Is it true that for any positive integer m there exist two algebraically
m-isomorphic coherent configurations of rank 3, which are not isomorphic?

The answer is “yes” for m = 1. However, even for m = 2, we do not know
two algebraically m-isomorphic coherent configurations of rank 3, which are not
isomorphic.

7. Separability number

According to [22, Definition 4.1], a coherent configuration X is said to be m-
separable for a positive integer m if every algebraic m-isomorphism from X to
another coherent configuration is induced by a combinatorial isomorphism. In
other words, X is m-separable if and only if X is determined up to isomorphism
by the m-dim intersection numbers (which are the ordinary intersection numbers
for m = 1). The minimal m for which X is m-separable is called the separability
number of X and is denoted by s(X ); it follows from [22, Theorem 4.3] that

1 ≤ s(X ) ≤ dn/3e.

We do not know whether the upper bound is tight, but there exists a positive
constant c < 1 such that for all sufficiently large positive integer n, one can find a
(schurian) coherent configuration of degree n admitting an algebraicm-isomorphism
with m ≥ bcnc which is not induced by a combinatorial isomorphism.

From [26, Theorem 1.1], it follows that every cyclotomic scheme X over a finite
field is determined up to isomorphism by the 3-dim intersection numbers.8 In fact,
it was proved that if X is not trivial, then

s(X ) ≤ b(Aut(X )) ≤ 3.

On the other hand, any homogeneous nonschurian coherent configuration of prime
degree p and rank 3 (see Section 5) is algebraically isomorphic to a cyclotomic
scheme over Fp. Therefore, for such a scheme, we have s(X ) = 2.

Question 7.1. Does there exist a cyclotomic scheme X over a finite field for which
s(X ) = 3?

While solving the Schur-Klin hypothesis9, infinitely many Cayley schemes X
with s(X ) ≥ 2 were found in [25]. It seems to be true that all these schemes
are determined by the 2-dim intersection numbers. On the other hand, if the
separability number of every Cayley scheme over a cyclic group was bounded from
above by a constant m ≥ 2, then the isomorphism testing of circulant graphs can
be substantially simplified in comparison with the algorithms from [27] or [56].

Question 7.2. Is it true that there exists a constant m such that s(X ) ≤ m for
every Cayley scheme X over a cyclic group?

8By a cyclotomic scheme over a finite field field F, we mean the coherent configuration associ-

ated with a group GK ≤ Sym(F), where G = F+ and K ≤ F∗.
9This hypothesis, which states that every Cayley scheme over a cyclic group is schurian, proved

to be incorrect.
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With any finite projective plane P, one can associate two coherent configurations:
homogeneous of rank 4 and non-homogeneous of rank 8 (the two fibers of it are the
points and lines of P). For both of them, the 2-extension was found in [30]. 10 It
turned out that all homogeneous (resp. non-homogeneous) coherent configurations
X of projective planes of the same order are algebraically 2-isomorphic. Thus,
s(X ) ≥ 3. It was also shown that the equality is attained when the plane P is
Desarguesian. Note that the Desarguesian projective planes in the theory of planes
are analogs of classical polygons in the theory of generalized polygons [55]. Each of
them is associated both homogeneous and non-homogeneous coherent configuration:
in the former case see [43], whereas in the latter the construction is standard.

Conjecture 7.3. There exists a constant m such that s(X ) ≤ m for the coherent
configuration X of every classical generalized polygon.

We complete the section by remarking that if the answer to Question 2.4 is “yes”
for the family F consisting of m copies of X , then it is quite natural to ask about
the separability number of the coherent configuration X ↑ G in terms of s(X ).

8. Miscellaneous

The character table of an association scheme X of rank r contains at most r2

nonzero complex numbers, with the help of which all intersection numbers of X can
be computed [6, Theorem 3.6]. For a complete coherent configuration of degree n,
the rank r equals n2 and there are exactly n3 = r3/2 nonzero intersection numbers.

Problem 8.1. Given a positive integer r, find the minimal number m = m(r) such
that for every coherent configuration of rank r, there exist m nonzero intersection
numbers that determine all the intersection numbers of X .

Every homogeneous coherent configuration of rank r ≤ 5 is commutative [70,
p.84]. The imprimitive noncommutative coherent configurations X of rank 6 were
studied in [37] (an infinite family of examples give the coherent configurations on
flags of a finite projective plane [43]). The complete description of possible array
of the intersection numbers of X in terms of two irreducible linear characters of
the its adjacency algebra can be found in [39]. However, up to now no primitive
noncommutative coherent configuration of rank 6 is known. Even in the schurian
case, the following problem is open.

Problem 8.2. Determine (up to algebraic isomorphism) all noncommutative co-
herent configuration of rank 6.

Recall that the vertex connectivity of an undirected graph is defined to be the
minimum number of vertices that one has to remove in order to disconnect the
graph. It was proved in [10] that the connectivity of any incomplete basis graph
of the coherent configuration associated with a distance-regular graph equals the
valency k of the graph provided that k > 2. For any connected undirected graph of
an arbitrary homogeneous coherent configuration X , the equality was proved under
the assumption that X is k-closed [28]. Some partial result on this problem can be
found in [50]

10In a sense, it contains other natural coherent configurations associated with a projective

plane.
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Conjecture 8.3. (A.E.Brouwer, [8]) The vertex connectivity of a connected graph
of a homogeneous coherent configuration equals the valency of the graph.

One of the basic computational problems in the coherent configuration theory
is to construct the coherent closure of a set of binary relations on Ω, which is the
smallest coherent configuration X on Ω such that each input relation is a union of
some basis relations of X . The standard way to find the coherent closure, is the
Weisfeiler-Leman algorithm, on each step of which more and more subtle partition of
Ω×Ω is constructed. Clearly, the number of such steps is bounded from above by n2.
We do not know any example, for which this bound is attained, and it is interesting
to find a tight upper bound. The running time of a practical implementation of
the Weisfeiler-Leman algorithm in [4] is O(n7); at present, the best bound of the
algorithm is O(n3 log n) [5, 47].

Question 8.4. What is the computational complexity of finding the coherent clo-
sure?

It seems to be difficult to find a nontrivial necessary and sufficient condition for
a coherent configuration to be schurian. From the computational point of view,
schurity testing is not harder than finding the automorphism group of a coherent
configuration. Indeed, as a certificate, it suffices to find any permutation group,
with which a given coherent configuration is associated. An efficient schurity testing
is quite obvious for the class of abelian groups, because in this case the homogeneous
components of the input coherent configuration are regular. In [62], a polynomial-
time algorithm to test the schurity of a antisymmetic coherent configurations was
proposed (this corresponds to the case of the groups of odd order).

Problem 8.5. Construct an efficient algorithm to test whether a given coherent
configuration X is schurian, and (if so) find a permutation group, with which X is
associated.

The problem of finding a nontrivial fixed point free automorphism of a graph
is NP-complete [54] (a fixed point free element of a given transitive group can be
found in polynomial time [13]). On the other hand, this problem can be solved in
polynomial time if the required automorphism is a full cycle [27]. In fact, the latter
paper contains also a polynomial-time for recognizing Cayley schemes over a cyclic
group. This can be considered as the first step to solving the following problem.

Problem 8.6. Construct an efficient algorithm to test whether a given coherent
configuration X is isomorphic to a Cayley scheme over a given abelian group G,
and (if so) find a regular subgroup of the group Aut(X ) that is isomorphic to G.

In general, Problem 8.6 seems to be hard. A good idea is to start with the
case when G is the direct product of a constant number of cyclic groups. Even
for G = Zp × Zp, where p is a prime, the problem is open. It should be remarked
that in this case, the recognition problem gives, as byproduct, a polynomial-time
isomorphism test for graphs isomorphic to Cayley graphs over G (this follows from
the fact that Zp × Zp is a CI-group, see [51]).

9. Coherent configurations

Throughout this section, we use the following notation. For a relation s ⊂ Ω×Ω,
we set s∗ = {(β, α) : (α, β) ∈ s} and αs = {β ∈ Ω : (α, β) ∈ s} for all α ∈ Ω. If
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S is a set of relations, then S∪ denotes the set of all unions of the elements of S,
and S∗ = {s∗ : s ∈ S}. The details on the concepts defined below can be found
in [29].11

9.1. Definitions. By a coherent configuration on a finite set Ω, we mean a pair
X = (Ω, S), where S is a partition of Ω× Ω satisfying the following conditions:

(1) 1Ω = diag(Ω× Ω) belongs to S∪,
(2) S∗ = S,
(3) given r, s, t ∈ S, the number ctrs = |αr∩βs∗| does not depend on (α, β) ∈ t.

The numbers |Ω| and |S| are called the degree and rank of X . The elements of Ω
and S are called the points and basis relations. The numbers ctrs are called the
intersection numbers.

9.2. Graphs. Any coherent configuration can be considered as a colored graph,
the colored classes of which are the basis relations. By a basis graph (resp. graph)
of X , we mean any graph with vertex set Ω and arc set s ∈ S (resp. s ∈ S∪). With
every distance-regular graph, one can associate a coherent configuration the basis
relations of which are the relations “to be at distance i”, where 0 ≤ i ≤ d with d
the diameter of the graph.

9.3. Adjacency algebra. A C-linear space A spanned by the adjacency matrices
of basis graphs of the coherent configuration X is a matrix algebra; it is called the
adjacency algebra of X . We say that X is commutative if so is A. The linear space
CΩ is anA-module and the afforded linear representation ofA is said to be standard.
When the coherent configuration X is homogeneous (see Subsection 9.7 below), the
matrix (1/n)J , where J ∈ A is the all one matrix, is a primitive central idempotent
of A; the multiplicity and degree of the afforded irreducible representation of A
equal 1. This representation of A is said to be principal.

9.4. Combinatorial isomorphisms and schurity. We say that X is (combi-
natorially) isomorphic to a coherent configuration X ′ = (Ω′, S′), if there exists a
(combinatorial) isomorphism from X onto X ′, i.e. a bijection f : Ω → Ω′ such
that sf ∈ S′ for all s ∈ S, where sf = {(αf , βf ) : (α, β) ∈ s}. The group of all
isomorphisms of the coherent configuration X to itself contains a normal subgroup

Aut(X ) = {f ∈ Sym(Ω) : sf = s, s ∈ S}

called the automorphism group of X . Conversely, if G ≤ Sym(Ω) and S is the set
of orbits of the componentwise action of G on Ω × Ω, then (Ω, S) is a coherent
configuration associated with G. A coherent configuration is called schurian if it is
associated with some permutation group.

9.5. Algebraic isomorphisms and separability. We say that X is algebraically
isomorphic to a coherent configuration X ′ = (Ω′, S′), if there exists an algebraic
isomorphism from X onto X ′, i.e. a bijection ϕ : S → S′ such that

(1) ctrs = ct
′

r′s′ , r, s, t ∈ S.

Each (combinatorial) isomorphism f from X to X ′ naturally induces an algebraic
isomorphism ϕ between these coherent configurations defined by sϕ := sf for all

11In the present text, the terminology is slightly different: we use terms “fission” and “algebraic

isomorphism” instead of “extension” and “similarity”.
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s ∈ S. A coherent configuration is said to be separable if, every algebraic isomor-
phism from it onto another coherent configuration is induced by a combinatorial
isomorphism.

9.6. Fibers and valences. Any set ∆ ⊂ Ω for which 1∆ ∈ S, is called a fiber of X .
Each fiber ∆ is associated with a homogeneous component, which is the coherent
configuration (∆, S∆), where S∆ = {s ∈ S : s ⊂ ∆2}. In particular, for any basis
relation s ∈ S there exist uniquely determined fibers ∆,Γ such that s ⊂ ∆×Γ. Set

ns = crss∗ ,

where r = 1∆. Then the number |δs| = ns does not depend on δ ∈ ∆ and is called
the valency of s.

9.7. Homogeneous coherent configurations. The coherent configuration X is
said to be homogeneous or association scheme if 1Ω ∈ S.12 In this case, ns = ns∗

for all s ∈ S. We say that a homogeneous coherent configuration X is equivalenced,
if the number k = ns does not depend on the nonreflexive relation s ∈ S; in this
case, k is called the valency of X . When k = 1, the coherent configuration X is said
to be regular (or, in terminology of [75], thin). Another example of a homogeneous
coherent configuration gives a Cayley scheme, which is a coherent configuration X
the points of which are the elements of a group G and such that Aut(X ) contains
the right regular representation of G.

9.8. Primitive and imprimitive coherent configurations. A homogeneous
coherent configuration X is said to be imprimitive if the set S∪ contains an equiv-
alence relation other than 1Ω and Ω2. Otherwise, we say that X is primitive. A
homogeneous coherent configuration X is primitive if and only if every basis graph
of X is strongly connected.

9.9. Fissions and fusions. There is a natural partial order ≥ on the set of all
coherent configurations on the set Ω. Namely, given two coherent configurations
X = (Ω, S) and X ′ = (Ω, S′) we set

X ≥ X ′ ⇔ S∪ ⊂ (S′)∪.

In this case, we say that X ′ is the fission of X and X is the fusion of X ′. The least
and the greatest elements with respect to that order are respectively the trivial
scheme TΩ (or Tn if Ω = {1, . . . , n}) and complete coherent configuration. The
basis relations of the first of them are 1Ω and Ω2 \{1Ω}, whereas the basis relations
of the second one the singletons in Ω2.

9.10. Algebraic fusion. Let G be a group of algebraic isomorphisms of the co-
herent configuration X . For s ∈ S, denote by sG the union of the basis relations
sg, g ∈ G, and set SG = {sG : s ∈ S}. Then XG := (Ω, SG) is a coherent con-
figuration. We say that X ′ is an algebraic fusion of X if X ′ = XG for a suitable
group G.

9.11. Combinatorial base. For any point α ∈ Ω, denote by Xα the smallest
coherent configuration on Ω, for which

1α ∈ Sα and S ⊂ S∪α ,

12A discussion on the term ”associative scheme” can be found in [14].
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where Sα is the set of basic relations of Xα. We say that the points α, β, . . . forms
a (combinatorial) base of X if the coherent configuration Xα,β,... is complete. The
smallest size of a base is denoted by b(X ) and is called the base number of X .

9.12. Direct sum, tensor and wreath products. In this subsection, we define
coherent configurations that can be constructed in a regular way from X and a
coherent configuration X ′ = (Ω′, S′).

The direct sum X �X ′ is defined to be the coherent configuration on the disjoint
union of Ω and Ω′ the basis relations of which are s ∈ S, s′ ∈ S′, ∆ × ∆′, and
∆′ ×∆, where ∆ and ∆′ are fibers of X and X ′.

The tensor product X⊗X ′ is defined to be the coherent configuration on Ω×Ω′ the
basis relations of which are s⊗s′ = {((α, α′), (β, β′)) : (α, β) ∈ s and (α′, β′) ∈ s′},
where s ∈ S and s′ ∈ S′.

The (imprimitive) wreath product X o X ′ is defined to be the coherent configura-
tion on Ω× Ω′ the basis relations of which are s⊗ 1Ω′ and (Ω)2 ⊗ s′, where s ∈ S
and s′ ∈ S′.

9.13. m-dim intersection numbers. For a positive integer m, the m-extension

X̂ = X̂ (m) of a coherent configuration X is defined to be the smallest coherent
configuration on Ωm, which is a fission of the m-fold tensor product Xm and for
which the set ∆ = diag(Ωm) is a union of fibers. The intersection numbers of the
m-extension are called the m-dimensional numbers of the configuration X .

9.14. m-closed coherent configurations. By the m-closure of X , we mean the
coherent configuration

X̄ = (X̂∆)f
−1

,

where X̂∆ is the restriction of the m-extension X̂ to the diagonal ∆ and f : Ω→ ∆
is the bijection taking α to (α, . . . , α). In general, X̄ ≥ X ; we say that X is m-closed
if X̄ = X .

9.15. Algebraic m-isomorphisms. Two coherent configurations X and X ′ are
said to be algebraically m-isomorphic if there exists an algebraic m-isomorphism
ϕ : X → X ′. The latter means that ϕ is an algebraic isomorphism having an

m-extension, by which we mean an algebraic isomorphism ψ : X̂ → X̂ ′ of the
m-extensions such that

∆ψ = ∆′ and rψ = rϕm

for all basis relations r of Xm, where ∆′ = diag(Ω′
m

), and ϕm : Xm → X ′m is the
algebraic isomorphism induced by ϕ.
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