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Basic notation
Database (m × n-table) of m tuples (or records) with n attributes (or features), U :=
{1, . . . , n}

R =

 t1(1) · · · t1(n)
· · · · · · · · ·

tm(1) · · · tm(n)


Tuples tj(U) = (tj(1), . . . , tj(n)), j = 1, . . . , m, are vectors with values in D = D1 ×
. . .×Dn, where Di are domains i = 1, . . . , n.

A set of attributes A is called a test in R if all tuples tA(i), i = 1, . . . , m, are different.

We say that vectors x and y in a metric space (S, d) are ε-close , ε ≥ 0, if the distance
d(x, y) ≤ ε. A set of attributes A will be called a ε-test if there are no ε-close tuples
tA(i), i = 1, . . . , m. Let Nε(A) := #{ε−close tuples in RA}.

Example

R =

 1 1 0 0 0
0 0 1 0 1
1 0 0 0 1
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- tests : {2, 3}, . . .
- not a test : {1, 4}
- ε-test, ε = 0.5, {3, 5} but not a 1.0-test for the Euclidian norm.

Database problems:
• Data search optimization; Tests and minimal tests.

• Database design; constraints sets complexity.

Problems:

• Probabilistic models for discrete and continuous databases;

• The distribution of the number of ε-coincidences Nε(A)

• Joining multiple tables with approximate matching.

The worst case setting approach:
Combinatorial or deterministic methods; restrictive class of models and overestimating
complexity.

Average case setting approach:
Probabilistic methods; general class of models; where the distribution of tests concentrates
(i.e., typical tests), and for which model parameters.

Probabilistic models for databases.

1. Tuples tj(U) ∈
∏

i∈U Di, j = 1, . . . , m, are independent random vectors;

2. P is a common (discrete or continuous) distribution for tuples

Examples
Uniform random database if P is a uniform (discrete or continuous) distribution U in D.

Gaussian database if P is a Gaussian distribution G in D = <n.
(Generalized) Bernoulli random database if all attributes are iid random Q-variables.
For instance, the conventional Bernoulli model corresponds to a binary one for the discrete
Bernoulli distribution with Di = {0, 1} for all attributes.
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Measures of uncertainty
Shannon For a discrete distribution P = {p(k), k ∈ D},

h1(P) := −
∑
k

p(k) log2 p(k)

Rényi For a discrete distribution P = {p(k), k ∈ D},

hs(P) :=
1

1− s
log2(

∑
k

p(k)
s
), s 6= 1,

and hs(PA) → h1(PA) as s → 1.

Rényi for a continuous random variable X, differential entropy . The uniform quantizer
q(X) = [NX]/N . Then for pk := P{q(X) = k/N} = P{k/N < X ≤ (k + 1)/N}

h
R
ε (X) := − log2

∑
k

p
2
k, ε = 1/N, s = 2

h
R
ε (X) = log2

1

ε
− log2

∫
R

p(x)
2
dx + o(1),

with a straightforward generalization to the vector case Rn and the general class of entropies

h
R
ε (X) = n log2

1

ε
− log2

∫
Rn

p(x)
2
dx + o(1).

Kolmogorov For a metric space (S, d) and Nε(S, d) the cardinality of the minimal ε-net

Hε(S) = log2 Nε(S, d).

Kolmogorov-Shannon For random continuous variables X, Y with the mutual information

I(X, Y ) =

∫
p(x, y) log

p(x, y)

p(x)q(y)
dxdy,

the risk distortion (or ε-entropy)

Rε(X) = inf{I(X, Y ) : E||X − Y ||2 ≤ ε
2}.
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Posner-Rodemich For a probabilistic separable metric space (S, d, µ) and a countable ε-
partition πε = {Ai} with diameter d(Ai) ≤ ε,

H
PR
ε (S, µ) = inf

πε

∑
µ(Ai) log2(1/µ(Ai))

There are ε, δ-variants for Kolmogorov and Posner-Rodemich when defined on S \ B and
µ(B) < δ.

Haussler and Opper (the volume-scaling entropy). For a probabilistic separable metric space
(S, d, µ), X is a random µ-vector,

H
HO
ε (S, µ) = E log2(1/µ(Bε(X)))

The Rényi ε-entropy (cf. Szpankowski for discrete sequences)

Let X, Y be independentP-distributed random vectors with values a metric space (S, d) and
Bε(x) := {y : d(x, y) ≤ ε} be a ε-ball, the ε-ball probability pε(x) := P{Y ∈ Bε(x)}.
The generalized Rényi ε-entropy

h2,ε(P) := − log2 P{d(X, Y ) ≤ ε} = − log2 pε(X).

In the general case,

hs,ε(PA) :=
1

1− s
log2 Epε(X)

s−1
, s 6= 1,

the generalized Shannon ε-entropy as s → 1,

h1,ε(P) := −E log2 pε(X).

(cf. the volume-scaling entropy).

Proposition. Let X = (XA, XB) be a random P-vector.

(i) h2,ε(P) ≥ 0. If h2,ε(P) = 0, then for some x0 , P{X ∈ Bε(x0)} = 1. On the
other hand, if P{X ∈ Bε(x0)} = 1, then h2,2ε(P) = 0;

(ii) h2,ε(PA) ≤ h2,ε(PA∪B);
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(iii) if |x| = maxi=1,...,n |xi| and XA, XB are independent, then h2,ε(PA∪B) =

h2,ε(PA) + h2,ε(PB);

(iv) 1
2h2,ε(P) ≤ h3,ε(P) ≤ h2,ε(P);

(v) for every continuous distribution with compact domain D and continuous and
bounded density function p(x) and the uniform distribution U on D,

h2,ε(P) ≤ h2,ε(U) + o(1) as ε → 0.

Discrete case, X, Y, Z are P-iid, ε = 0, P = {p(k) = P (X = k)},

h2(P) = − log2 P (X = Y ) = − log2(
∑
k

p(k)
2
) = − log2 Ep(X),

h3(P) = − log2 P (X = Y, X = Z) = −1/2 log2(
∑
k

p(k)
3
)

= − log2 Ep(X)
2

Proposition. Let X = (XA, XB) be a random P-vector.

(i) h2(PA) ≤ h2(PA∪B);

(ii) If XA, XB are independent, then h2(PA∪B) = h2(PA) + h2(PB);

(iii) For every discrete non-uniform distributions with finite domains, h2(PA) <
h2(UA);

(iv) 3
4 h2(PA) < h3(PA) ≤ h2(PA) with the equality iff P is uniform.

Continuous case, ε > 0, density function p(x), the volume of Bε(x) in <n, bε(n) :=
|Bε(x)|
Proposition. Let p(x), x ∈ D bounded and continuous or have a finite number of
discontinuity points. Then

hε(P) = − log2 bε(n)− log2

∫
D

p(x)
2
dx + o(1)

= n log2
1

ε
− log2 b1(n)− log2

∫
D

p(x)
2
dx + o(1) as ε → 0.
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If the differential entropy Hs(PA) := 1
1−s log2

∫
Rn p(x)sdx, s 6= 1,

hs,ε(PA) = n log2
1

ε
+ log2 b1(n) + Hs(PA) + o(1) as ε → 0,

Examples
Uniform random database. Let H(A) :=

∑
i∈A log2 |Di| (information function of A),

r = |A|,
Discrete (ε=0)

p(k(A)) = 2−H(A), Rényi entropy a = h(PA) = H(A)

Continuous p(x(A)) = 2−H(A), dmin = min |Di|.;

hε(PA) = r log2
1

2ε
+ H(A) + O(rε

2
/dmin);

Bernoulli database:

Discrete(ε=0)
p(k(A)) =

∏
i∈AQ({k(i)}), Rényi entropy h(PA) = rh(Q);

Continuous
p(x(A)) =

∏
i∈A q(xi), Rényi entropy (max-norm, for q(x)) hε(PA) = rhε(Q) and

hε(Q) = log2
1
2ε + H(Q) + o(1);

Gaussian database:
Tuples ti(A) are iid Gaussian N(µ, Σ) random vectors; λi are eigenvalues of Σ; Rényi
entropy (max-norm)

hε(PA) = r log2
1

2ε
+

1

2

∑
i

log2(2πλi) + O(rε
2
/λmin),

– Bernoulli database for Gaussian tuples, r = |A|:

hε(PA) = r(log2
1

2ε
+

1

2
log2(2πσ

2
) + O(ε

2
)) as ε → 0.
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Quantization ε-entropy
Let X ∈ D ⊆ <n be a continuous random vector and Voronoi partition D = ∪Nε

i=1
Bε(xi),

λ(Bε(xi) ∩ Bε(xj)) = 0 and 1 ≤ Nε ≤ ∞. For a compact set D, assume that Nε <

∞. Let Vε-quantizer q(X) = xi, where i = argminj=1,...,Nε|X − xj| and the entropy

hR
ε (X) := − log2

∑Nε
j=1

pε(xj)2.

Theorem. Let p(x), x ∈ D ⊆ <n be a continuous density function , and q(X) the Voronoi
Vε-quantizer. Then

(i) hR
ε (X) = − log2 bε(n) + H(P) + o(1);

(ii) for a compact set D,

h
R
ε (X) ≤ log2 Nε and hε(X) ≤ log2 Nε + o(1) as ε → 0.

Discussion
The assertions can be directly generalized for the case of a separable metric space (S, d)
with Lebesgue measure for an ε-ball. Independent realizations of these random functions can
be archived in a database (e.g., Fourier coefficients of a realization in L2[0, 1] space or some
finite dimensional realization approximations).

Example
ε-entropy for a Wiener measure W . let two independent Wiener processes W1(t), W2(t),

t ∈ [0, 1], be Gaussian random vectors taking values in the Hilbert space L2[0, 1]. Then
X(t) = W1(t) − W2(t) is also a Wiener process with the covariance function K(t, s) =
2 min(t, s), t, s ∈ [0, 1] and the corresponding small ball probability works

P (||W1 −W2||L2[0,1]
≤ ε) = P

(∫ 1

0
X(t)

2
dt ≤ ε

2
)
∼

4ε

(2π)1/2
exp{−

1

4ε2
},

h2,ε(W) =
ε−2

4
+ log2

(2π)1/2

4ε
+ o(1) as ε → 0.

If BH is a fractional Brownian motion with Hurst constant H and S = L2[0, 1], then

h2,ε(BH) ∼ CHε
−1/H

, CH > 0.
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Random databases. ε-Test probability
Rényi entropies

(A) aε = aε(m) = h2,ε(Pm,Am) →∞ as m →∞.

A “relative” uncertainty in a distribution P .

(B) δε := δε(P) := 4 h3,ε(P)/h2,ε(P)− 3 > 0.

(i) (B) is valid e.g. for Uniform and Gaussian databases.

(ii) For a discrete distribution P , ε=0, 0 < δ(P) ≤ 1 with the equality only for uniform
distribution.

Let the mean number of ε-close tuples, M = m(m− 1)/2,

λε = λm(ε, A) := ENε(A) = MP (|t1(A)− t2(A)| ≤ ε) = M2
−aε.

Theorem. Let Rm, m ≥ 1, be a sequence of random tables and (A), (B) hold.

(i) For all m ≥ 1 and λε > 0,

|P{Rm |=ε A} − e
−λε| ≤ dTV (L(NA,ε), Po(λε)) ≤ 8 · 2

−δεaε/2
λ
1/2
ε .

(ii) Let λ0 be a positive constant. Then

P{Rm |=ε A} →


0, if λm,ε →∞,

e−λ0, if λm,ε → λ0,
1, if λm,ε → 0,

as m →∞.

Discussion
The most likely ε-test candidates are amongst sets with maximal ε-entropies. Let aε(r) ≥
2 log2 m + cm and cm → +∞. Then

P{Rm |=ε A} = 1− o(1) as m →∞.

These entropies characterize typical ε-tests in a random database.

Sufficient conditions

(A) ⇐= pε,max := maxx∈D pε(x) → 0 as m →∞.

(B) ⇐= pε,min > p2
ε,max.
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The test property for a set of attributes is determined by the ε-entropy h2,ε(Pm,Am).
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Poisson approximation for standard continuous uniform database, 10 U(0,1)-attributes,
m = 50,ε = 0.3.
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Poisson approximation for standard continuous uniform database, 14 U(0,1)-attributes,
m = 50,ε = 0.3.
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Approximation
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Poisson approximation for standard continuous uniform database, U(0,1)-attributes, m = 50,
ε = 0.3. Empirical distribution (simulation), Nsim = 1000.
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Poisson approximation for standard continuous Gaussian database, 8 N(0,1)-attributes,
m = 50, ε = 1.0.
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Poisson approximation for standard continuous Gaussian database, 10 N(0,1)-attributes,
m = 50, ε = 1.0.

Petersburg 2005 14/16



6 8 10 12 14

attributes

0.
0

0.
2

0.
4

0.
6

0.
8

K
ey

 p
ro

ba
bi

lit
y

Gaussian database

Approximation
Simulation

Poisson approximation for standard continuous Gaussian database, N(0,1)-attributes,
m = 50, ε = 1.0. Empirical distribution (simulation), Nsim = 1000.

Summary
Instead of
Worst case setting and exhaustive search

Stochastic modelling and statistical inference
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