Extreme Value Theory for SiZer

Jan Hannig

hannig@stat.colostate.edu

Department of Statistics Colorado State University

Joint work with: J.S. Marron, University of North Carolina - Chapel Hill

Small Deviations and Related Topics, 2005 - p.1/20

Question

• Consider two parameter Gaussian random field $X_{i,j}$ with mean 0, variance 1 and

$$\operatorname{Cov}(X_{i,k}, X_{j,l}) = e^{-(j-i)^2 \tilde{\Delta}^2 / (2h^2(d^{2k} + d^{2l}))} \left[1 - \frac{(j-i)^2 \tilde{\Delta}^2}{h^2(d^{2l} + d^{2k})} \right] \left(\frac{2d^{k+l}}{d^{2k} + d^{2l}} \right)^{3/2}.$$

Question

• Consider two parameter Gaussian random field $X_{i,j}$ with mean 0, variance 1 and

$$\operatorname{Cov}(X_{i,k}, X_{j,l}) = e^{-(j-i)^2 \tilde{\Delta}^2 / (2h^2(d^{2k} + d^{2l}))} \left[1 - \frac{(j-i)^2 \tilde{\Delta}^2}{h^2(d^{2l} + d^{2k})} \right] \left(\frac{2d^{k+l}}{d^{2k} + d^{2l}} \right)^{3/2}$$

Question of interest: Find (asymptotic) distribution of

$$\max_{0 < j < g, 0 < k < r} X_{j,k}, \quad g, r \to \infty$$

Question

 Consider two parameter Gaussian random field X_{i,j} with mean 0, variance 1 and

$$\operatorname{Cov}(X_{i,k}, X_{j,l}) = e^{-(j-i)^2 \tilde{\Delta}^2 / (2h^2(d^{2k} + d^{2l}))} \left[1 - \frac{(j-i)^2 \tilde{\Delta}^2}{h^2(d^{2l} + d^{2k})} \right] \left(\frac{2d^{k+l}}{d^{2k} + d^{2l}} \right)^{3/2}$$

Question of interest: Find (asymptotic) distribution of

$$\max_{0 < j < g, 0 < k < r} X_{j,k}, \quad g, r \to \infty$$

This field is stationary in the first parameter but non-stationary in the second parameter.

• Fix k and consider $T_j = X_{j,k}$ (T_j is stationary). Several approaches are possible here:

- Fix k and consider $T_j = X_{j,k}$ (T_j is stationary). Several approaches are possible here:
 - Berman (1964) shows that max (T₁, ..., T_g) behaves asymptotically the same way as the max of g i.i.d. Gaussian random variables. (Convergence rate too slow, not useful here.)

- Fix k and consider $T_j = X_{j,k}$ (T_j is stationary). Several approaches are possible here:
 - Berman (1964) shows that max (T₁, ..., T_g) behaves asymptotically the same way as the max of g i.i.d. Gaussian random variables. (Convergence rate too slow, not useful here.)
 - Rootzen (1983) gives a second order term to the approximation.

- Fix k and consider $T_j = X_{j,k}$ (T_j is stationary). Several approaches are possible here:
 - Berman (1964) shows that max (T₁, ..., T_g) behaves asymptotically the same way as the max of g i.i.d. Gaussian random variables. (Convergence rate too slow, not useful here.)
 - Rootzen (1983) gives a second order term to the approximation.
 - Hsing, Husler and Reiss (1996) give an alternative approach using a triangular array with increasing correlation. (Works best for our application).

Main idea of Hsing et al's

• Embed the sequence T_i into a triangular array $\{\hat{T}_{j,g}\}$.

Main idea of Hsing et al's

- Embed the sequence T_i into a triangular array $\{\hat{T}_{j,g}\}$.
- $\hat{T}_{j,g}, j = 1, 2, ...$ are Gaussian, mean zero, variance one, with $\rho_{j,g}$ satisfying $\log(g) (1 - \rho_{j,g}) \rightarrow \delta_j$ as $g \rightarrow \infty$, for all j.

Main idea of Hsing et al's

- Embed the sequence T_i into a triangular array $\{\hat{T}_{j,g}\}$.
- $\hat{T}_{j,g}, j = 1, 2, ...$ are Gaussian, mean zero, variance one, with $\rho_{j,g}$ satisfying $\log(g) (1 - \rho_{j,g}) \rightarrow \delta_j$ as $g \rightarrow \infty$, for all j.

•
$$\lim_{g \to \infty} P\left[\max_{i=1,...,g} \hat{T}_{i,g} \le u(x)\right] = e^{-\vartheta e^{-x}}$$
, where
 $u(x) = \sqrt{2\log g} + \frac{x}{\sqrt{2\log g}} - \frac{\log\log g + \log 4\pi}{\sqrt{8\log g}}$ and
 $\vartheta = P\left[\frac{V/2 + \sqrt{\delta_r}H_r}{\sqrt{\delta_r}H_r} \le \delta_i \text{ for all } i \ge 1\right]$

V is exponential(1), H_k is a mean zero Gaussian process with $EH_iH_j = \frac{\delta_i + \delta_j - \delta_{|i-j|}}{2\sqrt{\delta_i\delta_j}}$, *V* and H_k are independent.

• Embed the sequence $T_{i,j}$ an isotropic stationary mean 0 and variance 1 Gausian random field embedded into a triangular array $\{\hat{T}_{i,j,g}\}$.

- Embed the sequence $T_{i,j}$ an isotropic stationary mean 0 and variance 1 Gausian random field embedded into a triangular array $\{\hat{T}_{i,j,g}\}$.
- Denote the correlation $\rho_{i,j,g} = E\hat{T}_{k,l,g}\hat{T}_{k+i,l+j,g}$ and assume that $\lim_{g\to\infty} (1-\rho_{i,j,g})\log g = \delta_{i,j} \in (0,\infty].$

- Embed the sequence $T_{i,j}$ an isotropic stationary mean 0 and variance 1 Gausian random field embedded into a triangular array $\{\hat{T}_{i,j,g}\}$.
- Denote the correlation $\rho_{i,j,g} = E\hat{T}_{k,l,g}\hat{T}_{k+i,l+j,g}$ and assume that $\lim_{g\to\infty} (1 - \rho_{i,j,g}) \log g = \delta_{i,j} \in (0,\infty].$

• $\lim_{g \to \infty} P\left(\max_{i=1,\dots,g} \max_{j=1,\dots,g} \hat{T}_{i,j,g} \le u_{g^2}(x)\right) = e^{-\theta e^{-x}},$ where

$$\theta = P\left(V/2 + \sqrt{\delta_{i,j}}H_{i,j} \le \delta_{i,j}, \ (i,j) \in \{0,1,2,\ldots\}^2 \setminus \{(0,0)\}\right),$$

and $EH_{i,j}H_{k,l} = \frac{\delta_{i,j} + \delta_{k,l} - \delta_{|i-k|,|j-l|}}{2\sqrt{\delta_{i,j}\delta_{k,l}}}.$

- Embed the sequence $T_{i,j}$ an isotropic stationary mean 0 and variance 1 Gausian random field embedded into a triangular array $\{\hat{T}_{i,j,g}\}$.
- Denote the correlation $\rho_{i,j,g} = E\hat{T}_{k,l,g}\hat{T}_{k+i,l+j,g}$ and assume that $\lim_{g\to\infty} (1 - \rho_{i,j,g}) \log g = \delta_{i,j} \in (0,\infty]$.

• $\lim_{g\to\infty} P\left(\max_{i=1,\ldots,g} \max_{j=1,\ldots,g} \hat{T}_{i,j,g} \le u_{g^2}(x)\right) = e^{-\theta e^{-x}},$ where

$$\theta = P\left(V/2 + \sqrt{\delta_{i,j}}H_{i,j} \le \delta_{i,j}, \ (i,j) \in \{0,1,2,\ldots\}^2 \setminus \{(0,0)\}\right),$$

and $EH_{i,j}H_{k,l} = \frac{\delta_{i,j} + \delta_{k,l} - \delta_{|i-k|,|j-l|}}{2\sqrt{\delta_{i,j}\delta_{k,l}}}.$

Not fully satisfactory yet.

• When given a data scatter-plot people commonly assume that $Y_j = f(X_j) + \varepsilon_j$ where X_j and Y_j are observed and ε_j is i.i.d. noise. We want to estimate f.

• When given a data scatter-plot people commonly assume that $Y_j = f(X_j) + \varepsilon_j$ where X_j and Y_j are observed and ε_j is i.i.d. noise. We want to estimate f.

As an example consider:

unknown function f

• When given a data scatter-plot people commonly assume that $Y_j = f(X_j) + \varepsilon_j$ where X_j and Y_j are observed and ε_j is i.i.d. noise. We want to estimate f.

As an example consider:

• When given a data scatter-plot people commonly assume that $Y_j = f(X_j) + \varepsilon_j$ where X_j and Y_j are observed and ε_j is i.i.d. noise. We want to estimate f.

As an example consider:

data and f

• When given a data scatter-plot people commonly assume that $Y_j = f(X_j) + \varepsilon_j$ where X_j and Y_j are observed and ε_j is i.i.d. noise. We want to estimate f.

As an example consider:

linear regression

• When given a data scatter-plot people commonly assume that $Y_j = f(X_j) + \varepsilon_j$ where X_j and Y_j are observed and ε_j is i.i.d. noise. We want to estimate f.

As an example consider:

cubic regression

• When given a data scatter-plot people commonly assume that $Y_j = f(X_j) + \varepsilon_j$ where X_j and Y_j are observed and ε_j is i.i.d. noise. We want to estimate f.

As an example consider:

quintic regression

• When given a data scatter-plot people commonly assume that $Y_j = f(X_j) + \varepsilon_j$ where X_j and Y_j are observed and ε_j is i.i.d. noise. We want to estimate f.

As an example consider:

local linear with window width b = .016

• When given a data scatter-plot people commonly assume that $Y_j = f(X_j) + \varepsilon_j$ where X_j and Y_j are observed and ε_j is i.i.d. noise. We want to estimate f.

As an example consider:

local linear with window width b = .002

• When given a data scatter-plot people commonly assume that $Y_j = f(X_j) + \varepsilon_j$ where X_j and Y_j are observed and ε_j is i.i.d. noise. We want to estimate f.

As an example consider:

local linear with window width b = .128

- When given a data scatter-plot people commonly assume that $Y_j = f(X_j) + \varepsilon_j$ where X_j and Y_j are observed and ε_j is i.i.d. noise. We want to estimate f.
- As an example consider:
- The main issue for kernel based methods is the choice of window width b. No agreement on how properly do this has been reached among statistician.

Introduction — SiZer

 SiZer was introduced by Chaudhury and Marron (1999) as a tool for exploratory data analysis.

Introduction — SiZer

- SiZer was introduced by Chaudhury and Marron (1999) as a tool for exploratory data analysis.
- Instead of estimating *f* it addresses the question "what features are in the data" by:
 - Using several bandwidth to smooth the data.
 - Testing whether the derivative of the smoothed "true function" is positive or negative.

Introduction — SiZer

- SiZer was introduced by Chaudhury and Marron (1999) as a tool for exploratory data analysis.
- Instead of estimating *f* it addresses the question "what features are in the data" by:
 - Using several bandwidth to smooth the data.
 - Testing whether the derivative of the smoothed "true function" is positive or negative.
- The outcome is the SiZer color map that allows us to find "bumps in the data".

Example

Conventional SiZer analysis of the Donoho - Johnstone Blocks regression, with high noise. True regression, data and scale space shown in Figure 1a. SiZer analysis in Figure 1b.

Size issue in conventional SiZer

Every pixel on the SiZer map corresponds to a statistical test determining if the estimate of the first derivative is statistically different from 0. Columns correspond to locations and rows to bandwidths (*k*th row uses bandwidth *hd^k*).

Size issue in conventional SiZer

- Every pixel on the SiZer map corresponds to a statistical test determining if the estimate of the first derivative is statistically different from 0. Columns correspond to locations and rows to bandwidths (*k*th row uses bandwidth *hd^k*).
- A multiple testing procedure is required. Originally SiZer used an ad-hoc multiple testing adjustment got way too many false positives.

Size issue in conventional SiZer

- Every pixel on the SiZer map corresponds to a statistical test determining if the estimate of the first derivative is statistically different from 0. Columns correspond to locations and rows to bandwidths (*k*th row uses bandwidth *hd^k*).
- A multiple testing procedure is required. Originally SiZer used an ad-hoc multiple testing adjustment got way too many false positives.
- If no signal is present, i.e., the data is just constant + noise, the SiZer map should be entirely purple. However that is often not the case.

Simulation - original SiZer

Conventional SiZer maps, based on simulated null distributions, for 1600 equally spaced regression data points. Figures 2a, b, c and d are for 0.5, 0.75, 0.85 and 0.95, respectively, quantiles of distribution.

SiZer distribution

• Each of the *r* rows of the SiZer map is created by a *g* of statistical tests. There are a total of $g \times r$ tests.

SiZer distribution

- Each of the *r* rows of the SiZer map is created by a *g* of statistical tests. There are a total of $g \times r$ tests.
- Under the null hypothesis of "no-signal"

$$T_{j,k} \approx -C \int_{-\infty}^{\infty} \phi'\left(\frac{j-x}{hd^k}\right) \, dB(x).$$

SiZer distribution

- Each of the *r* rows of the SiZer map is created by a *g* of statistical tests. There are a total of $g \times r$ tests.
- Under the null hypothesis of "no-signal"

$$T_{j,k} \approx -C \int_{-\infty}^{\infty} \phi'\left(\frac{j-x}{hd^k}\right) \, dB(x).$$

• $T_{1,1}, \ldots, T_{g,r}$ can be approximated by a mean 0, variance 1, Gaussian random field with

$$\operatorname{Cov}(T_{i,k}, T_{i+j,l}) = e^{-j^2 \tilde{\Delta}^2 / (2h^2(d^{2k} + d^{2l}))} \left[1 - \frac{j^2 \tilde{\Delta}^2}{h^2(d^{2l} + d^{2k})} \right] \left(\frac{2d^{k+l}}{d^{2k} + d^{2l}} \right)^{3/2}.$$

 Δ is the distance between two pixels in the SiZer map, hd^k is the bandwidth used for the *k*th row.

Solution

• To do the proper multiple adjustment we need to investigate the behavior of $\max_{j,k} T_{j,k}$. The idea is to use the quantile of this distribution to set up rejection region.

Solution

- To do the proper multiple adjustment we need to investigate the behavior of $\max_{j,k} T_{j,k}$. The idea is to use the quantile of this distribution to set up rejection region.
- Row-wise approach: Study a maximum of a fixed row.
 The goal is to have only $\alpha\%$ of rows to contain false positives.

Solution

- To do the proper multiple adjustment we need to investigate the behavior of $\max_{j,k} T_{j,k}$. The idea is to use the quantile of this distribution to set up rejection region.
- Row-wise approach: Study a maximum of a fixed row.
 The goal is to have only α% of rows to contain false positives.
- Global approach: Study a maximum of the whole random field. The goal is to have only $\alpha\%$ of SiZer maps to contain false positives.

• Consider triangular array of SiZer rows. The number of pixels $g \rightarrow \infty$, correlation between pixels is

$$\operatorname{Cov}(\hat{T}_{i,g}, \hat{T}_{i+j,g}) = e^{-j^2 c^2 / (4 \log g)} \left[1 - \frac{j^2 c^2}{2 \log g} \right]$$

This leads to $\delta_j = 3c^2j^2/4$ and consequently $H_1 = H_2 = \cdots = H \sim N(0, 1)$.

• Consider triangular array of SiZer rows. The number of pixels $g \rightarrow \infty$, correlation between pixels is

$$\operatorname{Cov}(\hat{T}_{i,g}, \hat{T}_{i+j,g}) = e^{-j^2 c^2 / (4 \log g)} \left[1 - \frac{j^2 c^2}{2 \log g} \right]$$

This leads to $\delta_j = 3c^2j^2/4$ and consequently $H_1 = H_2 = \cdots = H \sim N(0, 1)$.

To use Hsing et al's theorem we need to calculate

$$\vartheta = P\left[V/2 + j\sqrt{\frac{3c^2}{4}}H \le \frac{3c^2}{4}j^2 \text{ for all } j \ge 1\right] = 2\Phi\left(\sqrt{3c^2/4}\right) - 1.$$

• Consider triangular array of SiZer rows. The number of pixels $g \rightarrow \infty$, correlation between pixels is

$$\operatorname{Cov}(\hat{T}_{i,g}, \hat{T}_{i+j,g}) = e^{-j^2 c^2 / (4 \log g)} \left[1 - \frac{j^2 c^2}{2 \log g} \right]$$

This leads to $\delta_j = 3c^2j^2/4$ and consequently $H_1 = H_2 = \cdots = H \sim N(0, 1)$.

To use Hsing et al's theorem we need to calculate

$$\vartheta = P\left[V/2 + j\sqrt{\frac{3c^2}{4}}H \le \frac{3c^2}{4}j^2 \text{ for all } j \ge 1\right] = 2\Phi\left(\sqrt{3c^2/4}\right) - 1.$$

• Then $\lim_{g\to\infty} P\left[\max_{i=1,\dots,g} \hat{T}_{i,g} \le u(x)\right] = e^{-\vartheta e^{-x}}$

The way to use this in practice is

$$P[\max\left(\hat{T}_{1,g},...,\hat{T}_{g,g}\right) \le x] \approx \Phi(x)^{\vartheta g},$$

The way to use this in practice is

$$P[\max\left(\hat{T}_{1,g},...,\hat{T}_{g,g}\right) \le x] \approx \Phi(x)^{\vartheta g},$$

Approximate the max of a fixed SiZer row by:

$$P[\max(T_{1,k},...,T_{g,k}) \le x] \approx \Phi(x)^{\theta_k g}, \quad \theta_k = 2\Phi\left(\sqrt{\frac{3\log(g)\Delta^2}{4h^2d^{2k}}}\right) - 1.$$

The way to use this in practice is

$$P[\max\left(\hat{T}_{1,g},...,\hat{T}_{g,g}\right) \le x] \approx \Phi(x)^{\vartheta g},$$

Approximate the max of a fixed SiZer row by:

$$P[\max(T_{1,k},...,T_{g,k}) \le x] \approx \Phi(x)^{\theta_k g}, \quad \theta_k = 2\Phi\left(\sqrt{\frac{3\log(g)\Delta^2}{4h^2d^{2k}}}\right) - 1.$$

• Define $C_R = \Phi^{-1} \left(\left(1 - \frac{\alpha}{2} \right)^{1/(\theta(b)g)} \right)$ and color the pixel blue if the corresponding $T_i > C_R$ and red if $T_i < -C_R$.

SiZer maps for simulated null distributions, based on the new row-wise procedure. Figures 3a, b, c and d are for the 0.5, 0.75, 0.85 and 0.95, respectively, quantiles of the distribution.

Global Solutions

 For partial global solution compare the approximation to the SiZer map to a Gaussian random field with independent rows using Li and Shao (2002) improvement of Slepian's inequality.

Global Solutions

- For partial global solution compare the approximation to the SiZer map to a Gaussian random field with independent rows using Li and Shao (2002) improvement of Slepian's inequality.
- The difference between distribution function of the maximum of the two Gaussian random fields is asymptotically negligible as $g \to \infty$ and r is fixed.

Global Solutions

- For partial global solution compare the approximation to the SiZer map to a Gaussian random field with independent rows using Li and Shao (2002) improvement of Slepian's inequality.
- The difference between distribution function of the maximum of the two Gaussian random fields is asymptotically negligible as $g \to \infty$ and r is fixed.
- The approximation for the maximum could be calculated using the random field with independent rows, i.e., $P[\max(T_{1,1}, ..., T_{g,r}) \leq x] \approx \Phi(x)^{(\theta_1 + \dots + \theta_r)g}$,

Size problem fixed

 According to our simulations the global procedure has false positive in a little less than 5% of the "no-signal" pictures.

Size problem fixed

- According to our simulations the global procedure has false positive in a little less than 5% of the "no-signal" pictures.
- Row-wise procedure result are shown below however.
 Roughly 5% of the rows in "no-signal" pictures are entirely purple.

Size problem fixed

- According to our simulations the global procedure has false positive in a little less than 5% of the "no-signal" pictures.
- Row-wise procedure result are shown below however.
 Roughly 5% of the rows in "no-signal" pictures are entirely purple.
- Loss in power is not significant in the row-wise procedure. However, the global procedure exhibits some loss of power.

Comments on power

Full range of SiZer analyses of the Donoho - Johnstone Blocks regression, with high noise. Figures 8a, b and c show conventional, row-wise and global SiZer versions.

Small Deviations and Related Topics, 2005 - p.18/20

Comments on power

Full range of SiZer analyses of the British Family Incomes data. Figures 10a, b, c and d show conventional, row-wise and global SiZer versions.

Conclusions

- We proposed a new simultaneous adjustment procedure for SiZer.
- Because of the needed compromise between power and false positive rate we suggest that practitioners use the row-wise procedure.
- Some issues remain to be addressed. In particular there is a problem for small sample size/ small bandwidth caused by the fact that in that case the test statistics have approximately t distribution.
- A second order $g, r \to \infty$ approximation for the global maximum would be desirable.