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Holomorphic factorization

Free boson QFT in d=2:

eq. of motion 00 ¢(z,z) =0 solvedby ¢ = ¢1(2) + ¢2(2)

Observation: Same phenomenon for various aspects
of a large class of 2-d QFT models

on two-dimensional world sheets
— 2-d rational conformal field theories = RCFT —

In particular: Bulk fields ¢ of a RCFT

carry rep’s of both left and right world sheet symmetries & = &,

with multiplicities

\ﬁ
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CFT — Conformal symmetry /extensions
2-d == Virasoro algebra / affine Lie algebras / W-algebras / ...
—> conformal vertex algebra [ Borcherds 1986, ... ]

RCFT — Rational conformal vertex algebra V [Huang 2004 ]

Rep category Rep(V): a modular tensor category
m  Tensor product U ® V' of V-modules and of intertwiners, V=1 =: Uy

= Abelian, C-linear, semisimple, finite U = EBU,L.@”Z'
i€T

K ’ S b
®= Braiding = Twist r = Duality U m
S I . S

= Braiding maximally non-degenerate:  det SIS # 0
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Bulk fields

CFT — Conformal symmetry /extensions
2-d — Virasoro algebra / affine Lie algebras / W-algebras / ...
—> conformal vertex algebra [ Borcherds 1986, ... ]

RCFT — Rational conformal vertex algebra V [Huang 2004 ]

Rep category Rep(V): a modular tensor category

Bulk field & = &7

— two simple objects U;,U; € C :=Rep(V)

and amorphism o € Hom(U; ®Uj,1)

Recall: Free boson CFT: geometric separation of left- and right-movers
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Separate locally left- and right-movers:

= double X of world sheet X

~

X = orientation bundle over X modulo identification of points in fibers over 0X

To connect to X: Fatten the world sheet:

AN

m connecting manifold My OMx =X

M~x = interval bundle over X modulo identification over 90X

Field theory on Mx non-dynamical \T> W \
\v
~ 3-d TFT .

~» ribbon graphs

m X embeddedas Myx O X x {t=0}




Bulk fields

double X
(orientation bundle over X ) /~

connecting manifold Mx
(interval bundle over X ) /~

embedding X x {t=0} C Mx




Bulk fields

double X
(orientation bundle over X ) /~

connecting manifold Mx
(interval bundle over X ) /~

embedding X x {t=0} C Mx

St. Petersburg 30.06_.05 — p.6/15



Bulk fields

double X
(orientation bundle over X ) /~

connecting manifold Mx
(interval bundle over X ) /~

embedding X x {t=0} C Mx

o € Hom(U; ® U;, 1)
=0;C

St. Petersburg 30.06_.05 — p.6/15



Bulk fields

double X
(orientation bundle over X ) /~

connecting manifold Mx
(interval bundle over X ) /~

embedding X x {t=0} C Mx

o € Hom(U; ® U;, 1)
=0;C

too restrictive

St. Petersburg 30.06_.05 — p.6/15
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Frobenius algebras

Special case: meromorphic CFT
m C = ety
m 2-d lattice topological CFT

= corresponds to separable Frobenius algebra A in Ject

properties of A «—— triangulation independence
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Frobenius algebras

Prescription for general RCFT:
= triangulate the world sheet (trivalent vertices)
= label edges (ribbons) by a Frobenius algebra A inC A, S A

= label vertices (coupons) in X\0X
by product / coproduct morphisms

>

= connect to bulk field ribbons by
suitable morphisms in Hom(U; ®A®QU;, A)

More precisely: A a symmetric special Frobenius algebra

In addition: = reversion = isomorphism A < A°PP squaring to twist
when X is unoriented

m prescription for vertices of triangulation on X when 90X # ()
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Bulk fields

Prescription involves choices:
= Triangulation

m Insertion of ribbon graph fragment for edge (two possibilities)
= Insertion of ribbon graph fragment for vertex (three possibilities)

Properties of algebra A <= correlation functions
+ restriction of

; independent of all choices
morphism spaces

Restriction of Hom(U; @ A®U;, A) to a subspace:
= A is A-bimodule

B U;QAQU; is A-bimodule
U; &A@~ U; € Obj(Caja)

m  Subspace = space of bimodule morphisms Left-module intertwiner:

PN
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Bulk fields 1]

Prescription involves choices:

= Triangulation
m Insertion of ribbon graph fragment for edge (two possibilities)
= Insertion of ribbon graph fragment for vertex (three possibilities)

Properties of algebra A <= correlation functions (see below)

+ restriction of independent of all choices
morphism spaces

Restriction of Hom(U; @ A®U;, A) to a subspace:
= A is A-bimodule
B U;QAQU; is A-bimodule
U; &A@~ U; € Obj(Caja)

m  Subspace = space of bimodule morphisms

Prescription:

Space of bulk fields = Hompy 4 (U;&TA®™Uj, A)
with chiral labels i,5
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Prescription: Space of bulk fields \T \
{ @,LO; } = HOIDA|A(U¢®+A®_U7', A) W
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m RCFT ~» vertex algebra V

M ~» C = Rep(V) — modular tensor category

m ~» extended 3-d TFT [ Reshetikhin-Turaev 1991, ... ]
functor tfte: 3-Cobe — lect

= Conjecture: [ Witten 1989, ... ]
state spaces H(X) = spaces of conformal blocks of RCFT

Correlation function C'(X) for world sheet X with field insertions

— “expectation value of product of field operators”
depending on position of insertions and on moduli of X

Holomorphic factorization for correlation functions: C(X) € H(X)

in words: a correlation function on X is a vector in the state space of the double X




Correlation functions

Ribbon graphs in 3-manifolds vs morphismsin C :

m RCFT ~» vertex algebra V

M ~» C = Rep(V) — modular tensor category

m ~» extended 3-d TFT [ Reshetikhin-Turaev 1991, ...
functor tfte: 3-Cobe — lect

= Conjecture: [ Witten 1989, ... ]
state spaces H(X) = spaces of conformal blocks of RCFT

Correlation function C'(X) for world sheet X with field insertions

— “expectation value of product of field operators”
depending on position of insertions and on moduli of X

Holomorphic factorization for correlation functions: C(X) € H(X)

Idea: Specify the vector C'(X) as a concrete cobordism () — X
(3-manifold + ribbon graph)
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chiral labels «—— C="TRep(V), simpleobjects =2U;, iecT

full non-diagonal CFT «+— symmetric special Frobenius algebra A inC
bulk fields &, «— bimodule morphisms Homy 4 (U; T A®™~ Uj;, A)

boundary conditions «+— A-modules M € Obj(Ca)

boundary fields v~ «—  module morphisms Homa (M ® U, N)

defect lines «—— A-B-bimodules Y € Obj(C4|p)
defect fields ©);7 «—  bimodule morphisms Homy g (U; Y @~ Uj, Z)
CFT on unoriented «—— Jandl algebra

world sheet

simple current models «—  Schellekens algebra A =2 ., Ly for G < Pic(C)
internal symmetries «— Picard group Pic(Cqj4)

Kramers-Wannier «— duality bimodules Y: YV®,Y € Pc(Caja)
like dualities
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See:

JF, Ingo Runkel, Christoph Schweigert:

TFT construction of RCFT correlators

I: Partition functions Nucl. Phys. B 646 (2002) 353—-497
II: Unoriented world sheets Nucl. Phys. B 678 (2004) 511-637
lll: Simple currents Nucl. Phys. B 694 (2004) 277-353

I\VV: Structure constants
and correlation functions  Nucl. Phys. B 715 (2005) 539-638

& Jens Fjelstad:

V: Proof of modular invariance and factorisation

& Jurg Frohlich:

Correspondences of ribbon categories Adv. Math. ... (2005) ...

hep-t h/ 0204148
hep-t h/ 0306164
hep-t h/ 0403157

hep-t h/ 0412290

hep-t h/ 0503194

mat h. CT/ 0309465



Results

Finding the possible structures of symmetric special Frobenius algebra
(if any) on an object of a modular tensor category C is a finite problem

(and only one of the equations to be solved is nonlinear)

For any symmetric special Frobenius algebra A inC
constructing Ca and Cy4)4 Is a finite problem

In any modular tensor category C there is only a finite number
of Morita classes of simple symmetric special Frobenius algebras

(simple: A a simple A-bimodule)

A symmetric special Frobenius algebra can be reconstructed
from the operator product of boundary fields w MM

(for any full CFT with at least one consistent boundary condition M )
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For A a symmetric special Frobenius algebra in a modular tensor category C:
m  (C(X) isindependent of the choices involved in the prescription

Choices to be made:
= Triangulation Tx Prop. V:3.1,V:3.7 (fusion and bubble moves)

m Local orientations at vertices of Tx Sec. 1I1:3.1,1V:3.2,1V:3.3
for unoriented X

= |nsertion of ribbon graph fragments
for vertices and edges of Tx Sec. I:5.1,1:3.1
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m Thm.[:5.1 (Torus partition function)
The coefficients Z;; of C(T;0) =3, ;c7 Zi;j [Xi, T) ®[X;,—T)
satisfy [, Z]=0 for I'eSL(2,7Z)
and Z;; = dim HomA|A(U¢ RTAR™ U;, A) € L>q

A U
N
A . .
Lemmal:5.2; IS an idempotent
A
A U

Composition with the idempotent projects End(A®U) — Endy 4 (A®~ U)
Analogously: End(V ® A) — Endgj4(V & A)
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else
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C(¢1¢2§P3)m/ = o TP ngs $1=(3,7,%1,p1,[v1],0r2)
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Three bulk fields on the sphere
Sec. IV:44
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Three bulk fields on the sphere
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Three defect fields on the sphere
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Three boundary fields on the disk
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Sec. 1V:4.3

C=>5c(®;M¥)5 B(z,y,5)s
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m  OPE coefficients for the fundamental correlation functions

Sec. IV:4.4  Three bulk fields on the sphere

Sec. IV:4.5  Three defect fields on the sphere

Sec. IV:4.2  Three boundary fields on the disk

Sec. IV:4.3  One bulk and one boundary field on the disk
Sec. IV:4.6/7 One bulk/defect field on the cross cap
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(f Injective continuous orientation preserving map open annulus — X
no defect field insertions )
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Thm. V: 2.9 Bulk factorisation:
: : u —1 u u
C(X) = Zz’,jezza,ﬁ dim(U; )dim(U;) (Cajlk )ga G?,ibk (C(I}l?ijl}ééﬁ (X)))

Thm. V:2.6 Boundary factorisation:

C(X) = ez Xa,p dmUs) (31 s, 1) 5, G (CIPEGE(X)))

with «, 8 bases of Hom 4 (M; ® Uy, M) and Hom 4 (M, ® Uz, M;)

(f injective, continuous 2-orientation preserving map strip Re — X
f(OR:NR¢) C 0X M, ;. boundary conditions at left/right end )
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Thm. V:2.1 Covariance:
C(Y) = f(C(X)) ([f] € Map(X,Y) orientation preserving
fi = tfte (X x [-1,0]UY x [0,1])/~ )

Proof: consequence of triangulation independence
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