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Let X(t), 0 6 t 6 1, be a zero mean

Gaussian process and let ψ be a non-

negative function on [0,1]. Denote

‖X‖2,ψ =
(∫ 1

0
X2(t)ψ(t)dt

)1/2
.

The problem is to define the exact be-

havior of P
{
‖X‖2,ψ 6 ε

}
as ε→ 0.

The case of general weight ψ can be re-

duced to the case ψ ≡ 1 by replacing

X by the Gaussian process X
√
ψ. How-

ever, it is more convenient to consider

the general case.



Theoretically the problem of small deviation

asymptotics was solved by Sytaya (1974), but

in an implicit way.

Simplification of the expression for the small ball

probability for various classes of processes was

made in the works of

Zolotarev (1979),

Dudley, Hoffmann-Jørgensen, Shepp (1979),

Ibragimov (1979),

Csáki (1982),

Li (1992),

Dunker, Lifshits, Linde (1998),

Chen and Li (2001),

Gao, Hannig, Lee, Torcaso (2003), and others.

Nazarov and Nikitin (2003) developed a new

approach. Their method enabled to obtain

the small deviation asymptotics in L2-norm for

Gaussian process X under condition that co-

variance GX is the Green function for the self-

adjoint differential operator from a rather wide

class.

We extend this result to the case of weighted

processes.



Theorem. Let the covariance GX(t, s) of zero

mean Gaussian process X(t), 0 6 t 6 1, be the

Green function for the self-adjoint positively de-

finite operator L of order 2`

Ly ≡ (−1)`y(2`) +
(
p`−1y

(`−1)
)(`−1)

+ . . .+ p0y,

p0, . . . , p`−2 ∈ L1(0,1), p`−1 ∈ L∞(0,1),

with “separated” boundary conditions: ` bound-

ary conditions (denote by k1, . . . , k` their orders)

contain the values of derivatives of y only at the

endpoint zero while ` ones (of order k′1, . . . , k
′
`)

contain them only at the endpoint one. Let

0 6 k1 < . . . < k` 6 2`− 1,

0 6 k′1 < . . . < k′` 6 2`− 1,

κ ≡
∑̀
j=1

(kj + k′j) < 2`2.

Let the weight function ψ ∈ W `
∞(0,1) and

ψ(x) > 0, x ∈ [0,1].



Then, as ε→ 0,

P
{
‖X‖2,ψ 6 ε

}
∼

∼ C εγ exp

−2`− 1

2

(
ϑ`

2` sin π
2`

) 2`
2`−1

ε
− 2

2`−1

 .
Here

γ = −`+
κ + 1

2`− 1
, ϑ` =

∫ 1

0
ψ

1
2`(x) dx,

C = Cdist

(2π)
`
2( πϑ`

)`γ(sin π
2`)

1+γ
2

(2`− 1)
1
2( π2`)

1+γ
2Γ`(`− κ

2`)
,

while Cdist is the so-called distortion constant

Cdist =
∞∏
n=1

µ
1/2
n(

π/ϑ` ·
[
n+ `− 1− κ

2`

])`,
and µn are the eigenvalues of BVP

Ly = µψy + boundary conditions.



Processes with eigenfunctions
connected with special functions

Though we have written “explicit” expression
for Cdist, it is not easy to evaluate this constant
in general case. However, when the eigenfunc-
tions can be expressed in terms of elementary
or special functions, there exist explicit formu-
las for the distortion constants.

Well-known examples for ψ ≡ 1: X = B (Brown-
ian bridge); X = W (Wiener process). For these
processes Cdist = 1.

More examples for ψ ≡ 1: X = U (Ornstein
– Uhlenbeck process, OU); m-times integrated
processes Wm, Bm, Um. In these examples the
eigenfunctions are connected with trigonometric
functions.

X = B, ψ(t) = 1
t(1−t) (Anderson – Darling pro-

cess): the eigenfunctions are expressed via Ja-
cobi polynomials.

X = W , X = B; ψ(t) = tβ, β > −2 or ψ(t) =
eqt: the eigenfunctions are expressed via Bessel
functions.



The distortion constants for these processes are
evaluated in Nazarov (J. Math. Sci., 2003). Par-
tial results were obtained also by Deheuvels and
Martynov (Progr. Probab., 2003) and Gao, Han-
nig, Lee, Torcaso (EJP, 2003).

We calculate Cdist for a number of weighted pro-
cesses.

Let u 6 1. We denote by W(u)(t) the zero mean
Gaussian process W (t) − utW (1), 0 6 t 6 1. Its
covariance is GW(u)

(t, s) = s ∧ t− (2u− u2)st.

NB: W(1) = B, W(0) = W .

Denote by U(α) the stationary OU process, i.e.,
the centered Gaussian process with covariance
GU(α)

(t, s) = e−α|t−s|
/
(2α).

Denote by Ů(α) the OU process starting at 0,
i.e., the centered Gaussian process with covari-
ance GŮ(α)

(t, s) =
(
e−α|t−s| − e−α(t+s)

)/
(2α).

NB: Ů(0) = W .

Denote by Ŵ the on-line centered Wiener pro-
cess, Ŵ (t) = W (t)− 1

t

∫ t
0W (s) ds.



Table 1. Some weighted processes with eigen-

functions expressed via trigonometric functions

X ψ(t)

W(u), u < 1 (t+ a)−2, a > 0

W(1) = B (t+ a)−2, a > 0

W(u), u < 1 (a2 + t2)−2, a 6= 0

W(1) = B (a2 + t2)−2, a 6= 0

W(u), u < 1 (a2 − t2)−2, |a| > 1

W(1) = B (a2 − t2)−2, |a| > 1

Table 2. Some weighted processes with eigen-

functions connected with Bessel functions

X ψ(t)

W(u), u < 1 (t+ a)β, a > 0, β 6= −2

W(1) = B (t+ a)β, a > 0, β 6= −2

Ů(α), α ∈ R eqt, q ∈ R
U(α), α > 0 eqt, q ∈ R

Ŵ tβ, β > −2



Two particular examples

Let X = Ů(α) and ψ(t) = e2qt. If q 6= 0, then, as

ε→ 0,

P
{
‖Ů(α)‖2,ψ 6 ε

}
∼

∼
eα/2

eq/4
4q

√
π(eq − 1)

ε exp

(
−

(eq − 1)2

8q2
ε−2

)
.

Let X = W(u) and ψ(t) = (t+a)−2. If u < 1 and

a > 0, then, as ε→ 0,

P
{
‖W(u)‖2,ψ 6 ε

}
∼

∼
4a−

1
4(a+ 1)

1
4

(1− u)π
1
2 ln a+1

a

ε exp

−
(
ln a+1

a

)2
8

ε−2

 .


