Random databases and e-entropy

Oleg Seleznjev

Umea university, Sweden
Moscow State University, Russia

http://matstat.umu.se

Petersburg 2005



Coauthor
Bernhard Thalheim

Institute of Computer Science and Applied Mathematics,
Christian-Albrechts University, Kiel
Germany

Outline:
Introduction. Basic notation.
Probabilistic models for databases.
Rényi e-entropy.
Tests in random databases.
Summary.

ok wbdPRE

Basic notation
Database (m X n-table) of m tuples (or records) with n attributes (or features), U :=

{1,...,n}

(1) - ty(n)
R = . . e
tm(1) -+ tm(n)
Tuples tj(U) = (tj(l), ce ,tj(n)),j = 1,...,m, are vectors with values in D = Dy X
. X Dpn, where D; are domains ¢ =1,...,n.
A set of attributes A is called a test in R if all tuples ¢ 4(i),% = 1, ..., m, are different.

We say that vectors = and y in a metric space (S, d) are e-close, ¢ > 0, if the distance
d(z,y) < e. A set of attributes A will be called a e-test if there are no e-close tuples
tp(i),i=1,...,m. Let N¢(A) := #{e—close tuplesin R 4 }.

Example
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-tests: {2,3}, ...
-notatest: {1,4}
- e-test, e = 0.5, {3, 5} but not a 1.0-test for the Euclidian norm.

Database problems:
e Data search optimization; Tests and minimal tests.

e Database design; constraints sets complexity.
Problems:

e Probabilistic models for discrete and continuous databases;
e The distribution of the number of e-coincidences N¢(A)
e Joining multiple tables with approximate matching.

approach:
Combinatorial or deterministic methods; restrictive class of models and overestimating
complexity.

approach:
Probabilistic methods; general class of models; where the distribution of tests concentrates
(i.e., typical tests), and for which model parameters.

Probabilistic models for databases.

1. Tuples tj(U) €ll;cu Di»j =1,...,m, are independent random vectors;
2. P is a common (discrete or continuous) distribution for tuples

| . Examples . R
Uniform random database if P is a uniform (discrete or continuous) distribution ¢/ in D.

Gaussian database if P is a Gaussian distribution G in D = R,
(Generalized) Bernoulli random database if all attributes are iid random Q-variables.

For instance, the conventional Bernoulli model corresponds to a binary one for the discrete
Bernoulli distribution with D; = {0, 1} for all attributes.
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Measures of uncertainty
For a discrete distribution P = {p(k),k € D},

hi(P):= =) p(k)logy p(k)
k
For a discrete distribution P = {p(k),k € D},
1
hs(P) = ———loga (3, p()°), s#1,
k

and hs(Py) — h1(Py4) as s — L

for a continuous random variable X, differential entropy . The uniform quantizer
q(X) = [NX]/N. Thenfor p;, := P{q(X) =k/N} = P{k/N < X < (k+1)/N}

hg(X) = —log2z p%, e=1/N,s =2
k

1
hf”(X) = logo i logo /Rp($)2dx + o(1),
with a straightforward generalization to the vector case R" and the general class of entropies

1
hE(X) = nlogyg — — log2/ p(:c)2d$ + o(1).
€ RM

For a metric space (S, d) and N¢(S, d) the cardinality of the minimal e-net
He(S) = logg Ne(S, d).
For random continuous variables X, Y with the mutual information

p(z,y)

p@)a(y) W

I(X,Y) Z/p(x,y) log
the risk distortion (or e-entropy)

Re(X) = inf{I(X,Y) : E|[|X — Y| < ).
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For a probabilistic separable metric space (S, d, 1) and a countable e-
partition me = {A;} with diameter d(A;) < e,

HEE (S, 1) = inf > | 1(A4;) loga(1/p(4;))

There are ¢, é-variants for Kolmogorov and Posner-Rodemich when defined on S \ B and
nw(B) < 6.

(the volume-scaling entropy). For a probabilistic separable metric space
(S,d, ), X is a random p-vector,

HHO (8, 1) = Elogy(1/1(Be(X)))

The Rényi e-entropy (cf. Szpankowski for discrete sequences)
Let X, Y be independent P-distributed random vectors with values a metric space (.S, d) and
Be(z) := {y : d(z,y) < €} be a e-ball, the e-ball probability pe(xz) := P{Y € Be(x)}.
The generalized Rényi e-entropy

hg e(P) := —logg P{d(X,Y) < €} = —logg pe(X).

In the general case,

logo Epe(X)S_l, s # 1,

1
hs,e(’PA) = 1

— S
the generalized Shannon e-entropy as s — 1,
h1,e(P) := —Elogg pe(X).

(cf. the volume-scaling entropy).

Proposition.  Let X = (X 4, X g) be arandom P-vector.

() ho (P) > 0. If hg (P) = 0, then for some z( , P{X € Be(zg)} = 1. On the
other hand, if P{X € Be(zg)} = 1,then hg 9.(P) = 0;

(i) ho e(Pa) < ha (PauB):
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(i) if [x] = max;—q1_ , |®;| and X 4, X p are independent, then hg (P4RB) =
h2,e(PA) + h2,e(7DB);
V)  3hg (P) < h3 (P) < hg (P);

(v) for every continuous distribution with compact domain D and continuous and
bounded density function p(x) and the uniform distribution &/ on D,

h2,€(73) < h2,e(u) +o(1) ase — 0.

Discrete case, X, Y, Z are P-iid,e =0, P = {p(k) = P(X =k)},

ho(P) = —loggP(X =Y)=—loga(d p(k)?) = —logy Ep(X),
K
h3(P) = —loggP(X =Y, X = 2Z) = —1/2logy(}_ p(k)?)
K

2
= —logg Ep(X)

Proposition.  Let X = (X 4, X g) be arandom P-vector.

() h2(Pa) < ha(Paup):

(i) If X 4, X g are independent, then ho(P o) = ho(P4) + ho(PpR);

(iii) For every discrete non-uniform distributions with finite domains, ho(P4) <
ha(U4);

(iv) 231{ ho(P4) < hg(P4) < ho(P 4) with the equality iff 7 is uniform.

Continuous case, ¢ > 0, density function p(z), the volume of Be(z) in R™, be(n) :=
|Be ()|

Proposition.  Let p(z),z € D bounded and continuous or have a finite number of
discontinuity points. Then

he(P) = —loggbe(n) —logy [ p(@)*de+o(1)

1
= nlogy P logo by (n) — logy /D p(ﬂc)2dx +o(l)ase — 0.
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If the differential entropy Hgs(P4) := 1—13 logo [gn p(x)%dx,s # 1,

1
hs,e(P4) = nlogy - + logg by (n) + Hs(P4) +o(1) as e — 0,

Examples
Uniform random database. Let H(A) := > ;c 4 logg |D;| (information function of A),

r=|A|,
Discrete (e=0)
p(k(A)) = 2_H(A), Rényientropy a = h(Py4) = H(A)

2~ H(A) g

Continuous p(xz(A)) = min = min |[D;|;

1
he(P) = rlogg o— + H(A) + O(re? /dpmin);

Bernoulli database:

Discrete(e=0)
p(k(A)) =IT;c4 QU{k(i)}), Rényientropy h(P 4) = rh(Q);

Continuous
p(z(A)) = [l;ca a(z;), Rényi entropy (max-norm, for g(x)) he(P4) = rhe(Q) and
he(Q) = logg 5= + H(Q) + o(1);

Gaussian database:
Tuples t;(A) are iid Gaussian N (y, 3) random vectors; \; are eigenvalues of 3; Rényi
entropy (max-norm)

1 1 2
he(’PA) = T’lOgQ 2_6 + 5 Z 10g2(27r>‘i) + O(TG /Amin%
)

— Bernoulli database for Gaussian tuples, r = | A|:

1 1
he(P 4) = r(logy oe + > 10g2(27ra2) + 0(62)) ase — 0.
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Quantization e-entropy N
Let X € D C R™ be a continuous random vector and Voronoi partition D = Uizel Be(x;),

A Be(z;) N Be(xj)) = 0and 1 < N¢ < oo. For a compact set D, assume that Ne <
co. Let Ve-quantizer q(X) = x;, where ¢ = argminjzl,m,Ne\X — :ch| and the entropy

N 2
h?(X) := — logo ijelpe(a:j) .

Theorem. Letp(z),z € D C R" be a continuous density function , and ¢(X) the Voronoi
Ve-quantizer. Then

() hE(X) = —logg be(n) + H(P) + o(1);
(if) for a compact set D,

hE(X) < logy Ne and he(X) < logg Ne + o(1) as € — 0.

Discussion
The assertions can be directly generalized for the case of a separable metric space (S, d)

with Lebesgue measure for an e-ball. Independent realizations of these random functions can
be archived in a database (e.g., Fourier coefficients of a realization in L2 [0, 1] space or some
finite dimensional realization approximations).

Example
e-entropy for a Wiener measure W. let two independent Wiener processes W1 (t), Wa(t),
t € [0, 1], be Gaussian random vectors taking values in the Hilbert space L2[0, 1]. Then
X(t) = Wq(t) — Wo(t) is also a Wiener process with the covariance function K (t,s) =
2min(t, s), t,s € [0, 1] and the corresponding small ball probability works

1 €
PUWL=Wall 20y <) = P </0 X0 5 62) ~ et
—2 (277)1/2

€
h27€(W) == T + 10g2 4—6 + O(l) ase — 0.

If By is a fractional Brownian motion with Hurst constant H and S = L2[0, 1], then

~1/H

hQ,E(BH)NCHE ,CH>0.
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Random databases. e-Test probability
Rényi entropies

(A) ae = ae(m) = h2,€(Pm,Am) — 00 as m — oo.

A “relative” uncertainty in a distribution P.

(B) de := 0¢e(P) := 4h3’6(7?)/h2,6(7?) -3 > 0.
(i) (B) is valid e.g. for Uniform and Gaussian databases.

(i) For a discrete distribution P, e=0, 0 < 6(P) < 1 with the equality only for uniform
distribution.

Let the mean number of e-close tuples, M = m(m — 1)/2,
Ae = Am(e, A) := ENe(A) = MP(Jt1(A) — to(A)]| <€) = M2 %€,
Theorem. Let Ry, m > 1, be a sequence of random tables and (A), (B) hold.
() Forallm > 1 and A¢ > O,

— — 1/2
P{Rm e A} — e | S dpy(L(N g ), Po(Ae)) <8 - 27 0cae/230/2

i) Let A be a positive constant. Then
0

O, |f )\m’e e OO’
P{Rm [=e A} = e~ 20, ifAme— Ay, asm — oo.
]_, |f >\m,6 e 0’

Discussion
The most likely e-test candidates are amongst sets with maximal e-entropies. Let ac(r) >
2logg m 4+ c¢m and ¢y, — +o0. Then

P{Rm Fe A} =1 —o0(1) asm — oo.

These entropies characterize typical e-tests in a random database.
Sufficient conditions

(A) <= pe,max 1= max,c p pe(z) — 0asm — oco.

2
(B) <— Pe,min ~ Pe,max-
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Uniform database
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Poisson approximation for standard continuous uniform database, U(0,1)-attributes, m = 50,
e = 0.3. Empirical distribution (simulation), Ng;,, = 1000.
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Comparision, 8 attributes
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Comparision, 10 attributes
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Gaussian database
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Poisson approximation for standard continuous Gaussian database, N(0,1)-attributes,
m = 50, e = 1.0. Empirical distribution (simulation), Ng;,,, = 1000.

Summary
Instead of

Stochastic modelling and statistical inference
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