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1. QUESTION ABOUT RANDOM SUMS

a1 > ap > --- >0, Zan<oo
Y1,Y5,--- >0 i.i.d.
hi(z) == —log Ee *Y (z > 0)

S = ZanYn >0
n

h(z) := — log Ee™ %% (z > 0)

In terms of hq, what are asymptotic properties
of h 7

§2. HARMONIC SUMS
h(z) =) hi(anz)
n

Harmonic sum ! Use Mellin transforms !

FIRST USE IN THIS KIND OF PROBLEM.
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83. MELLIN TRANSFORMS (see F& S book)

DEFN. f*(s) = J§5° f(x)zsdz.

EXAMPLES 1. f(zx) = e % — f*(s) =T (s).

2. F(z) =421 = ) = m .
[Exercise in Hankel contours.]

SEPARATION for Harmonic sums: by using

Y — anx,
> 1
h*(s) = an/O hi(anx)x® ~dx
’ —s [ s—1
> bnaz® [ ha(y)y* "ty
n 0

p— >l:f_(S) ana;,;s
n

where the first factor is MT for base function
and the second factor is GDS.




INVERSION.

1 c+100
f(:v)=—/c £*(s)z~ds.

211 —100

MT of derivative.

(f*(s) = —-(s = 1)f*(s — 1).
MAPPING PROPERTY. Asymptotic proper-
ties of f(z) as ¢ — O or x — oo correspond
to singularities of f*. Behavior z5(logz)* (k =
GO
0,1,...) corresponds to G OFFT
corresponds to the pole at —¢.

Power &

"REASON" (k=0):

/Oowgzcs_ldajz —1 .
1 s+ &




EXAMPLE.

f(z) =log(l+z)=logz+2"1 - %x_z + ...
f(@) = s sin(ms)

FUNDAMENTAL STRIP = (—1,0),

4 mero. extension of f* to s € C.

Look for singularities in (—1,00) (only !).
Double pole at s = 0:

1 O
f*(s)=—2—|———|—... — logxz 4+ O.
s s

Simple poles at s = 4:

_ (=1y (=1 _;
TiG-p j |

f>l<




MELLIN ASYMPTOTIC SUMMATION

1. Study singularities of
1(s) and > bnay,®
n

separately.

2.Multiply singular expansions to get singular
expansion of h*(s).

3. Use (reverse) mapping property to get asy.
exp. for h(x).

Reduction of "d-dimensional harmonic sums”
to " 1-dimensional” in a special case: (say h1 =

1)
Suppose
ap = any (1) - an,y(d) ni,...ng=1,2,...
Then
A(s) = A1(s) -+ Ay(s).



§4. GAUSSIAN RANDOM FIELDS; KARHUNEN
- LOEVE

t = (t1,...,ty) €0, 1]d
X = (X)) = centered GRF
K(5,t) = Cov(X(5),X (1))

KARHUNEN-LOEVE spectral decomposition:
K(s,t) = Zanébn(g)@bn(f)
mn

where Y an, < o0, an are positive eigenvalues
and ¢, are O.N. eigenfunctions. Then

L
n
where Z,'s are i.i.d. ~ N(0,1) and

XQ::/ X2(D)df = 72 = §
IXI3:= [ X2 =Y 023

Here

1
hi(x) = —log Ee_xZ2 = ) log(1 + 2x).

From now on: Look at L(xz) = 2h(x/2).



EXAMPLE 1.X = B.M. (d = 1).
K(s,t) =sAt
Integral equation Kf = af(f Z 0) converts to
af’ 4+ f =0, f(0)=f'(1)=0.

Soln. 3iffa =ayn = [(n—1/2)7] 2,n=1,2,...
Then F.S.=(-1,—-1/2) and

L*(s) = ——— [(x/2)% = 7] ¢(~2s)
SSIN s
e simple pole at s = —1/2

e Simple pole at s =0

e analytic at s =3

BETTER: L(z) =log[[>2, <1+( i”)z 2>
n—s)<m

eractiy! log cosh(v/x)
= Y2 _log240 (exp{—x1/2}> 0



EXAMPLE 2. X = B.S. (d > 2)

Kps(s,t) = Kpp(s1,t1) - Kpy(sg, ta)

So F.S.=(—1,—3), evals. are aj = an; - an,
and
7T

Lis(s) = ——[Apm(s)]

e pole of order d at s = 3

e analytic o.w. in (—1,0)

So

Lps(x) = [@0T -1 2'/2(log 2y
+ xl/Q(Iog CU)d_Q + ...
IR

+ O@(z~ for any R

In fact the last term is exponentially small in a
power of . [



EXAMPLE 3. X = integrated B.M. (d = 1).
Studied in Kh&Shi(1998),Ch&Li(2003).

X(t) 1= /OtB(u)du — /Ot(t—u)dB(u)

K(s.t) = /OW(S — W)t — w)du.

Eigenvalues are known only as reciprocal roots
of

cosh (21/2(—z)1/4)+cos (21/2(—7;)1/4)4—2 = 0.

with F.S.=(-1,—-3z). But MIRACULOUSLY
(Hadamard’s factorization thm.: GHT(2003),
GHLT (2003)

exactly

L(z) =" log [cosh (21/2x1/4)
+ cos (21/2:c1/4) + 2} — 2log?2
=  21/2;1/4 _3|0g2
+0 (exp{—2_1/2x1/4}> .

By (direct) mapping property L* has simple
poles at s = —% and at s = 0; otherwise it is
analytic in (—1,00).



So (or from GHLT study of eigenvalue asymp-
totics):

A(s) has simple pole at s = —% and simple
ZERO at s =0. U

EXAMPLE 4. X= m-times integrated B.M.
(d=1).

Similarly, L,(x) has explicit expression involv-
ing the characteristic determinant of the boundary-
value problem,

Lm(x) — mel/(2m+2) +cm + BRm

where ¢, admits a simple explicit expression,
cm Involves determinant of a Vandermonde ma-
trix and R,, is exponentially small in g1/(2m=+2)

So:

1

— oI and has

Am(s) has simple pole at s =
simple ZERO at s = 0.
10



EXAMPLE 5. X = m-integrated B.S. (d > 2).
Notation:

O < mi<mo<...my

g = # of groups of tied m;'s (1< g<d)
t, = size of v'" group (1 <v < g)
my = common value of m; in v*" group
1
= -
2my + 2

L% (s) has pole of order ¢, at =& (Vv) and is
analytic elsewhere in (-1, 00).

THEOREM. Lz (x) has an asymptotic expan-
sion of the form

tr—1

g
La(@) = Y 3 c,p 2% (logz)¥ + Ry,
v=1 k=0

Here we can compute coefficients Cy k- The
remainder Rj, is exponentially small.

This expression can be differentiated term by
term, any number of times. [
11



§5. SMALL DEVIATIONS VIA SYTAYA (1974)

2 2
S = ||X||2 — Zanzna
mn

1
h(z) ;= — log Ee %% = EL(Qw).

THEOREM. (Sytaya) As € — O,

P(S<e¢) = (14 0(1)) [—QW(x*)Qh”(:U*)]_l/Q
x exp{— [h(z™) — ex™]}

where z* = x*(¢) is defined by
R (x*) =e. []

REMARKS. 1.) Many applications of small-
pall estimates in various norms:. connections
with metric entropy, Hausdorff dimension, LILS,
empirical processes,... Excellent surveys: W.Li
& Q-M Shao (2001), Lifshits (1997).

2.) Sytaya: STRONG SDs.

12



3.) Lifshits (1997) extended to general sums
as at start of talk.

4.) Fred & I know how to get full asymptotic
expansion (Compare Bahadur & Ranga Rao
(1960), Fill (1989).) O

If we want EXPLICIT expansions in €, we must
"reverse” (invert)

R (x*) = ¢
to get an asymptotic expansion for z* (and

thus for h(z*), h"(xz*)).

UNTIL FURTHER NOTICE, RESTRICT AT-
TENTION TO m-INTEGRATED B.S.
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6. REVERSION
Outline:

1.) Exponentially small remainders can be ig-
nored.

2.) lead-order asymptotics for z* in terms of
solution xg to

t1—1

€ = Z c1 k(1) 5171 (log z)”
k=0

Here the sum contains the terms involving high-
est power z1—1 in asymptotic expansion of
h'(x). Denote —n1 (= &7 — 1.

3.) complete asymptotic expansion for z* in
terms of elementary functions & =zg.

4.) exact computation of zg.

14



REVERSION

1.) Exponentially small remainders in expan-
sions for h can be ignored:

LEMMA. Let
R g ty—1
h(z) =Y > ¢ ¥ (logz)F,
v=1 k=0
and let x satisfy
h(Z) =e.

Then the following are each exponentially small
in a power of 1/e:

7 — 2 R0 (2) — hD(2*)  (v9).
Proof. EASY. [

15



REVERSION

For lead-order LOGARITHMIC SDs, it's enough
to get

2.) lead-order asymptotics for z*:

x* ~ T (solution dropping exp. rem.)

~ Ig (keeping only terms with x7 1)

~ X (keeping only single largest term).
So: Solve

e=cx M (logz)ir—?!

for zg.

Proof. EASY. []
16



REVERSION

3.) complete asymptotic expansion for z* (or
x) in terms of elementary functions & zg:

See paper for general case: we get a complete
asymptotic expansion for z / xg in which re-
mainder estimates drop off at least by powers
of ¢m2/m=1_(This is good enough).

EXAMPLE. d = 2,0 = m1 < mo. Then I
satisfies

e =c17 V2 4 ez (1)

where 1/2 < n = np = % < 1), and zg

satisfies

ezclwal/Q (i.e., zg = =35)

Technique: We know & = 2o + (1 4+ o(1))xoyo
for some yg = o(1). Plug this into eq. (1) and
solve for yq:

17



REVERSION

e = creg P [1+ (1 + o(1))yo] /2

+(1+ 0(1))62913_77

€ 1+(1—|—0(1)) 5Y0 +(1+0(1))7€
€1

So
262
yo = (1 +0o(1)) 21,
1

(Recall here 772 = % 27.)
Now we kKnow

R 2c

=0 |1+ 5 1+ (L +o(1)n

ey
for some y; = o (6277_1).

Plug this into equation (1) and solve for yq,

ETC. |

18



REVERSION

4. exact computation of solution zg to

t1—1

e = Y c1p(1) 27 (logz)”
k=0
t1—1

= x> a (logz)"
k=0

We find a (conv.) series representation for xg.
EXAMPLE. t = 1. Solution is trivial:
e =apr ' — xg = (a—o)”. []

€
EXAMPLE. t = 2. Solution is instructive.

Change variables, from x to

w = —n (IOgaz—I—a—0>

al
We need to solve for w the equation

19



REVERSION

Solve

we' = —2 <= ~ 7 exp (—77 a_()) e) for w.
ai ai

No elementary solution, but absolutely and uni-
formly convergent series (also an asymptotic
expansion):

1
w = W_1(—z2) =logz—loglog—
y4

+ 3 drs(loglog 2)*(log )~
y4

r=0s=1
with drs given simply in terms of Stirling num-
bers [:]. Here W is a branch of Lambert W-
function

(see CGHJK(1996))

20



REVERSION

The solution can be rearranged into the form

@) @) _ 1 1
(*) dox |14+ 3 Y drs(loglog =)*(log =)~ (r+s)

r=0 s=0 € €
GENERAL t RESULT:

Again a result of the form (*) holds. []

e have completed the reversion.

21



37. EXPLICIT FORMS OF ASYMPTOTIC
EXPANSIONS FOR SDs (m-integrated B.S.,
d>2)

A.) WEAK RESULTS (¢ :=t1,m := m1)

THM.1. (independently, and in somewhat dif-
ferent form, by Karol, Nazarov, & Nikitin (2003))

1
_10gP(S <€) = (14 o(1))C(d.t,m) (1) ZmF1
€
(t—1)3242
X (Iog 1) ’ +1. []
€

Here C(d,t,m) has a complicated but explicit
expression |

THM.2. The o(1) term in Thm.1 has a com-
plete asymptotic expansion of the form

> Z Drs (Iog log 1) (Iog 1) -

r—=1 s=0 €

Here D,s = Dys(d,t,m). In particular, D11 =
2m—+1 °
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B.) STRONG RESULTS

For simplicity, assume distinct m;'s (g = d).
From Thm.1, recall (heret =t1 = 1)

—logP(S <€) = (1+0(1))E(e)
with

E(e) = Egym, (€) = C(d, 1,my) (%)””1#“

THEOREM 3. The small-ball prob. P(S <€)
satisfies

7

P(S<e) = (1+o0(1)) [m
X exp{—E(e) [1 +Z(e>}}

for some finite linear combination > (e) of ePOWers,
wherein each power is a nonzero nonnegative
integer combination of the numbers

(2m1 +2)(2my + 1)_
(2m1 4+ 1)(2my + 2)

—1/2
l?(e)]

1 >0, v=2,...,d. ]
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