World-sheet Duality for Superspace σ-Models

Thomas Quella
University of Amsterdam

Symposium on Theoretical and Mathematical Physics
Euler International Mathematical Institute, St. Petersburg

(with C. Candu, T. Creutzig, G. Götz, V. Mitev, H. Saleur and V. Schomerus in various combinations)

[This research receives funding from an Intra-European Marie-Curie Fellowship]
Motivation

World-sheet

- 2D Riemann surface (w/wo boundaries)

Target space

- Riemannian manifold (plus extra structure)

Appearance of superspace σ-models

- **String theory**
 - Quantization of strings in flux backgrounds
 - AdS/CFT correspondence
 - Moduli stabilization in string phenomenology

- **Disordered systems**
 - Quantum Hall systems
 - Self avoiding random walks, polymer physics, ...
 - Efetov’s supersymmetry trick
Ingredients

- Superspace σ-model encoding geometry and fluxes
- Pure spinors: Curved ghost system
- BRST procedure

[Berkovits et al] [Grassi et al] [Hogeveen, Skenderis] [...]

Features

- Manifest target space supersymmetry
- Manifest world-sheet conformal symmetry
- Geometry encodes physical properties
- Action quantizable, but quantization hard in practice
Step 1: Trading disorder for supersymmetry

\[
\langle \mathcal{O} \rangle = \left(\frac{\int D F \mathcal{O} e^{-S(F)}}{\int D F e^{-S(F)}} \right) = \left(\int D F D B \mathcal{O} e^{-\left[S(F) + S(B) \right]} \right)
\]

\[
= \int D F D B \mathcal{O} e^{-S_{\text{eff}}(F, B)} \quad \leftarrow \text{supersymmetric}
\]

Typically:

\[
S_{\text{eff}}(F, B) = S_{\text{free}} + g \int d^2x (B \bar{B} + F \bar{F})^2
\]

Step 2: Hubbard-Stratonovich transformation

- Remove BF interaction by introducing auxiliary field
- Integrate out B and F

\[\Rightarrow \text{Supersymmetric } \sigma\text{-model} \]
The structure of this talk

Outline

1. Supercoset σ-models
 - Occurrence in string theory and condensed matter theory
 - Ricci flatness and conformal invariance

2. Some particular examples
 - Three-dimensional Anti-de Sitter space
 - Superspheres
 - Projective superspaces

3. Quasi-abelian perturbation theory
 - Exact boundary spectra
 - World-sheet duality for supersphere σ-models
Appearance of supercosets

String backgrounds as supercosets...

<table>
<thead>
<tr>
<th>Minkowski</th>
<th>$\text{AdS}_5 \times S^5$</th>
<th>$\text{AdS}_4 \times \mathbb{CP}^3$</th>
<th>$\text{AdS}_2 \times S^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>super-Poincaré Lorentz</td>
<td>PSU(2,2</td>
<td>4) ÷ SO(1,4) × SO(5)</td>
<td>OSP(6</td>
</tr>
</tbody>
</table>

[Metsaev, Tseytlin] [Berkovits, Bershadsky, Hauer, Zhukov, Zwiebach] [Arutyunov, Frolov]

Supercosets in statistical physics...

<table>
<thead>
<tr>
<th>IQHE</th>
<th>Dilute polymers (SAW)</th>
<th>Dense polymers</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U(1,1</td>
<td>2)$ ÷ $U(1</td>
<td>1) \times U(1</td>
</tr>
</tbody>
</table>

[Weidenmüller] [Read, Saleur]
Symmetric and generalized symmetric spaces

Definition of the cosets

\[G/H = \{ g \in G \, | \, gh \sim g, \, h \in H \} \]

Some additional requirements

- \(H \subset G \) is invariant subgroup under an automorphism
- Ricci flatness \(\Leftrightarrow \) super Calabi-Yau \(\Leftrightarrow \) vanishing Killing form

\[f f = 0 \]

Examples: Cosets of \(PSU(N|N) \), \(OSP(2S + 2|2S) \), \(D(2, 1; \alpha) \).

Remark: To describe supergroups choose \(K = \frac{K \times K}{K_{\text{diag}}} \)
Properties of supercoset models

Properties in a nutshell

- Conformal invariance
- Family of CFTs with continuously varying exponents
- Geometric realization of supersymmetry: $g \mapsto hg$
- Completely new type of 2D conformal field theory
 - **Standard methods do not apply!**
- Integrability

Kagan, Young [Babichenko] [Pohlmeyer] Lüscher ... Bena, Polchinski, Roiban [Young]
Sketch of conformal invariance

The β-function vanishes identically...

$$\beta = \sum \text{certain } G\text{-invariants} = 0$$

Ingredients:
- Invariant form: $\kappa^{\mu\nu}$
- Structure constants: $f^{\mu\nu\lambda}$
Sketch of conformal invariance

The β-function vanishes identically...

\[f \bullet f = 0 \]

Ingredients:
- Invariant form: $\kappa^{\mu \nu}$
- Structure constants: $f^{\mu \nu \lambda}$
The β-function vanishes identically...

There is a unique invariant rank 3 tensor!

[Bershadsky, Zhukov, Vaintrob'99] [Babichenko'06]
The β-function vanishes identically...

There is a unique invariant rank 3 tensor!

[Bershadsky, Zhukov, Vaintrob'99] [Babichenko'06]
AdS$_3 \times S^3$ alias PSU$(1, 1|2)$
The moduli space of AdS$_3 \times S^3$

Deformed WZW models: mixed fluxes

WZW models: pure NS flux

Principal chiral model: pure RR flux

Action & physical interpretation of the PSU(1,1|2) σ-model

\[
S = fS_{\text{kin}} + kS_{\text{top}}
\]

\[
\begin{align*}
 k &= Q_5^{\text{NS}} \\
 f &= \sqrt{(Q_5^{\text{NS}})^2 + g_5^2(Q_5^{\text{RR}})^2}
\end{align*}
\]

String theory
[Berkovits,Vafa,Witten]
[Bershadsky,Vaintrob,Zhukov]

Condensed matter theory (IHQE)
[Zirnbauer]
[Bhaseen,Kog.,Sol.,Tan.,Tsvelik]
[Tsvelik]
[Obuse,Sub.,Fur.,Gruz.,Ludwig]
Recent progress

Enhanced symmetry?

1. Solve the PSU(1, 1|2) WZW model \rightarrow LCFT
2. Study marginal deformations by $S_{\text{def}} = \int \text{str}(J \cdot \text{Ad}_g(\bar{J}))$
3. Quasi-abelian deformation theory \rightarrow anomalous dimensions

$Z(f, k) \rightarrow$ Degeneracies for certain values of f and k?
OSP(4|2) Gross-Neveu model
The OSP(4|2) Gross-Neveu model

Field content
- Fundamental OSP(4|2)-multiplet \((\psi_1, \psi_2, \psi_3, \psi_4, \beta, \gamma)\)
- All these fields have conformal weight \(h = 1/2\)

Formulation as a Gross-Neveu model

\[
S_{GN} = S_{\text{free}} + g^2 S_{\text{int}}
\]

\[
S_{\text{free}} = \int \left[\bar{\psi} \partial \psi + 2 \bar{\beta} \partial \gamma + \text{h.c.} \right]
\]

\[
S_{\text{int}} = \int \left[\bar{\psi} \psi + \bar{\beta} \gamma - \gamma \bar{\beta} \right]^2
\]

Formulation as a deformed OSP(4|2) WZW model

\[
S_{GN} = S_{\text{WZW}} + g^2 S_{\text{def}}
\]

with \(S_{\text{def}} = \int \text{str}(J\bar{J})\)
More on the reformulation

- At $g = 0$ there is an affine $\hat{OSP}(4|2)_{-1/2}$ symmetry.
- It has a “bosonic” realization as an orbifold:

$$\hat{OSP}(4|2)_{-1/2} \cong \left[\hat{SU}(2)_{-1/2} \times \hat{SU}(2)_1 \times \hat{SU}(2)_1 \right] / \mathbb{Z}_2$$

Towards a boundary spectrum for $g = 0$

- Employ twisted gluing conditions.
- The spectrum can be calculated using standard techniques.
A boundary spectrum

Strong coupling \(g^2 \) \hspace{1cm} Weak coupling

Free ghosts / WZW model

The main result: The full partition function

\[
Z_{GN}(g^2 = 0) = \sum \psi_{[j_1,j_2,j_3]}^{WZW}(q) \chi_{[j_1,j_2,j_3]}(z)
\]

Energy levels

OSP(4\mid2) content

\[
\psi_{[j_1,j_2,j_3]}^{WZW}(q) = \frac{1}{\eta(q)^4} \sum_{n,m=0}^{\infty} (-1)^{n+m} q^{\frac{m}{2}(m+4j_1+2n+1)+j_1+n^2-\frac{1}{8}}
\]

\[
\times (q^{j_2-\frac{n}{2}} - q^{j_2+\frac{n}{2}+1})(q^{j_3-\frac{n}{2}} - q^{j_3+\frac{n}{2}+1})^2
\]
A boundary spectrum

![Diagram](image)

The main result: The full partition function

\[
Z_{GN}(g^2) = \sum q^{-\frac{1}{2}} \frac{g^2}{1+g^2} C_\Lambda \psi_{WZW}^{[j_1,j_2,j_3]}(q) \chi_{[j_1,j_2,j_3]}(z)
\]

\[
\psi_{WZW}^{[j_1,j_2,j_3]}(q) = \frac{1}{\eta(q)^4} \sum_{n,m=0}^{\infty} (-1)^{n+m} q^{\frac{m}{2}(m+4j_1+2n+1)+j_1+n+\frac{1}{8}} \times (q^{j_2-\frac{n}{2}} - q^{j_2+\frac{n}{2}+1})(q^{j_3-\frac{n}{2}} - q^{j_3+\frac{n}{2}+1})
\]
Interpolation of the spectrum

At the two extremal values of g^2, the spectrum has the form...

\[WZW \text{ model } (g = 0) \quad \text{Strong deformation } (g = \infty) \]
Interpolation of the spectrum

At the two extremal values of g^2, the spectrum has the form...

WZW model ($g = 0$)

Strong deformation ($g = \infty$)

Supersphere σ-model at $R \to \infty$
A world-sheet duality for superspheres
The supersphere $S^{3|2}$

Realization of $S^{3|2}$ as a submanifold of flat superspace $\mathbb{R}^{4|2}$

$$\vec{X} = \begin{pmatrix} \vec{x} \\ \eta_1 \\ \eta_2 \end{pmatrix}$$

with

$$\vec{X}^2 = \vec{x}^2 + 2\eta_1\eta_2 = R^2$$

Realization as a symmetric space

$$S^{3|2} = \frac{\text{OSP}(4|2)}{\text{OSP}(3|2)}$$
The supersphere σ-model

Action functional

$$S_\sigma = \int \partial \vec{X} \cdot \bar{\partial} \vec{X}$$

with

$$\vec{X}^2 = R^2$$

Properties of this σ-model

- There is no topological term
- Conformal invariance for each value of R
- Central charge: $c = 1$
- Non-unitarity

[Read, Saleur] [Polchinski, Mann] [Candu, Saleur]2 [Mitev, TQ, Schomerus]

The space of states on a space-filling brane

$$\prod X^{a_i} \prod \partial X^{b_j} \prod \partial^2 X^{c_k} \ldots$$

and

$$\vec{X}^2 = R^2$$

\Rightarrow Products of coordinate fields and their derivatives
A world-sheet duality for superspheres?

Supersphere σ-model

Large volume

Strong coupling

$R^2 = 1 + g^2$

Strong coupling

Weak coupling

$1/R$

geometric

$Z_{\sigma}(q, z, R)$

non-geometric

$Z_{GN}(q, z, g^2)$

OSP(4|2) Gross-Neveu model

$[\text{Candu, Saleur}]^2 [\text{Mitev, TQ, Schomerus}]$
Quasi-abelian deformations
Radius deformation of the free boson

A Neumann brane on a circle of radius R...

\[Z_N(R) = \frac{1}{\eta(q)} \sum_{w \in \mathbb{Z}} q^{\frac{w^2}{2R^2}} = \frac{1}{\eta(q)} \sum_{w \in \mathbb{Z}} q^{\frac{w^2}{2R_0^2(1+\gamma)}} \]

Interpret this as a deformation...

\[R = R_0 \sqrt{1 + \gamma} \]

Anomalous dimensions

\[\delta \gamma h_w = \frac{w^2}{2R_0^2} \left[\frac{1}{1 + \gamma} - 1 \right] = -\frac{\gamma}{1 + \gamma} \frac{w^2}{2R_0^2} = -\frac{\gamma}{1 + \gamma} C_2(w) \]
Quasi-abelianness of supergroup WZW theories

The effective deformation for conformal dimensions

- Vanishing Killing form \Rightarrow the perturbation is quasi-abelian (for the purposes of calculating anomalous dimensions)

 \[[\text{Bershadsky,Zhukov,Vaintrob}, \text{TQ,Schomerus,Crutzig}] \]

- The currents behave as if they were abelian

 \[J^\mu(z) J^\nu(w) = \frac{k\kappa^{\mu\nu}}{(z-w)^2} + \frac{if^{\mu\nu\lambda} J^\lambda(w)}{z-w} \sim \frac{k\kappa^{\mu\nu}}{(z-w)^2} \]

- For $\widehat{\text{OSP}(4|2)}^{-\frac{1}{2}}$ a representation Λ is shifted according to

 \[\delta h_\Lambda(g^2) = -\frac{1}{2} \frac{g^2 C_\Lambda}{1 + g^2} = -\frac{1}{2} \left(1 - \frac{1}{R^2} \right) C_\Lambda \]
Projective superspaces
New features

- Non-trivial topology
 \[\Rightarrow \text{ Monopoles and } \theta\text{-angle} \]
- Symplectic fermions as a subsector
 \[\theta\text{-angle } \Rightarrow \text{ twists} \]
- \(\sigma\)-model brane spectrum can be argued to be
 \[
 Z_{R,\theta}(q, z) = q^{\frac{1}{2} \lambda(R, \theta) \left[1 - \lambda(R, \theta) \right]} \sum_{\Lambda} q^{f(R, \theta) C_{\Lambda}} \psi_{\Lambda}^\infty(q) \chi_{\Lambda}(z)
 \]
 \[\text{twist} \quad \text{Casimir} \quad \text{result for } R \to \infty \]
- Currently no free field theory point is known...

Remark: The family contains the supertwistor space \(\mathbb{CP}^{3|4} \)
Conclusions
Conclusions

- Using supersymmetry we determined the full spectrum of anomalous dimensions for certain boundary spectra in various models as a function of the radius.
- The result provided strong evidence for a duality between supersphere σ-models and Gross-Neveu models.

World-sheet methods appear to be more powerful than expected!
Several open issues remain...
- More points with enhanced symmetry?
- Deformation of the bulk spectrum
- Correlation functions
- Interplay with integrability ("S-matrix approach")
- Path integral derivation?

Outlook
- Other spaces: AdS-spaces, conifold, nil-manifolds, ...
- Applications to condensed matter physics, ...