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Question
Consider two parameter Gaussian random field Xi,j

with mean 0, variance 1 and

Cov(Xi,k, Xj,l) = e−(j−i)2∆̃2/(2h2(d2k+d2l))

[

1 − (j − i)2∆̃2

h2(d2l + d2k)

]

(

2dk+l

d2k + d2l

)3/2

.
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Consider two parameter Gaussian random field Xi,j

with mean 0, variance 1 and

Cov(Xi,k, Xj,l) = e−(j−i)2∆̃2/(2h2(d2k+d2l))

[

1 − (j − i)2∆̃2

h2(d2l + d2k)

]

(

2dk+l

d2k + d2l

)3/2

.

Question of interest: Find (asymptotic) distribution of

max
0<j<g,0<k<r

Xj,k, g, r → ∞
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Question
Consider two parameter Gaussian random field Xi,j

with mean 0, variance 1 and

Cov(Xi,k, Xj,l) = e−(j−i)2∆̃2/(2h2(d2k+d2l))

[

1 − (j − i)2∆̃2

h2(d2l + d2k)

]

(

2dk+l

d2k + d2l

)3/2

.

Question of interest: Find (asymptotic) distribution of

max
0<j<g,0<k<r

Xj,k, g, r → ∞

This field is stationary in the first parameter but
non-stationary in the second parameter.
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Row-wise solutions
Fix k and consider Tj = Xj,k (Tj is stationary). Several
approaches are possible here:
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Row-wise solutions
Fix k and consider Tj = Xj,k (Tj is stationary). Several
approaches are possible here:

Berman (1964) shows that max (T1, ..., Tg) behaves
asymptotically the same way as the max of g i.i.d.
Gaussian random variables. (Convergence rate too
slow, not useful here.)
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Row-wise solutions
Fix k and consider Tj = Xj,k (Tj is stationary). Several
approaches are possible here:

Berman (1964) shows that max (T1, ..., Tg) behaves
asymptotically the same way as the max of g i.i.d.
Gaussian random variables. (Convergence rate too
slow, not useful here.)

Rootzen (1983) gives a second order term to the
approximation.

Hsing, Husler and Reiss (1996) give an alternative
approach using a triangular array with increasing
correlation. (Works best for our application).
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Main idea of Hsing et al’s

Embed the sequence Ti into a triangular array {T̂j,g}.
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Main idea of Hsing et al’s

Embed the sequence Ti into a triangular array {T̂j,g}.
T̂j,g, j = 1, 2, . . . are Gaussian, mean zero, variance
one, with ρj,g satisfying log(g) (1 − ρj,g) → δj as g → ∞,

for all j.
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Main idea of Hsing et al’s

Embed the sequence Ti into a triangular array {T̂j,g}.
T̂j,g, j = 1, 2, . . . are Gaussian, mean zero, variance
one, with ρj,g satisfying log(g) (1 − ρj,g) → δj as g → ∞,

for all j.

limg→∞ P
[

maxi=1,...,g T̂i,g ≤ u(x)
]

= e−ϑe−x

, where

u(x) =
√

2 log g + x√
2 log g

− log log g+log 4π
√

8 log g
and

ϑ = P
[

V/2 +
√

δkHk ≤ δj for all j ≥ 1
]

.

V is exponential(1), Hk is a mean zero Gaussian process

with EHiHj =
δi+δj−δ|i−j|

2
√

δiδj

, V and Hk are independent.
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Extension: Hannig (2005+)
Embed the sequence Ti,j an isotropic stationary mean
0 and variance 1 Gausian random field embedded into
a triangular array {T̂i,j,g}.
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Extension: Hannig (2005+)
Embed the sequence Ti,j an isotropic stationary mean
0 and variance 1 Gausian random field embedded into
a triangular array {T̂i,j,g}.
Denote the correlation ρi,j,g = ET̂k,l,gT̂k+i,l+j,g and
assume that limg→∞(1 − ρi,j,g) log g = δi,j ∈ (0,∞].
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Extension: Hannig (2005+)
Embed the sequence Ti,j an isotropic stationary mean
0 and variance 1 Gausian random field embedded into
a triangular array {T̂i,j,g}.
Denote the correlation ρi,j,g = ET̂k,l,gT̂k+i,l+j,g and
assume that limg→∞(1 − ρi,j,g) log g = δi,j ∈ (0,∞].

limg→∞ P
(

maxi=1,...,g maxj=1,...,g T̂i,j,g ≤ ug2(x)
)

= e−θe−x

,

where

θ = P
(

V/2 +
√

δi,jHi,j ≤ δi,j , (i, j) ∈ {0, 1, 2, . . .}2 \ {(0, 0)}
)

,

and EHi,jHk,l =
δi,j+δk,l−δ|i−k|,|j−l|

2
√

δi,jδk,l

.
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Extension: Hannig (2005+)
Embed the sequence Ti,j an isotropic stationary mean
0 and variance 1 Gausian random field embedded into
a triangular array {T̂i,j,g}.
Denote the correlation ρi,j,g = ET̂k,l,gT̂k+i,l+j,g and
assume that limg→∞(1 − ρi,j,g) log g = δi,j ∈ (0,∞].

limg→∞ P
(

maxi=1,...,g maxj=1,...,g T̂i,j,g ≤ ug2(x)
)

= e−θe−x

,

where

θ = P
(

V/2 +
√

δi,jHi,j ≤ δi,j , (i, j) ∈ {0, 1, 2, . . .}2 \ {(0, 0)}
)

,

and EHi,jHk,l =
δi,j+δk,l−δ|i−k|,|j−l|

2
√

δi,jδk,l

.

Not fully satisfactory yet.
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Introduction – Kernel based smoothing
When given a data scatter-plot people commonly
assume that Yj = f(Xj) + εj where Xj and Yj are
observed and εj is i.i.d. noise. We want to estimate f .
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Introduction – Kernel based smoothing
When given a data scatter-plot people commonly
assume that Yj = f(Xj) + εj where Xj and Yj are
observed and εj is i.i.d. noise. We want to estimate f .

As an example consider:
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Introduction – Kernel based smoothing
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assume that Yj = f(Xj) + εj where Xj and Yj are
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Introduction – Kernel based smoothing
When given a data scatter-plot people commonly
assume that Yj = f(Xj) + εj where Xj and Yj are
observed and εj is i.i.d. noise. We want to estimate f .
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Introduction – Kernel based smoothing
When given a data scatter-plot people commonly
assume that Yj = f(Xj) + εj where Xj and Yj are
observed and εj is i.i.d. noise. We want to estimate f .

As an example consider:
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Introduction – Kernel based smoothing
When given a data scatter-plot people commonly
assume that Yj = f(Xj) + εj where Xj and Yj are
observed and εj is i.i.d. noise. We want to estimate f .

As an example consider:
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Introduction – Kernel based smoothing
When given a data scatter-plot people commonly
assume that Yj = f(Xj) + εj where Xj and Yj are
observed and εj is i.i.d. noise. We want to estimate f .

As an example consider:
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Introduction – Kernel based smoothing
When given a data scatter-plot people commonly
assume that Yj = f(Xj) + εj where Xj and Yj are
observed and εj is i.i.d. noise. We want to estimate f .

As an example consider:
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local linear with window width b = .016
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Introduction – Kernel based smoothing
When given a data scatter-plot people commonly
assume that Yj = f(Xj) + εj where Xj and Yj are
observed and εj is i.i.d. noise. We want to estimate f .

As an example consider:
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local linear with window width b = .002

Small Deviations and Related Topics, 2005 – p.6/20



Introduction – Kernel based smoothing
When given a data scatter-plot people commonly
assume that Yj = f(Xj) + εj where Xj and Yj are
observed and εj is i.i.d. noise. We want to estimate f .

As an example consider:
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local linear with window width b = .128
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Introduction – Kernel based smoothing
When given a data scatter-plot people commonly
assume that Yj = f(Xj) + εj where Xj and Yj are
observed and εj is i.i.d. noise. We want to estimate f .

As an example consider:

The main issue for kernel based methods is the choice
of window width b. No agreement on how properly do
this has been reached among statistician.
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Introduction — SiZer
SiZer was introduced by Chaudhury and Marron
(1999) as a tool for exploratory data analysis.
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Introduction — SiZer
SiZer was introduced by Chaudhury and Marron
(1999) as a tool for exploratory data analysis.

Instead of estimating f it addresses the question “what
features are in the data” by:

Using several bandwidth to smooth the data.

Testing whether the derivative of the smoothed “true
function” is positive or negative.
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Introduction — SiZer
SiZer was introduced by Chaudhury and Marron
(1999) as a tool for exploratory data analysis.

Instead of estimating f it addresses the question “what
features are in the data” by:

Using several bandwidth to smooth the data.

Testing whether the derivative of the smoothed “true
function” is positive or negative.

The outcome is the SiZer color map that allows us to
find “bumps in the data”.
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Example

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2
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Figure 1a

Figure 1b

log
10(h)
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Conventional SiZer analysis of the Donoho - Johnstone Blocks re-

gression, with high noise. True regression, data and scale space

shown in Figure 1a. SiZer analysis in Figure 1b.
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Size issue in conventional SiZer
Every pixel on the SiZer map corresponds to a
statistical test determining if the estimate of the first
derivative is statistically different from 0. Columns
correspond to locations and rows to bandwidths (kth
row uses bandwidth hdk).
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Size issue in conventional SiZer
Every pixel on the SiZer map corresponds to a
statistical test determining if the estimate of the first
derivative is statistically different from 0. Columns
correspond to locations and rows to bandwidths (kth
row uses bandwidth hdk).

A multiple testing procedure is required. Originally
SiZer used an ad-hoc multiple testing adjustment got
way too many false positives.
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Size issue in conventional SiZer
Every pixel on the SiZer map corresponds to a
statistical test determining if the estimate of the first
derivative is statistically different from 0. Columns
correspond to locations and rows to bandwidths (kth
row uses bandwidth hdk).

A multiple testing procedure is required. Originally
SiZer used an ad-hoc multiple testing adjustment got
way too many false positives.

If no signal is present, i.e., the data is just constant +
noise, the SiZer map should be entirely purple.
However that is often not the case.
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Simulation - original SiZer
Figure 2a

# Reds or Blues = 2

−2

−1

0

Figure 2b

# Reds or Blues = 30

−2

−1

0

Figure 2c

# Reds or Blues = 88

−2

−1

0

Figure 2d

# Reds or Blues = 573

0 0.2 0.4 0.6 0.8 1

−2

−1

0

Conventional SiZer maps, based on simulated null distributions, for 1600

equally spaced regression data points. Figures 2a, b, c and d are for

0.5, 0.75, 0.85 and 0.95, respectively, quantiles of distribution.
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SiZer distribution
Each of the r rows of the SiZer map is created by a g

of statistical tests. There are a total of g × r tests.
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SiZer distribution
Each of the r rows of the SiZer map is created by a g

of statistical tests. There are a total of g × r tests.

Under the null hypothesis of “no-signal”

Tj,k ≈ −C

∫

∞

−∞

φ′

(

j − x

hdk

)

dB(x).
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SiZer distribution
Each of the r rows of the SiZer map is created by a g

of statistical tests. There are a total of g × r tests.

Under the null hypothesis of “no-signal”

Tj,k ≈ −C

∫

∞

−∞

φ′

(

j − x

hdk

)

dB(x).

T1,1, . . . , Tg,r can be approximated by a mean 0,
variance 1, Gaussian random field with

Cov(Ti,k, Ti+j,l) = e−j2∆̃2/(2h2(d2k+d2l))

[

1 − j2∆̃2

h2(d2l + d2k)

]

(

2dk+l

d2k + d2l

)3/2

.

∆ is the distance between two pixels in the SiZer map,
hdk is the bandwidth used for the kth row.
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Solution
To do the proper multiple adjustment we need to
investigate the behavior of maxj,k Tj,k. The idea is to
use the quantile of this distribution to set up rejection
region.
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Solution
To do the proper multiple adjustment we need to
investigate the behavior of maxj,k Tj,k. The idea is to
use the quantile of this distribution to set up rejection
region.

Row-wise approach: Study a maximum of a fixed row.
The goal is to have only α% of rows to contain false
positives.
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Solution
To do the proper multiple adjustment we need to
investigate the behavior of maxj,k Tj,k. The idea is to
use the quantile of this distribution to set up rejection
region.

Row-wise approach: Study a maximum of a fixed row.
The goal is to have only α% of rows to contain false
positives.

Global approach: Study a maximum of the whole
random field. The goal is to have only α% of SiZer
maps to contain false positives.
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Row-wise solution
Consider triangular array of SiZer rows. The number of
pixels g → ∞, correlation between pixels is

Cov(T̂i,g, T̂i+j,g) = e−j2c2/(4 log g)

[

1 − j2c2

2 log g

]

This leads to δj = 3c2j2/4 and consequently
H1 = H2 = · · · = H ∼ N(0, 1).
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Row-wise solution
Consider triangular array of SiZer rows. The number of
pixels g → ∞, correlation between pixels is

Cov(T̂i,g, T̂i+j,g) = e−j2c2/(4 log g)

[

1 − j2c2

2 log g

]

This leads to δj = 3c2j2/4 and consequently
H1 = H2 = · · · = H ∼ N(0, 1).

To use Hsing et al’s theorem we need to calculate

ϑ = P

[

V/2 + j

√

3c2

4
H ≤ 3c2

4
j2 for all j ≥ 1

]

= 2Φ
(

√

3c2/4
)

− 1.
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Row-wise solution
Consider triangular array of SiZer rows. The number of
pixels g → ∞, correlation between pixels is

Cov(T̂i,g, T̂i+j,g) = e−j2c2/(4 log g)

[

1 − j2c2

2 log g

]

This leads to δj = 3c2j2/4 and consequently
H1 = H2 = · · · = H ∼ N(0, 1).

To use Hsing et al’s theorem we need to calculate

ϑ = P

[

V/2 + j

√

3c2

4
H ≤ 3c2

4
j2 for all j ≥ 1

]

= 2Φ
(

√

3c2/4
)

− 1.

Then limg→∞ P
[

maxi=1,...,g T̂i,g ≤ u(x)
]

= e−ϑe−x

.
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Row-wise solution
The way to use this in practice is

P [max
(

T̂1,g, ..., T̂g,g

)

≤ x] ≈ Φ(x)ϑg,
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Row-wise solution
The way to use this in practice is

P [max
(

T̂1,g, ..., T̂g,g

)

≤ x] ≈ Φ(x)ϑg,

Approximate the max of a fixed SiZer row by:

P [max (T1,k, ..., Tg,k) ≤ x] ≈ Φ(x)θkg, θk = 2Φ

(
√

3 log(g)∆2

4h2d2k

)

− 1.
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Row-wise solution
The way to use this in practice is

P [max
(

T̂1,g, ..., T̂g,g

)

≤ x] ≈ Φ(x)ϑg,

Approximate the max of a fixed SiZer row by:

P [max (T1,k, ..., Tg,k) ≤ x] ≈ Φ(x)θkg, θk = 2Φ

(
√

3 log(g)∆2

4h2d2k

)

− 1.

Define CR = Φ−1
(

(

1 − α
2

)1/(θ(b)g)
)

and color the pixel

blue if the corresponding Ti > CR and red if Ti < −CR.
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Row-wise solution
Figure 3a

# Reds or Blues = 0

−2

−1

0

Figure 3b

# Reds or Blues = 0
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Figure 3c

# Reds or Blues = 3
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−1

0

Figure 3d

# Reds or Blues = 80

0 0.2 0.4 0.6 0.8 1

−2

−1

0

SiZer maps for simulated null distributions, based on the new row-wise

procedure. Figures 3a, b, c and d are for the 0.5, 0.75, 0.85 and 0.95,

respectively, quantiles of the distribution.
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Global Solutions
For partial global solution compare the approximation
to the SiZer map to a Gaussian random field with
independent rows using Li and Shao (2002)
improvement of Slepian’s inequality.
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Global Solutions
For partial global solution compare the approximation
to the SiZer map to a Gaussian random field with
independent rows using Li and Shao (2002)
improvement of Slepian’s inequality.

The difference between distribution function of the
maximum of the two Gaussian random fields is
asymptotically negligible as g → ∞ and r is fixed.
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Global Solutions
For partial global solution compare the approximation
to the SiZer map to a Gaussian random field with
independent rows using Li and Shao (2002)
improvement of Slepian’s inequality.

The difference between distribution function of the
maximum of the two Gaussian random fields is
asymptotically negligible as g → ∞ and r is fixed.

The approximation for the maximum could be
calculated using the random field with independent
rows, i.e., P [max (T1,1, ..., Tg,r) ≤ x] ≈ Φ(x)(θ1+···+θr)g,
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Size problem fixed
According to our simulations the global procedure has
false positive in a little less than 5% of the “no-signal”
pictures.
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Size problem fixed
According to our simulations the global procedure has
false positive in a little less than 5% of the “no-signal”
pictures.

Row-wise procedure result are shown below however.
Roughly 5% of the rows in “no-signal” pictures are
entirely purple.
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Size problem fixed
According to our simulations the global procedure has
false positive in a little less than 5% of the “no-signal”
pictures.

Row-wise procedure result are shown below however.
Roughly 5% of the rows in “no-signal” pictures are
entirely purple.

Loss in power is not significant in the row-wise
procedure. However, the global procedure exhibits
some loss of power.
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Comments on power
Figure 8a
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Figure 8b
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Figure 8c
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Full range of SiZer analyses of the Donoho - Johnstone Blocks re-

gression, with high noise. Figures 8a, b and c show conventional,

row-wise and global SiZer versions.
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Comments on power
Figure 10a
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Figure 10c
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Full range of SiZer analyses of the British Family Incomes data.

Figures 10a, b, c and d show conventional, row-wise and global

SiZer versions.
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Conclusions
We proposed a new simultaneous adjustment
procedure for SiZer.

Because of the needed compromise between power
and false positive rate we suggest that practitioners
use the row-wise procedure.

Some issues remain to be addressed. In particular
there is a problem for small sample size/ small
bandwidth caused by the fact that in that case the test
statistics have approximately t distribution.

A second order g, r → ∞ approximation for the global
maximum would be desirable.
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