Random databases and ϵ -entropy

Oleg Seleznjev

Umeå university, Sweden Moscow State University, Russia

http://matstat.umu.se

Coauthor

Bernhard Thalheim

Institute of Computer Science and Applied Mathematics, Christian-Albrechts University, Kiel Germany

Petersburg 2005 2/32

Outline:

- 1. Introduction. Basic notation.
- 2. Probabilistic models for databases.
- 3. Rényi ϵ -entropy.
- 4. Tests in random databases.
- 5. Summary.

Petersburg 2005 3/32

Basic notation

Database ($m \times n$ -table) of m tuples (or records) with n attributes (or features), $U := \{1, \dots, n\}$

$$R = \begin{pmatrix} t_1(1) & \cdots & t_1(n) \\ \cdots & \cdots & \cdots \\ t_m(1) & \cdots & t_m(n) \end{pmatrix}$$

Tuples $t_j(U) = (t_j(1), \dots, t_j(n)), j = 1, \dots, m$, are vectors with values in $D = D_1 \times \dots \times D_n$, where D_i are domains $i = 1, \dots, n$.

A set of attributes A is called a **test** in R if all tuples $t_A(i), i = 1, \ldots, m$, are different.

Petersburg 2005 4/32

We say that vectors x and y in a metric space (S,d) are ϵ -close, $\epsilon \geq 0$, if the distance $d(x,y) \leq \epsilon$. A set of attributes A will be called a ϵ -test if there are no ϵ -close tuples $t_A(i), i=1,\ldots,m$. Let $N_{\epsilon}(A):=\#\{\epsilon$ -close tuples in $R_A\}$.

Example

$$R = \left(\begin{array}{cccc} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{array}\right)$$

- tests : $\{2, 3\}, \dots$

- not a test : $\{1, 4\}$

- ϵ -test, $\epsilon = 0.5$, $\{3, 5\}$ but not a 1.0-test for the Euclidian norm.

Petersburg 2005 5/32

Database problems:

- Data search optimization; Tests and minimal tests.
- Database design; constraints sets complexity.

Problems:

- Probabilistic models for discrete and continuous databases;
- The distribution of the number of ϵ -coincidences $N_{\epsilon}(A)$
- Joining multiple tables with approximate matching.

Petersburg 2005 6/32

The worst case setting approach:

Combinatorial or deterministic methods; restrictive class of models and overestimating complexity.

Average case setting approach:

Probabilistic methods; general class of models; where the distribution of tests concentrates (i.e., typical tests), and for which model parameters.

Probabilistic models for databases.

- 1. Tuples $t_j(U) \in \prod_{i \in U} D_i, j = 1, \dots, m$, are independent random vectors;
- 2. \mathcal{P} is a common (discrete or continuous) distribution for tuples

Petersburg 2005 7/32

Examples

Uniform random database if \mathcal{P} is a uniform (discrete or continuous) distribution \mathcal{U} in D.

Gaussian database if \mathcal{P} is a Gaussian distribution \mathcal{G} in $D = \Re^n$.

(Generalized) Bernoulli random database if all attributes are iid random Q-variables.

For instance, the conventional Bernoulli model corresponds to a binary one for the discrete Bernoulli distribution with $D_i = \{0,1\}$ for all attributes.

Petersburg 2005 8/32

Measures of uncertainty

Shannon For a discrete distribution $\mathcal{P} = \{p(\mathbf{k}), \mathbf{k} \in D\}$,

$$h_1(\mathcal{P}) := -\sum_{\mathbf{k}} p(\mathbf{k}) \log_2 p(\mathbf{k})$$

Rényi For a discrete distribution $\mathcal{P} = \{p(\mathbf{k}), \mathbf{k} \in D\}$,

$$h_s(\mathcal{P}) := \frac{1}{1-s} \log_2(\sum_{\mathbf{k}} p(\mathbf{k})^s), \quad s \neq 1,$$

and
$$h_s(\mathcal{P}_A) \to h_1(\mathcal{P}_A)$$
 as $s \to 1$.

Rényi for a continuous random variable X, differential entropy. The uniform quantizer q(X) = [NX]/N. Then for $p_k := P\{q(X) = k/N\} = P\{k/N < X \le (k+1)/N\}$

$$h_{\epsilon}^{R}(X) := -\log_{2} \sum_{k} p_{k}^{2}, \quad \epsilon = 1/N, s = 2$$

$$h_{\epsilon}^{R}(X) = \log_2 \frac{1}{\epsilon} - \log_2 \int_R p(x)^2 dx + o(1),$$

with a straightforward generalization to the vector case \mathbb{R}^n and the general class of entropies

$$h_{\epsilon}^{R}(X) = n \log_{2} \frac{1}{\epsilon} - \log_{2} \int_{R^{n}} p(x)^{2} dx + o(1).$$

Petersburg 2005 10/32

Kolmogorov For a metric space (S,d) and $N_{\epsilon}(S,d)$ the cardinality of the minimal ϵ -net

$$H_{\epsilon}(S) = \log_2 N_{\epsilon}(S, d).$$

Kolmogorov-Shannon For random continuous variables X, Y with the mutual information

$$I(X,Y) = \int p(x,y) \log \frac{p(x,y)}{p(x)q(y)} dxdy,$$

the **risk distortion** (or ϵ -entropy)

$$R_{\epsilon}(X) = \inf\{I(X,Y) : E||X - Y||^2 \le \epsilon^2\}.$$

Petersburg 2005 11/32

Posner-Rodemich For a probabilistic separable metric space (S, d, μ) and a countable ϵ -partition $\pi_{\epsilon} = \{A_i\}$ with diameter $d(A_i) \leq \epsilon$,

$$H_{\epsilon}^{PR}(S,\mu) = \inf_{\pi_{\epsilon}} \sum \mu(A_i) \log_2(1/\mu(A_i))$$

There are ϵ, δ -variants for Kolmogorov and Posner-Rodemich when defined on $S \setminus B$ and $\mu(B) < \delta$.

Haussler and Opper (the volume-scaling entropy). For a probabilistic separable metric space (S, d, μ) , X is a random μ -vector,

$$H_{\epsilon}^{HO}(S,\mu) = \mathsf{E}\log_2(1/\mu(B_{\epsilon}(X)))$$

Petersburg 2005 12/32

The Rényi *ϵ*-entropy (cf. Szpankowski for discrete sequences)

Let X,Y be independent \mathcal{P} -distributed random vectors with values a metric space (S,d) and $B_{\epsilon}(x):=\{y:d(x,y)\leq\epsilon\}$ be a ϵ -ball, the ϵ -ball probability $p_{\epsilon}(x):=P\{Y\in B_{\epsilon}(x)\}$. The generalized Rényi ϵ -entropy

$$h_{2,\epsilon}(\mathcal{P}) := -\log_2 P\{d(X,Y) \le \epsilon\} = -\log_2 p_{\epsilon}(X).$$

In the general case,

$$h_{s,\epsilon}(\mathcal{P}_A) := \frac{1}{1-s} \log_2 \mathsf{E} p_{\epsilon}(X)^{s-1}, s \neq 1,$$

the generalized Shannon ϵ -entropy as $s \to 1$,

$$h_{1,\epsilon}(\mathcal{P}) := -\mathsf{E}\log_2 p_{\epsilon}(X).$$

(cf. the volume-scaling entropy).

Petersburg 2005 13/32

Proposition. Let $X = (X_A, X_B)$ be a random \mathcal{P} -vector.

- (i) $h_{2,\epsilon}(\mathcal{P}) \geq 0$. If $h_{2,\epsilon}(\mathcal{P}) = 0$, then for some x_0 , $P\{X \in B_{\epsilon}(x_0)\} = 1$. On the other hand, if $P\{X \in B_{\epsilon}(x_0)\} = 1$, then $h_{2,2\epsilon}(\mathcal{P}) = 0$;
 - (ii) $h_{2,\epsilon}(\mathcal{P}_A) \leq h_{2,\epsilon}(\mathcal{P}_{A\cup B});$
- (iii) if $|x| = \max_{i=1,...,n} |x_i|$ and X_A , X_B are independent, then $h_{2,\epsilon}(\mathcal{P}_{A\cup B}) = h_{2,\epsilon}(\mathcal{P}_A) + h_{2,\epsilon}(\mathcal{P}_B)$;
 - (iv) $\frac{1}{2}h_{2,\epsilon}(\mathcal{P}) \leq h_{3,\epsilon}(\mathcal{P}) \leq h_{2,\epsilon}(\mathcal{P});$
- (v) for every continuous distribution with compact domain D and continuous and bounded density function p(x) and the uniform distribution \mathcal{U} on D,

$$h_{2,\epsilon}(\mathcal{P}) \leq h_{2,\epsilon}(\mathcal{U}) + \mathrm{o}(1) \text{ as } \epsilon \to 0.$$

Petersburg 2005 14/32

Discrete case, X, Y, Z are \mathcal{P} -iid, $\epsilon = 0$, $\mathcal{P} = \{p(\mathbf{k}) = P(X = \mathbf{k})\}$,

$$h_2(\mathcal{P}) = -\log_2 P(X = Y) = -\log_2(\sum_{\mathbf{k}} p(\mathbf{k})^2) = -\log_2 \mathsf{E}p(X),$$

$$h_3(\mathcal{P}) = -\log_2 P(X = Y, X = Z) = -1/2 \log_2(\sum_{\mathbf{k}} p(\mathbf{k})^3)$$
$$= -\log_2 \mathsf{E}p(X)^2$$

Proposition. Let $X = (X_A, X_B)$ be a random \mathcal{P} -vector.

- (i) $h_2(\mathcal{P}_A) \leq h_2(\mathcal{P}_{A \cup B});$
- (ii) If X_A , X_B are independent, then $h_2(\mathcal{P}_{A\cup B}) = h_2(\mathcal{P}_A) + h_2(\mathcal{P}_B)$;
- (iii) For every discrete non-uniform distributions with finite domains, $h_2(\mathcal{P}_A) < h_2(\mathcal{U}_A)$;
 - (iv) $\frac{3}{4} h_2(\mathcal{P}_A) < h_3(\mathcal{P}_A) \le h_2(\mathcal{P}_A)$ with the equality iff \mathcal{P} is uniform.

Petersburg 2005

Continuous case, $\epsilon > 0$, density function p(x), the volume of $B_{\epsilon}(x)$ in \Re^n , $b_{\epsilon}(n) := |B_{\epsilon}(x)|$

Proposition. Let $p(x), x \in D$ bounded and continuous or have a finite number of discontinuity points. Then

$$h_{\epsilon}(\mathcal{P}) = -\log_2 b_{\epsilon}(n) - \log_2 \int_D p(x)^2 dx + o(1)$$

$$= n \log_2 \frac{1}{\epsilon} - \log_2 b_1(n) - \log_2 \int_D p(x)^2 dx + o(1) \text{ as } \epsilon \to 0.$$

If the differential entropy $H_s(\mathcal{P}_A) := \frac{1}{1-s} \log_2 \int_{\mathbb{R}^n} p(x)^s dx, s \neq 1$,

$$h_{s,\epsilon}(\mathcal{P}_A) = n \log_2 \frac{1}{\epsilon} + \log_2 b_1(n) + H_s(\mathcal{P}_A) + \mathrm{o}(1) \text{ as } \epsilon \to 0,$$

Petersburg 2005 16/32

Examples

Uniform random database. Let $H(A) := \sum_{i \in A} \log_2 |D_i|$ (information function of A), r = |A|,

Discrete (ϵ =0)

$$p(\mathbf{k}(A)) = 2^{-H(A)}$$
, Rényi entropy $a = h(\mathcal{P}_A) = H(A)$

Continuous
$$p(x(A)) = 2^{-H(A)}, d_{\min} = \min |D_i|$$
.;

$$h_{\epsilon}(\mathcal{P}_A) = r \log_2 \frac{1}{2\epsilon} + H(A) + \mathbf{O}(r\epsilon^2/d_{\min});$$

Bernoulli database:

$$Discrete(\epsilon=0)$$
 $p(\mathbf{k}(A)) = \prod_{i \in A} \mathcal{Q}(\{k(i)\}), \text{ Rényi entropy } h(\mathcal{P}_A) = rh(Q);$

Continuous

 $p(x(A)) = \prod_{i \in A} q(x_i)$, Rényi entropy (max-norm, for q(x)) $h_{\epsilon}(\mathcal{P}_A) = rh_{\epsilon}(Q)$ and $h_{\epsilon}(Q) = \log_2 \frac{1}{2\epsilon} + H(Q) + o(1)$;

Gaussian database:

Tuples $t_i(A)$ are iid Gaussian $N(\mu, \Sigma)$ random vectors; λ_i are eigenvalues of Σ ; Rényi entropy (max-norm)

$$h_{\epsilon}(\mathcal{P}_A) = r \log_2 \frac{1}{2\epsilon} + \frac{1}{2} \sum_i \log_2(2\pi\lambda_i) + \mathbf{O}(r\epsilon^2/\lambda_{\min}),$$

- Bernoulli database for Gaussian tuples, r = |A|:

$$h_{\epsilon}(\mathcal{P}_A) = r(\log_2 \frac{1}{2\epsilon} + \frac{1}{2}\log_2(2\pi\sigma^2) + \mathsf{O}(\epsilon^2)) \text{ as } \epsilon \to 0.$$

Petersburg 2005 18/32

Quantization ϵ -entropy

Let $X \in D \subseteq \Re^n$ be a continuous random vector and Voronoi partition $D = \cup_{i=1}^{N_\epsilon} B_\epsilon(x_i), \ \lambda(B_\epsilon(x_i) \cap B_\epsilon(x_j)) = 0 \ \text{and} \ 1 \leq N_\epsilon \leq \infty.$ For a compact set D, assume that $N_\epsilon < \infty$. Let V_ϵ -quantizer $q(X) = x_i$, where $i = \operatorname{argmin}_{j=1,\dots,N_\epsilon} |X - x_j|$ and the entropy $h_\epsilon^R(X) := -\log_2 \sum_{j=1}^{N_\epsilon} p_\epsilon(x_j)^2$.

Theorem. Let $p(x), x \in D \subseteq \Re^n$ be a continuous density function , and q(X) the Voronoi V_{ϵ} -quantizer. Then

(i)
$$h_{\epsilon}^{R}(X) = -\log_{2} b_{\epsilon}(n) + H(\mathcal{P}) + o(1);$$

(ii) for a compact set D,

$$h_{\epsilon}^{R}(X) \leq \log_{2} N_{\epsilon}$$
 and $h_{\epsilon}(X) \leq \log_{2} N_{\epsilon} + o(1)$ as $\epsilon \to 0$.

Petersburg 2005 19/32

Discussion

The assertions can be directly generalized for the case of a separable metric space (S,d) with Lebesgue measure for an ϵ -ball. Independent realizations of these random functions can be archived in a database (e.g., Fourier coefficients of a realization in $L^2[0,1]$ space or some finite dimensional realization approximations).

Petersburg 2005 20/32

Example

 ϵ -entropy for a Wiener measure \mathcal{W} . let two independent Wiener processes $W_1(t), W_2(t), t \in [0,1]$, be Gaussian random vectors taking values in the Hilbert space $L^2[0,1]$. Then $X(t) = W_1(t) - W_2(t)$ is also a Wiener process with the covariance function $K(t,s) = 2\min(t,s), \ t,s \in [0,1]$ and the corresponding small ball probability works

$$P(||W_1 - W_2||_{L^2[0,1]} \le \epsilon) = P\left(\int_0^1 X(t)^2 dt \le \epsilon^2\right) \sim \frac{4\epsilon}{(2\pi)^{1/2}} \exp\{-\frac{1}{4\epsilon^2}\},$$

$$h_{2,\epsilon}(\mathcal{W}) = \frac{\epsilon^{-2}}{4} + \log_2 \frac{(2\pi)^{1/2}}{4\epsilon} + o(1) \text{ as } \epsilon \to 0.$$

If B_H is a fractional Brownian motion with Hurst constant H and $S=L^2[0,1]$, then

$$h_{2,\epsilon}(\mathcal{B}_H) \sim C_H \epsilon^{-1/H}, C_H > 0.$$

Petersburg 2005 21/32

Random databases. ϵ -Test probability

Rényi entropies

(A)
$$a_{\epsilon} = a_{\epsilon}(m) = h_{2,\epsilon}(\mathcal{P}_{m,A_m}) \to \infty$$
 as $m \to \infty$.

A "relative" uncertainty in a distribution \mathcal{P} .

(B)
$$\delta_{\epsilon} := \delta_{\epsilon}(\mathcal{P}) := 4 h_{3,\epsilon}(\mathcal{P}) / h_{2,\epsilon}(\mathcal{P}) - 3 > 0.$$

- (i) (B) is valid e.g. for Uniform and Gaussian databases.
- (ii) For a discrete distribution \mathcal{P} , ϵ =0, $0 < \delta(\mathcal{P}) \le 1$ with the equality only for uniform distribution.

Petersburg 2005 22/32

Let the mean number of ϵ -close tuples, M=m(m-1)/2,

$$\lambda_{\epsilon} = \lambda_m(\epsilon, A) := \mathsf{E} N_{\epsilon}(A) = MP(|t_1(A) - t_2(A)| \le \epsilon) = M2^{-a_{\epsilon}}.$$

Theorem. Let $R_m, m \ge 1$, be a sequence of random tables and (A), (B) hold.

(i) For all $m \geq 1$ and $\lambda_{\epsilon} > 0$,

$$|P\{R_m \models_{\epsilon} A\} - e^{-\lambda_{\epsilon}}| \le d_{TV}(\mathcal{L}(N_{A,\epsilon}), Po(\lambda_{\epsilon})) \le 8 \cdot 2^{-\delta_{\epsilon} a_{\epsilon}/2} \lambda_{\epsilon}^{1/2}.$$

(ii) Let λ_0 be a positive constant. Then

$$P\{R_m \models_{\epsilon} A\}
ightarrow \left\{ egin{array}{ll} 0, & \emph{if } \lambda_{m,\epsilon}
ightarrow \infty, \ e^{-\lambda_0}, & \emph{if } \lambda_{m,\epsilon}
ightarrow \lambda_0, & \emph{as } m
ightarrow \infty. \ 1, & \emph{if } \lambda_{m,\epsilon}
ightarrow 0, \end{array}
ight.$$

Petersburg 2005 23/32

Discussion

The most likely ϵ -test candidates are amongst sets with maximal ϵ -entropies. Let $a_{\epsilon}(r) \geq 2 \log_2 m + c_m$ and $c_m \to +\infty$. Then

$$P\{R_m \models_{\epsilon} A\} = 1 - \mathrm{o}(1) \text{ as } m \to \infty.$$

These entropies characterize **typical** ϵ -tests in a random database.

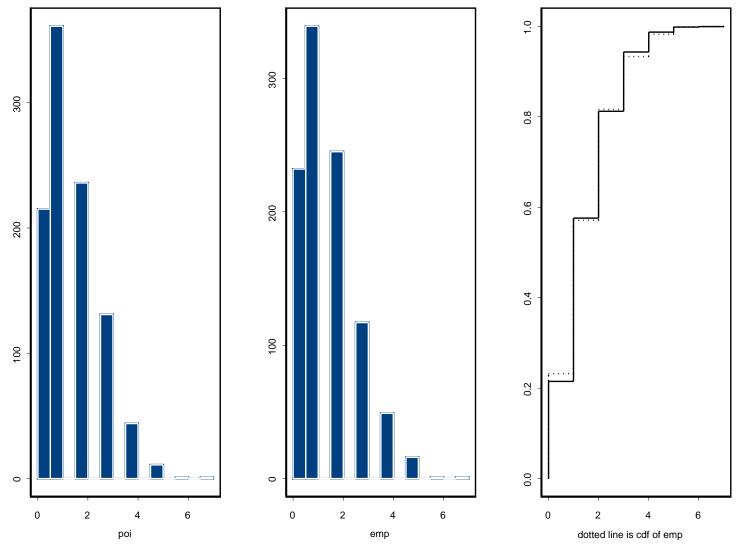
Sufficient conditions

(A)
$$\longleftarrow p_{\epsilon, \max} := \max_{x \in D} p_{\epsilon}(x) \to 0 \text{ as } m \to \infty.$$

(B)
$$\iff p_{\epsilon,\min} > p_{\epsilon,\max}^2$$
.

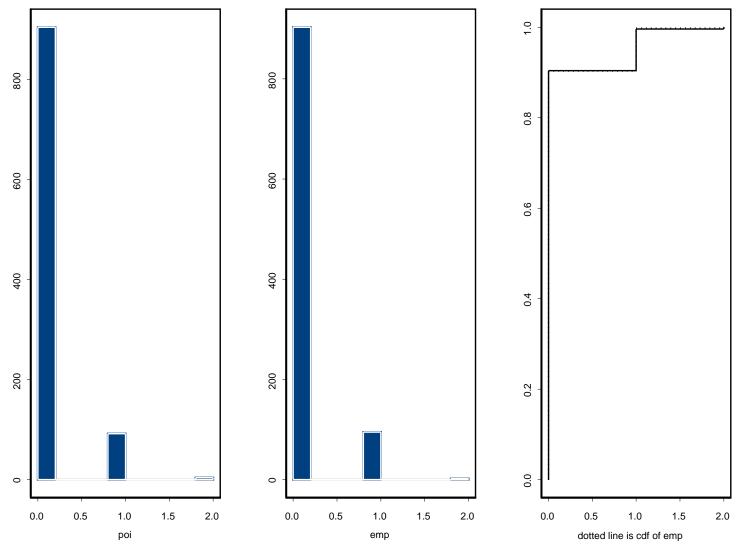
The test property for a set of attributes is determined by the ϵ -entropy $h_{2,\epsilon}(\mathcal{P}_{m,A_m})$.

Petersburg 2005 24/32



Poisson approximation for standard continuous uniform database, 10 U(0,1)-attributes, $m=50, \epsilon=0.3.$

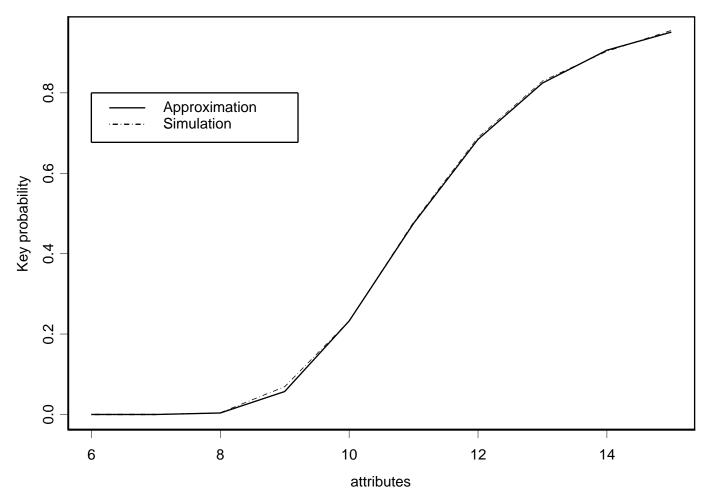
Petersburg 2005 25/32



Poisson approximation for standard continuous uniform database, 14 U(0,1)-attributes, $m=50, \epsilon=0.3.$

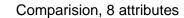
Petersburg 2005 26/32

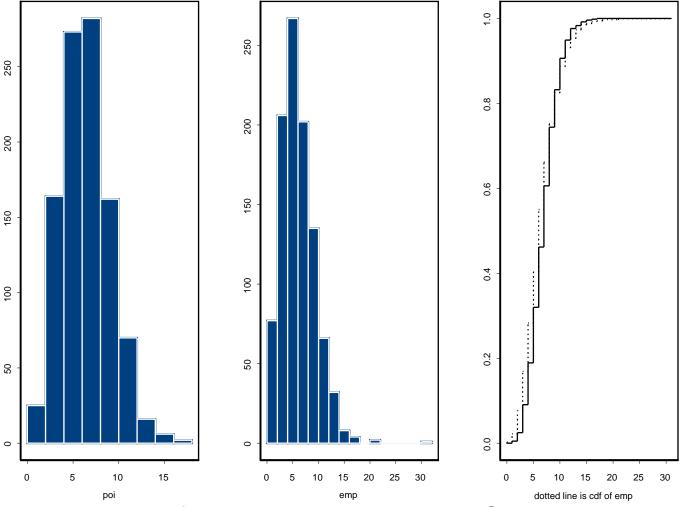
Uniform database



Poisson approximation for standard continuous uniform database, U(0,1)-attributes, m=50, $\epsilon=0.3$. Empirical distribution (simulation), $N_{sim}=1000$.

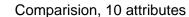
Petersburg 2005 27/32

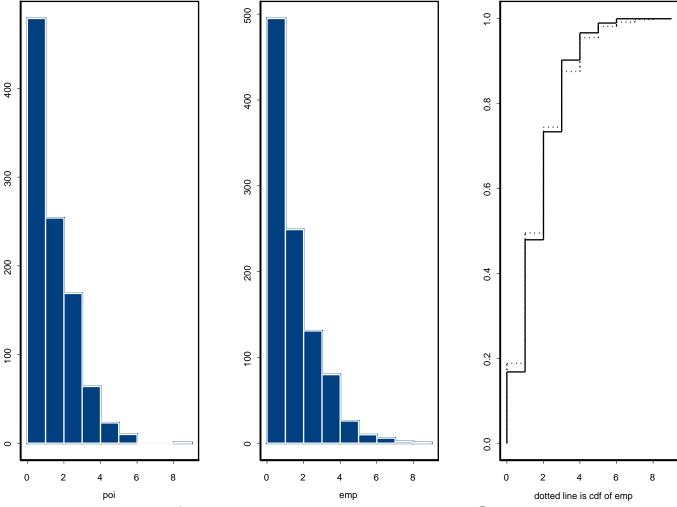




Poisson approximation for standard continuous Gaussian database, N(0,1)-attributes, $m=50,\,\epsilon=1.0.$

Petersburg 2005 28/32

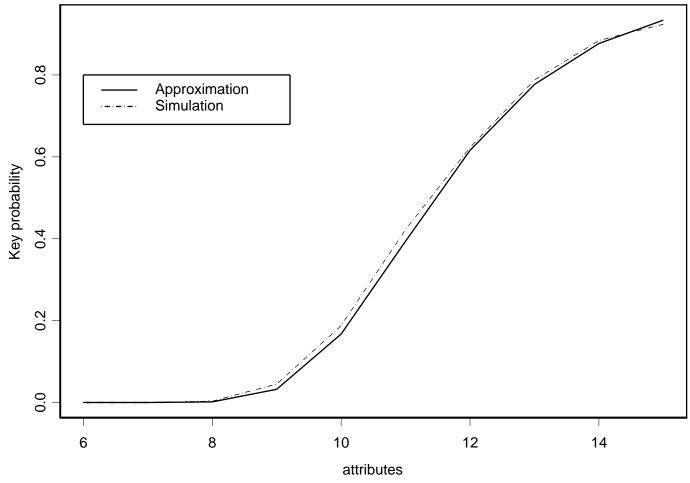




Poisson approximation for standard continuous Gaussian database, 10 N(0,1)-attributes, $m=50,\,\epsilon=1.0.$

Petersburg 2005 29/32

Gaussian database



Poisson approximation for standard continuous Gaussian database, N(0,1)-attributes, m =50, $\epsilon = 1.0$. Empirical distribution (simulation), $N_{sim} = 1000$. Petersburg 2005 30/32

Summary

Instead of

Worst case setting and exhaustive search

Stochastic modelling and statistical inference

Petersburg 2005 31/32

References

- J. Demetrovics, G.O.H. Katona, D. Miklós, O. Seleznjev, and B. Thalheim. Asymptotic properties of keys and functional dependencies in random databases. *Theor. Computer Science*, 190:151–166, 1998.
- O. Seleznjev, and B. Thalheim. Average case analysis in database problems. *Methodology and Computing in Applied Probability*, 5:395-418, 2003.
- O. Seleznjev, and B. Thalheim. Random databases with approximate record matching and epsilon-entropy. Univ. Umeå Research Report, Dep. Math. and Math. Stat., 2004:4, http://www.matstat.umu.se/personal/Oleg/personal/EntropyDB2005.pdf, 2004.

Thanks!

Petersburg 2005 32/32