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In the past two years (after the first conference)
there has been a great deal of progress in various
directions. All talks in this conference show im-
portant progress and future directions. This talk
will highlight some of recent developments, in
particular connections with other parts of math-
ematics and works less represented in this meet-
ing.

We believe a theory of small value probabilities
should be developed and centered on:
• systematically studies of the existing techniques
and applications
• applications of the existing methods to a va-
riety of fields
• new techniques and problems motivated by
current interests of advancing knowledge
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Small value probability studies the asymptotic
rate of approaching zero for rare events that
positive random variables take smaller values.
To be more precise, let Yn be a sequence of
non-negative random variables and suppose that
some or all of the probabilities

P (Yn ≤ εn) , P (Yn ≤ C) , P (Yn ≤ (1− δ)E Yn)

tend to zero as n → ∞, for εn → 0, some con-
stant C > 0 and 0 < δ ≤ 1. Of course, they
are all special cases of P (Yn ≤ hn) → 0 for some
function hn ≥ 0, but examples and applications
given later show the benefits of the separate for-
mulations.

What is often an important and interesting prob-
lem is the determination of just how “rare” the
event {Yn ≤ hn} is, that is, the study of the
small value probabilities of Yn associated with
the sequence hn.

If εn = ε and Yn = ‖X‖, the norm of a random el-
ement X on a separable Banach space, then we
are in the setting of small ball/deviation proba-
bilities.
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• Some technical difficulties for small deviations:
Let X and Y be two positive r.v’s (not neces-
sarily ind.). Then

P (X + Y > t) ≥ max(P (X > t) , P (Y > t))

P (X + Y > t) ≤ P (X > δt) + P (Y > (1− δ)t)

but

?? ≤ P (X + Y ≤ ε) ≤ min(P (X ≤ ε) , P (Y ≤ ε))

• Moment estimates an ≤ E Xn ≤ bn can be used
for

E eλX =
∑

n=0

λn

n!
E Xn

but E exp{−λX} is harder to estimate.

• Exponential Tauberian theorem: Let V be a
positive random variable. Then for α > 0

log P (V ≤ ε) ∼ −CV ε−α as ε → 0+

if and only if

log E exp(−λV )

∼ −(1 + α)α−α/(1+α)C
1/(1+α)
V λα/(1+α)

as λ →∞.
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Geometric Functional Analysis

Large deviation estimates are by now a standard
tool in the Asymptotic Convex Geometry, con-
trary to small deviation results. Very recently,
novel applications of small deviation estimates
to problems related to the diameters of ran-
dom sections of high dimensional convex bod-
ies are realized. They imply distinction between
the lower and the upper inclusions in the cele-
brated Dvoretzky Theorem, which says that any
n-dimensional convex body has a section of di-
mension c log n that is approximately a Euclidean
ball. Recall that One of the early manifestations
of the concentration of measure phenomenon
was V. Milman’s proof of Dvoretzky Theorem
in the 70s.
PP: Small ball probability and Dvoretzky The-
orem, negative moments of a norm (Kahane-
Khinchine type inequality for negative exponents),
Klartag and Vershynin (2004+).
PP: Gaussian inequalities related to symmetric
convex sets with applications to small ball prob-
abilities. Cordero-Erausquin, Fradelizi and Mau-
rey (2004), Lata la and Oleszkiewicz (2005+)
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Precise Links with Metric Entropy

As it was established in Kuelbs and Li (1993)
and completed Li and Linde (1999), the behav-
ior of log P (‖X‖ ≤ ε) for Gaussian random ele-
ment X is determined up to a constant by the
metric entropy of the unit ball of the reproduc-
ing kernel Hilbert space associated with X, and
vice versa.

• The Links can be formulated for entropy num-
bers of compact operator from Banach space to
Hilbert space.
• This is a fundamental connection that has
been used to solve important questions on both
directions.

PP: Small ball or entropy number for tensors
and probabilistic understanding for the tensored
Gaussian processes. Gao and Li (2005), Blei
and Gao (2005+).
PP: Similar connections for other measures such
as stable. One direction is given in Li and Linde
(2003) which could be used to disprove the du-
ality conj. on entropy numbers of a compact
operator.
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Gaussian Fields via Riesz Product

This is a new powerful technique developed in

Gao and Li (2005+) for the upper bound un-

der sup-norm. In the case of Brownian sheet

(d = 2), it allows us to give a simple and gen-

eral approach to avoid ingenious combinatoric

arguments used by Talagrand (1994). The ba-

sic ideas are

• Choosing Basis: Use (multi-dim) series expan-

sion X(t) =
∞∑

n=1

fn(t)ξn, where ξn are i.i.d. stan-

dard normal random variables, and fn ∈ C([0, 1]d).

• Choosing Partial Sum: By Andersen’s inequal-

ity, P(‖X‖ ≤ ε) ≤ P(‖Y ‖ ≤ ε) where Y (t) is any

partial sum X(t) =
∑

n∈E fn(t)ξn.

• Construct Riesz Product:

P(‖Y ‖ ≤ ε) ≤ P(
∫

Y (t)R(t) ≤ ε)

where the Riesz product R(t) =
∏

n∈F (1 + εnhn)

satisfying R(t) ≥ 0, ‖R‖1 =
∫

R(t)dt = 1.

PP: Brownian sheet for d ≥ 3 and other interest-

ing Gaussian fields; entropy number for tensored

operators.
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The Lower Tail Probability

Let X = (Xt)t∈S be a real valued Gaussian pro-
cess indexed by T . The lower tail probability
studies

P
(

sup
t∈T

(Xt −Xt0) ≤ x

)
as x → 0

with t0 ∈ T fixed. Some general upper and lower
bounds are given in Li and Shao (2004). In par-
ticular, for d-dimensional Brownian sheet W (t),
t ∈ Rd,

log P

 sup
t∈[0,1]d

W (t) ≤ ε

 ≈ − logd 1

ε
.

Note that we can write

‖X‖ = sup
f∈D

f(X)

so the lower tail formulation is more general than
the small ball problem.

PP: Sharper estimates for interesting Gaussian
processes/fileds with applications; connections
with properties of the generating operator. Li
and Shao (2004, 2005+).
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Zeros of Random Polynomial

Let a0, a1, . . . , an ∈ R be i.i.d. Define the random

polynomial

fn(x) :=
n∑

i=0

aix
i .

Let Nn denote the number of real zeros of fn(x).

Dembo, Poonen, Shao and Zeitouni (2002): If

ai ∼ N(0, 1), then For n even,

P(Nn = 0) = P(fn(x) > 0, ∀x ∈ R) = n−b+o(1)

where

b = −4 lim
t→∞

1

t
log P

(
sup

0≤s≤t
Y (s) ≤ 0

)
and {Y (t), t ≥ 0} is a centered stationary Gaus-

sian process with E Y (t)Y (s) = 2e−(t−s)/2

1+e−(t−s).

PP: Exact value of the positive exponent b; Ex-

istence of b in the symmetric stable case; Sharp

estimates for small deviation P (Nn ≤ (1− δ)E Nn)
and large deviation P (Nn ≥ (1 + δ)E Nn). Li and

Shao (2005).
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The Wiener-Hopf Equation

The Wiener-Hopf equation

H(x) =
∫ ∞

0
f(x− y)H(y)dy, x ≥ 0

is still an active area of study, even the existence

and uniqueness of a solution.

Spitzer (1956) has obtained a beautiful formula

(Spitzer’s identity) from which one can (in prin-

ciple at least) calculate the joint distribution

of any pair (max0≤j≤n Sj, Sn) knowing the in-

dividual distributions of the first n partial sums,

S0 = 0, Sk = X1 + · · · + Xk. He then used it in

Spitzer (1957, 1960a,b) to study the Wiener-

Hopf equation. Here is a typical result.

Let f(x) be the density of X, i,e, F (x) =
∫ x
−∞ f(t)dt.

If X is symmetric with characteristic function

φ(λ), then

lim
n→∞n1/2P( max

0≤k≤n
Sk ≤ x) = π−1/2H(x)
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where H(x) is the unique solution (in the class

of functions that are non-decreasing, continuous

on the right, with H(0) > 0) of the Wiener-Hopf

equation

H(x) =
∫ ∞

0
f(x− y)H(y)dy

and H(0+) = 1. In addition, the Laplace trans-

form of H(x) is given for λ > 0 by∫ ∞
0−

e−λxdH(x) = 1 +
∫ ∞

0+
e−λxdH(x)

= exp
{
−

1

2π

∫ ∞
−∞

λ

λ2 + t2
log(1− φ(t))dt

}
< ∞.

Moreover, if E X2 = σ2 < ∞, then H(x) has the

asymptotic behavior

lim
x→∞

H(x)

x
=

√
2

σ
.

If the variance is infinite, then H(x) = o(x) as

x →∞.

PP: Purely probabilistic arguments with bounds

on P(max0≤k≤n Sk ≤ x) and H(x) under weaker

moment conditions. Li and C. Zhang (2005+).

10



Hamiltonian and Partition Function

One of the basic quantity in various physical

models is the associated Hamiltonian (energy

function) H which is a nonnegative function.

The asymptotic behavior of the partition func-

tion (normalizing constant) E e−λH for λ > 0 is

of great interests and it is directly connected

with the small value behavior P(H ≤ ε) for ε > 0

under appropriate scaling.

In the one-dim Edwards model a Brownian path

of length t receives a penalty e−βHt where Ht is

the self-intersection local time of the path and

β ∈ (0,∞) is a parameter called the strength of

self-repellence. In fact

Ht =
∫ t

0

∫ t

0
δ(Wu −Wv)dudv =

∫ ∞
−∞

L2(t, x)dx
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It is known, see van der Hofstad, den Hollander

and König (2002), that

lim
t→∞

1

t
log E e−βHt = −a∗β2/3

where a∗ ≈ 2.19 is given in terms of the principal

eigenvalues of a one-parameter family of Sturm-

Liouville operators. Bounds on a∗ appeared in

van der Hofstad (1998).

Chen and Li (2005+): For the one-dim Edwards

model, it is not hard to show

lim
ε→0

ε2/(p+1) log P{
∫ ∞
−∞

Lp(1, x)dx ≤ ε} = −cp

for some unknown constant cp > 0. Bounds on

cp can be given by using Gaussian techniques.

PP: Many open questions in the area.
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Exit Time, Principal Eigenvalue, Heat Equation

Let D be a smooth open (connected) domain

in Rd and τD be the first exit time of a diffu-

sion with generator A. For bounded domain D

and strong elliptic operator A, by Feynman-Kac

formula,

lim
t→∞

t−1 log P (τD > t) = −λ1(D)

where λ1(D) > 0 is the principal eigenvalue of

−A in D with Dirichlet boundary condition.

Ex: Brownian motion in Rd with A = ∆/2. Let

v(x, t) = Px{τD ≥ t} Then v solves

{
∂v
∂t = 1

2∆vin D
v(x, 0) = 1 x ∈ D.

So this type of results can be viewed as long time

behavior of log v(x, t), which satisfies a nonlinear

evolution equation.

PP: Unbounded domain D and/or degenerated

differential operator A. Li (2003), Lifshits and

Shi (2003), van den Berg (2004), Bañuelos and

Carroll (2004+), Bañuelos and K. Bogdan (2004+),

Bañuelos and DeBlassie (2005+).
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Brownian pursuit problems

Let {Wk(t); t ≥ 0}(k = 0, 1, 2, . . . ) denote inde-
pendent Brownian motions all starting from 0.
Define

τn = inf{t > 0 : Wi(t) = 1+W0(t) for some 1 ≤ i ≤ n}.
It is known for the exit time τn of a cone that

P{τn > t} ∼ ct−γn, as t →∞,

where γn is determined by the first eigenvalue of
the Dirichlet problem for the Laplace-Beltrami
operator on a subset of the unit sphere Sn in
Rn+1.

Conj: Bramson and Griffeath (1991), E τ4 < ∞.

Li and Shao (2001): E τ5 < ∞ by using Gaus-
sian distribution identities and the Faber-Krahn
isoperimetric inequality.

Li and Shao (2002): limn→∞ γn/ log n = 1/4 by
developing a normal comparison inequality (a
‘reverse’ Slepian’s inequality). This verified a
conjecture of Kesten (1992).

Ratzkin and Treibergs (2005+): E τ4 < ∞ by
purely analytic estimates of eigenvalue.
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Let B−i, 0 ≤ i ≤ m − 1 and Bj, 1 ≤ j ≤ n be

independent Brownian motions, starting at 0.

Define the first capture time by

τ1,m,n = inf{t > 0 : max
1≤j≤n

Bj(t) = min
0≤i≤m−1

B−i(t)+1}

and the overall capture time by

τm,m,n = inf{t > 0 : max
1≤j≤n

Bj(t) = max
0≤i≤m−1

B−i(t)+1}.

Then we have

P
(
τ1,m,n > t

)
= P

(
max

1≤j≤n
sup

0≤s≤t
max

0≤i≤m−1
(Bj(s)−B−i(s)) < 1

)
and

P (τm,m,n > t)

= P
(

max
1≤j≤n

sup
0≤s≤t

min
0≤i≤m−1

(Bj(s)−B−i(s)) < 1

)
.

Conj: Let

P
(
τn,n,1 > t

)
∼ ct−βn as t →∞.

Then βn ∼ n−1 log n
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Many More Areas

• Special Gaussian Chaos. Kuelbs and Li (2005),
• Determinant of random matrix. Tao and Vu
(2004+), Costello, Tao and Vu (2005+).
• Littlewood and Offord type problems.
• Existence in random graphs.
• Combinatorial discrepancy.
• Hadamard conjecture.
• Balancing vectors.

Komlos Conj: Let x1, · · · , xn ∈ Rn be arbitrary
vectors with ‖xk‖2 ≤ 1. Then there exist signs
εk = ±1, 1 ≤ k ≤ n such that

‖
n∑

k=1

εkxk‖∞ ≤ C

where C is some numerical constant. That is

P

‖ n∑
k=1

εkxk‖∞ ≤ C

 ≥
1

2n
.

PP: It is known from Li (2005+) that most
Conj. and results on small values hold for ξk
in combinatorial discrepancy and balancing vec-
tors. Are there any comparison results between
ξk and εk?
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Small Value Phenomenon

Two fundamental problems in probability theory

are typical behaviors such as expectations, laws

of large numbers and central limit theorems, and

rare events such as large deviations. Small value

phenomenon comes from both typical behaviors

and rare events of the type that positive random

variables take smaller values.

• Typical Small Value Behavior

To make precise the meaning of typical behav-

iors that positive random variables take smaller

values, consider a family of non-negative ran-

dom variables {Yt, t ∈ T} with index set T . We

are interested in evaluation E inft∈T Yt or its asymp-

totic behavior as the size of the index set T goes

to infinity. Examples discussed in a short course

in Beijing this summer include Gaussian com-

parison inequalities for E min1≤i≤n |Xi|, random

assignment type problems indexed by permuta-

tions, and the first passage percolation indexed

by paths.
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