
Small Deviations

of Fractional Processes

in Lq-Spaces

with Respect to Fractal

Measures

M.A. Lifshits (St.Petersburg), Werner Linde

(Jena) and Zhan Shi (Paris)

St.Petersburg, September 12-19, 2005



Random vector in normed space: X ∈ (E, ‖ · ‖)

Small ball (small deviation) probabilities:

P {‖X‖ ≤ ε} , ε → 0.

Usually: X - sample path of a process, E - a

functional space C[0,1], Lq[0,1] etc.

Connections:

• entropy of compact operators;

• quantization of random vectors;

• approximation of random processes ...
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Typically:

P {‖X‖ ≤ ε} ∼ Cεβ exp
{
−Kε−γ

}
, ε → 0,

or

logP {‖X‖ ≤ ε} ∼ −Kε−γ, ε → 0.

K - small ball constant, γ - small ball rate.

Examples for Brownian motion:

P



 sup

t∈[0,1]
|W (t)| ≤ ε



 ∼ 4

π
exp

{
−π2

8
ε−2

}

P

{∫ 1

0
|W (t)|2 dt ≤ ε2

}
∼ 4ε√

π
exp

{
−1

8
ε−2

}
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Problem:

What can we say about

P

{
sup
t∈T

|W (t)| ≤ ε

}

for arbitrary T ⊂ [0,1] or about

P

{∫ 1

0
|W (t)|q µ(dt) ≤ εq

}

for arbitrary finite measure µ on

[0,1] ?

The answer depends on entropy properties of

T and µ, respectively.

Extension: other processes.
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Fractional processes.

Fractional Brownian Motion(FBM),0 < H < 1.

WH(t) =
∫ t

−∞

[
(t− u)H−1/2 − (−u)

H−1/2
+

]
dW (u)

Riemann-Liouville process (RL), 0 < H.

RH(t) =
∫ t

0
(t− u)H−1/2dW (u).

RL has no stationary increments but has three

advantages: well defined for H > 1, closed w.r.

to integration and has an extrapolation homo-

geneity.

Recently:

M.Lifshits and T.Simon found small ball rates

for WH and RH with respect to fairly gen-

eral self-similar norms. This includes the sup-

norm and Lq-norm w.r.t. Lebesgue measure

but does not cover the case of general sets

and measures.
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The sup-norm (q = ∞).

A result of W.Linde (2004). Let T ⊂ [0,1].

Let NT (ε) be the metric entropy of T , that

is the minimal number of intervals of length ε

sufficient to cover T . Then

NT (ε) ≈ ε−β

is necessary and sufficient for

− logP

{
sup
t∈T

|RH(t)| < ε

}
≈ ε−β/H .

Example: Let T = [0,1], H = 1/2, then RH =

W and β = 1. We get the small ball rate 2, in

accordance to the classical result.

For smaller sets, β is smaller, and the small

ball rate is smaller as well.
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Mixed entropy of a measure.

Let µ be a measure on [0,1], let H > 0 and

q ∈ [1,∞). Define a ”magic number” r > 0 by

1/r := H + 1/q.

The normed mixed entropy numbers of µ are

defined as follows:

- take an integer m > 0;

- cover the interval [0,1] with any m closed

intervals ∆j, 1 ≤ j ≤ m.

- minimize over coverings:

σµ(m) := inf
(∆j)








m∑

j=1

|∆j|H rµ(∆j)
r/q




1/r




.

Example: µ - Lebesgue measure, σµ(m) ≡ 1.
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Main result.

Notation: for positive functions f, g notation

f ¹ g (resp. f º g) means lim sup f/g < ∞,

(resp. lim inf f/g > 0). Let

‖f‖q,µ =
[∫

|f(t)|µ(dt)
]1/q

.

Theorem. Let µ be a finite continuous mea-

sure on [0,1] and let RH be the Riemann–

Liouville process of index H > 0. Then

(a). If σµ(m) º m−ν (logm)β for some ν ≥ 0

and β ∈ R, then

− logP{‖RH‖q,µ < ε} º ε−1/(H+ν)·| log ε|β/(H+ν) .

(b). If σµ(m) ¹ m−ν (logm)β, then

− logP{‖RH‖q,µ < ε} ¹ ε−1/(H+ν)·| log ε|β/(H+ν) .

For 0 < H < 1, both assertions also hold for

the FBM BH instead of RH.
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Application 1: fractal measure

For N ≥ 2, take some positive weights ρ1, . . . , ρN

such that
N∑

k=1

ρk = 1,

and N intervals with disjoint interiors [a1, b1], . . .,

[aN , bN ] in [0,1]. Let Sk : [0,1] → [ak, bk] be

affine isomorphisms. The self–similar measure

µ is defined by the equation

µ =
N∑

k=1

ρk [µ ◦ S−1
k ].

On every interval [ak, bk] it behaves like on [0,1]

up to the numeric factor ρk and, eventually, the

space inversion.

Example: Cantor measure, N = 2.
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Let f ≈ g mean that f º g and f ¹ g. We have

Theorem. Let λk := bk − ak and let γ > 0

be the unique solution of the equation

N∑

k=1

λ
Hγ
k ρ

γ/q
k = 1.

Then

σµ(m) ≈ m−(1/γ−1/r) ,

hence

− logP
{
‖RH‖q,µ < ε

}
≈ ε−1/(1/γ−1/q) .

Remark 1. The small ball rate does not de-
pend on the special choice of Sk.

Remark 2. For a fixed µ the small ball rate
depends on q, unlike for Lebesgue measure.
More precisely, there is no dependence on q iff
λk = ρs

k, for some s > 0, 1 ≤ k ≤ N .

Remark 3. Hilbert space case, q = 2 (Nazarov).
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Application 2: random fractal measures

Subordinator A = (A(t))t≥0: a non–decreasing

process with homogeneous independent incre-

ments. Its Laplace exponent ΦA is defined by

Ee−A(t)·x = e−t·ΦA(x) , t, x ≥ 0 .

Every subordinator A generates random mea-

sures by µω([0, s]) = Leb ({t ∈ [0,1] : A(t, ω) ≤ s}) .

Theorem. For any H > 0 and any q ∈ [1,∞)

there exist constants c1, c2 > 0 such that for

any A and almost all measures µω


 m

Φ−1
A (c1m)




H

¹ σµω(m) ¹

 m

Φ−1
A (c2m)




H

.

Remark. Here the left and the right hand sides

are not necessary equivalent.
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Hence, for small ball probabilities, we have

Theorem. Let A be a subordinator such that

ΦA(x) ≈ xβ (logx)κ , x →∞ ,

for certain β ∈ (0,1] and κ ∈ R. If RH is an

RL–process, H > 0, independent of A, then for

almost all ω and each q ∈ [1,∞) we have

− logP
{
‖RH(A(·, ω))‖q < ε

}
≈ ε−β/H | log ε|κ .

Example: symmetric stable process with inde-

pendent increments.
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Work in progress: multi-parametric case

We consider now W (t), t ∈ Rd, the fractional

Brownian function with d parameters, defined

by W (0) = 0 and

E|W (t)−W (s)|2 = ‖t− s‖2H .

This is a natural extension of FBM. No rea-

sonable extension for RL process is known to

us.

Now the measure µ is concentrated on a com-

pact subset of Rd. The entropy notions and

their properties are considerably more involved

in multi-dimensional setting.

Roughly speaking, we can give some entropy

bounds for small deviation probabilities but the

entropy notions used are, in general, different

in the lower and in the upper bound.
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