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§1. QUESTION ABOUT RANDOM SUMS

a1 ≥ a2 ≥ · · · > 0,
∑

an < ∞

Y1, Y2, · · · ≥ 0 i.i.d.

h1(x) := − logEe−xY (x ≥ 0)

S :=
∑
n

anYn ≥ 0

h(x) := − logEe−xS (x ≥ 0)

In terms of h1, what are asymptotic properties

of h ?

§2. HARMONIC SUMS

h(x) =
∑
n

h1(anx)

Harmonic sum ! Use Mellin transforms !

FIRST USE IN THIS KIND OF PROBLEM.
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§3. MELLIN TRANSFORMS (see F& S book)

DEFN. f∗(s) =
∫∞
0 f(x)xs−1dx.

EXAMPLES 1. f(x) = e−x → f∗(s) = Γ(s).

2. F (x) = (1 + x)−1 → f∗(s) = π
sin(πs) .

[Exercise in Hankel contours.]

SEPARATION for Harmonic sums: by using

y = anx,

h∗(s) =
∑
n

bn

∫ ∞
0

h1(anx)xs−1dx

=
∑
n

bna−s
n

∫ ∞
0

h1(y)y
s−1dy

= h∗1(s)
∑
n

bna−s
n

where the first factor is MT for base function

and the second factor is GDS.
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INVERSION.

f(x) =
1

2πi

∫ c+i∞
c−i∞

f∗(s)x−sds.

MT of derivative.

(f ′)∗(s) = −(s− 1)f∗(s− 1).

MAPPING PROPERTY. Asymptotic proper-

ties of f(x) as x → 0 or x → ∞ correspond

to singularities of f∗. Behavior xξ(logx)k (k =

0,1, . . . ) corresponds to − (−1)k·k!
(s+ξ)k+1 . Power ξ

corresponds to the pole at −ξ.

”REASON” (k=0):
∫ ∞
1

xξxs−1dx =
−1

s + ξ
.
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EXAMPLE.

f(x) = log(1 + x) = logx + x−1 − 1

2
x−2 + . . .

f∗(x) =
π

s sin(πs)

FUNDAMENTAL STRIP = 〈−1,0〉,

∃ mero. extension of f∗ to s ∈ C.

Look for singularities in 〈−1,∞〉 (only !).

Double pole at s = 0:

f∗(s) =
1

s2
+

O

s
+ . . . ↔ logx + O.

Simple poles at s = +j:

f∗ =
(−1)j

j(s− j)
+ . . . ↔ (−1)j

j
x−j .
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MELLIN ASYMPTOTIC SUMMATION

1. Study singularities of

h∗1(s) and
∑
n

bna−s
n

separately.

2.Multiply singular expansions to get singular
expansion of h∗(s).

3. Use (reverse) mapping property to get asy.
exp. for h(x).

Reduction of ”d-dimensional harmonic sums”
to ”1-dimensional” in a special case: (say h1 ≡
1)

Suppose

an̄ = an1(1) · · · and(d) n1, . . . nd = 1,2, . . .

Then

Ā(s) = A1(s) · · ·Ad(s).
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§4. GAUSSIAN RANDOM FIELDS; KARHUNEN
- LOÈVE

t̄ = (t1, . . . , td) ∈ [0,1]d

X = (X(t̄)) = centered GRF

K(s̄, t̄) := Cov(X(s̄), X(t̄))

KARHUNEN-LOÈVE spectral decomposition:

K(s̄, t̄) =
∑
n

anφn(s̄)φn(t̄)

where
∑

an < ∞, an are positive eigenvalues
and φn are O.N. eigenfunctions. Then

X
L
=

(∑
n

√
an φn(t̄) Zn

)

where Zn’s are i.i.d. ∼ N(0,1) and

||X||22 :=
∫

[0,1]d
X2(t̄)dt̄ =

∑
n

anZ2
n = S

Here

h1(x) = − logEe−xZ2
=

1

2
log(1 + 2x).

From now on: Look at L(x) = 2h(x/2).
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EXAMPLE 1.X = B.M. (d = 1).

K(s, t) = s ∧ t

Integral equation Kf = af(f 6≡ 0) converts to

af ′′ + f = 0, f(0) = f ′(1) = 0.

Soln. ∃ iff a = an := [(n−1/2)π]−2, n = 1,2, . . .
Then F.S.= 〈−1,−1/2〉 and

L∗(s) =
π

s sinπs

[
(π/2)2s − π2s

]
ζ(−2s)

• simple pole at s = −1/2

• simple pole at s = 0

• analytic at s = j

BETTER: L(x) = log
∏∞

n=1

(
1 + x

(n−1
2)

2π2

)

exactly!
= logcosh(

√
x)

= x−1/2 − log 2 + O
(
exp{−x1/2}

)
.¤



EXAMPLE 2. X = B.S. (d ≥ 2)

KBS(s̄, t̄) = KBM(s1, t1) · · ·KBM(sd, td)

So F.S.=〈−1,−1
2〉, evals. are an̄ = an1 · · · and

and

L∗BS(s) =
π

s sinπs
[ABM(s)]d

• pole of order d at s = 1
2

• analytic o.w. in 〈−1,0〉

So

LBS(x) =
[
(2π)d−1(d− 1)!

]−1
x1/2(logx)d−1

+ x1/2(logx)d−2 + . . .

+ x1/2

+ O(x−R) for any R

In fact the last term is exponentially small in a

power of x. ¤
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EXAMPLE 3. X = integrated B.M. (d = 1).
Studied in Kh&Shi(1998),Ch&Li(2003).

X(t) :=
∫ t

0
B(u)du =

∫ t

0
(t− u)dB(u)

K(s, t) =
∫ s∧t

0
(s− u)(t− u)du.

Eigenvalues are known only as reciprocal roots
of

cosh
(
21/2(−z)1/4

)
+cos

(
21/2(−z)1/4

)
+2 = 0.

with F.S.=〈−1,−1
4〉. But MIRACULOUSLY

(Hadamard’s factorization thm.: GHT(2003),
GHLT(2003)

L(x)
exactly

= log
[
cosh

(
21/2x1/4

)

+ cos
(
21/2x1/4

)
+ 2

]
− 2 log2

= 21/2x1/4 − 3 log2

+O
(
exp{−2−1/2x1/4}

)
.

By (direct) mapping property L∗ has simple
poles at s = −1

4 and at s = 0; otherwise it is
analytic in 〈−1,∞〉.
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So (or from GHLT study of eigenvalue asymp-

totics):

A(s) has simple pole at s = −1
4 and simple

ZERO at s = 0. ¤

EXAMPLE 4. X= m-times integrated B.M.

(d = 1).

Similarly, Lm(x) has explicit expression involv-

ing the characteristic determinant of the boundary-

value problem,

Lm(x) = cmx1/(2m+2) + c̃m + Rm

where cm admits a simple explicit expression,

c̃m involves determinant of a Vandermonde ma-

trix and Rm is exponentially small in x1/(2m+2).

So:

Am(s) has simple pole at s = − 1
2m+2 and has

simple ZERO at s = 0. ¤
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EXAMPLE 5. X = m̄-integrated B.S. (d ≥ 2).

Notation:

0 ≤ m1 ≤ m2 ≤ . . . md

g := # of groups of tied mj’s (1 ≤ g ≤ d)

tν := size of νth group (1 ≤ ν ≤ g)

m̄ν := common value of mj in νth group

ξν :=
1

2m̄ν + 2

L∗̄m(s) has pole of order tν at −ξν (∀ν) and is

analytic elsewhere in 〈−1,∞〉.

THEOREM. Lm̄(x) has an asymptotic expan-

sion of the form

Lm̄(x) =
g∑

ν=1

tν−1∑

k=0

cν,k xξν (logx)k + Rm̄

Here we can compute coefficients cν,k. The

remainder Rm̄ is exponentially small.

This expression can be differentiated term by

term, any number of times. ¤
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§5. SMALL DEVIATIONS VIA SYTAYA (1974)

S = ||X||22 =
∑
n

anZ2
n,

h(x) := − logEe−xS =
1

2
L(2x).

THEOREM. (Sytaya) As ε → 0,

P(S ≤ ε) = (1 + o(1))
[
−2π(x∗)2h′′(x∗)

]−1/2

× exp {− [
h(x∗)− εx∗

]}
where x∗ = x∗(ε) is defined by

h′(x∗) = ε. ¤
REMARKS. 1.) Many applications of small-

ball estimates in various norms: connections

with metric entropy, Hausdorff dimension, LILs,

empirical processes,... Excellent surveys: W.Li

& Q-M Shao (2001), Lifshits (1997).

2.) Sytaya: STRONG SDs.
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3.) Lifshits (1997) extended to general sums

as at start of talk.

4.) Fred & I know how to get full asymptotic

expansion (Compare Bahadur & Ranga Rao

(1960), Fill (1989).) ¤

If we want EXPLICIT expansions in ε, we must

”reverse” (invert)

h′(x∗) = ε

to get an asymptotic expansion for x∗ (and

thus for h(x∗), h′′(x∗)).

UNTIL FURTHER NOTICE, RESTRICT AT-

TENTION TO m̄-INTEGRATED B.S.
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§6. REVERSION

Outline:

1.) Exponentially small remainders can be ig-

nored.

2.) lead-order asymptotics for x∗ in terms of

solution x0 to

ε =
t1−1∑

k=0

c1,k(1) xξ1−1 (logx)k

Here the sum contains the terms involving high-

est power xξ1−1 in asymptotic expansion of

h′(x). Denote −η1 := ξ1 − 1.

3.) complete asymptotic expansion for x∗ in

terms of elementary functions & x0.

4.) exact computation of x0.

14



REVERSION

1.) Exponentially small remainders in expan-

sions for h can be ignored:

LEMMA. Let

ĥ(x) :=
g∑

ν=1

tν−1∑

k=0

cν,k xξν (logx)k,

and let x̂ satisfy

ĥ′(x̂) = ε.

Then the following are each exponentially small

in a power of 1/ε:

x̂− x∗, ĥ(j)(x̂)− h(j)(x∗) (∀j).
Proof. EASY. ¤
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REVERSION

For lead-order LOGARITHMIC SDs, it’s enough

to get

2.) lead-order asymptotics for x∗:

x∗ ∼ x̂ (solution dropping exp. rem.)

∼ x0 (keeping only terms with x−η1)

∼ x̃0 (keeping only single largest term).

So: Solve

ε = c x−η1 (logx)t1−1

for x̃0.

LEMMA.

x∗ ∼ x0 ∼ x̃0

∼

 c

η
t1−1
1

· 1

ε
·
(
log

1

ε

)t1−1


1/η1

Proof. EASY. ¤
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REVERSION

3.) complete asymptotic expansion for x∗ (or
x̂) in terms of elementary functions & x0:

See paper for general case: we get a complete
asymptotic expansion for x̂ / x0 in which re-
mainder estimates drop off at least by powers
of εη2/η1−1. (This is good enough).

EXAMPLE. d = 2,0 = m1 < m2. Then x̂

satisfies

ε = c1x̂−1/2 + c2x̂−η (1)

where 1/2 < η = η2 = 2m2+1
2m2+2 < 1), and x0

satisfies

ε = c1x
−1/2
0 (i.e., x0 =

c21
ε2

)

Technique: We know x̂ = x0 + (1 + o(1))x0y0

for some y0 = o(1). Plug this into eq. (1) and
solve for y0:

17



REVERSION

ε = c1x
−1/2
0 [1 + (1 + o(1))y0]

−1/2

+(1 + o(1))c2x
−η
0

= ε

[
1 + (1 + o(1))

1

2
y0

]
+ (1 + o(1))

c2

c
2η
1

ε2η,

So

y0 = (1 + o(1))
2c2

c
2η
1

ε2η−1.

(Recall here η2
η1

= η
1/2 = 2η.)

Now we know

x̂ = x0


1 +

2c2

c
2η
1

ε2η−1 + (1 + o(1))y1




for some y1 = o
(
ε2η−1

)
.

Plug this into equation (1) and solve for y1,

ETC. !

¤
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REVERSION

4. exact computation of solution x0 to

ε =
t1−1∑

k=0

c1,k(1) x−η1 (logx)k

:= x−η
t1−1∑

k=0

ak (logx)k

We find a (conv.) series representation for x0.

EXAMPLE. t = 1. Solution is trivial:

ε = a0x−η → x0 = (
a0

ε
)η. ¤

EXAMPLE. t = 2. Solution is instructive.

Change variables, from x to

w := −η

(
logx +

a0

a1

)

We need to solve for w the equation

w ew = − η

a1
exp

(
−η

a0

a1

)
ε =: −z
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REVERSION

Solve

w ew = −z

(
= − η

a1
exp

(
−η

a0

a1

)
ε

)
for w.

No elementary solution, but absolutely and uni-

formly convergent series (also an asymptotic

expansion):

w = W−1(−z) = log z − log log
1

z

+
∞∑

r=0

∞∑

s=1

drs(log log
1

z
)s(log z)−(r+s)

with drs given simply in terms of Stirling num-

bers [ : ]. Here W is a branch of Lambert W -

function

(see CGHJK(1996))
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REVERSION

(t = 2)

The solution can be rearranged into the form

(∗) x̃0×

1 +

∞∑

r=0

∞∑

s=0

d̃rs(log log
1

ε
)s(log

1

ε
)−(r+s)




with d̃∞ = 0. ¤

GENERAL t RESULT:

Again a result of the form (*) holds. ¤

e have completed the reversion.
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§7. EXPLICIT FORMS OF ASYMPTOTIC
EXPANSIONS FOR SDs (m̄-integrated B.S.,
d ≥ 2)

A.) WEAK RESULTS (t := t1, m := m1)

THM.1. (independently, and in somewhat dif-
ferent form, by Karol, Nazarov, & Nikitin (2003))

− logP(S ≤ ε) = (1 + o(1))C(d, t, m)
(
1

ε

) 1
2m+1

×
(
log

1

ε

)(t−1)2m+2
2m+1

. ¤

Here C(d, t, m) has a complicated but explicit
expression !

THM.2. The o(1) term in Thm.1 has a com-
plete asymptotic expansion of the form

∞∑

r=1

r∑

s=0

Drs

(
log log

1

ε

)s (
log

1

ε

)−r

Here Drs = Drs(d, t, m). In particular, D11 =
(t− 1)2 2m+2

2m+1 .
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B.) STRONG RESULTS

For simplicity, assume distinct mj’s (g = d).

From Thm.1, recall (here t = t1 = 1)

− logP(S ≤ ε) = (1 + o(1))E(ε)

with

E(ε) = Ed,m1
(ε) = C(d,1, m1)

(
1

ε

) 1
2m1+1

.

THEOREM 3. The small-ball prob. P(S ≤ ε)

satisfies

P(S ≤ ε) = (1 + o(1))

[
π

m1 + 1
E(ε)

]−1/2

× exp
{
−E(ε)

[
1 +

∑
(ε)

]}

for some finite linear combination
∑

(ε) of εpowers,

wherein each power is a nonzero nonnegative

integer combination of the numbers

(2m1 + 2)(2mν + 1)

(2m1 + 1)(2mν + 2)
−1 > 0, ν = 2, . . . , d. ¤
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