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Basic notation

Database (m x n-table) of m tuples (or records) with n attributes (or
features), U :={1,...,n}

t1(1) t1(n)
R = .
tm(1) tm(n)
Tuples ¢;(U) = (t;(1),...,t;(n)),j = 1,...,m, are vectors with values
NnD =D, x...xD,,where D, are domains i =1,...,n.
A set of attributes A is called atest in Rifall tuplest(i),e=1,...,m,

are different.
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We say that vectors x and y in a metric space (5, d) are e-close , ¢ > 0,
If the distance d(z,y) < e. A set of attributes A will be called a ¢-
test if there are no e-close tuples t4(¢),s = 1,...,m. Let N(A) :=
#{e—close tuplesin R4}.

Example
1 1.0 0 0
R=10 01 0 1
1 0 0 0 1
- tests : {2,3},...

-notatest: {1,4}
- e-test, e = 0.5, {3, 5} but not a 1.0-test for the Euclidian norm.
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Database problems:

e Data search optimization; Tests and minimal tests.

e Database design; constraints sets complexity.

Problems:

e Probabilistic models for discrete and continuous databases:
e The distribution of the number of e-coincidences N.(A)

¢ Joining multiple tables with approximate matching.
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approach:
Combinatorial or deterministic methods: restrictive class of models
and overestimating complexity.

approach:
Probabilistic methods; general class of models; where the distribution
of tests concentrates (i.e., typical tests), and for which model
parameters.

Probabilistic models for databases.

1. Tuples t;(U) € [l,cy Dinj = 1,...,m, are independent random
vectors;

2. P is a common (discrete or continuous) distribution for tuples
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Examples

Uniform random database if P is a uniform (discrete or continuous)
distribution / in D.

Gaussian database if P is a Gaussian distribution G in D = R".

(Generalized) Bernoulli random database if all attributes are iid
random ()-variables.

For instance, the conventional Bernoulli model corresponds to a binary
one for the discrete Bernoulli distribution with D; = {0,1} for all
attributes.
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Measures of uncertainty

For a discrete distribution P = {p(k),k € D},

Zp ) log, p(k

For a discrete distribution P = {p(k),k € D},

i : logo(>_p(k)*), s # 1,
k

hs(P) :=

and hs(Pa) — hi(Ps) as s— 1.
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for a continuous random variable X, differential entropy . The
uniform quantizer ¢(X) = [NX]/N. Then for py, := P{q(X) =k/N} =
P{k/N < X <(k+1)/N}

he(X) = —10g22p%, e=1/N,s =2
k

1
() = log, ; ~log, | pla)ds + o(1),
¢ R

with a straightforward generalization to the vector case R™ and the
general class of entropies

1
hE(X) = nlogy — — logz/ p(x)?dz + o(1).
€ n
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For a metric space (.5,d) and N.(S, d) the cardinality of
the minimal e-net
HG(S) — 1Og2 Ne(Sv d)

For random continuous variables X,Y with
the mutual information

i N loe L&)
1X.Y) = [ oo tog Bt daay,

the risk distortion (or e-entropy)

R(X)=inf{I(X,Y): E||X - Y||* < €*}.
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For a probabilistic separable metric space (.5,d, i)
and a countable e-partition 7. = {A;} with diameter d(A4;) < e,

HT(S,p) = inf Y  u(A;) logy(1/p(4)))

There are ¢, d-variants for Kolmogorov and Posner-Rodemich when
defined on S'\ B and u(B) < 4.

(the volume-scaling entropy). For a probabilistic
separable metric space (S,d, 1), X is a random p-vector,

HO(S, p) = Elogy(1/pu(B(X)))
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The Rényi e-entropy (cf. Szpankowski for discrete sequences)

Let X,Y be independent P-distributed random vectors with values a
metric space (S,d) and B.(z) := {y : d(z,y) < €} be a e-ball, the e-ball
probability p.(z) := P{Y € B.(x)}. The generalized Rényi e-entropy

ha,e(P) := —logy P{d(X,Y) < €} = —log, pe(X).
In the general case,

1
1l —s

hse(Pa) = log, Epe(X)*™1, s # 1,
the generalized Shannon e-entropy as s — 1,
hl,e(P) := —Elogy pe(X).

(cf. the volume-scaling entropy).
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Proposition. Let X = (X4, Xp) be a random P-vector.

(i) ho,(P) > 0. If ho (P) = 0, then for some =g , P{X € B.(zo)} =
1. On the other hand, if P{X € B.(xg)} = 1, then hy o.(P) = 0;

(”) hQ,G(PA) S h2,e(PAUB);

(i) if |z| = max;=1 . ,|x;] and X4, Xp are independent, then
ho e(Paus) = ha.c(Pa) + ho(PB);

(V) 5h2.(P) < h3o(P) < hoo(P);

(v) for every continuous distribution with compact domain D
and continuous and bounded density function p(z) and the uniform
distribution &/ on D,

hg’e(P) < hQ’G(Z/{) + 0(1) as e — 0.
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Discrete case, X,Y, Z are P-iid, e =0, P = {p(k) = P(X =k)},

ha(P) = —logy P(X = Y) = —logy(>_ p(k)?) = — log, Ep(X).
ha(P) = —loga P(X =Y, X = Z) = —1/2logy () p(k)*)
= —log, Ep(X)*

Proposition. Let X = (X4, Xp) be a random P-vector.
()  h2(Pa) < ha(Paun);
(i) If X4, Xp are independent, then ho(Paug) = ha(Pa) + ha(PB);

(i) For every discrete non-uniform distributions with finite domains,
hQ(PA) < hg(UA);

(iv) 2 ha(Pa) < ha(Pa) < ho(Pa4) with the equality iff P is uniform.
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Continuous case, ¢ > 0, density function p(z), the volume of B.(x) in
R™, be(n) := | Be(x)

Proposition. Let p(x),z € D bounded and continuous or have a
finite number of discontinuity points. Then

h(P) = —logybe(n) — log, /D p()2dzr + o1)

1
= nlog, P log, b1(n) — log2/ p(x)?dz 4+ o(1) as e — 0.
D

If the differential entropy  H(Pa) := < 10gy [pn p(x)%dz, s # 1,

1
hs,e(PA) — n10g2 E + 10g2 bl(n) T HS(PA) + 0(1) as e — 0,
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Examples

Uniform random database. Let H(A) := ) ., log, | D;| (information
function of A), r = | A|,

Discrete (e=0)
p(k(A)) = 2=H) Rényi entropy a = h(P4) = H(A)

Continuous p(z(A)) = 27H@ d i, = min|D;l.;

1
he(Pa) = rlogs 2 + H(A) + O(T€2/dmin);

Bernoulli database:

Discrete(e=0)
p(k(A)) = [Lica QU{E()}), Rényi entropy h(Pa) = rh(Q);
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Continuous

p(x(A)) = [1;c4a(z:), Rényi entropy (max-norm, for q(x)) he(Pa) =
rhe(Q) and he(Q) = log, 5 + H(Q) + 0(1);

Gaussian database:

Tuples t;(A) are iid Gaussian N(u,>) random vectors;, \; are
eigenvalues of XJ; Rényi entropy (max-norm)

1 1
he(Pa) =rlogy o+ 5 > logy(27Ai) 4+ O(r€* /Amin),

— Bernoulli database for Gaussian tuples, r = | A|:

I 1
he(Pa) = r(log, % + 5 log,(2m0?) + O(€?)) as € — 0.
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Quantization e-entropy

Let X € D C R" be a continuous random vector and Voronoi partition

D = U} Be(x;), AM(Be(z;) N Be(z;)) = 0and 1 < N, < oo. For

a compact set D, assume that N, < oco. Let V.-quantizer ¢(X) =

z;, Where i = argmin._, 5 |X — z;| and the entropy hE(X) =
Ne

— log, Zj:l pE(SEj)Q'

Theorem. Let p(z),z € D C R" be a continuous density function ,
and ¢(X) the Voronoi V.-quantizer. Then

() hH(X) = —logy be(n) + H(P) + o(1);

(if) for a compact set D,

hi(X) < log, N. and h.(X) < log, N. + o(1) as € — 0.
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Discussion

The assertions can be directly generalized for the case of a separable
metric space (.5, d) with Lebesgue measure for an e-ball. Independent
realizations of these random functions can be archived in a database
(e.g., Fourier coefficients of a realization in L?[0,1] space or some
finite dimensional realization approximations).
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Example

e-entropy for a Wiener measure V. let two independent Wiener
processes Wy (t), Ws(t), t € |0, 1], be Gaussian random vectors taking
values in the Hilbert space L?[0,1]. Then X(t) = Wi(t) — W(¢)
IS also a Wiener process with the covariance function K(t,s) =
2min(t, s), t,s € [0,1] and the corresponding small ball probability
works

1
PIW, — Wall a0 < ) = (/X 2dt<e)~( en(- )

(27)1/2
4e

ho (W) = — —1— log, +0(1) ase — 0.

4

If By is a fractional Brownian motion with Hurst constant H and S =
L?[0,1], then
hQ’G(BH) ~ CHE_l/H, Cyg > 0.
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Random databases. ¢-Test probability

Rényi entropies
(A) ac = ac(m) = ho (Pm.4,,) — 00 @S m — o0.
A “relative” uncertainty in a distribution P.
(B) O :=0c(P) := 4 h3.(P)/ha,(P) — 3> 0.
(i) (B) is valid e.g. for Uniform and Gaussian databases.

(i) For a discrete distribution P, =0, 0 < 6(P) < 1 with the equality
only for uniform distribution.
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Let the mean number of e-close tuples, M = m(m — 1)/2,
Ae = A€, A) ;= EN(A) = MP(|t1(A) —t2(A)| <€) = M2™%.

Theorem. Let R,,,mm > 1, be a sequence of random tables and (A),
(B) hold.

(i) Forallm > 1 and A\, > 0,

IP{R,, |=c A} — e < dpy(L(Na.),Po(A)) <8 - 270%ae/2)\1/2,

(i) Let A\ be a positive constant. Then
0, IfApe— 00,

P{R,, = A} — ¢ e 2, if X\, c— Ao, asm — oco.
1, ifApne—0,
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Discussion
The most likely e-test candidates are amongst sets with maximal e-
entropies. Let a.(r) > 2log, m + ¢, and ¢,,, — +o0o. Then

P{R,, =c A} =1—0(1) as m — oc.

These entropies characterize typical e-tests in a random database.
Sufficient conditions

(A) <= Pe.max ‘= MaxXzep Pe(x) — 0 8S M — 00.

(B) <= pe,min > pz,max'

The for a set of attributes is determined by the e-entropy
hQ,E(Pm,Am)-
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Comparision, 14 attributes
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Comparision, 8 attributes
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Poisson approximation for standard continuous Gaussian database, 8
N(O,1)-attributes, m = 50, ¢ = 1.0.
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Comparision, 10 attributes
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Gaussian database
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Poisson approximation for standard continuous Gaussian database,
N(O,1)-attributes, m = 50, ¢ = 1.0. Empirical distribution (simulation),
Ngin, = 1000.
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Summary

Instead of
Worst case setting and exhaustive search

Stochastic modelling and statistical inference
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